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Abstract

High-order numerical methods for solving PDEs have the potential to deliver higher solution accu-

racy at a lower cost than their low-order counterparts. To fully leverage these high-order compu-

tational methods, they must be paired with a discretization of the domain that accurately captures

key geometric features. In the presence of curved boundaries, this requires a high-order curvilin-

ear mesh. Consequently, there is a lot of interest in high-order mesh generation methods. The

majority of such methods warp a high-order straight-sided mesh through the following three-step

process. First, they add additional nodes to a low-order mesh to create a high-order straight-sided

mesh. Second, they move the newly added boundary nodes onto the curved domain (i.e., apply a

boundary deformation). Finally, they compute the new locations of the interior nodes based on the

boundary deformation. We have developed a mesh warping framework based on optimal weighted

combinations of nodal positions. Within our framework, we develop methods for optimal affine

and convex combinations of nodal positions, respectively. We demonstrate the effectiveness of the

methods within our framework on a variety of high-order mesh generation examples in two and

three dimensions. As with many other methods in this area, the methods within our framework do

not guarantee the generation of a valid mesh. To address this issue, we have also developed two

high-order mesh untangling methods. These optimization-based untangling methods formulate un-

constrained optimization problems for which the objective functions are based on the unsigned and

signed angles of the curvilinear elements. We demonstrate the results of our untangling methods

on a variety of two-dimensional triangular meshes.
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Chapter 1

Introduction to Thesis

Before discussing the focus of this thesis, we first review the role of the domain partitioning (fi-

nite element mesh) in finite element calculations. Before proceeding, let us first pose the model

problem:

−4u = f (x1,x2),defined in Ω = (x1,x2) : x2
1 + x2

2 < 1

u = 0 on ∂Ω,

where Ω is a bounded planar domain with the boundary ∂Ω, f is a given real-valued function

bounded in Ω, and 4u = ∂ 2u/∂x2
1 + ∂ 2u/∂x2

2. The formal name of this model problem is the

Poisson Equation with homogeneous Dirichlet boundary conditions. More specifically, this is the

strong formulation of the problem. To solve this problem with the Finite Element Method, we first

need to write it in the weak or variational form [16]. To do this, we multiply both sides by a test

function v ∈V and then integrate both sides. V is defined in the following way:

V = {v : v is continuous on Ω,

∂v
∂x1

and
∂v
∂x2

are piecewise continuous on Ω,

and v = 0 on ∂Ω}.

The weak form thus looks as follows:

∫
Ω
(−4u)vdx =

∫
Ω

f vdx.
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From Green’s Theorem, we know:

∫
Ω
(4u)vdx =

∫
∂Ω

(∂nu)vds−
∫

Ω
∇u ·∇vdx.

Substituting this information into the weak form, we get the following:

−
∫

∂Ω
(∂nu)vds+

∫
Ω

∇u ·∇vdx =
∫

Ω
f vdx.

Since we know that v ∈V , then we know that v = 0 on ∂Ω, so we can simplify the weak form to:

∫
Ω

∇u ·∇vdx =
∫

Ω
f vdx.

With our model problem in a suitable form, we now list the steps of a finite element method

as follows: (1) partition the physical domain into a collection of elements; (2) rewrite the PDE in

weak form; (3) calculate the element stiffness matrices; (4) assemble the global stiffness matrix

and associated linear system; (5) apply the given boundary conditions; and (6) solve the resulting

linear system. For the purposes of this discussion, we will focus primarily on discretizing the

physical domain and omit details related to steps (2)-(6). See [16] for a discussion of the other

steps. To discretize the physical domain, we construct a mesh. From our problem statement, we

know that our domain is the unit disk. One choice that needs to be made at this point is the type of

elements that compose the mesh. Two common choices for two-dimensional domains are triangles

and quadrilaterals. Assuming we are using triangular elements, we can partition our domain by

subdividing Ω into a set τh of n non-overlapping triangles Ki, i.e.,

Ω = K1∪K2∪·· ·∪Kn,

such that the intersection of any two triangles is an edge, a vertex, or the empty set [16]. A partition

satisfying these requirements is known as a conformal mesh. In Figure 1.1, we show four possible

low-order meshes that represent the unit disk, with the boundary of the disk denoted in red. While

all of these meshes provide a discretization of the domain, some of them have better properties

when connected to a finite element solver. In particular, it has been shown that the shape and size

2



of the elements that compose the mesh can have a major influence on convergence and accuracy of

the finite element solver because of their impact on interpolation error, conditioning of the stiffness

matrices, and solution approximation [27].

Looking closely at the figure, it is clear that the mesh does not capture the smooth boundary of

the disk. One obvious solution to remedy this is to add additional elements to better capture the

curvature of the domain, a process known as h-refinement. In Figure 1.2, we show an example of

a mesh generated by this approach. While this mesh approach better captures the curved feature

of our domain, it also adds to the computational complexity of the associated finite element solver

due to the additional nodes and elements.

An alternative solution to adding more elements is the use of high-order elements, that is, ele-

ments that are defined by polynomials beyond degree one. This process is known as p-refinement.

These high-order elements have extra degrees of freedom that allow them to better capture curved

domains via curvilinear elements. The overall objective of this thesis is to present methods for

robustly generating high-order finite element meshes. To accomplish the objective, we conducted

research in two areas, namely high-order mesh generation and high-order mesh untangling. Re-

sults from the first area were published in two peer-reviewed conference proceedings. With some

modifications, the methods described within these two publications became the optimal convex

and optimal affine methods defined within our framework in Chapter 2. Within the second area,

we published two angle-based mesh untangling methods in peer-reviewed conference proceedings

that are reproduced in this thesis as Chapter 3, and Chapter 4.

Our research in high-order mesh generation was inspired by techniques for mesh warping.

The need for mesh warping arises in fields like computer graphics, cardiology, and a variety of

time-dependent science and engineering applications where the mesh needs to be updated at each

timestep due to a moving domain boundary. In addition to the applications listed above, another

application of particular interest to this thesis is the moving domain boundary that occurs during

the typical high-order mesh generation process when the high-order nodes are projected onto the

curved boundaries of the domain. In typical mesh warping methods, the 2D formulation for the

3



(a) (b)

(c) (d)

Figure 1.1: Four possible meshes that could be generated for the unit disk with the boundary of the
disk shown in red.
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Figure 1.2: A refined mesh of the unit disk.

(a) (b)

Figure 1.3: Second- and third-order meshes of the unit disk.

5



problem being addressed is as follows: given a two-dimensional domain with an associated trian-

gular mesh, suppose the boundary mesh is deformed. Is there a method for moving the interior

nodes that will result in a good quality mesh while leaving the mesh topology fixed? To address

this question, we have developed a mesh warping framework based on optimal weighted combi-

nations of nodal positions. The first method within our framework was inspired by the low-order

Log-Barrier Based Mesh Warping (LBWARP) method developed by Shontz and Vavasis in [29].

LBWARP is a method that uses optimal convex combinations of nodal positions to dictate the

movement of the interior nodes based on a user-supplied boundary deformation. The other method

that we developed within our framework uses optimal affine combinations of nodal positions. In

Chapter 2, we introduce our framework for high-order mesh warping and discuss the two methods

within our framework and their constrained optimization problem formulations.

Our second area of research applies when the mesh warping methods described above fail to

maintain a good quality mesh. This area is known as mesh untangling, and such techniques are

applied to meshes with invalid (tangled) elements with the goal of moving interior mesh nodes

to create valid (untangled) elements. For low-order triangles, a common approach for checking

element validity is based on the orientation of the nodes. If the nodes are in counterclockwise

order, then the element is valid, otherwise it is invalid. In Fig. 1.4, we show an example of an

invalid patch of low-order triangles and one possible untangling of the patch. This is only one

possible untangled configuration because the result will be dependent on the choice of untangling

technique and the choice of mesh quality metric. For curvilinear elements, detecting tangling

is generally more difficult. For a second-order element, tangling can occur due to the edges of

the element intersecting at places other than a node. We show an example of this in Fig. 1.5,

where the invalid element is shown in red. For element orders beyond second-order, the placement

of the face nodes also plays a role in element validity. For this reason, while there are numerous

techniques for untangling low-order meshes, high-order mesh untangling techniques generally rely

on validating a mapping from a reference element to a physical element. In Fig. 1.6, we show the

mapping φ(ξ ,η) from the second-order unit triangle in reference space to the second-order triangle

6



(a) (b)

Figure 1.4: A tangled low-order patch (a) and one possible untangled version of the patch (b).

(a) (b)

Figure 1.5: A tangled patch of 2nd order elements (a) and one possible untangled version of the
patch (b).

in physical space.

Given this mapping, a common measure of element distortion is the scaled Jacobian [3]:

scaled Jacobian =
minJ(ξ )
maxJ(ξ )

,

where (ξ ,η) are coordinates in the reference element, and J is the determinant of the Jacobian of

φ(ξ ,η). In contrast with the other methods in this area, the two methods that we developed do not

depend on the mapping. In particular, the two angle-based methods that we developed successfully

Figure 1.6: The mapping from the second-order unit triangle in reference space to the second-order
triangle in physical space.
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untangle curvilinear triangular elements. In Chapters 3 and 4, we present our methods based on

unsigned and signed angles, respectively. Finally in Chapter 5, we summarize the key results of

this work as a whole.
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Chapter 2

High-order Mesh Warping Based on Optimal Weighted

Combinations of Nodal Positions

Abstract

In this work, we present a framework for high-order triangular and tetrahedral mesh warping

based on optimal weighted combinations of nodal positions. Our framework consists of three

steps. First, a set of optimal weights relating each node to its neighbors in the initial high-

order mesh is calculated. Second, a user-defined boundary deformation is applied. Third, the

final positions of the interior nodes are solved for based on the boundary deformation and

the optimal weights. We are presenting two methods within our framework for computing

optimal weighted combinations. In particular, we consider optimal affine and convex combi-

nations of nodal positions, respectively. We present several numerical examples in both two

and three dimensions which demonstrate the capabilities of our framework.

2.1 Introduction

Mesh warping methods are of considerable interest to the scientific computing community because

of their ability to deform an initial mesh to a target mesh given only a boundary deformation. This

functionality is important for applications that require a single boundary deformation (e.g., curving

the boundary in high-order mesh generation), or problems that require multiple deformation steps

like moving meshes. The key detail that differentiates these methods is their approach for moving

the interior nodes following the boundary deformation. One approach transforms the interior nodes
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based on the solution of a partial differential equation [6, 18, 22, 37]. More specifically, Xie et al.

[37] employed a linear elasticity approach, while Persson and Peraire [22] considered a nonlinear

elasticity approach. Moxey et al. [18] used a thermoelastic model, and Fortunato and Persson

[6] expressed the problem in terms of the Winslow equations. The second approach optimizes

an objective function [3, 4, 5, 7, 8, 13, 24, 25, 26, 30, 31, 32, 33, 34]. Many of the proposed

objective functions include a measure of element validity, which allows the methods to address

invalid elements. While not all of the methods guarantee valid meshes, many of them are robust

[3, 5, 7, 8, 24, 25, 34].

In this chapter, we introduce our general optimization-based framework for high-order mesh

warping based on our earlier work in [31, 32]. This framework expresses each interior node as

an optimal weighted combination of neighboring nodes. While we provide two geometry-based

methods within our framework for weight computation, alternative application-specific methods

could be used (e.g., based on problem physics, etc.). The main focus of this work is to present our

framework, as well as present additional numerical evidence of its effectiveness. The remainder

of this paper is organized as follows. In Section 2, we describe the mesh warping problem. In

Section 3, we introduce our framework and two definitions of "optimal" weights. In Section 4,

we demonstrate the performance of our method on several examples in two and three dimensions.

Finally, in Section 5, we offer concluding remarks and discuss some directions for our future work.

2.2 Problem Statement

Before describing the specifics of our framework, we will discuss the mesh warping problem in

more detail. As described in [14], given an initial domain Dinit and a triangular or tetrahedral

mesh Minit conforming to the domain, we wish to deform the boundary of the domain to D f inal

and update the mesh to M f inal as a result. Given a mapping F between Dinit and D f inal , we could

easily transform Minit to M f inal by evaluating F(Minit). Unfortunately, such a mapping between

domains is generally unknown in practice. One option to get M f inal is to simply generate a new

mesh on the deformed domain, but there is no guarantee that the resulting mesh would have any
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similarity (e.g., mesh topology) to Minit . Furthermore, remeshing can lead to accumulated error

from reinterpolation of the PDE solution on the mesh from one domain to the next [27] and is often

slower. With these factors in mind, if the mesh topology is fixed, then strategies based on interior

node-movement are a good choice.

2.3 Framework

In this section, we present our optimization-based framework for high-order mesh warping based

on the Linear Weighted Laplacian Smoothing (LWLS) framework described by Shontz in [28]. The

first step in our framework is to solve an optimization problem for each interior node to calculate

a set of weights that relates the interior node to its neighbors in the initial high-order mesh. While

we focus on two generic geometry-based methods for calculating the weights, application-specific

methods could be used instead. To formalize our discussion, we borrow the following notation

from [28] to describe the 2D formulation of the problem. The 3D formulation can be described in

a similar fashion. Denote the x- and y-coordinates of the ith interior node by (xi,yi). Furthermore,

denote the x- and y-coordinates of the neighbors of node i as {(x j,y j) : j ∈ Ni}, where Ni is the set

of all elements to which i belongs. There are several possible definitions for the local neighboring

set based on use of the low-order nodes, high-order nodes, or some combination of both. We chose

to include all nodes for the neighboring set because this definition resulted in elements with less

distortion than other definitions in the presence of larger deformations. For smaller deformations, a

simpler set could be chosen (e.g., only the high-order nodes, etcetera), but care must be taken in the

case of the certain types of weights. For each interior node i, this information can be represented

as the following linear system, where wi j are the weights:

∑
j∈Ni

wi jx j = xi

∑
j∈Ni

wi jy j = yi.

11



Adding the additional constraint that the weights sum to one results in the following problem of

finding an affine combination of the x- and y-coordinates of the vertices adjacent to node i:

∑
j∈Ni

wi jx j = xi (2.1)

∑
j∈Ni

wi jy j = yi (2.2)

∑
j∈Ni

wi j = 1. (2.3)

In Sections 2.3.1 and 2.3.2, we discuss two approaches for calculating the weights. Before

proceeding further, let us borrow some additional notation from [28]. Let xI and yI contain the

initial x- and y-coordinates of the interior nodes, and let xB and yB contain the initial positions

of the x- and y-coordinates of the boundary nodes. Then [xI,yI] and [xB,yB] contain the initial

positions of the interior and boundary nodes, respectively. Denote as DI the matrix containing

all of the weights corresponding to the interior neighbors. Similarly, denote as DB the matrix

containing all of the weights corresponding to boundary neighbors. Using this notation, we can

express (2.1)-(2.3) as:

DI[xI,yI] =−DB[xB,yB]. (2.4)

After calculating the weights, a user-defined deformation is applied to the boundary nodes.

This deformation can result from an experiment, or the application of a mapping (i.e., discrete set

of points or from continuous motion). The new positions of the boundary nodes are denoted as

[x̂B, ŷB]. The final step is to solve for the new locations of the interior nodes [x̂I, ŷI] (while leaving

node connectivity unchanged) by solving a linear system of equations using the weights and the

new boundary positions from steps one and two, respectively. In particular, we solve the following

global linear system, which is a multiple right-hand side (RHS) problem:

DI[x̂I, ŷI] =−DB[x̂B, ŷB]. (2.5)
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(a) Natural Ordering (b) Column AMD Ordering

Figure 2.1: Sparsity plots: (a) the natural ordering, (b) the matrix after reordering with column
AMD.

In this global linear system, each row in DI contains information relating the interior node to its

neighbors. This construction results in a matrix that is very sparse with irregular structure. For this

reason, we solve (2.5) with a sparse LU factorization. To give the matrix a more favorable structure

(i.e., to create less fill-in in the factorization), we apply the column approximate minimum degree

(AMD) reordering provided by Eigen [11]. In Fig. 2.1, we show sparsity plots of the weight

matrix from the third example in Section 2.4. In Alg. 1, we provide a pseudocode description of

our warping framework.

Algorithm 1 Pseudocode for our warping framework
1. Compute weights
for each interior node i do

calculate weights using, e.g., Alg. 2 or Alg. 3
end for
2. Apply boundary deformation
3. Solve Eq. (2.5) for new positions of interior nodes

2.3.1 Affine Weights

To simplify our discussion in this section, we will express (2.1)-(2.3) for each interior node i as

Awi = b in the following way:
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x1 x2 . . . xn

y1 y2 . . . yn

1 1 . . . 1





wi1

wi2

...

win


=


xi

yi

1

 ,

where n = |Ni|. Based on the set of neighbors, this linear system will be underdetermined (i.e., A =

(d+1)×n with (d+1)< n, where d is two or three) in general. If we assume that A has full rank,

we can find one solution to our problem by requiring that wi has the smallest Euclidean norm of

any solution. This results in the following optimization problem:

min
wi j, j∈Ni

∑
j∈Ni

w2
i j (2.6)

subject to ∑
j∈Ni

wi jx j = xi (2.7)

∑
j∈Ni

wi jy j = yi (2.8)

∑
j∈Ni

wi j = 1. (2.9)

In the current form, this problem can be solved by a nonlinear programming method. Alternatively,

we can reformulate the problem to solve it using a QR factorization. This removes the need for an

interative nonlinear optimization method whose convergence behavior would be dependent on a

variety of factors (e.g., starting position, convergence tolerance, etc). The following derivation for

the problem reformulation can be found in [32], but we reproduce it here for convenience. From

the Karush-Kuhn-Tucker (KKT) theory [20], the following conditions must be satisfied for a local
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solution (w∗,λ ∗) to be optimal:

∇w L (w∗,λ ∗) = 0 (stationarity) (2.10)

Aw∗−b = 0 (feasibility) (2.11)

λ
∗(Aw∗−b) = 0 (complementarity), (2.12)

where the Lagrangian L (w,λ ) = wT w−λ T (Aw−b), and λ are the Lagrange multipliers.

Using (2.10)-(2.12), the following local solution pair (w∗,λ ∗) can be found as follows:

∇w L (w,λ ) = 2w−AT
λ

∇w L (w∗,λ ∗) = 0⇒ w∗ =
1
2

AT
λ
∗

Aw∗−b = 0⇒ A(
1
2

AT
λ
∗)−b = 0

⇒ λ
∗ = 2(AAT )−1b

⇒ w∗ =
1
2

AT
λ
∗

=
1
2

AT 2(AAT )−1b

= AT (AAT )−1b.

Although we have shown that (w∗,λ ∗) is a stationary point, to claim that it is a minimum, we

must investigate ∇2
ww L (w∗,λ ∗):

∇
2
ww L (w,λ ) = 2I|Ni|×|Ni|

∇
2
ww L (w∗,λ ∗) = 2I|Ni|×|Ni|.

From the second-order sufficient conditions, if w∗ satisfies (2.10)-(2.12) and the following condi-

tion is satisfied:

zT
∇

2
ww L (w∗,λ ∗)z > 0, for all z ∈C(w∗,λ ∗),z 6= 0, (2.13)
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where C(w∗,λ ∗) = {z | ∇w c(w∗)T z = 0} is the critical cone and c(w) = Aw− b, then our local

solution is a minimum. Since ∇2
ww L (w∗,λ ∗) is symmetric positive definite, the inequality in

(2.13) is satisfied for any choice of z. Thus we can conclude that our solution w∗ is a strict local

solution of (2.6)-(2.9).

Now that we have verified that w∗ is the solution, we describe how to calculate it via a reduced

QR factorization. Suppose that AT = QR, where Qn×m has orthogonal columns and Rm×m is upper

triangular. Substituting in the QR factorization of AT into w∗, we get the following:

w∗ = A+b

= AT (AAT )−1b

= QR(RT QT QR)−1b

= QR(RT R)−1b

= QRR−1R−T b

= QR−T b

Rewriting this in linear system form, we have:

RT QT w∗ = b.

If we let t = QT w∗, then RT t = b and w∗ = Qt. Thus calculating w∗ involves computing a QR

decomposition of AT , solving the lower triangular system RT t = b using forward substitution, and

calculating the matrix-vector product Qt. In Alg. 2, we give the pseudocode for computing affine

weights.

Algorithm 2 Pseudocode for computing affine weights
1. Compute AT = QR using a reduced QR factorization.
2. Solve RT t = b using forward substitution.
3. Set w∗ = Qt.
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2.3.2 Convex Weights

If we wish to enforce that the weights are strictly positive (corresponding to interpolation within

the convex hull of the neighboring set), we can formulate the following optimization problem as

described in [29]:

min
wi j, j∈Ni

- ∑
j∈Ni

log(wi j) (2.14)

subject to wi j > 0 (2.15)

∑
j∈Ni

wi jx j = xi (2.16)

∑
j∈Ni

wi jy j = yi (2.17)

∑
j∈Ni

wi j = 1. (2.18)

Since the convex weights can be interpreted as interpolation within the convex hull defined by

the neighbors, the interior node that we are representing must be inside of the convex hull of the

neighboring set of nodes for the problem to be well-posed. The log barrier function serves two

important purposes in this formulation. In particular, it enforces the inequality constraint since the

-log function approaches infinity as its input function approaches 0. For this reason, the -log serves

as a barrier which enforces that wi j > 0. We are not the first group to use a log barrier in a meshing

context. For low-order meshes, Shontz and Vavasis used a log-barrier in LBWARP [29], which

served as the basis for our convex weight problem formulation. In a high-order mesh generation

context, Toulorge et al. [34] use a log barrier to prevent element Jacobians from becoming too small

as part of an objective function for untangling invalid curved elements. As posed in (2.14)-(2.18),

this is a strictly convex optimization problem for which there is a unique global minimum. By

starting with an initial feasible point, this optimization problem can be solved using the equality-
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constrained Newton method, which will maintain feasibility at each iterate [2].

∇2 f (wk) −A(wk)
T

A(wk)
T 0


 pk

pλ

=

 −∇ f (wk)

0

 (2.19)

To find an initial feasible point, we can use the scheme described in [31]. That is, we can choose

three of the node’s neighbors and write the node as a convex combination of the these neighbors,

where the remaining neighbors are given a weight of ε , a small positive constant. Depending on

the number of neighbors, this might require ε values of 10−3 or smaller. This would result in some

entries of ∇2 f (wk) being 106 or smaller, which results in a poorly-conditioned system. While we

can address this using a simple preconditioner (e.g., a diagonal preconditioner), we instead explore

an alternative formulation of the Newton equations that does not require a feasible starting point.

This alternative formulation has the following form:

∇2 f (wk) −A(wk)
T

A(wk)
T 0


 pk

pλ

=−

 ∇ f (wk)

Awk−b

 . (2.20)

The key difference between (2.19) and (2.20) is the lower block of the right-hand side which gives

the residual with respect to the equality constraints (i.e., measures the feasibility of wk with respect

to the equality constraints). This alternative formulation can be solved using the infeasible start

Newton method described in chapter 10 of [2]. Recall that we mentioned earlier that -log serves as

a barrier, with this in mind our starting position (i.e., the starting weights) must be positive or the

optimization cannot cross the barrier. However, the starting position can be infeasible with respect

to the equality constraints. In Alg. 3, we give the pseudocode for computing convex weights.

One step in the algorithm that warrants further discussion is step 2. In this step, we scale back the

descent direction pk to ensure that each entry in wk +α pk is strictly positive. This step is required

to avoid division by zero in the evaluation of ∇ f . In practice, this safeguard was only necessary

when our initial iterate was far from the solution.

18



Algorithm 3 Pseudocode for computing convex weights
residual(x,y) = [∇ f (x)+AT y,Ax−b] {the dual and primal residuals, respectively}
while ctr < 500 and ||residual(wk,λk)||2 > 10−8 do

1. Solve Eq. 2.20 for pk and pλ .
α = 1.0
2. Scale pk by α until all (wk +α pk)> 0 {to stay in the domain of ∇ f (x)}
while any(wk +α pk) < 0 do

α = 0.8α

end while
3. Backtrack on the norm of the residual
while ||residual(wk +α pk,λk +α pλ )||2 > (1−0.25α)||residual(wk,λk)||2 do

α = 0.75α

end while
wk+1 = wk +α pk, λk+1 = λk +α pλ

ctr = ctr + 1
end while

2.4 Numerical Experiments

In this section, we demonstrate the results from applying our framework on a variety of mesh

deformations in two and three dimensions. Before discussing our numerical examples, we will

start by showing scaling results for the two weighting schemes and the multiple right-hand side

linear solve for our framework. In Figs. 2.2 and 2.3, we show scaling plots of the runtime in

seconds versus the number of interior nodes (both shown on a log scale) for 2D and 3D, including

both second-order and third-order elements. For these tests, we used a simple circle and sphere

geometries for two and three dimensions, respectively. In each case, we refined the low-order mesh

multiple times, and then enriched each of those refined meshes to become a high-order mesh. For

these geometries, we decreased the element sizes with the goal of approximately doubling the

number of elements in the previous level. In Tables 2.1 and 2.2, we show the total number of

mesh elements, the total number of nodes (including low- and high-order nodes), and the total

number of interior nodes (including low- and high-order nodes). As we can see in Fig. 2.2, the

affine weighting scheme for a given element order is faster for smaller problem sizes (i.e., fewer

interior nodes). However, once the problem size is large enough, the affine and convex weight

computations require a similar amount of time. In Fig. 2.3 we can see that the choice of weighting
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Circle
P2 P3

Refinement Total Total Num Total Num
Level Num Num Int Num Int

Elems Nodes Nodes Nodes Nodes
0 437 920 830 2,035 1,900
1 842 1,749 1,621 3,886 3,694
2 1,747 3,584 3,406 7,996 7,729
3 3,725 7,586 7,316 16,966 16,561
4 7,848 15,891 15,503 35,608 35,026
5 14,914 30,091 29,567 67,507 66,721
6 28,287 56,320 56,084 127,579 126,466
7 58,221 116,966 115,920 262,780 261,211
8 117,001 234,742 233,264 527,614 525,397

Table 2.1: The total number of elements, total number of nodes (including low- and high-order
nodes), and number of interior nodes (including low- and high-order) for the second and third-
order meshes at each level of refinement on the circle geometry.

scheme has minimal impact on the multiple RHS linear solve.

For both 2D and 3D, we explore smaller deformations, like the ones associated with the bound-

ary curving step during the typical high-order mesh generation process, and larger deformations

that might be encountered in mesh warping or moving mesh applications. In Tab. 2.3, we list the

number of elements, element order, and number of interior nodes for each example. We also list

the execution times for our method (excluding I/O) in Table 2.4. The method was implemented

in C++, and the wall-clock times were measured on the KU Community Cluster at the University

of Kansas. The specific nodes used have 128GB of RAM and Intel Xeon E5-2680 v3 processors.

In addition, for each example, we show the initial mesh, the mesh resulting from our methods af-

ter applying a deformation and updating the nodal positions, and the element distortion values as

measured by the scaled Jacobian ([3]):

scaled Jacobian =
minJ(ξ )
maxJ(ξ )

,

where ξ are coordinates in the reference element, and J is the determinant of the Jacobian of the

mapping from reference to physical space. This measure has a maximum value of 1, indicating
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(a)

(b)

Figure 2.2: Scaling plots of the affine and convex weight computations on the (a) circle and (b)
sphere geometries at different levels of refinement.
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(a)

(b)

Figure 2.3: Scaling plots of the multiple right-hand side linear solver on the (a) circle and (b)
sphere geometries at different levels of refinement.
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Sphere
P2 P3

Refinement Total Total Num Total Num
Level Num Num Int Num Int

Elems Nodes Nodes Nodes Nodes
0 536 1,028 454 3,096 1,807
1 1,161 2,056 1,094 6,346 4,184
2 2,231 3,716 2,274 11,691 8,449
3 4,393 7,080 4,662 22,508 17,070
4 9,483 14,668 10,554 47,251 37,997
5 19,208 28,903 22,053 93,942 78,532
6 38,618 56,320 45,890 184,935 161,470
7 76,338 109,333 92,475 361,165 323,237

Table 2.2: The total number of elements, total number of nodes (including low- and high-order
nodes), and number of interior nodes (including low- and high-order) for the second and third-
order meshes at each level of refinement on the sphere geometry.

that the element is straight-sided. Negative values indicate that the element is tangled. When

reporting the mesh distortion, we list the minimum distortion, average distortion, and maximum

distortion values. Distortion values are reported in Tab. 2.5. All mesh distortion evaluations and

visualizations were done using Gmsh [10, 12, 23].

Our first example starts with a straight-sided second-order boundary layer mesh around an

NACA0012 airfoil. The deformation that is applied moves the second-order nodes onto the curved

boundaries. In Fig. 2.4, we show the initial mesh, and the meshes resulting from each type of

weighted combination. For this example, the two weighting schemes resulted in meshes with

similar distortion values. Their minimum distortion values are 0.163 and 0.169 for the affine and

convex combinations, respectively. However, the convex weight computation required roughly

twice the amount of time as the affine weight computation.

For the remainder of the 2D examples, we focus on larger deformations. We start by moving

a circle through a rectangular domain. In this example, the circle was moved along the x-axis by

100% of the radius of the circle. In Fig. 2.5, we show the initial mesh and the meshes resulting

from each type of weighted combination. In this example, the two approaches resulted in minimum

distortion values of 0.453 and 0.454, for the affine and convex weighting schemes, respectively.
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(a)

(b)

(c)

Figure 2.4: NACA0012 airfoil example: (a) the initial straight-sided second-order mesh, (b) the
mesh resulting from our affine method, and (c) the mesh resulting from our convex method.
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(a)

(b)

(c)

Figure 2.5: Moving circle example: (a) the initial second-order mesh, (b) the deformed mesh using
our affine method, and (c) the deformed mesh using our convex method.
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For examples three and four, we use an initial mesh with four circles in the domain. For the

third example, we move the X and Y coordinates of the circles toward the center of the domain

by 37.5% of the radius r. For the fourth example, we move the X and Y coordinates of each

circle by a random amount between -0.65*r and 0.65*r. In contrast with our previous examples,

the convex weighting scheme performed noticeably better than the affine weighting scheme with

respect to element distortion. In particular, the minimum distortions for each example using the

affine weighting scheme were 0.109 and 0.124, respectively, while the convex weighting scheme

resulted in a minimum of 0.137 for both examples. In Fig. 2.6 and Fig. 2.7, we show the initial

meshes and the meshes resulting from each type of weighted combination. In contrast with the

first two examples, for these larger deformations, the convex weighting scheme resulted in meshes

with lower distortion than the affine combination scheme.

Our fifth example starts with a straight-sided second-order mesh of a screw. The deformation

that is applied moves the second-order nodes onto the curved boundaries. In Fig. 2.8, we show the

initial mesh and the meshes resulting from each type of weighted combination. For this example,

the two weighting schemes resulted in meshes with a minimum distortion of 0.008. The convex

scheme resulted in a better average and maximum distortion of 0.901 and 0.998, respectively,

compared to an average of 0.894 and maximum of 0.996 for the affine scheme.

For the remainder of the 3D examples, we focus on larger deformations. We start by moving

a sphere through a cube domain. In this example, the sphere moved along the x-axis by 30% of

the radius of the sphere. In Fig. 2.9, we show the initial mesh, and the meshes resulting from each

type of weighted combination. Each mesh is shown with a cutting plane through the middle to

allow visualization of the interior. We also omitted the mesh nodes to simplify the visualization.

In this example, the affine weighting scheme resulted in a mesh with a minimum distortion value

of 0.173, while the convex scheme resulted in a minimum of 0.543. Although the convex weight

computation took roughly twice as long, it resulted in much better elements.

For example seven, we use an initial mesh with four spheres in the domain. In this example,

we move the x-, y-, and z- coordinates of each sphere by a random amount between -0.4*r and
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Moving circles 1 example: (a) the initial third-order mesh, (c) the deformed mesh using
affine combinations after moving the circles closer together, (e) the deformed mesh using convex
combinations, and (b,d,f) histograms of the distortion values for each mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Moving circles 2 example: (a) the initial third-order mesh, (c) the deformed mesh
using affine combinations after moving the circles by a random amount, (e) the deformed mesh
using convex combinations, and (b,d,f) histograms of the distortion values for each mesh.
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(a) (b)

(c) (d)

Figure 2.8: Screw example: (a) the initial second-order surface mesh, (b) the deformed surface,
and (c,d) a cutting plane through the volume of the deformed meshes using affine and convex
combinations, respectively.

0.4*r. In Fig. 2.10, we show the initial mesh, and the meshes resulting from each type of weighted

combination (with high-order nodes omitted). In each case, we show a cross section of the domain

to allow visualization of the interior. Once again, the convex weighting scheme resulted in a mesh

with a better minimum distortion value of 0.153, compared to 0.120 with the affine scheme.

In our final two examples, we apply deformations to cylindrical shell geometries. For the first

shell, we increase the diameter of each cylinder, increase the thickness of the shell wall, and reduce

the length of the shell. For this example, the two schemes resulted in similar minimum distortion

values of 0.315 and 0.318 for the affine and convex schemes, respectively. However, the convex

weight computation required roughly three times as long. For the second shell example, we deform

the shell into the shape of a sin wave. In this example, the affine scheme resulted in a mesh with two

tangled elements and a minimum distortion value of -0.175, while the convex scheme maintained

element validity with a minimum distortion value of 0.085. Although computing the affine weights

was significantly faster, this savings would be mitigated by the need for an untangling pass to

recover mesh element validity.

Taking a closer look at the information in Tables 2.3 to 2.5, some patterns start to emerge. First,

for smaller deformations, the two weighting schemes result in warped meshes with similar levels
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Moving sphere example: (a) the initial third-order mesh, (c) the deformed mesh using
affine combinations after moving the sphere, (e) the deformed mesh using convex combinations,
and (b,d,f) histograms of the distortion values for each mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Moving spheres example: (a) the initial second-order mesh, (c) the deformed mesh
using affine combinations after moving the spheres by a random amount, (e) the deformed mesh
using convex combinations, and (b,d,f) histograms of the distortion values for each mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: Shell 1 example: (a) the initial second-order mesh, (c) the deformed mesh using
affine combinations, (e) the deformed mesh using convex combinations, and (b,d,f) histograms of
the distortion values for each mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.12: Shell 2 example: (a) the initial second-order mesh, (c) the deformed mesh using
affine combinations, (e) the deformed mesh using convex combinations, and (b,d,f) histograms of
the distortion values for each mesh.
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Example Num of
Elems

Mesh
Order

Num of
Int Nodes

NACA0012 Airfoil 2,384 2 4,610
Moving Circle 1,686 2 3,232

Moving Circles 1 1,498 3 6,558
Moving Circles 2 1,498 3 6,558

Screw 615 2 402
Moving Sphere 19,207 3 76,175
Moving Spheres 51,533 2 59,104

Shell 1 8,914 3 31,411
Shell 2 7,904 3 28,277

Table 2.3: The number of elements, mesh order, and number of interior nodes for each example.

Runtime (s)
Example Neigh Affine Multiple Convex Multiple

Set Weight RHS Weight RHS
Comp Comp Solve Comp Solve

Airfoil 0.0052 0.0412 0.0631 0.1060 0.0628
Moving Circle 0.0034 0.0224 0.0346 0.0700 0.0342

Moving Circles 1 0.0085 0.0970 0.1226 0.3142 0.1220
Moving Circles 2 0.0085 0.0970 0.1220 0.3156 0.1222

Screw 0.0022 0.0078 0.0043 0.0418 0.0030
Moving Sphere 0.3917 23.9505 310.7020 50.2970 310.6000
Moving Spheres 0.2435 8.3268 168.9980 13.0349 169.2470

Shell 1 0.1506 4.1448 6.2183 12.9734 6.2156
Shell 2 0.1357 3.3963 4.6712 11.4073 4.6667

Table 2.4: The wall clock times for the neighboring set computation, weight generation, and the
multiple right-hand side linear solve phases.
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Distortion
Affine Convex

Example Min Avg Max Min Avg Max
Airfoil 0.163 0.998 1.000 0.169 0.998 1.000

Moving Circle 0.453 0.952 1.000 0.454 0.953 1.000
Moving Circles 1 0.109 0.867 0.997 0.137 0.881 0.997
Moving Circles 2 0.124 0.915 0.997 0.137 0.923 0.997

Screw 0.008 0.894 0.996 0.008 0.901 0.998
Moving Sphere 0.173 0.934 1.000 0.543 0.946 1.000
Moving Spheres 0.120 0.966 1.000 0.153 0.967 1.000

Cyl Shell1 0.315 0.908 0.995 0.318 0.918 0.995
Cyl Shell2 -0.175 0.749 0.993 0.085 0.783 0.993

Table 2.5: The minimum, average, and maximum distortion for the affine and convex weighting
schemes for each example.

of distortion, but the affine scheme is faster on coarser meshes. As the deformations get larger,

the affine scheme tends to create elements with greater amounts of distortion than the convex

scheme, and also results in a comparable weight computation time. With these observations in

mind, using the affine scheme is a good choice for small deformations on coarse meshes, but for

larger deformations, the convex scheme will likely result in a better mesh (as measured by element

distortion) without a significant increase in additional runtime.

2.5 Concluding Remarks and Future Work

We have presented an optimization-based framework for high-order mesh warping based on opti-

mal weighted combinations of nodal positions. While we presented two geometry-based methods

within our framework for weight computation, our framework is flexible and allows the inclusion

of alternative weight computation schemes that could be problem-specific. We have also explored

the use of our framework on larger deformations that might be encountered in mesh warping or

moving mesh applications. While our runtimes are reasonable, our scaling tests have demonstrated

the need for a parallel implementation similar to the low-order parallel LBWARP described in [21]

for large mesh sizes. In particular, there is great potential for computing each set of weights in par-

allel because they are independent. In addition, leveraging a parallel linear solver for the multiple
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RHS linear solve would further improve the scaling capabilities for large problems.

Our future work will include the exploration of iterative linear solvers, as well as extending

the method to additional orders beyond third-order. In addition, we might explore alternative

definitions of neighboring sets, in order to improve sparsity for example, by carefully reducing the

number of neighbors to discourage highly distorted elements.

Acknowledgments

The work of the first author was funded in part by the Madison and Lila Self Graduate Fellowship

and NSF CCF grant 1717894. The work of the second author was supported in part by NSF grants

CCF 1717894 and OAC 1808553. The work of both authors was supported through instrumenta-

tion funded by the Army Research Office under contract W911NF-15-1-0377.

36



Chapter 3

An Angular Approach to Untangling High-order Curvilinear

Triangular Meshes∗

Abstract

To achieve the full potential of high-order numerical methods for solving partial differential

equations, the generation of a high-order mesh is required. One particular challenge in the

generation of high-order meshes is avoiding invalid (tangled) elements that can occur as a

result of moving the nodes from the low-order mesh that lie along the boundary to conform

to the true curved boundary. In this paper, we propose a heuristic for correcting tangled

second- and third-order meshes. For each interior edge, our method minimizes an objective

function based on the unsigned angles of the pair of triangles that share the edge. We present

several numerical examples in two dimensions with second- and third-order elements that

demonstrate the capabilities of our method for untangling invalid meshes.

3.1 Introduction

The appeal of high-order methods for solving partial differential equations lies in their ability to

achieve higher accuracy at a lower cost than low-order methods. One challenge in the adoption

of these high-order methods for problems with curved geometries is the lack of robust high-order

mesh generation software [36]. More specifically, to fully leverage the accuracy of high-order

∗Reprinted by permission from Springer Nature: Springer, Cham. Stees M., Shontz S.M. (2019) An Angular
Approach to Untangling High-Order Curvilinear Triangular Meshes. In: Roca X., Loseille A. (eds) 27th International
Meshing Roundtable. IMR 2018. Lecture Notes in Computational Science and Engineering, vol 127. Copyright 2019.
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methods in the presence of curved geometries, such methods need to be paired with a high-order

mesh that correctly reflects the curvature of the geometry, as demonstrated in [1, 17].

The most common approach for high-order mesh generation methods is to transform a coarse

linear mesh [3], [6, 7, 8], [18, 19], [9, 22, 24, 25],and [31, 32, 33, 34, 35, 37]. The main challenge

of the transformation is obtaining a valid high-order mesh. In general, these methods involve three

steps: (1) adding additional nodes to the linear mesh; (2) moving the newly added boundary nodes

to conform with the curved geometry, and (3) moving the interior nodes. There are two categories

of methods which are especially popular for transforming the initial mesh. The first category

involves transforming the mesh based on optimization of an objective function [3], [7, 8],[24, 25],

and [26, 31, 32, 33, 34]. Several of the objective functions proposed in this category include a

measure of element validity, which allows them to untangle invalid elements [3, 7, 8, 24, 25, 34].

While they do not guarantee successful untangling, many of them are robust. The second category

of methods transform the mesh based on the solution to a partial differential equation [6, 18, 22,

37].

In this paper, we describe an optimization-based approach for untangling invalid second- and

third-order meshes. The primary goal of this work is to untangle invalid meshes that result from

deforming the newly added boundary nodes to conform with the true boundary. Toward that end,

we demonstrate our method on several meshes composed of second- and third-order elements

that became invalid following the projection of the boundary nodes onto the true boundary. We

also explore the untangling of meshes that became invalid as a result of small deformations. The

remainder of this paper is organized as follows. In Section 2, we present our new method for

high-order mesh untangling. In Section 3, we illustrate the performance of our method on several

examples. Finally, in Section 4, we offer concluding remarks and discuss some possibilities for

future work.
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Figure 3.1: A pair of triangles showing the interior edge (red), the free nodes (black diamonds),
the fixed nodes (black dots), and the four angles αi

3.2 Untangling High-order Curvilinear Meshes

In this section, we propose a local edge-based optimization method for untangling high-order

curvilinear meshes based on the unsigned angles of curvilinear triangles. For each interior mesh

edge, we identify the two triangles that share the edge and compute the distortion of each of the

two triangles. For each pair of triangles with a minimum distortion measure less than 0, we solve

the following unconstrained optimization problem:

x∗ = argmin
x

4

∑
i=1

αi(x), (3.1)

where

αi = the ith entry of the vector of the four unsigned angles,

x = the nodal positions of the high-order nodes that lie on the edge

In Fig. 3.1 we give an example which shows an interior edge in red and the pair of triangles that

share that edge in green. We also label the four unsigned angles that are calculated, the nodes that

are allowed to move during the optimization (black diamonds), and the nodes that are fixed (black

dots).

To better understand the behavior of the objective function, consider the five examples shown

in Fig. 3.2. In Fig. 3.2(a) for α1 +α4 and α2 +α3, moving the free node (green diamond) will

shift the proportion of each term, while leaving the overall sum fixed. In other words, increasing α1
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will cause a corresponding decrease in α4 while the quantity α1 +α4 remains the same. Similarly,

increasing α2 will cause a corresponding decrease in α3 while the quantity α2 +α3 remains the

same. This behavior means that the sum of all four angles cannot be further decreased by moving

the free node. Furthermore, this behavior is desirable because patches with no distortion will not

be modified since the optimization will not move the free node (as there is no step that will lead

to a decrease in the objective function). Fortunately, this behavior holds true as we add minor

distortion as well. In Fig. 3.2(b), we moved the bottom node (denoted by a blue square) to increase

the distortion of the bottom element. In Fig. 3.2(c), we moved the node slightly further to increase

distortion. In both cases, we can see that the overall sum cannot be further decreased by moving

the free node. Finally, in Fig. 3.2(d), we move the node to the point that it causes tangling. Now

that α1 is an angle between tangled edges, this angle can be decreased by moving the free node. By

decreasing the value of α1, we decrease the value of α1 +α4, and thus decrease the overall sum of

the four angles. In other words, minimizing our objective function attempts to decrease the value

of angles that occur between tangled edges by moving the free node away. In Fig. 3.2(e), we show

results of moving the free node to minimize our objective function.

To measure distortion, we use the scaled Jacobian [3]. To solve our unconstrained optimization

problem, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method decribed

in Chapter 6 of [20]. In place of the analytical gradient, we use a 6th order centered finite difference

with a step size of 10−6. As our initial Hessian approximation, we use a scaled version of the

identity matrix. In Alg. 4 and Alg. 5, we give pseudocode descriptions of our untangling method

and optimization method, respectively. Our implementation of the BFGS quasi-Newton method

uses a backtracking line search. This backtracking approach based on the Wolfe conditions ensures

that the step results in a sufficient decrease in our objective function. In the next section, we discuss

how the angles αi(x) of the curved elements are calculated.
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(a) (b)

(c) (d)

(e)

Figure 3.2: A simple patch showing the angles (αi), the free node (green diamond), and the node
that is moved to increase distortion (blue square). In (a), the patch with no distortion is shown. In
(b-d), the amount of distortion is gradually increased. In (e), the mesh after applying our method
to minimize the sum of the angles is shown.
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Algorithm 4 Pseudocode for our edge-based mesh untangling method
while there are tangled elements or passes < count do

for each interior edge e do
Find the two triangles t1 and t2 with e as a common edge
Compute the element distortions ed1 and ed2 for t1 and t2, respectively
if min(ed1,ed2)< 0 then

Solve Eq. 3.1 for x∗ using Alg. 5
Update nodal positions of the free nodes on e to x∗

end if
end for
passes = passes + 1

end while

Algorithm 5 Pseudocode for our BFGS quasi-Newton method
Given an initial value x0, an initial value for the Hessian B0, and a tolerance tol;
while ‖∇ f (xk)‖> tol do

Compute Cholesky factorization Bk = LLT

Compute the direction vector dk by solving LLT dk =−∇ f (xk).
ρk = 1.0
while f (xk +ρkdk)> f (xk)+10−4ρk∇ f (xk)

T dk do
ρk = 0.5ρk

end while
xk+1 = xk +ρkdk

sk = xk+1− xk

yk = ∇ f (xk+1)−∇ f (xk)

Bk+1 = Bk−
BksksT

k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

k = k+1
end while
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3.2.1 Measuring the Angles of Curvilinear Triangles

In order to compute the angle between two curves at a given point, we compute the derivatives

of the curves, evaluate the derivatives at the given point, and then compute the angle between the

resulting tangent vectors. Following this approach, we will compute the angles between each pair

of edges of curvilinear triangles. For our derivation, we use the third-order Lagrange elements.

Derivation for the second-order Lagrange elements is similar.

Consider the third-order Lagrange triangle shown in Fig. 3.3 with shape functions defined as

follows:

s1 =
9
2
(1−ξ −η)

(
1
3
−ξ −η

)(
2
3
−ξ −η

)
s2 =

9
2

ξ

(
ξ − 1

3

)(
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3

)
s3 =

9
2

η

(
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)(
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3

)
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(
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27
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ξ η

(
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)
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2
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(
η− 1

3

)
s9 =

27
2
(1−ξ −η)η

(
2
3
−ξ −η

)
s10 = 27ξ η (1−ξ −η) .

The mapping φ(ξ ,η) from the reference unit element in Fig. 3.3 onto the physical element is

then given by:

φ(ξ ,η) =
10

∑
i=1

xi si(ξ ,η), (3.2)

where xi are the nodal positions, and (ξ ,η) is a point in the reference element. Since we are con-
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Figure 3.3: Third-order Lagrange reference unit triangle

cerned with the angles between each pair of edges, we need to define mappings from each point on

the edges of the reference element to the corresponding point on the edges of the physical element.

The edges correspond to third-order Lagrange elements in 1D. The shape functions associated with

these elements are defined as:

n1(t) =
9
2
(1− t)

(
2
3
− t
)(

1
3
− t
)

n2(t) =
27
2
(1− t)

(
2
3
− t
)
(t)

n3(t) =
27
2
(1− t)

(
1
3
− t
)
(−t)

n4(t) =
9
2

(
2
3
− t
)(

1
3
− t
)
(t) .

The derivatives of these shape functions with respect to t are given by:

n1
′(t) =

1
2
(
−11+36t−27t2)

n2
′(t) =

1
2
(
18−90t +81t2)

n3
′(t) =

1
2
(
−9+72t−81e2)

n4
′(t) =

1
2
(
2−18t +27t2) .

Using these shape functions, we define the mappings from each edge in the reference element to
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each edge in the physical element as:

f12(t) = x1n1(t)+x4n2(t)+x5n3(t)+x2n4(t)

f23(t) = x2n1(t)+x6n2(t)+x7n3(t)+x3n4(t)

f31(t) = x3n1(t)+x8n2(t)+x9n3(t)+x1n4(t).

The notation fi j denotes the edge between nodes i and j in Fig. 3.3. In their expanded forms,

each fij(t) is a cubic polynomial in the variable t. Next, we need to compute the derivatives of our

functions. Straightforward differentiation with respect to t results in the following:

f12
′(t) = x1n1

′(t)+x4n2
′(t)+x5n3

′(t)+x2n4
′(t)

f23
′(t) = x2n1

′(t)+x6n2
′(t)+x7n3

′(t)+x3n4
′(t)

f31
′(t) = x3n1

′(t)+x8n2
′(t)+x9n3

′(t)+x1n4
′(t).

Given these derivatives, we can return to the problem of calculating the angles between edges.

As an example, suppose that we want to calculate the angle between edge e12 and edge e31 in Fig.

3.3. To calculate the angle in radians, we use the following formula:

θ = π− arccos
(

f12
′(0) f31

′(1)
|| f12

′(0)|| || f31
′(1)||

)
=

π

2
.

Returning to the calculation of αi(x) in Eq. 3.1, we loop over each triangle in the patch and

calculate the two angles of each triangle formed by the edges incident to the shared edge between

the triangles as described above.

3.3 Numerical Experiments

In this section, we show the results from performing several numerical experiments to untangle

invalid second- and third-order meshes. For each example, we show the initial meshes; the meshes
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which result after untangling them with our method; the minimum distortion, maximum distortion,

average distortion computed over all elements (referred to as Avg1 in figures), and average distor-

tion computed over curved elements (referred to as Avg2 in figures), and the run time needed for

our method to untangle the mesh. For each mesh, we show the nodes associated with the element

of the given order. We do not show the location of the quadrature points. The code was run using

Matlab R2017b, and the execution times were measured on a machine with 8GB of RAM and an

Intel Xeon(R) W3520 CPU. All mesh visualizations and distortion calculations were done using

Gmsh [10].

Our first example is a third-order annulus composed of 30 elements. During the process of

curving the boundary, tangled elements were created near the top and bottom of the inner ring.

Figure 3.4(a,c) show the initial invalid mesh and the final mesh resulting from our method, respec-

tively. Figure 3.4(b,d), show detailed views of the inner ring from Fig. 3.4(a,c), respectively. In

Fig. 3.4(e) we give the mesh element distortion.

Our second example is the leading edge of a third-order NACA0012 airfoil. In Fig. 3.5(a), we

can see that curving the inner boundary resulted in two tangled elements near the leading edge of

the airfoil. In Fig. 3.5(b), we show the final mesh resulting from our method. Finally, Fig. 3.5(c)

gives the mesh element distortion.

Our third example is a second-order mesh of a mechanical part with several holes. Figure

3.6(a-c) shows the initial invalid mesh, the final mesh resulting from our method, and the mesh

quality as measured by the distortion metric. In Fig. 3.6(a), we can see that curving the boundaries

resulted in tangled elements near the top and bottom holes.

Our fourth and fifth examples are valid meshes of a square plate with a circular hole. To induce

mesh tangling in the fourth example, we applied a rotation of 10 degrees counterclockwise to the

inner ring followed by a horizontal shear with a shear factor of 0.5. In Fig. 3.7(a,b,d), we show the

initial valid mesh, the tangled mesh resulting from rotation and shearing, and the final untangled

mesh resulting from our method. In Fig. 3.7(c,e), we show detailed views of the inner ring. In Fig.

3.7(f), we give the element distortion for the initial, tangled, and final meshes, respectively. In the
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(a) (b)

(c) (d)

Distortion
Example Min Max Avg1 Avg2

original mesh -0.223 1.0000 0.615 0.279
resulting mesh 0.039 1.0000 0.595 0.325

(e)

Figure 3.4: Annulus example: (a) the tangled third-order mesh; (b) a detailed view of one tangled
element along the top of the inner boundary; (c) the mesh resulting from our method; (d) a detailed
view of the untangled element from (c), and (e) the mesh quality as measured by the element
distortion metric.
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(a)

(b)

Distortion
Example Min Max Avg1 Avg2

original mesh -0.566 1.000 0.968 0.967
resulting mesh 0.050 1.000 0.970 0.969

(c)

Figure 3.5: Airfoil example: (a) the tangled third-order mesh; (b) the mesh resulting from our
method, and (c) the mesh quality as measured by the element distortion metric.
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Example Number of Elements Wall Clock Time(s)
annulus 30 2.56
airfoil 282 16.63

mechanical part 182 2.44
plate 1 597 7.40
plate 2 597 7.48
beam 542 6.73

Table 3.1: The number of elements and the wall clock time for each mesh

fifth example, we applied a rotation of 10 degrees counterclockwise to the inner ring followed by

a stretching of the bottom half of the plate. In Fig. 3.8(a,b,c), we show the initial valid mesh, the

tangled mesh resulting from rotation and stretching, and the final untangled mesh resulting from

our method. In Fig. 3.8(d), we give the element distortion for each mesh. In our final example, we

show a valid mesh of a two-dimensional beam. To create mesh tangling, we treated the beam as a

simply supported beam and applied a center load. After applying the load, we translated the left

and right sides of the beam. In Fig. 3.9(a,b,c), we show the initial valid mesh, the tangled mesh

resulting from our transformations, and the final untangled mesh resulting from our method. In

Fig. 3.9(d,e), we show detailed views of the left side of the beam from Fig. 3.9(b,c). Finally in

Fig. 3.9(f), we give the mesh element distortion.

While the test cases are relatively straightforward, our goal was to explore the types of tangling

that occur as a result of moving the new boundary nodes onto the curved boundary during the

typical high-order mesh generation process. We were also interested in tangling that might result

from small deformations to a valid mesh. With these points in mind, the examples demonstrate

that our method is able to handle the small deformations that might result in tangling for second-

and third-order meshes. Additionally, our method only required a single pass for each of the test

cases. We demonstrate the runtime performance of our method in Tab. 3.1. We list the number of

elements and wall clock time for each of our numerical examples in Tab. 3.1. While these times are

reasonable, for large meshes, faster run times will be required. Fortunately, there is high potential

for improved performance using parallel computing, as our method can be applied to non-adjacent

patches simultaneously.
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(a)

(b)

Distortion
Example Min Max Avg1 Avg2

original mesh -0.049 1.000 0.904 0.601
resulting mesh 0.008 1.000 0.905 0.625

(c)

Figure 3.6: Mechanical part example: (a) the tangled second-order mesh; (b) the mesh resulting
from our method, and (c) the mesh quality as measured by the element distortion metric.

50



(a) (b)

(c) (d)

(e)

Distortion
Example Min Max Avg1 Avg2

original mesh 0.287 1.000 0.995 0.412
tangled mesh -0.716 1.000 0.974 0.375

resulting mesh 0.027 1.000 0.979 0.500

(f)

Figure 3.7: Square plate example: (a) the initial second-order mesh; (b) the mesh resulting from
rotating the inner ring 10 degrees counterclockwise and applying a horizontal shear with a shear
factor of 0.5; (c) a detailed view of the elements along the inner ring; (d) the mesh resulting from
applying our method, (e) a detailed view of the elements along the inner ring; and (f) the mesh
quality as measured by the element distortion metric.
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(a) (b)

(c)

Distortion
Example Min Max Avg1 Avg2

original mesh 0.287 1.000 0.995 0.412
tangled mesh -0.120 1.000 0.966 0.934

resulting mesh 0.042 1.000 0.964 0.930

(d)

Figure 3.8: Square plate example: (a) the initial third-order mesh; (b) the mesh resulting from
rotating the inner ring 10 degrees counterclockwise and stretching the bottom half of the plate; (c)
the mesh resulting from applying our method, (d) the mesh quality as measured by the element
distortion metric.
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(a)

(b)

(c)

(d) (e)

Distortion
Example Min Max Avg1 Avg2

original mesh 1.000 1.000 1.000 1.000
tangled mesh -0.044 1.000 0.982 0.975

resulting mesh 0.032 1.000 0.980 0.973
(f)

Figure 3.9: Beam example: (a) the initial second-order mesh; (b) the mesh after treating it as a
simply supported beam with a center load and translating the left and right ends; (c) the mesh
resulting from applying our method; (d) a detailed view of the left edge of (b); (e) a detailed view
of the left edge of (c), and (f) the mesh quality as measured by the element distortion metric.
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3.4 Conclusions

We have presented a new optimization-based method for untangling the edges of second- and third-

order meshes. The two-dimensional examples have shown that our proposed method based on the

unsigned angles of curvilinear triangles is able to successfully untangle several invalid second- and

third-order meshes.

We note that presently our method has a few limitations. The first limitation is that it only

allows movement of the high-order nodes that lie on the interior edge (e.g. the free nodes show

in Fig. 3.1). That is, it does not allow movement of the endpoints. The second limitation is that

non-edge nodes (e.g. like node 10 in Fig. 3.3) are not moved at all. The final limitation is that

our objective function does not measure element validity. Due to these limitations, our method

does not guarantee that it will successfully untangle a given tangled patch. With these limitations

in mind, our future work will include extending the capabilities of our method to include moving

non-edge nodes, as well as allowing the endpoints of edges to move. We will also explore the use

of signed angles, where a negative angle indicates that tangling is present. This would allow us

to directly check element validity, but would likely require modification of the objective function

to achieve the desired untangling behavior. Other future improvements include extending our

approach to three dimensions by using the dihedral angles between curved faces of high-order

tetrahedral elements, and extending our implementation to allow for elements with p > 3.
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Chapter 4

Untangling High-order Meshes Based on Signed Angles∗

Abstract

One challenge in the generation of high-order meshes is that mesh tangling can occur as a

consequence of moving the new boundary nodes to the true curved boundary. In this paper,

we propose a new optimization-based method that uses signed angles to untangle invalid

second- and third-order triangular meshes. Our proposed method consists of two passes. In

the first pass, we loop over each high-order interior edge node and minimize an objective

function based on the signed angles of the pair of triangles that share the node. In the second

pass, we loop over face nodes and move them to the mean of the high-order nodes of the

triangle to which the face node belongs. We present several numerical examples in two

dimensions with second- and third-order elements that demonstrate the capabilities of our

method for untangling invalid meshes.

4.1 Introduction

One appealing aspect of high-order methods for solving partial differential equations is their ability

to obtain more accurate solutions with a lower computational overhead than the corresponding low-

order methods. One barrier to the adoption of these methods in the presence of curved domains

is the lack of software capable of robustly generating high-order meshes [36]. In particular, to

achieve the full potential of high-order methods in the presence of curved domains, these methods

∗Stees, Mike, Dotzel, Myra, & Shontz, Suzanne M. (2020). Untangling High-Order Meshes Based on Signed
Angles. Zenodo.
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need to be paired with a high-order mesh that conforms to the curved domain [1, 17].

The typical approach used by high-order mesh generation methods is to apply a transformation

to a coarse low-order mesh [3, 6, 7, 8, 9, 13, 18, 19, 22, 24, 25, 31, 33, 34, 35, 37]. The main

difficulty in applying the transformation is obtaining a valid high-order mesh as the result. In

general, these methods consist of the following three steps: (1) additional nodes are added to the

low-order mesh; (2) the newly-added boundary nodes are projected onto the curved domain, and

(3) the interior nodes are moved as a result of the boundary deformation. There are generally two

approaches which are especially popular for transforming the low-order mesh. The first approach

transforms the mesh based on optimization of an objective function [3, 4, 7, 8, 13, 24, 25, 26, 31,

33, 34]. Many of the proposed objective functions include a measure of element validity, which

allows the methods to address invalid elements. While not all of the methods guarantee successful

untangling, many of them are robust [3, 7, 8, 24, 25, 34]. The second approach transforms the mesh

based on the solution of a partial differential equation [6, 18, 22, 37]. More specifically, Xie et al.

[37] employed a linear elasticity approach, while Persson and Peraire [22] considered a nonlinear

elasticity approach. Moxey et al. [18] used a thermoelastic model, and Fortunato and Persson [6]

expressed the problem in terms of the Winslow equations.

In this paper, we describe a new two-pass method for untangling invalid second- and third-order

triangular meshes. The first pass is an optimization-based approach that minimizes an objective

function based on signed angles for each high-order interior edge node. The second pass is a

smoothing step for the face nodes. The main focus of this work is to untangle invalid meshes that

result from the boundary curving step of a typical high-order mesh generation method. Toward

that end, we apply our method to several second- and third-order meshes that have invalid elements

following the boundary curving process. The remainder of this paper is organized as follows. In

Section 2, we present our new two-pass method for high-order mesh untangling. In Section 3,

we demonstrate the performance of our method on several two dimensional examples. Finally, in

Section 4, we offer concluding remarks and discuss some directions for our future work.
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4.2 Untangling High-order Curvilinear Meshes

In this section, we propose a two-pass local node-based method for untangling high-order curvilin-

ear triangular meshes. The first pass is based on the signed angles of curvilinear triangles, where

a negative angle indicates tangling. For each iteration of the problem, we consider a high-order

interior edge node. Then, we identify the two triangles that share the node and examine the four

angles made by the tangent vectors adjacent to that edge. Our algorithm then moves the high-order

edge node with the goal of making these angles positive. In our first pass, we solve the following

unconstrained optimization problem:

f (x) = (1−β )||x−xI||2 +β

4

∑
i=1

e−10∗αi(x),

x∗ = argmin
x

f (x). (4.1)

where αi is the ith entry of the vector of the four signed angles adjacent to a given interior edge; x

is the nodal position of the high-order edge node to be moved; xI is the initial position of the node

at the start of the optimization, and β is a user-defined weighting parameter. By changing the value

of β , more emphasis can be applied to the angles or the displacement of the node from its initial

position. Note, if too much emphasis is placed on the displacement of the node, then the norm will

dominate the objective function values, and the mesh will not be untangled.

To better understand the behavior of the objective function, consider the examples shown in

Fig. 4.1 and the corresponding values shown in Fig. 4.2(a). The β value in this example was

0.35. In Fig. 4.1(a), we show the initial tangled mesh. At this point, the first term of f (x) is zero

because the interior node has not been moved. The second term will thus dominate the value of

f (x). In Fig. 4.1(b), we show the mesh after applying two iterations of the optimization method.

As we see in the first two rows of Fig. 4.2(a), in both examples, the exponential term is the primary

contributor to f (x) because of α3, the negative angle. In Fig. 4.1(c,d), we see that the impact of

the exponential term decreases as the values of the angles increase (e.g., from negative to positive)

after four and nine iterations, respectively. In other words, the second term in f (x) acts as a penalty
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function to enforce positive angles (i.e., an untangled mesh). Once the angles become sufficiently

positive, then the first term in f (x) becomes a larger contributor to the overall value of f (x). The

goal of this term is to reduce the amount of displacement for a given node by minimizing the node’s

distance from its initial location.

To find a local minimum of our unconstrained optimization problem, we use a derivative-free

method. We do so because of the complexity of evaluating f (x), specifically, the signed angle

calculations. In particular, to solve our optimization problem, we use the Nelder-Mead simplex

method [15]. For the motivational example in Fig. 4.1, a relaxed convergence tolerance of 0.01

was used for the Nelder-Mead simplex method. For all of our examples in the next section, the

tolerance and maximum number of iterations for Nelder-Mead were 0.0001 and 400, respectively.

Convergence is reached when the change in function values and the step size both satisfy the

tolerance.

As described in [15], the Nelder-Mead simplex method is a direct search method that maintains

a simplex at each step of the method. This simplex is defined by n+1 vertices and the correspond-

ing function values, where n is the dimension of the problem space. Before moving forward, let

us introduce the following notation for the description of the 2D method. Let the vertices of the

current simplex be represented as v1, v2, and v3. In addition, denote their corresponding function

values f (v1), f (v2), and f (v3). Given these definitions, each iteration of a typical Nelder-Mead

method consists of the following steps. First, the vertices are ordered from the lowest function

value, say f (v1), to their highest function value, say f (v3). Second, the midpoint m of the best

side of the simplex is computed, i.e., the side opposite v3. Third, a new simplex is computed from

the current one using reflection, expansion, or contraction steps. In Fig. 4.3, we show examples of

the reflection, expansion, and contraction steps, denoted by r, e, and co/ci, respectively. We also

illustrate the current simplex with a solid black line and the simplices computed via the operations

in dashed black lines. To compute the new simplex, an attempt is made to replace v3 by reflecting

the vertex about the best side. If the reflected vertex r leads to a decrease in the objective function,

then an attempt is made at further reduction by computing an expansion vertex e. If f (e) < f (r),
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then v3 is replaced with e. Otherwise, v3 is replaced with r. If the reflected vertex does not lead

to a decrease in the objective function, then r is contracted back to co, and the function values are

compared again. If this step fails to decrease the function, then co is reflected about the best edge

to get ci. If all of these steps are unsuccessful, then the simplex is shrunk toward vertex v1, and a

new simplex is formed with v1, m, and the midpoint between v1 and v3

After minimizing the objective function for every high-order interior edge node (i.e., complet-

ing the first pass of our untangling algorithm), we perform a second pass to move the non-edge

nodes. In this pass, for each non-edge node, we move the node to the mean of the high-order nodes

of the triangle to which it belongs. To better motivate the need for two passes, we have included

an example in Fig. 4.4. In Fig. 4.4(a), we show the initial tangled mesh. In Fig. 4.4(b), we show

the mesh after completing the first pass of our method. Since the objective function applied in the

first pass is formulated in terms of angles between edges, which do not apply to face nodes, the

first pass neglects to improve the quality of these elements with respect to their face nodes. Thus,

a face node’s close proximity to the edge of its element could result in an invalid element. To

address this kind of situation, we have included the second pass as shown in Fig. 4.4(c). This pass

moves the face nodes toward the interior of the elements to which they belong. These two passes

are performed until a tolerance is satisfied. In Alg. 6, we provide a pseudocode description of

our untangling method. In the next section, we discuss how the signed angles αi(x) of the curved

elements are calculated.

4.2.1 Computing the Signed Angles of Curvilinear Triangles

To compute the angle between two curves at a given node, we compute the derivatives of the curves,

evaluate the derivatives at the given node, and then compute the angle between the resulting tangent

vectors. Using this approach, we compute the angles between each pair of edges of curvilinear

triangles. For the following derivation, we use the third-order Lagrange element. The derivation

for other orders is similar.

Consider the third-order Lagrange triangle shown in Fig. 4.5. To compute the angles between
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(a)

(b)

(c)

(d)

Figure 4.1: Motivating example: (a) the initial tangled mesh, (b) the mesh resulting from our
method after two iterations, (c) the mesh resulting from our method after four iterations, and (d)
the final mesh resulting from our converged method.
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Iteration
Number

Term 1 Term 2 f (x)

0 0.0000 29.1931 29.1931
2 0.0812 4.9445 5.0257
4 0.3096 0.1620 0.4716
9 0.2538 0.1963 0.4501

(a)

(b)

Figure 4.2: Figure showing (a) the contributions of each term in f (x) during different iterations of
the optimization method, and (b) a convergence plot of our method applied to the example in Fig.
4.1.

Figure 4.3: The current simplex marked by a solid line, and the simplices computed using the
reflection, expansion, and contraction inside/outside operations during a single iteration of a typical
Nelder-Mead method.
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(a)

(b)

(c)

Figure 4.4: Motivating example for two pass approach: (a) the initial tangled mesh, (b) the mesh
after completing the first pass with impacted nodes shown in red, and (c) the mesh after completing
the second pass with influenced nodes shown in red.
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Algorithm 6 Pseudocode for our node-based mesh untangling method
X0 = the zero matrix
X1 = the matrix of node positions at iteration 1
while ||X

k−Xk−1||F
||Xk||F

> 10−4 do
First Pass:
for each high-order interior edge node i do

1. Find the two triangles t1 and t2 which share node i
2. Solve (4.1) for x∗ using Nelder-Mead simplex method [15]
3. Update nodal position i to x∗

end for
Second Pass:
for each high-order interior face node i do

1. Find the triangle t1 which contains node i
2. Update nodal position i to the mean of t1’s high-order edge nodes

end for
Xk+1 = the matrix with updated node positions

end while

each pair of edges, we need to define mappings from each node on the edges of the reference

element to the corresponding node on the edges of the physical element. Each edge corresponds

to a third-order Lagrange element in one dimension. The shape functions associated with these

elements are defined as:

n1(t) =
9
2
(1− t)

(
2
3
− t
)(

1
3
− t
)
,

n2(t) =
27
2
(1− t)

(
2
3
− t
)
(t) ,

n3(t) =
27
2
(1− t)

(
1
3
− t
)
(−t) ,

n4(t) =
9
2

(
2
3
− t
)(

1
3
− t
)
(t) .

The derivatives of these shape functions with respect to t are given by:
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Figure 4.5: Third-order Lagrange reference unit triangle

n1
′(t) =

1
2
(
−11+36t−27t2) ,

n2
′(t) =

1
2
(
18−90t +81t2) ,

n3
′(t) =

1
2
(
−9+72t−81t2) ,

n4
′(t) =

1
2
(
2−18t +27t2) .

Using these shape functions, we can define the mappings from each edge in the reference

element to each edge in the physical element as:

f12(t) = x1n1(t)+x4n2(t)+x5n3(t)+x2n4(t),

f23(t) = x2n1(t)+x6n2(t)+x7n3(t)+x3n4(t),

f31(t) = x3n1(t)+x8n2(t)+x9n3(t)+x1n4(t).

The notation fi j denotes the edge between nodes i and j in Fig. 4.5. Now that we have the

mappings, we need to compute the derivatives of our functions. Taking the derivative with respect

to t results in the following:

f12
′(t) = x1n1

′(t)+x4n2
′(t)+x5n3

′(t)+x2n4
′(t),

f23
′(t) = x2n1

′(t)+x6n2
′(t)+x7n3

′(t)+x3n4
′(t),

f31
′(t) = x3n1

′(t)+x8n2
′(t)+x9n3

′(t)+x1n4
′(t).
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Given these derivatives, we can return to the problem of calculating the angles between edges.

As an example, suppose that we want to calculate the angle between edge e12 and edge e31 in Fig.

4.5. To calculate the unsigned angle in radians, we could use the following formula:

θ = arccos
(
− f12

′(0) · f31
′(1)

|| f12
′(0)|| ||− f31

′(1)||

)
=

π

2
.

In order to calculate the signed angle in radians, we need to modify our calculations. First, we need

to include an orientation unit vector n. Then we need to modify our tangent vectors by adding a

third component with a value of zero so that the cross product is defined, as well as normalize

them. With these modifications, we can compute the signed angle using the following formula:

signed angle = sgn(n · (v1× v2)) · arccos(v1 · v2)

where

v1 =
[ f12

′(0),0]
|| [ f12

′(0),0] ||2
,

v2 =
[− f31

′(1),0]
||[− f31

′(1),0]||2
,

n = [0,0,1].

4.3 Numerical Results

In this section, we demonstrate the results from applying our method to untangle several high-order

meshes. In each example, the nodes are processed in the order in which they occur in the original

mesh. While we have explored other node orderings and found that the order does impact the

number of outer iterations required for convergence, we note that this ordering does not influence

the final resulting mesh. For each example, we provide a description of the mesh, the initial

mesh (with tangled elements shown in red), the mesh which results from applying our untangling
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Runtime (s)
Example Number of

Elements
Mesh
Order

β Number of
Iterations

First Pass Second Pass

annulus 30 3 0.500 2 0.005 0.000
mechanical part 295 2 0.500 2 0.041 —

bike gear 672 2 0.035 5 0.321 —
pressure plate 529 2 0.350 5 0.249 —

gear 1340 3 0.950 8 11.323 0.005
brake rotor 7015 2 0.850 2 19.643 —

airfoil 5328 3 0.001 2 24.039 0.005

Table 4.1: The number of elements, mesh order, beta value, number of outer iterations, and the
wall clock times for each pass our untangling method (excluding I/O) for each example. Since the
second-order meshes do not utilize the second pass, the columns are marked with a dash.

method, and the mesh element distortion as measured by the scaled Jacobian ([3]):

scaled Jacobian =
minJ(ξ )
maxJ(ξ )

,

where J(ξ ) is the Jacobian determinant. When reporting the mesh distortion, we list the mini-

mum distortion and maximum distortion values. We also list the execution times for our untangling

method (excluding I/O) in Table 4.1. The method was implemented in C++, and the wall-clock

execution times were measured on a machine with 16GB of RAM and an AMD Ryzen 7 1700

CPU. All mesh visualizations and distortion evaluations were done using Gmsh [10, 12, 23].

In our first example, we use a simple annulus geometry consisting of 30 elements to show the

impact of different values of β on the result. In Fig. 4.6(a), we show the initial mesh with two

tangled elements. In Fig. 4.6(b-d), we show the meshes resulting from β values of 0.1, 0.5, and

0.9, respectively. In Fig. 4.6(e), we show the min and max element distortions and execution times

for each of the three values of β . As expected, higher values of β place more emphasis on the

angular component of the objective function which tends to result in larger displacements of the

edge nodes. Initially, increasing the value of β from 0.1 to 0.5 led to better elements with respect to

distortion. Beyond 0.5, additional emphasis on the angles resulted in increased element distortion.

For the remaining examples in this section, we report the value of β that resulted in the mesh with

66



the least distortion. We also plot histograms of the mesh element distortion in addition to reporting

the maximum and minimum values.

In the second example, we applied our method to a simple 2D mechanical part consisting of

295 second-order elements. Curving the boundaries resulted in two tangled elements near the

innermost boundary. The initial tangled mesh and resulting untangled mesh are shown in Fig.

4.7(a,b). The minimum and maximum distortion values for these meshes are shown in Fig. 4.7(c).

Finally, we plot histograms for these distortion values in Fig. 4.7(d,e). In this case, our solution

raised the minimum distortion value of the mesh from -0.178 to 0.228.

In our third example, we use a simplified bike gear with 672 second-order elements. In contrast

with our previous examples, this mesh has several stretched elements near the boundaries which

increase the potential for tangled elements after curving the boundaries. The initial tangled mesh

and untangled mesh are shown in Fig. 4.8(a,b). Close-up views of the top third of the mesh are

depicted in Fig. 4.8(c,d). The minimum and maximum distortion values for this mesh are recorded

in Fig. 4.8(e). Lastly, histograms of the distortion values are plotted in Fig. 4.8(f,g). In this

case, our method increased the minimum distortion value from -1.730 to 0.211, thus untangling

the initial mesh.

As our last simplified example, we use a pressure plate consisting of 529 second-order ele-

ments. After curving the boundaries, six tangled elements were created along the holes in the top

and bottom of the geometry. Fig. 4.9(a,b) show the original tangled mesh and the untangled mesh

resulting from our method. We show detailed views of the center of (a,b) in Fig. 4.9(c,d), respec-

tively. In Fig. 4.9(e) we give the minimum and maximum mesh element distortion values. Finally

in Fig. 4.9(f,g) we plot histograms of the distortion values. For this example, our method increased

the minimum distortion value from -0.178 to 0.345.

For our remaining examples, we progress to more realistic meshes with a larger number of

elements. The first example is a third-order gear composed of 1340 elements, eight of which

are tangled. In Fig. 4.10(a,b) we show the initial tangled mesh and the final mesh produced by

our untangling algorithm. In Fig. 4.10(c,d) we show detailed views of the center holes in (a,b),
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(a) (b)

(c) (d)

Distortion
Beta Min Max Runtime (s)
0.1 0.208 1.000 0.004
0.5 0.472 1.000 0.005
0.9 0.348 1.000 0.014

(e)

Figure 4.6: Annulus example with three different β values: (a) the initial mesh with two tangled
elements; (b) to (d) untangled meshes for β values of 0.1, 0.5, and 0.9, respectively, and (e), shows
the minimum and maximum element distortions and runtimes for each value of β .
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(a) (b)

Distortion
Example Min Max

original mesh -0.178 1.000
resulting mesh 0.228 1.000

(c)

(d) (e)

Figure 4.7: Mechanical part example: (a) the initial second-order mesh with two tangled elements;
(b) the untangled mesh resulting from our method; (c) the minimum and maximum element dis-
tortion, and (d,e) histogram plots of the distortion metric for each mesh.
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(a) (b)

(c) (d)

Distortion
Example Min Max

original mesh -1.730 1.000
resulting mesh 0.211 1.000

(e)

(f) (g)

Figure 4.8: Bike gear example: (a) the tangled second-order mesh with fourteen tangled elements;
(b) the mesh resulting from our method; (c,d) detailed views of (a,b), respectively; (e) the mini-
mum and maximum element distortion, and (f,g) histogram plots of the distortion metric for (a,b),
respectively.
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(a) (b)

(c) (d)

Distortion
Example Min Max

original mesh -0.178 1.000
resulting mesh 0.345 1.000

(e)

(f) (g)

Figure 4.9: Pressure plate example: (a) the tangled second-order mesh; (b) the mesh resulting from
our method; (c,d) detailed views of (a,b), respectively; (e) the minimum and maximum element
distortion, and (f,g) histogram plots of the distortion metric for each mesh.
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(a) (b)

(c) (d)

Distortion
Example Min Max

original mesh -0.122 1.000
resulting mesh 0.092 1.000

(e)

(f) (g)

Figure 4.10: Gear example: (a) the initial third-order mesh with eight tangled elements; (b) the
mesh resulting from our method; (c,d) detailed views of (a,b), respectively; (e) the minimum and
maximum element distortion, and (f,g) histogram plots of the distortion metric for (a,b), respec-
tively.
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(a) (b)

(c) (d)

Distortion
Example Min Max

original mesh -0.156 1.000
resulting mesh 0.346 1.000

(e)

(f) (g)

Figure 4.11: Brake rotor example: (a) the initial second-order mesh with thirty-four tangled el-
ements; (b) the mesh resulting from our method; (c,d) detailed views of (a,b), respectively; (e)
the minimum and maximum element distortion, and (f,g) histogram plots of the element distortion
metric for (a,b), respectively.
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(a)

(b)

Distortion
Example Min Max

original mesh -0.109 1.000
resulting mesh 0.053 1.000

(c)

Figure 4.12: Airfoil example: (a) the initial third-order mesh with two tangled elements near the
leading edge; (b) the mesh resulting from our method, and (c) the minimum and maximum element
distortion.
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respectively. The minimum and maximum mesh element distortion values are listed in Fig. 4.10(e).

Finally in Fig. 4.10(f,g) we plot histograms of the distortion values. After applying our method,

the minimum distortion value increased from -0.122 to 0.092.

Our next example is a brake rotor composted of 7015 second-order elements, thirty-four of

which are tangled. In Fig. 4.11(a,b) we show the initial tangled mesh and the final mesh produced

by our untangling algorithm. In Fig. 4.11(c,d) we show detailed views of the center holes in

(a,b), respectively. The minimum and maximum mesh element distortion values are listed in Fig.

4.11(e). Finally in Fig. 4.11(f,g) we plot histograms of the distortion values. After applying our

method, the minimum distortion value increased from -0.156 to 0.346.

Finally, our last example is an anisotropic boundary layer mesh of an airfoil. This example is a

modified version of an example taken from the 2D benchmarks in the Gmsh repository. The mesh

contains 5328 elements, with two tangled elements along the leading edge. In Fig. 4.12(a,b) we

show the initial tangled mesh and the final mesh produced by our untangling algorithm. The mini-

mum and maximum mesh element distortion values are listed in Fig. 4.12(c). The histogram plots

for this example were omitted because there was minimal distinction between the two plots given

the small percentage of tangled elements. After applying our method, the minimum distortion

value increased from -0.109 to 0.053.

As we illustrated in Fig. 4.6, there are usually several choices for the parameter β that will

result in an untangled mesh. As shown in Table 4.1, the trend we have observed thus far is that

smaller values of β perform better for meshes with stretched elements near the curved features like

our examples in Figs. 4.8 and 4.12. In particular, a smaller value of β was critical to maintaining

the boundary layers in Fig. 4.12. Further experiments are necessary to determine what other

factors influence the optimal value for β . The goal of these test cases was to explore the types of

tangling that occur as a result of small deformations (e.g., moving the new boundary nodes onto

the curved boundary during the typical high-order mesh generation process). With that in mind,

our examples demonstrate that our method successfully addresses the typical types of tangling

seen in this scenario. In addition to untangling the invalid patches, our method tends to reduce
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the amount of element distortion in all of our examples. In addition, there is potential to improve

the performance of our method using parallel computing, as our local method can be applied to

non-adjacent patches simultaneously.

4.4 Concluding Remarks and Future Work

We have presented a new optimization-based method for untangling second- and third-order tri-

angular meshes. The two-dimensional examples have shown that our proposed method based on

signed angles is able to successfully untangle a variety of invalid second- and third-order meshes.

Furthermore, our method tends to dramatically decrease the amount of element distortion present

in the mesh. As our final example in Section 3 showed, the addition of the weighting parameter

gives the user increased flexibility in defining the behavior of the objective function. One limitation

of our method is that it does not move the low-order nodes. To address this, we plan to combine

our untangling algorithm with a weight-based scheme like the one proposed in [31]. By combining

these two approaches, we could use the weight-based scheme to move the low-order nodes, and

the method we have proposed in this paper to move the high-order nodes.

Our future work will include exploring techniques for determining the ideal value of the weight-

ing parameter β . We will also extend our implementation to untangle meshes composed of ele-

ments with p > 3. In addition, we plan to extend the capabilities of our method to three dimensions

by using signed solid angles between curved faces of high-order tetrahedral elements. We also plan

to add support for additional element types (e.g., quadrilaterals, etc). Finally, we plan to explore

examples with larger deformations that result in more complicated mesh tangling.
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Chapter 5

Conclusion

The interest in high-order computational methods for PDEs is increasing, and, as a result, the need

for high-order mesh generation methods is growing. While there are several existing methods for

generating high-order meshes, many of them do not guarantee that the generated mesh will be

valid. The overall aim of this work was to develop methods for robustly generating high-order

meshes. Our initial work followed the approach of many other researchers in this area. That is, we

considered high-order mesh generation from a mesh warping perspective. In contrast with other

high-order mesh warping methods that are based on solutions to a PDE or minimizing a measure

of distortion, we explored optimal weighted combinations of nodal positions. As our results in

Chapter 2 indicate, for smaller deformations, the two methods within our high-order optimization-

based mesh warping framework result in meshes with similar distortion. For small deformations on

coarse meshes, the method based on optimal affine combinations tends to be faster with respect to

runtime. On denser meshes with larger deformations, the two methods within our framework tend

to have similar runtimes, but the optimal convex combinations result in meshes with fewer distorted

elements. Overall, our resulting high-order warping framework based on optimal weighted com-

binations of nodal positions tends to work well for smaller mesh deformations, like those found

in the typical high-order generation context. One limitation of the methods within our framework

is that they do not incorporate a measure of element validity. As the final example in Chapter 2

indicates, this might result in a tangled mesh. Although the tangling only occurred for our method

based on affine combinations, it is possible that the other method within our framework could re-

sult in a tangled mesh, as well. With this in mind, one goal for future work would be the inclusion

of element validity in the objective function with the goal of generating weights that incorporate
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validity.

Our results from Chapter 2 informed the rest of the work contained here. In particular, our

goal was to develop high-order mesh untangling methods which could be applied to our high-order

meshes in the event that the mesh warping resulted in invalid elements. In Chapter 3 we presented

our unconstrained optimization problem formulation for mesh untangling based on the unsigned

angles of curvilinear triangles. As our results in Chapter 3 demonstrate, our edge-based method

was successfully able to fix the types of tangling found in the typical high-order mesh generation

process. While the method performed relatively well, it had several limitations. In particular,

it only moved the high-order nodes on a given edge (i.e., the endpoints of the edge are fixed).

Furthermore, non-edge nodes that are present in elements beyond second-order are not moved. To

address these issues, we developed the signed angle formulation presented in Chapter 4.

The focus of Chapter 4 was on an untangling method based on signed angles. This method

improved on our previous untangling method in several ways. First, the signed angle formulation

included an approximation of element validity where negative angles indicated certain types of

tangling. Second, this method included two passes, the first one that processed edge nodes, and

the second one that processed face nodes. This approach allowed us to untangle certain invalid

patches that we were previously unable to successfully untangle. In addition, the objective function

in this method included a weighting parameter that allowed the user to place more emphasis on

the angle or the displacement of the node. This addition allowed us to untangle boundary layer

meshes while preserving the layers, something our unsigned untangling method was unable to do.

Finally, this method tends to reduce the amount of element distortion present in the mesh, thus

allowing the improvement of elements that were valid, but highly distorted. While both of our

untangling methods presented a unique approach to high-order mesh untangling, they are limited

to two-dimensional meshes. We explored several potential extensions of our untangling methods

to 3D in the form of dihedral angles, solid angles, or some combination of both, but the resulting

methods are unable to untangle high-order tetrahedra. While our angular approach did not extend

to 3D, future work on related ideas might prove successful. For example, since the angle between
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two curves or two surfaces at a point is related to the distance between them (i.e., larger angles

correspond to a greater distance between the two curves in the neighborhood of the point), it might

be worthwhile to calculate the distance directly. One possible approach in 2D could be to sample

each of the edges of the triangle and try to enforce that the distance between any two edges was

strictly increasing as you move away from the the shared endpoint (i.e., the vertex where those two

edges meet). In 3D, the two faces that share an edge could be sampled with a goal of increasing

the distance between sample points as you move away from the shared edge.
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