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Abstract

Dynamic binary translation is the process of translating instruction code from one architecture

to another while it executes, i.e., dynamically. As modern applications are becoming larger, more

complex and more dynamic, the tools to manipulate these programs are also becoming increasingly

complex. DynamoRIO is one such dynamic binary translation tool that targets the most common

IA-32 (a.k.a. x86) architecture on the most popular operating systems - Windows and Linux.

DynamoRIO includes applications ranging from program analysis and understanding to profiling,

instrumentation, optimization, improving software security, and more. DynamoRIO uses several

optimization techniques like code caching, trace creation, optimized software technique to em-

ulate indirect branch instructions, etc. to reduce the translation overhead and enhance program

performance in comparison to native execution. However, even considering all of these optimiza-

tion techniques, DynamoRIO still has the limitations of performance and memory usage, which

restrict deployment scalability. The goal of this thesis is to break down the various aspects which

contribute to the overhead burden and evaluate which factors directly contribute to this overhead.

This thesis will discuss all of these factors in further detail. If the process can be streamlined, this

application will become more viable for widespread adoption in a variety of areas. We have used

industry standard MI benchmarks in order to evaluate in detail the amount and distribution of the

overhead in DynamoRIO. Our statistics from the experiments show that DynamoRIO executes a

large number of additional instructions when compared to the native execution of the application.

Furthermore, these additional instructions are involved in building the basic blocks, linking, trace

creation, and resolution of indirect branches, all of which in return have contributed to the fre-

quent exiting of the code cache. We will discuss in detail all of these overheads, show statistics of

instructions for each overhead and finally show the observations and analysis in this experiment.
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Chapter 1

Introduction

Today’s modern applications are now assembled and defined at runtime, taking advantage of shared

libraries, plugins, dynamically-generated code, and other dynamic mechanisms. The amount of

information available statically is shrinking. As the demand for runtime management tools are

growing, dynamic binary translators (DBT) [20], because of their dynamic code translations from

original (guest) binary code to cached translated binary code, are becoming more and more indis-

pensable.

Dynamic binary translators translate instructions from the emulated application (“guest”) in

fragments. It acts in a sandboxed environment in which these fragments are created by building

dynamic basic blocks [1], creating patches and traces. Sandboxing in DBTs is a mechanism to

control and monitor code execution. DBTs retain complete control during the execution of the

guest code. To retain control, application code is copied into the code cache with control transfers

so that it consistently returns to the emulation manager. DBT systems work much more efficiently

when the execution frequency of the translated code is high (“hot”) [4] to compensate for the

cost of translating the code every single time. However, even if the translated code is hot, other

factors contribute to the loss of emulation performance. One of the greatest sources of performance

overhead is the resolution of indirect branches.

DBT systems have numerous uses in program instrumentation, profiling [6],[19], program op-

timization [10], binary portability [2],[22],[24] and secure execution [13],[16]. Poor performance

restricts the scalability and effectiveness of DBT systems. There are many current research projects

working to optimize DBT performance. One of the most popular DBT systems, DynamoRIO [4],

employs code caching technique [21] so that the already translated code does not need to be trans-
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lated again, block-chaining technique [7] to retain the execution within the code cache, and the

previously discussed hot code emulation technique[1]. It also uses different techniques to resolve

indirect branches [11] . All of these are discussed in detail in the next chapter. All of these ap-

proaches have resulted in significant increase in the performance of DBT systems over other emu-

lation techniques, but they still come with a cost of performance and memory overhead. Therefore,

further work must be done in order to streamline these systems and allow for wider adoption of

DBT systems. Previously, similar studies have been performed in order to assess the effects of

individual optimization techniques [4], [11] in a DBT. Other, similar research has also taken place

evaluating DBTs on microarchitectural structures [21]. This project confirms these past findings,

but looks at the topic more deeply by performing an instruction-level analysis of exactly where

and how the DBTs resources are spent. Here we have assessed and identified the major areas of

performance overload as well as identified the primary factors which contribute to this overload.

Our hope is that this research will contribute to further work on DBT process improvement.

We talk further in the following chapters about the overview of the DynamoRIO infrastructure,

various overheads associated with it, our experimental setup, and then finally present our results

and analysis on the overheads of the DynamoRIO running on MI benchmarks. We also talk about

any future work and our conclusion in the final chapters.

Our objective is to determine all of the performance overheads in the most popular and sophis-

ticated x86 to x86 dynamic binary translator called DynamoRIO [4] for the MI Benchmarks suite.

The goal of this thesis is to study the inner workings of DynamoRIO in order to understand the

primary reasons contributing to its performance overheads.
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Chapter 2

An Overview of the DynamoRIO Infrastructure

DynamoRIO is a fully-implemented runtime code manipulation system that supports code trans-

formations on any part of the application program on the fly. It employs itself in the most common

x86 architecture on Windows and Linux Operating System and hence, unlike other dynamic binary

translators, DynamoRIO spends little time in translating from application code to target cached

code. In fact, the cached application code looks just like the original code with the only excep-

tion of control transfer instructions. DynamoRIO ensures transparency and retains control over the

cached code through these transfer instructions. As usual, the translated code is kept in the code

cache [4] for future re-execution hence optimizing execution of application code. We describe

below the different operations of DynamoRIO and the flow of control between them. Figure 2.1,

from [4], shows the overview architecture of DynamoRIO.

Figure 2.1: Flowchart of DynamoRIO [4]

3



2.1 The Emulation Manager a.k.a dispatch

The central hub of control flow in DynamoRIO is the “dispatcher” [4]. It is reached at the begin-

ning of the execution and at every time that control leaves the code cache. Its main job is to retain

control throughout the execution and redirect the control to different components of DynamoRIO.

Its main loop [5] is responsible for checking if the current fragment of code that is next to be

executed has been translated or not. A number of functions within the dispatcher helps to detect

that and if they find no translation has been done yet then they translate a new one and emits it

to the code cache. In addition to that, it also uses helper functions to maintain the statistics that

identify hot code regions in the translated blocks of code and controls the building and installation

of trace fragments. Ultimately, the dispatcher then transfers control to the translated code in the

code cache. No further control is reachable to the dispatcher now and it will only be invoked again

after the code cache exit. Figure 2.2, from [5], shows the main loop of dispatch from DynamoRIO.

Figure 2.2: Main loop in Dispatch [5]

2.2 Translation

2.2.1 Fragment Lookup

As discussed upon entry, the dispatcher checks if the next application code to be executed has

already been translated or not through the lookup routine, fragment_lookup_fine_and_coarse [5].
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In DynamoRIO, information about each translated block is kept in a central hash table. Each entry

in the hash table is a pair of memory addresses where the guest or the application address serves

as the key and its address of the corresponding translated fragment as value. If a match occurs, the

lookup routine returns the address of the corresponding translated fragment, otherwise it returns

an invalid address indicating that a new translation is required.

2.2.2 Building Basic Block

The creation of basic block is accomplished by the routine build_basic_block_fragment [5]. Dy-

namoRIO considers each entry point to begin a new basic block, and copies it until a control

transfer is reached, even if the tail of an existing basic block is duplicated. Then every decoded

instruction is pushed to a linked list that represents the fragments of code being translated. Even

the control transfer instruction goes into the list without patching. Unlike other DBT systems Dy-

namoRIO spends little time translating from source to target architecture since it’s the same x86

architecture. As a matter of fact, DynamoRIO copies and pastes most of the code that it executes.

2.3 Stubs or Patching

After every external API clients are given a chance to check and modify the decoded instruction

code from the instruction list, DynamoRio calls its own patching routine, mangle_bb_ilist [5]. This

routine ensures that the application code is never executed and modifies the targets of the direct

branches so that they always transfer execution to the next translated block in the code cache or

back to the dispatcher. This control is added to the end of the basic blocks as stubs and the process

is called the block chaining technique.

2.4 Indirect Branch Lookup

Indirect branches, on the other hand, can have an unlimited number of targets and cannot be re-

solved through the block chaining technique. Hence, DynamoRIO uses different customized rou-
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tines for each kind of indirect transfer but they all use the same kind of hashing technique to convert

the guest application address to the code cache address. The hash table for indirect branch lookup

resides within the code cache.

2.5 Trace Building

The trace building technique in DynamoRIO starts after translation and by marking certain basic

blocks as potential trace heads. They receive a counter that is incremented after every execution

of those blocks. So when a threshold is reached, that block and every subsequent blocks to be

executed can be added as a new trace until an end of trace condition is reached.

Figure 2.3 shows the performance summary of the fundamental components of DynamoRIO

as presented in the paper [4] for SPEC CPU2000 benchmark suite.

Figure 2.3: Performance Summary presented before [4]
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Chapter 3

Overheads in DynamoRIO

In the previous chapter, we reviewed the entire infrastructure of DynamoRIO and described in

detail the various operations in a Dynamic Binary Translator(DBT) system [20]. As we have

seen, DynamoRIO retains control of the translated application throughout the execution in the host

operating system. In doing so, it ends up adding a significant amount of extra instructions from the

original guest code which contribute to the performance overhead of the DBT systems. In fact, the

instructions added by DynamoRIO to maintain transparency and retain control on the execution

can go up to 30% more than the original native code. In this chapter, we will go through each one

of these places where DynamoRIO is adding performance overhead. We will also point out the

place in the code cache where the original guest code is executed till it reaches the control transfer.

We are going to consider this region as the “no overhead” region since the instructions executed in

this region would be the same as native execution. In Chapter 5 we will see the statistics for each

overhead phase in DynamoRIO for the MI benchmark problems suite.

3.1 Initialization Overhead

From the start of the process, like all DBT systems, DynamoRIO uses a considerable amount of

time and memory to initialize the system, to load and link the libraries and to prepare the system

for execution. Furthermore, DynamoRIO occupies the same address space as the application,

operating within the application process. As you can see in Figure 3.1, from [4], DynamoRIO

interposes itself between an application and the underlying operating system and hardware.

DynamoRIO also implements runtime algorithm for adapting the cache size to match the ap-
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Figure 3.1: DynamoRIO runtime code manipulation layer [4]

plication’s working set size. Finally, the runtime manipulation system must protect itself from

erroneous application so that it can prevent the application from modifying its data and avoid the

result of the runtime system failing. DynamoRIO also protects itself by dividing the execution

into two modes, each with different privileges : DynamoRIO mode and Application mode where

DynamoRIO mode corresponds to DynamoRIO code, while application mode corresponds to the

code cache and the DynamoRIO-generated routines that are executed inside the cache without per-

forming a context switch back to DynamoRIO. For the two modes, DynamoRio gives each type of

memory page with privileges as shown in Figure 3.2 [4].

All of these initialization processes contribute to a large number of additional instructions

which in turn cause a huge performance overhead for DBT systems. This begins when the program

starts and continues until it reaches the central hub of DynamoRio, the dispatcher.
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Figure 3.2: Privileges of each type of memory page belonging to the two modes of DynamoRIO
[4]

3.2 DR Dispatcher Control Overhead

We have already desrcibed in Chapter 2 about the importance of the dispatcher in DynamoRio and

how it controls the entire execution of the application program in the system. It is the central hub of

control flow in DynamoRio. It retains the control throughout the execution and redirects the control

to different parts of DynamoRio. It is reached at the beginning of DynamoRio execution, just after

all the initialization is complete, and every time after the control leaves the code cache. It controls

everything outside the code cache and also prepares the code cache so that the control returns back

to the dispatcher every time except at the end when the program terminates or when there is no

need to exit the code cache (for example, if the application program goes into an infinite loop).

It essentially delineates the border between the code cache and the emulator. It is responsible

for verifying whether the current fragment of code that needs to be executed has already been

translated or not. In order to do so, it utilizes a couple of helper functions, one of which is majorly

responsible for the lookup of the translated block. If this is not found, the helper function proceeds

to translate the untranslated block of code at that time. The other helper function is responsible for

monitoring high frequency or “hot” code.

Hence, many of the performance overheads in the system are imposed in dispatcher control, as

it is the command center for DynamoRio.
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3.3 Translation Phase Overhead

3.3.1 Build Basic Block

Whenever the dispatcher is unable to locate some piece of code, new translation is initiated. This is

done by build_basic_block routine. The application code is partially decoded and ends whenever

a control transfer is reached. Every decoded instruction is then added to the linked list including

the last control transfer instruction. The performance overhead associated with the basic block

translation starts when the control enters the build_basic_block routine, translates the code, adds

the translated code to the linked list, emits the code to the code cache and then finally returns

back to the dispatcher again. However, despite these drawbacks, DynamoRio performs better in

translation performance than other DBTs because it operates on the same x86 architecture and

hence only copies and pastes the application code to the code cache with the control transfer at the

end.

3.3.2 Build/Control Trace

After the translation is over and before entering the code cache, a one time check is always per-

formed in DynamoRIO to see if the newly translated code can be a potential trace head and further

optimize them. Each of the trace heads receives a counter that is incremented after every execution

in the code cache and if a threshold is reached to the size of the counter, then that block and every

subsequent block is added to become a new trace until an end-of-trace condition is reached. The

whole process starts in the monitor_cache_enter where the trace is detected or built and ends when

the control returns back to the dispatcher to finally enter the code cache with the newly translated

basic block and any detected new trace as well.
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3.4 Context Switch Overhead

In order to maintain transparency DynamoRIO creates no new thread, so each application thread

is also DynamoRIO thread. This is achieved through context switching which saves and restores

the application state as it exits and enters the code cache, creating no DynamoRIO only thread.

DynamoRIO optimizes this operation by saving and restoring only general purpose registers, the

condition codes(eflags register) and any operating system dependent state. The state preserva-

tion work both ways i.e., while entering and exiting the code cache. Hence, context switch in

DynamoRIO acts as a gatekeeper to the code cache. Context switch imposes very little perfor-

mance overhead to the system however it still counts towards the additional instructions used by

DynamoRIO to execute the guest application code.

The below mentioned overheads are all added inside the code cache.

3.5 Stubs Execution Phase Overhead

Figure 3.3, from [4], shows what example basic block looks inside the DynamoRIO code cache.

After the basic blocks are executed and before the targets of its exits have been decided, Dy-

namoRIO puts two exit stubs at the end of these basic blocks to determine which exit was taken

by the control. Each exit stub records a pointer to its own data structure (dstub0 or dstub1) before

transferring control to the context switch, so that DynamoRIO can figure out which branch was

taken. Once an exit from a basic block is linked, the corresponding exit stub is no longer needed

again unless the exit is later unlinked. Hence, DynamoRio keeps the direct exit stubs in a separate

cache from the basic block body, so that it can delete and re-create direct exit stubs on demand if

needed reducing the overall memory usage.

Typically, a basic block inside code cache contains 6-7 instructions including the exit stub

taken and the 3 additional instructions for exit stubs executed every time a basic block is executed,

if unlinked, causes a performance overhead in the code cache.

11



Figure 3.3: Example of a Basic Block in Code Cache [4]

3.6 Indirect Branch Resolution Phase Overhead

We have till now, presented parts of the code in DynamoRIO that are written in the C language.

They are responsible for translation, interpretation, code emission, dispatch, and fragment lookup.

However, indirect branch lookup is critical to the execution performance, and so has an alternate

implementation in DynamoRIO. Instead of invoking the dispatcher, during runtime, DynamoRIO

places fast, specialized, lookup routines inside the code cache, enabling control to directly transfer

to other fragments even when emulating indirect branches.

Figure 3.4, from [8], shows the assembly code of the optimized address translation routine for

indirect jump emulation. This code is responsible for iterating over the hash tables described in

Section 2.4. In label L0, the hash index is calculated, based on the target address received through

register %ecx. Block L1 checks if the target address matches the contents of the hash table. If it

does, a translation has been found, and the code in label L2 restores the machine state and transfer

the execution control to the translated fragment. Otherwise, the algorithm iterates over the collision

chain until it finds a translation, or until the chain is over. Block L3 checks for the end of the chain,

whereas block L5 checks if the hash table itself has ended. Blocks L4 and L6 increment the pointer

to the hash table entry and loop around. Blocks L7, L8, L9, L10, L11, and L12 prepare a return to

12



the dispatcher, because they are reached when a translation is not in the hash table. Disabling the

indirect branch lookup routine and forcing the control to be transferred back to the dispatcher can

be done in runtime, through the use of the runtime switch, --no_ibl_link.

All these asm level code are put by DynamoRIO into the code cache to resolve indirect branches.

They improve the performance over the other emulator but impose a performance overhead for Dy-

namoRIO.

Figure 3.4: Shared Indirect Branch Lookup Routine code as emitted to the code cache [8]
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3.7 Resolution of fcache Exits Overhead

After the control comes out of the code cache through the context switch to the dispatcher, the

dispatcher navigates it to resolve the reason for the fcache exit. Once it figures out the reason from

where it came out and why, it begins resolving the reason and goes on building the basic blocks

and traces again, hence repeating the already discussed processes till it re-enters the code cache.

There can be several reasons for the code cache to exit. We have highlighted those reasons in

chapter 5 with statistics of instruction count. The control can come out of the code cache normally

when it can’t find anymore translated block to execute inside the code cache, system call execution,

client redirection, native execution, indirect branch exit for no translated blocks in the lookup table,

coarse grain fragment etc.

These additional instructions created by DynamoRIO in order to resolve the code cache exit

contribute further to the performance overhead.

3.8 No Overhead Phase

The only aspect of the DynamoRio execution that causes no performance overhead in the system

is the process of executing the original guest code. DynamoRio, unlike other DBTs, copies and

pastes the original guest code into the code cache until the control transfer is reached. So this

original code executed within the code cache has the same performance impact in the system as

that of native execution and thus this is considered as the no overhead phase in our experiment.

As a matter of fact, instructions executed in the no overhead phase in DynamoRio are 65% of the

overall instruction count required to run an application in DynamoRio.
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Chapter 4

Experimental Setup

In order to gather the required scientific data for the different overheads present in DynamoRIO,

we had to put our custom code in DynamoRIO that is mainly responsible for capturing the memory

addresses of the different overhead locations. We then build our own custom script which creates

breakpoints at those memory locations and then measure the total number of instructions executed

at each breakpoint, which in return tells us the total additional instructions DynamoRIO uses at

different overhead locations. To setup the breakpoints we used the ptrace [18] linux tool and to

calculate the instructions at the register level, we used libpfm4 [23] library. We compile both

MiBenchmark [9] and DynamoRIO with the GNU/GCC compiler, in its 4.4.3 version, using the

-O2 optimization flag. We used the most recent 7.0 version of DynamoRIO during our experiment

setup and whatever overheads we show in the following chapter are calculated in its vanilla version,

i.e., without any modifications.

We present our analysis by compiling different sets of data to harvest the different factors

that possibly lead to the run-time overhead (or speed-up) of different benchmarks run through

DynamoRIO.

4.1 DynamoRIO setup

As we have already described the different locations of overheads in DynamoRIO in the previous

chapter, we will now discuss how the exact memory locations were detected so that individual

breakpoints could be set at each of these locations. Following this process, it will then be possible

to find out the total number of instructions executed at each of these locations.
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We started with the core/dispatch.c file which is the main working file of DynamoRIO. We

get the d_r_dispatch sub routine over here which as previously discussed is the control manager

of the entire DynamoRIO operation. We take a dump of its starting memory address in a text file

and later on when a breakpoint is set at this memory segment we can then know the dispatcher

control overhead has started. Similarly, we also take a note of the starting memory addresses of

the two other subroutines, build_basic_block and monitor_cache_enter, present inside the main

loop of d_r_dispatch , which as previously discussed help us to monitor the translation overhead

in DynamoRIO. Using the command nm -n on the DynamoRIO shared library we can access a list

of all these memory addresses together in one text file "nm_maps.txt".

Figure 4.1: Code snippet showing the nm - n command to get the starting memory addresses of the
mentioned DynamoRIO subroutines

In order to mark the starting memory addresses of the other overheads in DynamoRIO, we

put our own code inside the DynamoRIO source files. Our custom code will create a text file,

memory_mapping.txt, from DynamoRIO that contains the list of starting memory addresses for

context switch, stubs and indirect branch resolution overheads from three other DynamoRIO source

files namely core/emit.c, arch/emit_shared_utils.c and arch/x86/emit_utils.c. For each translated

basic block and trace block, it’s corresponding memory addresses in the code cache are also taken

note of so that anytime control reaches these memory addresses, we can count that under the "no

overhead phase" as these are the original block of code from the source application. Furthermore,

in order to mark the different entry points in DynamoRIO after the exit from the code cache,

dummy functions have also been inserted in the DynamoRIO source code at appropriate places to

mark their starting memory addresses for breakpoint creation later.
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Figure 4.2: Code snippet showing how the starting memory address of each stubs is saved in the
memory_mapping.txt text file

4.2 Instruction Count through single stepping

Initially we took an approach of counting the total number of instructions executed for each over-

head by single stepping through every instructions executed by DynamoRIO and keeping a count

of it in a separate custom script. In order to do so we took a dump of the ending memory addresses

as well along with the starting memory addresses of each overhead location in DynamoRIO dis-

cussed in the previous section. We built a separate custom script to use the ptrace Linux tool to

single step the entire execution phase in DynamoRIO. In order to do so our custom script was

forked with a child and a parent process where the child process was responsible for running the

DynamoRIO and the parent process was monitoring the child process. In the child process, the

ptrace command with the PTRACE_TRACEME is executed, asking the parent process to moni-

tor the child process execution of DynamoRIO. We will discuss in detail about the ptrace Linux

command in the next section.

So how our single stepping method would work is by comparing the contents of the rip regis-

ter gathered with the ptrace command executed with the request PTRACE_GETREGS, with the

memory locations gathered from the DynamoRIO source files. Each section of memory segments

gathered from the DynamoRIO source code into the memory_mapping.txt was considered as the

different overhead phase and every time our custom script will compare the contents of the rip
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register with the overhead section and mark that as the start of the particular overhead phase. Af-

ter the overhead phase has been marked, the parent sends the ptrace command with the request

PTRACE_SINGLESTEP to the child process, so that for each instruction executed a counter can

be incremented which would essentially give us the instructions count of the overhead phase.

However, the single stepping process seems most accurate but it is difficult to implement for

large test input, since single stepping through the entire execution for large test input is not possible

as it might take weeks to complete the execution. So we implemented the method of creating a

breakpoint instead of single stepping where a custom script was created that will act as a debugger

and create breakpoints at each overhead phase starting location. Every time control stops at each

of these breakpoint location, that particular overhead phase is marked and instructions are counted

from the hardware level using the rdpmc [14] instruction counter until the counter stops again at

the next overhead phase breakpoint. This method speeds up our experiment by several times as the

same test input that took 1.5 weeks to complete using the single stepping method now takes 40

minutes to complete. Hence, for our experiment we used the breakpoint method.

4.3 Breakpoints implemented manually

We build a separate custom script in order to create breakpoints at the different memory segments

corresponding to each overhead. This custom script is essentially forked with a child and a parent

process where the child process is responsible for executing our benchmark suites through Dy-

namoRio and the parent process helps in monitoring the entire process. The memory addresses

from DynamoRIO are therefore essential for the parent process to monitor the content of rip (in-

struction pointer) register during the execution of the child process, and thereby mark the different

phases of execution that correspond with the different overhead. To understand our agenda, we

need to understand how does a debugger do its work [3]. A debugger can start some process and

debug it, or attach itself to an existing process. It can single-step through the code, set breakpoints

and run to them, examine variable values and stack traces. Our custom script will create a similar

debugger that will attach itself to the child process, set breakpoints at the different overhead start-
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ing memory locations and single step through the code to count the total number of instructions

executed until it reaches the next breakpoint or overhead.

To set a breakpoint at some target address in the traced process, the debugger does the follow-

ing:

1. Remember the data stored at the target address

2. Replace the first byte at the target address with the int 3 instruction (we will talk about the

int 3 instruction in detail later in this chapter)

Figure 4.3: Code snippet showing how to create a breakpoint with int3 instruction

Then, when the debugger asks the OS to run the process, the process will run and eventually

hit upon the int 3, where it will stop and the OS will send it a signal. This is where the debugger

comes in again, receiving a signal that its child (or traced process) was stopped. It can then:

1. Replace the int 3 instruction at the target address with the original instruction

2. Roll the instruction pointer of the traced process back by one. This is needed because the

instruction pointer now points after the int 3, having already executed it.

3. Allow the user to interact with the process in some way, since the process is still halted at

the desired target address. This is the part where we do our math to count the total number

of instructions executed between each breakpoint.
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4. When the user wants to keep running, the debugger will take care of placing the breakpoint

back (since it was removed in step 1) at the target address, unless the user asked to cancel

the breakpoint.

Figure 4.4: Code snippet showing how to disable a breakpoint

All of this is achieved through the ptrace call. ptrace is declared thus (in sys/ptrace.h):

long ptrace(enum _ptrace_request request, pid_t pid, void *addr, void *data)

The first argument is a request, which may be one of many predefined PTRACE_* constants.

The second argument specifies a process ID for some requests. The third and fourth arguments are

address and data pointers, for memory manipulation.

In our case we have used different ptrace_request to achieve the functionality of a debugger

such as PTRACE_TRACEME to trace the child process, PTRACE_PEEKTEXT to remember the

original data stored at the target address(Step 1), PTRACE_POKETEXT to replace the first byte

at the target address with the int 3 instruction(Step 2) and PTRACE_GETREGS to ensure if we

indeed stopped every time at the breakpoint by gathering the content of the rip register and com-

paring it with the breakpoint location. Finally PTRACE_CONT request to let the process run.

4.3.1 More on int 3

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the

debug exception handler. We can now simply say that breakpoints are implemented on the CPU by

a special trap called int 3. int is x86 jargon for "trap instruction" - a call to a predefined interrupt
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Figure 4.5: Code snippet showing how to resume from a breakpoint by single stepping using ptrace

handler. x86 supports the int instruction with a 8-bit operand specifying the number of the interrupt

that occurred, so in theory 256 traps are supported. The first 32 are reserved by the CPU for itself,

and number 3 is the one we’re interested in here - it’s called "trap to debugger" . The definition of

int 3 from Intel’s manual [3]:

" The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling

the debug exception handler. This one byte form is valuable because it can be used to replace

the first byte of any instruction with a breakpoint, including other one byte instructions, without

over-writing other code"

int instructions on x86 occupy two bytes - 0xcd followed by the interrupt number. int 3 could’ve

been encoded as cd 03, but there’s a special single-byte instruction reserved for it - 0xcc. This

allows us to insert a breakpoint without ever overwriting more than one instruction. Having a

special 1-byte encoding for int 3 solves this problem. Since 1 byte is the shortest an instruction

can get on x86, we guarantee that only the instruction we want to break on gets changed.
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4.4 Instruction Count through rdpmc

So every time we reach a breakpoint we start calculating the total number of instructions executed

in between which add towards the performance overhead. In order to calculate these instructions

we take the help of an external library “perform2”. This library uses the “read performance

monitoring counters (rdpmc)” to count the number of instructions executed for a particular event.

The RDPMC instruction allows application code running at a privilege level of 1, 2, or 3 to read

the performance-monitoring counters if the PCE flag in the CR4 register is set. This instruction is

provided to allow performance monitoring by application code without incurring the overhead of a

call to an operating-system procedure. At the end of the script we add our own maths to calculate

the total instructions executed for each overhead by summing the rdpmc count for each overhead

at each interval.

Figure 4.6: Code snippet showing how to count instructions using rdpmc
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Chapter 5

Experimental Results and Analysis

In this project we used MIBenchmark suite to evaluate DynamoRIO and the performance over-

head caused by it. MiBench has many similarities to the EEMBC benchmark suite as described on

their web site (http://www.eembc.com). However, MiBench is composed of freely available source

code. Where appropriate, we provide a small and large data set. The small data set represents a

light-weight, useful embedded application of the benchmark, while the large data set provides a

more stressful, real world application. MiBench consists of six categories including: Automotive

and Industrial Control, Network, Security, Consumer Devices, Office Automation, and Telecom-

munications. Finally, an automated script was written to compile and execute the benchmarks.

For each of the experiments described in Chapter 5, we prepare the environment for the exe-

cution of the benchmarks by isolating the machine from the network, setting the processor power

states to maximum performance, and clearing eventual zombie processes. Then we invoke the

automated scripts on MIBench which run each application three times, with the reference input.

After the experiments are complete, we collect the data produced by the automated scripts and

select the mean value of several runs to statistically represent the true central index of dispersion

in the computer science experiments.

All the experiments are run on a single machine, featuring a pair of Intel processors at 2.4 GHz,

32 GiB’s of RAM, and a 64-bits Ubuntu LTS 10.04 operating system. We compile both MIBench

and DynamoRIO with the GNU/GCC compiler, in its 4.4.3 version, using the -O2 optimization

flag.

The remainder of this chapter describes how we evaluate the techniques described in Chapter 3,

and DynamoRIO itself. We also present our experiments and their results, as well as our analysis
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of the obtained results. We will have two graphs for each section for both small and large input

test data.

5.1 x86 Results and Analysis

Our MI benchmark has a shorter running time over the SPEC benchmarks so the Initialization

overhead takes the most number of instructions to initiate the DynamoRIO. In the Appendix we

have presented the tables that show the instruction count of each overhead phase in DynamoRIO.

The initialization phase has a static number of instructions that it requires in order to startup a

DBT system. We have already discussed in Chapter 3 exactly what the processes are that the

Initialization phase is responsible for. Since these processes are fixed and all DBT systems require

more or less all of these processes to initialize, hence the DynamoRIO has a fixed number of

instructions before it is able to reach the dispatcher.

Figure 5.1: Ratio of DynamoRIO run times to Native run times for different small MI benchmark
test inputs

Figure 5.1 and Figure 5.2 shows the ratio of the DynamoRIO execution time to native run of

different benchmark test inputs. This tells us approximately how much performance overhead Dy-

namoRIO puts on a running application. Our MI benchmark suite has two types of test input data
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- small and large. The performance overhead of DynamoRIO is more prominent in small running

applications since it takes a higher number of additional instructions to execute a small applica-

tion there than in its native execution. As previously discussed DynamoRIO has a fixed number

of instructions to startup the process and translate the application code, hence these additional

instructions becomes a larger overall overhead for small applications. Figure 5.1 from our experi-

ment validates that fact. Figure 5.2 although shows a considerable overhead from DynamoRIO but

since the application size is large, the running time of the application in native mode is still closer

to the running time with DynamoRIO.

Figure 5.2: Ratio of DynamoRIO run times to Native run times for different large MI benchmark
test inputk

Figure 5.3 and and 5.4 shows the performance summary graph of the MI Benchmark without

including the Initialization phase. This makes the overhead phases more prominent. We can see

from the graphs that the "Translation Phase" overhead now dominates the graph. Again, this is

because the number of instructions required for creation of a basic block or a trace block are

constant. Since we are dealing with the small test size benchmark input data the translation phase

overhead dominates the graph after the Initialization phase. The translation phase is responsible

for converting the source binary code to the target code. DynamoRIO is more of a dynamic binary

optimizer than a binary translator which means it essentially copies the source application code to

the target code cache with just adding the control transfer instructions at the end of each translated
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block in order to retain control during execution in the code cache. As these process is constant for

every translated code block, hence, the total number of instructions during the translation phase

is almost constant. Our experimental data shows DynamoRIO imposes approximately 30% of

overhead over the native execution.

Figure 5.3: Performance Summary for MI Small Benchmark without the Initialization Phase

Figure 5.4: Performance Summary for MI Large Benchmark without the Initialization Phase

Figure 5.5 and Figure 5.6 shows the performance summary of the DynamoRIO with MI Bench-

mark suit without the "translation phase". The graph is more prominent now in showing most of the

total performance overheads in DynamoRIO. As we have already discussed in Chapter 3 that the

indirect branch overhead and fcache exits during execution affect the performance of DynamoRIO

more than any other overhead - the results from our experiments validate that fact. We can see
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from the graph the different fcache exits that affect the performance overhead in DynamoRIO. The

"No Overhead" phase (green bar in the graph) is the actual time taken to execute the original ap-

plication code. Although DynamoRIO has optimized the translation process, we still can see from

our results that in some cases, mainly for the basicmath, ghostscript, stringsearch, patricia large

test input benchmarks, performance overhead is more than the actual execution time. The basic-

math, rsynth, patricia, gsm encoding large test input for MI benchmark shows the domination of

the indirect branch overhead. Although DynamoRIO uses the software technique of mapping the

source pc to target pc in a hash-table in order to resolve the indirect branches without exiting the

code cache, it still proves to impose a high performance overhead for DynamoRIO.

Figure 5.5: Performance Summary for MI Small Benchmark without the Translation Phase

Figure 5.6: Performance Summary for MI Large Benchmark without the Translation Phase
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Figures 5.7 and 5.8 show all of the DynamoRIO performance overheads. The graph shows

how the indirect branch resolution and the fcache exits dominate the performance overhead. The

optimization techniques incorporated in DynamoRIO including caching, linking, trace formation,

and instruction inlining have been able to considerably improve the execution time spent in the

fragment cache. However, the additional instructions executed could not be fully alleviated through

the optimization techniques as an overhead of around 30% could still be seen in terms of run-time

captured. The overhead would be accountable to the ability of the hardware to handle the excess

instruction load.

Figure 5.7: Performance Summary for MI Small Benchmark without the Overhead Phase

Figure 5.8: Performance Summary for MI Large Benchmark without the Overhead Phase
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In summary, not just the fcache exits but also the indirect branch resolution impact the perfor-

mance overhead or speed up. To address the issue of overhead, more research needs to be done

on how to reduce the number of fcache exits and how to employ a better technique for indirect

branch resolution. This can be done with larger hash-tables, page tables and more software tech-

niques to be implemented for the indirect branch predictor. Options for parallelization within the

DynamoRIO code base and eager translation to compile basic blocks ahead of time(analogous to

pre-fetching) can be explored to improve speed.

Figure 5.9: Ratio of native instructions count to our script count for small test input

Figure 5.10: Ratio of native instructions count to our script count for large test input
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Figures 5.9 and figure 5.10 show the ratio of the instructions count during native run to the

instructions count which our experiment calculated as the "no overhead phase" for our MI bench-

mark test input. We have used the Linux command perf [25] to capture the instructions count

statistics for the native run of our MI benchmark suit. Below is the sample perf command for

native execution of our bitcount test input, for both small and large.

perf stat -B -e cycles, instructions bitcnts 75000 > bitcount_small.txt

perf stat -B -e cycles, instructions bitcnts 1125000 > bitcount_large.txt

Our "no overhead phase" count from the experiment shown in the tables in Appendix are al-

most equal to the instructions count from the native run. This validates that our experiment was

performed with accuracy.
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Chapter 6

Related Work

As these limitations of dynamic binary translation systems are commonly known, previous re-

search has been conducted in order to evaluate the various causes of performance overhead in

these systems. Some techniques have already been developed for improving performance related

to the previously described limitations. One similar example is the work of Arkaitz Ruiz and Kim

Hazelwood [21] which investigates the process of running applications within the DBT. They used

both DynamoRIO [4] and also Pin [19], [17] for their experiments, but focused primarily on the

impact within Pin of the various aspects of DBT execution. They employed the perf tool [25]to

track the hardware counters for various hardware events during program execution. The results of

their study indicate that the primary cause of the overhead is the greater number of instructions

executed versus the native execution, causing high L1 instruction cache misses and iTLB misses

for most of the benchmarks. Similarly, we also employed the perf tool to collect our own hardware

statistics during the experiments and have confirmed similar results.

In addition to the impact of the DBT on the hardware, we have also explored the number of

exits, basic blocks and traces, and runtime and compilation time in order to grasp a wider picture of

how the DBT affects the overall application execution. Clearly, the root cause of the high overhead

largely stems from the large instruction execution from the code base of DynamoRIO during trans-

lation. This occurs because of the control exiting the code cache for translation. As confirmed by

our own research, it has been found that a big contributor to the number of exits is indirect branch

execution and no linking between basic blocks and trace heads. Thus, the fundamental cause of

overhead relates to the source pc to target pc translation in executing basic blocks and traces from

within the code caches.
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SPIRE [15] is one known approach for handling hot indirect branches during source pc trans-

lation. Research on its use has found that, rather than exiting the code cache for translation, it is

helpful to place a trampoline at the source PC address that causes redirection of the control to the

code cache in order to execute the translated code. Since SPIRE system modify the original source

code with a trampoline, there is a need to maintain code transparency to the application. In order to

do this a code space is created with the same size as the original source binary and the trampolines

are added in the new space, without touching the original source code.

While SPIRE uses probe-based method, DynamoRIO uses JIT-based compilation with soft-

ware prediction to resolve indirect branches. DynamoRIO uses a compare-jump list for the indi-

rect branch to jump to the appropriate target pc, as the source pc stays unknown until the branch

instructions have been executed. With this technique, only the corresponding mapping of source

pc to the target pc has to be checked from the hash-table which has all the source to target pc

mappings. However, if the mapping is not found then the whole lookup-table has to be checked

to resolve the indirect branching. It is proven before[15] that the probe-based method in SPIRE

is more efficient than the software based approach of DynamoRIO for indirect branch extensive

benchmark.

The work of HQEMU [12] has also shown to help in reducing the exits from code cache when

executing the trace code. The main goal of HQEMU is to improve the quality of translated code

by additional compilation of intermediate code from QEMU and LLVM translation. LLVM is an

optimization intensive compiler. Apart from improving the code quality HQEMU also implements

a technique called trace merging to reduce the exits while executing the traces in code cache. The

idea is to merge the traces that are frequently executed into a single trace avoiding the switching

between code cache and DBT for the trace address resolution. These would reduce the large

number of exits from code cache and therefore reducing a considerable amount of performance

overhead.

Various other techniques have been discussed, created, and evaluated for reducing the per-

formance impact of auxiliary tasks in DBT systems. Various optimization techniques have been
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shown to improve different aspects, for example; the introduction of a basic block code cache or

trace generation, can help to improve both startup and steady-state performance. Trace generation

can help improve performance in long-running programs.

Other work has focused on whether persistent code caching can be used to reduce startup over-

head in DBT systems. Persistent code caches enable code reuse by making translations available

for storage and reuse across executions. Some techniques even handle dynamically generated code.

These techniques have demonstrated improvement in performance, but do raise some security con-

cerns as well as need to be warmed up and lack full effectivity when an unseen program without

representation in the code cache is executed.
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Chapter 7

Future Work

Dynamic Binary Translator is a dynamic area of study with much potential for future study and

application. For this project, we have focused on testing and analyzing the primary contributions to

performance overhead in DynamoRio as compared to those in native program execution. Looking

ahead, there are multiple aspects of this work that would benefit from further study.

The high instruction volume and loss of instruction locality in current DBTs are issues that sig-

nificantly impact hardware condition and efficiency, particularly for applications with large code

bases. In order to successfully and efficiently run DBTs, improved hardware techniques will be

necessary. It may also prove helpful to combine improved hardware and software techniques in

order to optimize DBT performance. Ideally, these various areas of improvement will eventu-

ally combine and applications may even operate better than they do in their native performance

environments.

A more immediate and pressing intervention will focus on reducing the number of exits from

the code cache while performing various tasks. There are three primary causes for exits from

the code cache - these include indirect branches, basic block translation, and trace formation.

Together, the exits required from these three processes contribute a substantial proportion of overall

performance overhead sustained by DBT program execution. We believe that the most applicable

and immediately helpful future work will consist of efforts to reduce the currently high number

of exits. When mechanisms to reduce the number of exits are developed, these tasks will be

parallelized and thus will allow the main program execution to remain in the code cache, smoothing

the process and positively impacting program efficiency.
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Chapter 8

Conclusions

Dynamic binary translation is a promising technology with many potential applications across a

wide variety of industries. It has the potential to actualize portable program execution, improve

overall performance, and improve monitoring and instrumentation in order to ensure a secure ex-

ecution environment. The major drawback still limiting widespread DBT adoption is the fact that

program execution still causes some amount of performance overhead, sometimes to a significant

level. This thesis has employed various experiments in order to better describe and quantify the

various specific causes for this performance overhead, to support future research efforts directed

toward reducing this overhead burden.

DynamoRIO is an x86 to x86 dynamic binary translator that is available today. It is advanced

and popular, functioning as a binary translator as well as an instrumentor and optimizer. The

performance overhead of a DBT is due to a combination of factors. Our Master Thesis conducts a

series of experiments to measure the effect of program execution through DynamoRIO and gather

all the information to calculate the performance overhead caused by DynamoRIO which are mostly

consistent with earlier results. In particular, we confirmed that program execution in a DBT exerts

greater pressure on the instruction cache due to a higher volume of executed instructions compared

to native program execution.

Additionally, we designed and implemented additional experiments to further understand ex-

actly what contributes to the higher volume of executed instructions and the associated perfor-

mance overheads. These experiments confirm earlier research showing that much of the perfor-

mance overhead burden is due to frequent code cache exits which occur in order to enable addi-

tional DBT tasks. Our experiments and associated graphics illustrate the number of exits for each
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category and the total number of exits performed throughout program execution. As described in

detail above, the major categories of code cache exits include block translation, indirect branch

resolution, and trace formation. In the future we hope to develop techniques of parallelization

which will enable these processes to be conducted faster and in advance to reduce the total number

of code cache exits and thus reduce overall DBT performance overhead.
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Appendix A

Instructions Count for Each Overhead in DynamoRIO for

Small and Large MI Benchmark

Overheads basicmath bitcount qsort susan(edges) susan(corners) susan(smoothing)
DR Dispatcher Control 64177699 14002512 24337837 15698093 12372997 11995503
Fcache exits, system call executions 11150 11372 24119 17344 17306 17024
Fcache exits, from traces 569153 51131 114360 130732 56576 30493
Fcache exits, from BBs 1078879 284900 462697 272651 204087 264062
Fcache exits, ind target not in cache 62380 3172 19700 15106 15095 21167
Fcache exits, ind target extending a trace, BAD 1903 104 1102 74 65 117
Fcache exits, ind target in cache but not lookup table 3805617 856250 636089 12525 12987 34887
Fcache exits, non-trace indirect branches 18297837 4065555 10320092 2391779 2407129 3361413
Fcache exits, non-ignorable system call 21570755 17198960 18631928 19475955 19124918 18687605
Fcache exits, dir target not in cache 3248024 2432536 2553472 2939579 2936622 2632901
Fcache exits, link not allowed 412921 78227 125886 116402 69163 66798
Fcache exits, extending a trace 1543379 92722 449606 220566 183372 133925
Fcache exits, target trace head 21579513 3008515 6218591 5376703 3345273 2826072
Fcache exits, no link shared <-> private 183119 20703 53745 7609 7582 7582
Translation Phase, Build/Control Trace 91738921 11134536 31043430 16064012 12052481 11122159
Translation Phase, Build BB 1359477444 656677384 816402419 827041206 803920844 744860336
Initialization 140738346366412 140737519339414 140737519217977 140737519647931 140737519732664 140737519488486
Context Switch : Exiting Code Cache 1137299 289014 445755 303419 245362 239340
Indirect Branch Execution Phase 70612640 83596 15533869 54886 36169 63110
Context Switch : Entering Code Cache 713851 153258 274482 169043 132061 127469
No Overhead Phase 3405889 57422508 9857839 2338023 1345923 24806958
Stubs Execution Phase 188049 91908 89183 78976 60356 60659

Table A.1: Instruction count for each overhead for MI Auto/Industrial small benchmark
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Overheads jpeg (decoded) jpeg(encoded) mad
DR Dispatcher Control 6096506 6372832 102598652
Fcache exits, system call executions 11141 11138 65728
Fcache exits, from traces 12960 19657 572585
Fcache exits, from BBs 137685 158983 1777931
Fcache exits, ind target not in cache 23677 18643 91335
Fcache exits, ind target extending a trace, BAD 0 31 3333
Fcache exits, ind target in cache but not lookup table 6849 4982 7934001
Fcache exits, non-trace indirect branches 1198276 1382751 33049167
Fcache exits, non-ignorable system call 16105938 16252214 42198367
Fcache exits, dir target not in cache 1984936 1995474 8240327
Fcache exits, link not allowed 46889 24008 527636
Fcache exits, extending a trace 42571 51693 1604506
Fcache exits, target trace head 1200028 1333092 27646562
Fcache exits, no link shared <-> private 1600 1600 243912
Translation Phase, Build/Control Trace 4358531 5149048 117220370
Translation Phase, Build BB 564010560 577364483 2923340998
Initialization 140737519401061 140737519398803 140737519910897
Context Switch : Exiting Code Cache 95442 139592 1808888
Indirect Branch Execution Phase 21721 29659 5064622
Context Switch : Entering Code Cache 66010 68716 1141509
No Overhead Phase 200999 227629 22930610
Stubs Execution Phase 64182 45558 290542

Table A.2: Instruction count for each overhead for MI Consumer small benchmark

Overheads ghostscript rsynth stringsearch
DR Dispatcher Control 31792378 58190978 16923140
Fcache exits, system call executions 27159 11533 11374
Fcache exits, from traces 127871 436416 66712
Fcache exits, from BBs 621212 963287 354139
Fcache exits, ind target not in cache 42590 52396 13346
Fcache exits, ind target extending a trace, BAD 234 2242 451
Fcache exits, ind target in cache but not lookup table 325162 5953724 205181
Fcache exits, non-trace indirect branches 9647228 26540727 8821809
Fcache exits, non-ignorable system call 25800297 20028589 15351787
Fcache exits, dir target not in cache 3752840 2701617 1815677
Fcache exits, link not allowed 178667 263214 78026
Fcache exits, extending a trace 322348 1123828 324630
Fcache exits, target trace head 9130100 13697957 3412252
Fcache exits, no link shared <-> private 7833 3786 0
Translation Phase, Build/Control Trace 29239416 80876171 21318770
Translation Phase, Build BB 1322999584 1235865359 587218346
Initialization 140737519808871 140737519781118 140737519398049
Context Switch : Exiting Code Cache 572973 1017254 318661
Indirect Branch Execution Phase 354395 56101390 149164
Context Switch : Entering Code Cache 355347 677771 192495
No Overhead Phase 687877 7394316 437314
Stubs Execution Phase 103720 159690 84469

Table A.3: Instruction count for each overhead for MI Office small benchmark
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Overheads dijkstra patricia
DR Dispatcher Control 37413872 4829670
Fcache exits, system call executions 11144 11141
Fcache exits, from traces 184816 12831
Fcache exits, from BBs 708135 113064
Fcache exits, ind target not in cache 7114 13144
Fcache exits, ind target extending a trace, BAD 3179 0
Fcache exits, ind target in cache but not lookup table 896600 1618
Fcache exits, non-trace indirect branches 13456310 692928
Fcache exits, non-ignorable system call 19990729 15147223
Fcache exits, dir target not in cache 2847859 1816869
Fcache exits, link not allowed 227036 21965
Fcache exits, extending a trace 1077606 31763
Fcache exits, target trace head 10686092 938698
Fcache exits, no link shared <-> private 201150 0
Translation Phase, Build/Control Trace 54274034 3317003
Translation Phase, Build BB 1012976574 502698877
Initialization 140737519443785 140737519479251
Context Switch : Exiting Code Cache 678419 111422
Indirect Branch Execution Phase 217716 22041
Context Switch : Entering Code Cache 418241 50840
No Overhead Phase 48150071 303675
Stubs Execution Phase 84545 41378

Table A.4: Instruction count for each overhead for MI Network small benchmark

Overheads blowfish enc. blowfish dec. rijndael enc. rijndael dec. sha
DR Dispatcher Control 5816569 5492009 5702168 5355890 10924672
Fcache exits, system call executions 11141 11138 21419 11141 14681
Fcache exits, from traces 12104 11904 11659 18358 46580
Fcache exits, from BBs 103593 158711 180349 121109 216605
Fcache exits, ind target not in cache 3257 12673 12946 4181 23499
Fcache exits, ind target extending a trace, BAD 13 13 0 0 13
Fcache exits, ind target in cache but not lookup table 5377 12944 1846 1619 18259
Fcache exits, non-trace indirect branches 1105136 1037985 801687 713452 2025219
Fcache exits, non-ignorable system call 15088879 14929962 15808920 15324905 17066645
Fcache exits, dir target not in cache 1781619 1736868 2013138 1853199 2306775
Fcache exits, link not allowed 34239 35392 25487 47252 71363
Fcache exits, extending a trace 37232 36795 33433 31678 68239
Fcache exits, target trace head 1264557 1189846 1199160 1143823 2851795
Fcache exits, no link shared <-> private 1600 0 1600 0 158073
Translation Phase, Build/Control Trace 4114814 4025250 3736913 3628221 8235579
Translation Phase, Build BB 504420305 494812324 553317673 514844006 637639330
Initialization 140737519506905 140737519196811 140737519351353 140737519340474 140737519328936
Context Switch : Exiting Code Cache 119557 152238 124890 101389 206769
Indirect Branch Execution Phase 17313 22220 11820 9653 41248
Context Switch : Entering Code Cache 62115 59204 59860 55965 115374
No Overhead Phase 614102 536939 396132 343139 12732204
Stubs Execution Phase 42795 43867 58786 63052 57541

Table A.5: Instruction count for each overhead for MI Security small benchmark
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Overheads CRC32 FFT IFFT ADPCM enc. ADPCM dec. GSM enc. GSM dec.
DR Dispatcher Control 8656906 42719308 48536203 5531415 5828387 60221711 35373333
Fcache exits, system call executions 14681 11186 19120 0 0 14695 14668
Fcache exits, from traces 23752 344704 439124 44318 56258 501657 237445
Fcache exits, from BBs 191346 744691 813398 118033 136700 1088319 645748
Fcache exits, ind target not in cache 16316 53967 42233 16456 7841 17644 12397
Fcache exits, ind target extending a trace, BAD 113 2488 2311 65 65 2881 343
Fcache exits, ind target in cache but not lookup table 14497 1115634 2134389 14652 5759 343734 56230
Fcache exits, non-trace indirect branches 12662036 13695855 13195269 1310165 1330462 9791502 6957353
Fcache exits, non-ignorable system call 16775178 21384938 20976943 13042713 12564739 25780144 22784378
Fcache exits, dir target not in cache 2262632 3120335 3195329 982099 973521 4343583 3570005
Fcache exits, link not allowed 60066 293523 325643 52852 54224 503460 236555
Fcache exits, extending a trace 110670 1007039 1116278 105627 133848 1650992 729049
Fcache exits, target trace head 1575073 13949655 16588524 1378231 1474282 24260457 13110015
Fcache exits, no link shared <-> private 194142 53004 84910 386227 376898 22747 18712
Translation Phase, Build/Control Trace 8395073 59263097 67706416 6647790 7377192 84323875 43084875
Translation Phase, Build BB 630273638 1204888427 1257132008 280279415 287692000 1438027284 1092327102
Initialization 140737519225820 140737519656374 140737519777398 140737519324871 140737519352863 140737519575217 140737519549742
Context Switch : Exiting Code Cache 185852 809532 868156 118790 138748 1018098 626835
Indirect Branch Execution Phase 31630 33309914 34562231 23284 39837 488429 89512
Context Switch : Entering Code Cache 94874 483595 543414 61541 64165 640092 373920
No Overhead Phase 61218084 11453083 22803410 50142240 57390403 19261628 8973716
Stubs Execution Phase 34356 117481 161522 37640 66456 219627 131950

Table A.6: Instruction count for each overhead for MI Telecomm. small benchmark

Overheads basicmath bitcount qsort susan(edges) susan(corners) susan(smoothing)
DR Dispatcher Control 70631432 14016476 34504342 25269002 15394540 12649537
Fcache exits, system call executions 11412 11372 24097 34843 49807 25333
Fcache exits, from traces 682601 50101 158882 308872 99036 41210
Fcache exits, from BBs 1129953 286593 691382 330323 278836 295907
Fcache exits, ind target not in cache 55177 15719 10775 5403 19279 13378
Fcache exits, ind target extending a trace, BAD 3359 104 1109 74 78 391
Fcache exits, ind target in cache but not lookup table 4179430 866066 665687 33256 24756 58711
Fcache exits, non-trace indirect branches 19540904 4075720 13722568 2493366 2489924 3310005
Fcache exits, non-ignorable system call 22519214 17387394 19529767 21093866 20470001 18964443
Fcache exits, dir target not in cache 3361955 2412526 2652470 3185223 3080194 2869762
Fcache exits, link not allowed 475916 79265 245966 174746 81115 59229
Fcache exits, extending a trace 1763230 85201 933830 422015 379838 140187
Fcache exits, target trace head 24362011 3024793 9690861 10512625 4759904 3019703
Fcache exits, no link shared <-> private 181989 19638 373453 22805 23181 22046
Translation Phase, Build/Control Trace 103783559 11131577 50866626 28540013 18809326 11657940
Translation Phase, Build BB 1482280286 657042966 957442573 924872194 880476437 795899047
Initialization 140737519635316 140737519478902 140737519679459 140737519658518 140737519771841 140737519799847
Context Switch : Exiting Code Cache 1224345 282487 587451 401086 264753 280208
Indirect Branch Execution Phase 2359839944 70594 67148323 51758 47189 56562
Context Switch : Entering Code Cache 785027 153491 385523 270190 164574 134603
No Overhead Phase 5048316 856567299 305507011 56708882 21483683 372821560
Stubs Execution Phase 195638 50980 121456 81096 77591 56395

Table A.7: Instruction count for each overhead for MI Auto/Industrial Large benchmark
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Overheads jpeg (decoded) jpeg(encoded) mad
DR Dispatcher Control 6077768 6439430 99543571
Fcache exits, system call executions 11144 11144 67512
Fcache exits, from traces 11820 28122 503124
Fcache exits, from BBs 122454 114782 1804956
Fcache exits, ind target not in cache 5897 6023 49150
Fcache exits, ind target extending a trace, BAD 0 8567 4611
Fcache exits, ind target in cache but not lookup table 5985 3208 5989087
Fcache exits, non-trace indirect branches 1202818 1375591 40295114
Fcache exits, non-ignorable system call 16127637 16251718 38692381
Fcache exits, dir target not in cache 1964392 2016322 7302881
Fcache exits, link not allowed 44008 23943 469349
Fcache exits, extending a trace 48773 51666 1892012
Fcache exits, target trace head 1209272 1346678 25102877
Fcache exits, no link shared <-> private 1600 1600 406525
Translation Phase, Build/Control Trace 4314191 5155129 127348551
Translation Phase, Build BB 563996082 577415131 2627232963
Initialization 140737519303144 140737519396171 140737520162029
Context Switch : Exiting Code Cache 146751 160303 1717567
Indirect Branch Execution Phase 39939 42278 216178911
Context Switch : Entering Code Cache 66010 68716 1124056
No Overhead Phase 239864 222762 60468950
Stubs Execution Phase 39707 49523 238073

Table A.8: Instruction count for each overhead for MI Consumer Large benchmark

Overheads ghostscript rsynth stringsearch
DR Dispatcher Control 31811249 76789802 25461562
Fcache exits, system call executions 26953 43546 11374
Fcache exits, from traces 121239 639802 150813
Fcache exits, from BBs 644251 1199761 459530
Fcache exits, ind target not in cache 36823 34623 6863
Fcache exits, ind target extending a trace, BAD 234 2467 759
Fcache exits, ind target in cache but not lookup table 323962 7680137 1528063
Fcache exits, non-trace indirect branches 9647655 33079980 12934801
Fcache exits, non-ignorable system call 25836063 23533532 16175279
Fcache exits, dir target not in cache 3730053 3394079 1902309
Fcache exits, link not allowed 193413 394391 104200
Fcache exits, extending a trace 324117 1529411 556492
Fcache exits, target trace head 9127092 19508397 5510705
Fcache exits, no link shared <-> private 7625 26502 41646
Translation Phase, Build/Control Trace 29192537 107911619 35298404
Translation Phase, Build BB 1321604457 1533332319 676365780
Initialization 140737519903663 140737519867453 140737519630193
Context Switch : Exiting Code Cache 609275 1441931 491511
Indirect Branch Execution Phase 353305 867442438 4211271
Context Switch : Entering Code Cache 355347 888593 294626
No Overhead Phase 745583 29241287 1058462
Stubs Execution Phase 93483 194337 50456

Table A.9: Instruction count for each overhead for MI Office Large benchmark
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Overheads dijkstra patricia
DR Dispatcher Control 45690113 83631686
Fcache exits, system call executions 10880 419715
Fcache exits, from traces 256903 557222
Fcache exits, from BBs 849568 1466712
Fcache exits, ind target not in cache 23869 56360
Fcache exits, ind target extending a trace, BAD 2950 2931
Fcache exits, ind target in cache but not lookup table 2459717 4113217
Fcache exits, non-trace indirect branches 19146036 31289135
Fcache exits, non-ignorable system call 20502673 26613766
Fcache exits, dir target not in cache 2848854 3939051
Fcache exits, link not allowed 261464 485648
Fcache exits, extending a trace 1558666 2391009
Fcache exits, target trace head 11819782 24783416
Fcache exits, no link shared <-> private 204580 370590
Translation Phase, Build/Control Trace 75655953 129496729
Translation Phase, Build BB 1161086392 1689989442
Initialization 140737519381199 140737519415650
Context Switch : Exiting Code Cache 802183 1526424
Indirect Branch Execution Phase 268330 592088314
Context Switch : Entering Code Cache 521807 941196
No Overhead Phase 205964315 11132558
Stubs Execution Phase 168505 218235

Table A.10: Instruction count for each overhead for MI Network Large benchmark

Overheads blowfish enc. blowfish dec. rijndael enc. rijndael dec. sha
DR Dispatcher Control 5784171 5542375 5698417 5347560 11585886
Fcache exits, system call executions 10920 11138 14736 11141 14681
Fcache exits, from traces 12893 11512 21310 12226 61441
Fcache exits, from BBs 118634 131979 128554 108721 212303
Fcache exits, ind target not in cache 3133 2925 4058 3956 10881
Fcache exits, ind target extending a trace, BAD 13 13 0 0 113
Fcache exits, ind target in cache but not lookup table 14781 2705 7542 840 16561
Fcache exits, non-trace indirect branches 1082620 1035257 817162 695231 2781459
Fcache exits, non-ignorable system call 15088106 14935631 15809497 15330382 17200690
Fcache exits, dir target not in cache 1767990 1765180 2018916 1871764 2327189
Fcache exits, link not allowed 29850 26121 39644 47641 67429
Fcache exits, extending a trace 36218 36217 31821 32014 170143
Fcache exits, target trace head 1252250 1178261 1192554 1152910 2943374
Fcache exits, no link shared <-> private 1600 0 1292 0 189265
Translation Phase, Build/Control Trace 4082302 4035369 3738651 3585642 11935266
Translation Phase, Build BB 504262589 494560910 553267813 514829807 668439150
Initialization 140737519327446 140737519337484 140737519372229 140737519328172 140737519191703
Context Switch : Exiting Code Cache 114534 101692 143569 96493 270941
Indirect Branch Execution Phase 24511 36191 20967 36270 48980
Context Switch : Entering Code Cache 62115 59204 59860 55965 123000
No Overhead Phase 603084 529015 422477 375040 126734555
Stubs Execution Phase 31984 77993 54630 64951 73168

Table A.11: Instruction count for each overhead for MI Security Large benchmark

46



Overheads CRC32 FFT IFFT ADPCM enc. ADPCM dec. GSM enc. GSM dec.
DR Dispatcher Control 8601985 50346900 54649383 6230927 6911515 71172218 43924862
Fcache exits, system call executions 14999 55926 54308 0 0 14748 14380
Fcache exits, from traces 19106 392408 450970 55034 85252 643359 359923
Fcache exits, from BBs 184467 880217 952548 152305 153295 1210227 749175
Fcache exits, ind target not in cache 4502 69692 45595 19106 1305 13382 10115
Fcache exits, ind target extending a trace, BAD 378 2156 854 61 65 1132 954
Fcache exits, ind target in cache but not lookup table 22423 1389065 2182058 24791 24680 607378 66314
Fcache exits, non-trace indirect branches 2670250 15285738 14872721 1315852 1336166 12148395 8798095
Fcache exits, non-ignorable system call 16784144 21316677 21599001 26861659 15997233 26475647 22426437
Fcache exits, dir target not in cache 2273304 3251975 3285372 1034587 999117 4382825 3556401
Fcache exits, link not allowed 48401 355118 376292 85244 56381 619924 357550
Fcache exits, extending a trace 106330 1177038 1264228 116132 160402 1975635 1022798
Fcache exits, target trace head 1590224 16958030 18847747 1825482 2133723 28634911 16546352
Fcache exits, no link shared <-> private 195990 180157 182343 366813 391930 304902 312955
Translation Phase, Build/Control Trace 8354087 71338431 76865657 7407960 8641404 101172055 57729855
Translation Phase, Build BB 629879963 1321586299 1349035942 286361868 294701256 1536360483 1172970780
Initialization 140737519314882 140737519662928 140737519773759 140737519341315 140737519282012 140737519504897 140737519564389
Context Switch : Exiting Code Cache 190188 903329 953962 185765 155949 1146452 767628
Indirect Branch Execution Phase 48901 274150978 136198045 29799 29655 972266382 152767
Context Switch : Entering Code Cache 94915 565431 609137 69905 76711 761780 468999
No Overhead Phase 1179860416 142140052 143456012 993731178 1138551239 53807657 459105228
Stubs Execution Phase 50741 168008 141307 41907 135440 253411 159287

Table A.12: Instruction count for each overhead for MI Telecomm. Large benchmark
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