
Defending Against Typosquatting Attacks In Programming
Language-Based Package Repositories

c©2020

Matthew Taylor
B.S. Computer Engineering, University of Kansas, 2019

Submitted to the graduate degree program in the Department of Electrical Engineering and
Computer Science and the Graduate Faculty of the University of Kansas in partial fulfillment of

the requirements for the degree of Master of Science in Computer Engineering.

Committee members

Dr. Drew Davidson, Chair

Dr. Bo Luo

Dr. Alex Bardas

Date defended: May 14, 2020

The Thesis Committee for Matthew Taylor certifies
that this is the approved version of the following thesis :

Defending Against Typosquatting Attacks In Programming Language-Based Package
Repositories

Dr. Drew Davidson, Chair

Date approved: May 14, 2020

ii

Abstract

Program size and complexity have dramatically increased over time. To reduce their work-

load, developers began to utilize package managers. These packages managers allow third-party

functionality, contained in units called packages, to be quickly imported into a project. Due to

their utility, packages have become remarkably popular. The largest package repository, npm, has

more than 1.2 million publicly available packages and serves more than 80 billion package down-

loads per month. In recent years, this popularity has attracted the attention of malicious users.

Attackers have the ability to upload packages which contain malware. To increase the number of

victims, attackers regularly leverage a tactic called typosquatting, which involves giving the ma-

licious package a name that is very similar to the name of a popular package. Users who make

a typo when trying to install the popular package fall victim to the attack and are instead served

the malicious payload. The consequences of typosquatting attacks can be catastrophic. Historical

typosquatting attacks have exported passwords, stolen cryptocurrency, and opened reverse shells.

This thesis focuses on typosquatting attacks in package repositories. It explores the extent to

which typosquatting exists in npm and PyPI (the de facto standard package repositories for Node.js

and Python, respectively), proposes a practical defense against typosquatting attacks, and quanti-

fies the efficacy of the proposed defense. The presented solution incurs an acceptable temporal

overhead of 2.5% on the standard package installation process and is expected to affect approxi-

mately 0.5% of all weekly package downloads. Furthermore, it has been used to discover a particu-

larly high-profile typosquatting perpetrator, which was then reported and has since been deprecated

by npm. Typosquatting is an important yet preventable problem. This thesis recommends pack-

ages creators to protect their own packages with a technique called defensive typosquatting and

repository maintainers to protect all users through augmentations to their package managers or

automated monitoring of the package namespace.

iii

Contents

1 Introduction 1

2 Background 5

2.1 Terminology . 5

2.2 Dependencies . 5

2.3 How Package Managers Work . 7

2.3.1 Installing Packages . 7

2.3.2 Creating Packages . 8

2.4 Historical Domain Name Typosquatting . 9

2.5 Historical Package Typosquatting . 10

2.6 Past Typosquatting Defenses . 11

2.6.1 Legal Domain Name Typosquatting Defenses 11

2.6.2 Defensive Domain Name Typosquatting 12

2.6.3 User-led Package Typosquatting Defenses 12

2.6.4 Maintainer-led Package Typosquatting Defenses 13

3 Review of Related Literature 15

3.1 Domain Name Typosquatting . 15

3.2 Package Repository Vulnerabilities and Defenses 15

3.3 General Software Repository Defenses . 16

4 Threat Model 18

4.1 Terminology . 18

4.2 Motivation . 19

iv

4.3 Capabilities . 19

5 Technical Details 23

5.1 Typosquatting Detection Scheme . 23

5.2 Quantifying Popularity . 25

5.3 Package Namespace Analysis . 27

5.4 Package Manager Integration . 29

5.5 Implementation and Infrastructure . 32

6 Evaluation 34

6.1 Results . 34

6.1.1 Download Distribution . 34

6.1.2 Popularity Threshold . 36

6.1.3 Runtime Overhead Analysis . 39

6.2 Discussion . 39

6.2.1 Undiscovered Typosquatting . 40

6.2.2 Limitations . 40

6.2.3 Typosquatting Signal Efficacy . 41

7 Conclusion 43

v

List of Figures

2.1 A labelled portion of the dependency tree for the express npm package. 6

2.2 The benign package workflow from the perspective of the package consumer. . . . 8

5.1 Transitive analysis of the repository namespace. 28

5.2 The modified package installation process. 31

5.3 Sample prompts warning users against both direct and indirect typosquatting. . . . 32

6.1 The download distributions of npm and PyPI. 35

6.2 Cumulative download distribution for npm and PyPI. 35

6.3 Percentage of all packages considered typosquatting perpetrators as a function of

popularity threshold. 37

6.4 Percentage of all weekly downloads containing a potential typosquatting perpetra-

tor as a function of popularity threshold. 37

vi

List of Tables

2.1 A comparison between npm and PyPI repository and average dependency tree sizes. 6

6.1 Instances where typosquatting targets and perpetrators are both popular. 38

vii

Chapter 1

Introduction

As software capabilities grow, the time and effort required to implement increasingly elaborate

projects have both risen. Developers have employed package managers to help ease this strain.

These package managers allow for third-party source code, which has been bundled into self-

contained units called packages, to be quickly imported into a project. These packages are tradi-

tionally stored in an online database referred to as a package repository. To install packages, users

interact directly with the package manager. Users request the desired package explicitly by name,

and usually as a command line argument. The package manager then queries its corresponding

repository, gathering the requested package along with any other packages that the requested pack-

age depends on. These platforms, which consist of packages, a package manager, and a package

repository, are typically built to serve a specific language or framework. Examples of popular

package repositories include npm (for JavaScript/Node.js), PyPI (for Python), crates.io (for Rust),

and the NuGet Gallery (for Microsoft’s .NET Framework). The package managers that correspond

to these repositories are npm (the package manager and the repository share the same name), pip,

cargo, and NuGet, respectively.

Over time, these platforms have become remarkably popular, and rightly so. Packages from ex-

pert programmers can serve as reusable building blocks upon which useful projects can be rapidly

created. The current largest package repository, npm, has over 1.2 million publicly available pack-

ages and serves more than 80 billion package downloads per month [25]. The next largest reposi-

tory, PyPI, contains over 220 thousand packages and accrues more than 4 billion monthly package

downloads [40].

The benefit of an open code repository like npm is clear. Those who utilize packages created

1

by others, or package consumers, can utilize it to swiftly bring advanced functionality into their

own projects. Those who create packages for others to use, or package creators, on the other

hand, can use the repository to distribute their code. Unfortunately, package repositories can also

serve as a medium through which attackers can spread malware. Anybody can upload packages to

these repositories. As a result, the provenance of a package is completely opaque repository users

must implicitly trust the creators of any and all packages they install. To make matters worse,

there are few restrictions on package contents. With these conditions, one can naturally expect

adversaries to upload malicious packages. Unsurprisingly, this has been done repeatedly in past

years. Repository maintainers could choose to restrict who has the ability to upload packages or

the allowed contents of a package, but these solutions would directly violate the principles which

originally made package repositories so useful.

Regardless of the effect the payload has on its targets, a common tactic used to spread malicious

packages is typosquatting. Typosquatting has existed in other domains. However, despite various

defenses which have helped mitigate typosquatting attacks against domain names, little has been

done to combat typosquatting attacks against packages. Because of inherent differences between

domain names and packages, defenses which protect one against typosquatting do not directly

translate to the other.

Typosquatting attacks require a low level of sophistication from an adversary. Attackers can

freely upload a malicious package under a name similar to that of a popular package. Then, if

other users make a typo when attempting to install the targeted package, they will be served the

malicious package and fall victim to the attack (e.g. the packages raect and reeact could be used

to typosquat the popular package react). Typos of this style are better described as miskeys, or

genuine typing mistakes. Other typos exist beyond simple miskeys. Adversaries can also employ

visual confusion, wherein characters with visual similarity are interchanged. An example of this

style is replacing the lowercase letter ’L’ with the number one (e.g. 1odash could target lodash).

The final kind of typo explored in this thesis is that of semantic confusion, wherein components of

names are transposed (e.g. typed-array could target array-typed) or superfluous portions are

2

added (e.g. requests.js could target requests).

Typosquatting attacks against packages rely on mistakes which can be made very easily. Inter-

estingly, they can even target those who make no typos whatsoever. Despite the ease with which

the attack can be orchestrated, the consequences can be devastating. Historical malicious packages

have exported private information like passwords and credit card numbers, stolen cryptocurrency,

and opened reverse shells, giving the attacker access to the victim’s computer [33, 34, 35]. Typi-

cally, these malicious packages are manually discovered by either users or repository maintainers,

then investigated, and finally dealt with. Some automated defenses against malicious packages do

exist. However, these defenses may be circumvented through obfuscation or storing the payload

remotely, hiding the package’s true functionality. Even with the currently employed defenses, ty-

posquatting attacks continue, and the packages can remain available for up to months [10]. There-

fore, stronger defenses against adversaries that target package repositories are warranted, and an

automated defense against typosquatting specifically could be remarkably advantageous.

This thesis focuses on exploring the extent to which typosquatting exists in popular language

repositories and developing a defense against these attacks. Two repositories, namely npm and

PyPI, are used as case studies due to their popularity and history of typosquatting attacks. After

uncovering exactly how widespread this issue is and developing a proactive defense against these

attacks, the proposed solution’s practicality and efficacy is quantitatively measured. The analysis

performed has revealed that, despite past attempts to resolve the issue, typosquatting still exists

in popular package repositories. Fortunately, automated defenses are able to help mitigate the

problem in an efficient manner. The defense proposed in this thesis is an extension to the pack-

age manager front-end that warns users prior to installing packages which could be typosquatting.

Users are given an opportunity to investigate the claim, decide whether or not the requested pack-

age was a mistake, and if desired, abort the installation before any harm can occur. Temporal

analysis of this implementation has shown that the analysis of package names incurs a 2.5% over-

head upon the typical package installation process. Furthermore, transitive analysis of the pack-

age repository namespace shows that, with reasonable parameters, this solution effects upwards

3

of 0.5% of all package downloads, depending on the repository. The implementation presented

here was even used to discover a high-profile typosquatting perpetrator with thousands of weekly

downloads. The perpetrator was reported to npm’s internal security team, resulting in the pack-

age ultimately being seized by repository owners. This work shows the efficacy of programmatic

defenses against typosquatting attacks which target package repositories. It shows that automat-

ically detecting potentially malicious packages through lexical criteria could realistically prevent

typosquatting attacks before they are given the opportunity to affect developers.

4

Chapter 2

Background

2.1 Terminology

Package managers were created to combat the ever-growing complexity associated with software

development. They are programs which automate the installation, maintenance, and removal of

self-contained units of source code called packages (the exact term differs slightly between plat-

forms, but throughout this thesis they are universally referred to as packages). These packages can

range in functionality, from time-saving tools to complete frameworks. Regardless of functionality,

they are primarily created with the intention of providing others with extensible tools that can ease

the strain of development. Packages are stored online in a public database referred to as a package

repository, or sometimes a package registry. Package managers serve as the intermediary between

users and package repositories. Package creators, or package developers, use package managers

to upload their code to the repository. Conversely, package consumers use package managers to

install packages from the repository.

2.2 Dependencies

Packages are allowed to rely on other packages in order to function. This relationship is known as

a dependency. When a package consumer requests a package, the package manager begins by cre-

ating a dependency tree, which is a hierarchical data structure showing every package upon which

a given package depends. A dependency tree obviously contains direct dependencies, or packages

which are explicitly depended upon. Dependency trees also show any and all transitive dependen-

5

cies. A transitive dependency, or indirect dependency is simply a dependency of a dependency.

Transitive dependencies are usually never explicitly requested, or even seen, by the user. The total

number of transitive dependencies can be immense. Explicitly requesting only a single package

can often install dozens, or even hundreds, of distinct packages, which are often created by at least

that many developers. Figure 2.1 shows an illustration of a dependency tree and Table 2.1 contains

high-level information regarding the average version-independent dependency tree size relation to

the total number of packages on both npm and PyPI. Interestingly, it shows that during the average

npm package installation, just over 57 total packages are downloaded. Package consumers are

inherently required to trust the creators of all packages in the dependency tree.

npm PyPI

Total Available Packages 1,262,822 229,160

Average Dependency Tree Size 57.27 4.58

Table 2.1: A comparison between npm and PyPI repository and average dependency tree sizes.

express

accepts array-flatten debug

Requested
package

Direct
dependencies

mime-types negotiator ms

Depends on

mime-db

Transitive
dependencies

Figure 2.1: A labelled portion of the dependency tree for the express npm package.

6

2.3 How Package Managers Work

Package repository users primarily use package managers to install packages or upload packages

that they have created. The following sections describe these processes in detail.

2.3.1 Installing Packages

Packages are typically requested explicitly by name through a package manager’s command-line

interface. Once the request is received, a query is sent to the appropriate package repository.

This query first checks for the existence of the requested package and, depending on the result of

the first check, also recursively finds all transitive dependencies. Packages installed without their

required dependencies are of little use, so the package manager fetches these as well. The set of

all dependencies, both direct and indirect, is stored in a dependency tree.

After the dependency tree has been constructed, package managers check the user’s system for

any required packages that are already installed. Should any of the required packages already exist

on the user’s system, they are removed from the eventual list of packages to be installed. Next, all

missing packages are downloaded from the package repository and installed. Some packages have

more elaborate installations, like those which add to a system’s environment variables. These tasks

are normally accomplished through the use of installation scripts, which allow arbitrary commands

of the package creator’s choosing to be executed automatically during installation. Immediately

after the package has been downloaded, any installation scripts it may have are executed. Once this

process has been performed for all packages in the dependency tree, the installation process comes

to an end. The package consumer is then able to utilize the requested package’s functionality. A

high-level illustration of the entire benign package workflow, include the installation process, is

shown in Figure 2.2.

7

Start

User issues
package

installation request

Package manager
constructs

dependency tree

Preinstalled
packages

are removed

Remaining
packages are

installed

End

User imports
package

into a project

User utilizes
the package's
functionality

Figure 2.2: The benign package workflow from the perspective of the package consumer.

2.3.2 Creating Packages

Few restrictions are placed on package uploads. The exact rules that govern what is and is not al-

lowed depends on the package repository. However, there are some universal similarities. Specif-

ically, package names must follow strict naming guidelines. These guidelines are, for the most

part, limited to containing only allowed characters, having a length within a certain range, and

being unique. As long as the desired package name is not already in use, and follows the other

naming restrictions, the package can be uploaded. Restrictions regarding the name of the package

are typically the only restrictions that package creators will encounter during the package creation

process. There are generally no limitations on the contents of a package. Users are able to upload

8

arbitrary files, including binaries. Lastly, there is no financial cost associated with uploading pack-

ages. Together, these conditions provide an ideal foundation upon which malicious entities can

orchestrate typosquatting attacks.

2.4 Historical Domain Name Typosquatting

Typosquatting attacks are far from novel. Typosquatting gained notoriety as an attack against

domain names [47]. Adversaries would intentionally register domains with names similar to

popular domains [47, 50]. The differences between the two domain names were usually simple

typos. Common typos that could be leveraged to orchestrate these attacks included transposi-

tion of consecutive characters, repeated characters, and omitted characters [50]. For example,

www.gogle.com, www.googel.com, and www.gooogle.com could all reasonably be used to ty-

posquat www.google.com. Other techniques modifications which applied specifically to domain

names were also used, such as interchanging top-level domains. For instance, replacing a .net

domain with .org. While these replacements do not clearly align with the aforementioned typos,

they could still be effective against those who misremember the correct domain. Due to their ef-

ficacy and impact, typosquatting attacks against domain names gained significant attention. Some

researchers estimate the total number of typosquatting domain names to be around 21.2 million (or

20% of all .com domains) [43].

Attackers would register these domains in hopes that users would make a mistake when trying

to visit the targeted site. The logic behind this attack is sound. The more popular the target, the

larger the chance that a careless typist would mistakenly visit the typosquatting domain. Other

domain name typosquatting strategies opted for a different attack vector, in which the domain

name never had to be typed at all. These attackers would register domains which were visually

similar to to their targets. Replacing the letter ’m’ with a consecutive ’r’ and ’n’, or a lowercase

letter ’l’ with the number ’1’ are excellent examples of this strategy.

The motivation for registering typosquatting domains was typically financial [23, 36, 13]. Once

registered, typosquatting domains can be used in multiple ways. Domains which contain common

9

typos (that users would realistically make) could be used to host ads. Techniques such as this di-

rectly generate revenue for the party which registered the typosquatting domain. Other typosquat-

ting techniques could promote business. Companies could register domains which typosquat their

competition, redirecting users away from their intended site and to a competitor, effectively si-

phoning business [20].

Typosquatting domains which do not contain typos that users would realistically make, but

rather share visual similarity with their targets, can also be leveraged for profit. An email sent

from a domain which appears to be one’s a financial institution at a glance could be used to deceive

victims into disclosing credentials, which attackers could then use for theft. Attacks of this nature

are known as phishing and are still a prominent security issue [17].

2.5 Historical Package Typosquatting

Historical typosquatting packages are plentiful and have affected thousands of users [29, 24]. Hun-

dreds of typosquatting attacks have been orchestrated against package managers like npm and PyPI

[37, 38]. These packages can be available for up to months before they are removed [10]. Some

of the first notable attacks include those performed by an npm user named hacktask. In 2017,

hacktask uploaded a total of 38 typosquatting perpetrators, targeting a wide variety of some of

npm’s most downloaded packages. All of these packages contained malware which uploaded the

victim’s environment variables to a remote server upon installation. The most effective of these

typosquatting perpetrators was crossenv, which targeted cross-env. When it was discovered

and removed, the malicious crossenv had been downloaded nearly 700 times [29].

The payloads that typosquatting packages carry are largely unconstrained, as a consequence

of the freedom that platforms they leverage tend to provide. Most of the historical typosquatting

attacks have had similar functionality. Malicious packages have been known to export sensitive

information, like crossenv, though the type of information is not always limited to environment

variables. Packages in the past have gone after credit card numbers and passwords [34] or cryp-

tocurrency [33]. One of the most common payloads found in malicious packages is the reverse

10

shell. Attackers have used platforms like npm and PyPI to open reverse shells on the machines of

their victims [35]. Once open, these reverse shells can lead to a number of opportunities through

which the attacker can perform much more devastating attacks.

2.6 Past Typosquatting Defenses

The foundation of typosquatting defenses for both domain names and packages is string similarity

[50, 28]. However, string similarity in and of itself is not the definitive indication of typosquatting.

Levenshtein (or edit) distance is a common measure of string similarity [21, 19]. It is a measure

of how many characters need to be added, removed, or replaced to transform one string into an-

other. Most typosquatting examples have a low edit distance when compared to their target [48].

However, searching for typosquatting perpetrators by flagging strings with an edit distance of one

is imperfect, often yielding high false positive and false negative rates [44]. Defenses which utilize

an edit distance of one will incorrectly flag pairs like "laughter" and "daughter" (which have an edit

distance of 1), while failing to detect stealthy typos which rely on human context and intuition.

2.6.1 Legal Domain Name Typosquatting Defenses

Typosquatting domain names eventually gained a significant amount of attention. Those which

targeted domain names belonging to litigious companies were often met with legal ramifications.

Typosquatting domains could redirect users to a competitors website, siphoning business away

from the target. Because of this, legislation has been passed to help protect companies from ty-

posquatting. The Internet Corporation for Assigned Names and Numbers (ICANN) introduced the

Uniform Domain-Name Dispute-Resolution Policy (UDRP) to combat typosquatting [16]. This es-

tablished the legal grounds upon which companies could protect themselves against typosquatting

perpetrators who were intentionally registering confusingly similar domain names with the inten-

tion of trademark infringement. Many companies leveraged the UDRP to prevent typosquatting.

For instance, the popular toy company Lego has notably been engaged in more than 300 UDRP

11

proceedings, accruing legal fees of nearly $500,000 [15]. Once in the possession of the target,

companies could configure typosquatting domains to redirect traffic to the original site, thereby

negating any potential harm that could arise from a simple spelling mistake. This solution comes

with the major drawback of time. UDRP claims are not resolved instantly and in the meanwhile,

have no protection against the alleged typosquatting attack.

2.6.2 Defensive Domain Name Typosquatting

More proactive domain owners might anticipate potential typosquatting opportunities. In these

cases, common misspellings or visually similar domains could be preemptively registered before

they can be used for harm. This behavior is known as defensive typosquatting. Domains which

utilize defensive typosquatting, like those which can be won through legal proceedings, could

then be configured to redirect to the original website or parked to prevent any misunderstanding

by the end-user. A notable example of this strategy is one performed by Google. To prevent

any misuse, the domain names www.gogle.com and www.gooogle.com now redirect users to the

popular search engine with a similar name [12].

2.6.3 User-led Package Typosquatting Defenses

The legislation protecting domain names does not extend to package names. However, defenses

against package typosquatting still exist. Package creators can employ a technique similar to the

defensive domain name typosquatting described in the previous section. Because packages can be

created for free, any number of misspellings of a package name can be registered. These defensive

typosquatting packages are then not only out of reach for any adversaries, but they can also point

users towards their desired package. Depending on the capabilities of the platform the package is

created for, packages can simply be parked, throw an error during installation which alerts users

to their mistake, or even redirect users to the intended package. Security specialist and PyPI user

William Bengtson has taken the initiative to create over one thousand defensive typosquatting

packages to protect some of the repositories most popular packages [3, 4]. When installed, his

12

packages alert the user that a typo was made, then suggest the user install the targeted package.

A limitation of this defensive typosquatting being done by a third-party user is that it relies on

trusting third parties, who could behave inconsistently with the desires of the first-party developer.

In addition to these community-based defenses, package repository maintainers have also used

implemented a series of defenses which aim to mitigate typosquatting.

2.6.4 Maintainer-led Package Typosquatting Defenses

Not long after the crossenv incident, the maintainers of npm introduced a stricter set of package

naming rules [28]. The new rules prohibit new packages from containing capital letters. How-

ever, for the sake of backwards-compatibility, existing packages that differed only in capitalization

were allowed to remain on the repository. For example, the distinct, and legitimate, packages

jsonstream and JSONStream still exist to this day. Also, they prevent new packages which dif-

fer from popular packages only by punctuation (hyphens, underscores, and periods) from being

uploaded. In the announcement revealing these new rules, the npm maintainers list examples of

packages which will not be allowed on the repository due to their similarity to react-native.

Their examples include reactnative and react_native, both of which currently exist on the

repository and consistently receive a small number of weekly downloads. Other listed packages

like react.native do not exist and cannot be created. While this solution does technically reduce

the number of potential typosquatting perpetrators, it only covers a subset of possible edits that can

be made to a package name. Variations on the listed examples which utilize repeated, omitted, or

transposed characters are still allowed to be uploaded. Furthermore, the packages to which this

protection applies is not given, and many packages which differ only by punctuation remain on the

repository.

In stark contrast to npm, PyPI has a robust defense against punctuation-based typosquatting

attacks built into its naming conventions. The names of all packages on PyPI are normalized

[41]. This means all periods and underscores are replaced with hyphens when the package is both

created and installed. This technique serves a dual purpose of preventing specific typosquatting

13

packages from being uploaded in the first place and simplifying the package installation process.

However, this defense only prevents a portion of commonly used typosquatting methods. It does

nothing to protect against one of the latest typosquatting perpetrators named jeilyfish (which

clearly targeted the popular package jellyfish), discovered in December of 2019 [10].

Despite these attempts to thwart typosquatting packages from being uploaded (from both repos-

itory users and maintainers), perpetrators continue to find a way. The current restrictions imposed

upon package creators do help mitigate the problem, though more can be done. More sophisti-

cated typosquatting detection algorithms can be used to help identify perpetrators before they have

a chance to permeate the repository’s user base. An automated defense would also undoubtedly

surpass the current manual solution which relies on reports from repository users.

14

Chapter 3

Review of Related Literature

3.1 Domain Name Typosquatting

A considerable amount of attention has been given to research regarding domain name typosquat-

ting. Researchers naturally performed analysis of domain names to uncover the extent to which

typosquatting exists. A submission to the 23rd USENIX Security Symposium estimated that 21.2

million .com domains (or about 20% of all .com domains) were typosquatting perpetrators [43].

Another group quantified this widespread issue by stating 95% of the Alexa Top 500 Websites

were being actively targeted by typosquatting perpetrators [1]. These papers, and many others

[22, 8, 2, 18], use typosquatting detection schemes similar to, or derived directly from, those pro-

posed by Wang et al., who formalized five so-called typo-generation models that were so effective,

they led to the discovery and removal of thousands of typosquatting domains [50].

3.2 Package Repository Vulnerabilities and Defenses

As typosquatting attacks began to affect package repositories, they too became the focus of re-

search. Multiple have been written that discuss the issues of package typosquatting. However,

in most cases, typosquatting is simply cited as an issue when assessing inherent vulnerabilities

present in package managers/repositories and few researchers offer solutions to help mitigate the

problem [52, 45, 5]. Other sources have taken much more creative approaches. In his Bachelor’s

thesis, Tschacher created a typosquatting package of his own [46]. This experimental package

contained code which reported back to a central server with some basic information on where the

15

package was installed so Tschacher could track its spread. Surprisingly, his package had received

more than 45,000 installation requests from more than 17,000 unique domains. When analyzed, his

results showed that had even been installed on machines associated with .gov and .mil domains.

Tschacher’s work demonstrated the efficacy of typosquatting attacks and shed light on the possible

consequences they could have, ultimately highlighting the need for stronger defenses against these

attacks, which he did not implement. Past defenses which have been proposed to specifically fight

typosquatting are usually limited to the utilization of features currently offered by platforms like

npm and PyPI, such as name scope [27] and defensive typosquatting [39, 42, 3, 4].

Tools which attempt to detect general malware in package repositories have been implemented

in both academia and industry. While some of these defenses do not specifically check for ty-

posquatting, the packages they do find occasionally tend to employ the deceptive naming strategy.

From academia, Duan et al. were able to develop a robust system which performs static and dy-

namic source code analysis to effectively detect malicious packages [11]. However, this approach

takes place outside of the package installation process; passively protecting users until vulnera-

bilities can be found, investigated, and removed. In industry, repository maintainers have made it

abundantly clear that they take the security of their platforms seriously. The maintainers of npm

have released several blog posts describing their experimental new Security Insights API, which

promises to provide security-related information on package capabilities and resource utilization

[30, 31, 32].

3.3 General Software Repository Defenses

This thesis shares a common goal with a line of work done to protect general software repositories

like the Google Play Store [49, 7, 51, 6]. While these works are concerned primarily with full-

fledged mobile applications rather than discrete units of source code, they do share similarities to

the work discussed here, despite being otherwise orthogonal. The work in this field which is most

closely related to the work presented in this thesis deals with the detection of so-called cloned ap-

plications. A popular application is cloned when it is reuploaded under a different name. Systems

16

which detect cloned applications typically do so through some notion of binary [14] or functional

[9] similarity. The concept of cloned software extends to package typosquatting because of the way

that adversaries are allowed to reupload the source code of their target to mask malicious payloads.

However, in contrast to the code similarity analysis performed on Google Play, this work has no

interest in the theft of intellectual property, because of the open-source nature of package reposito-

ries. Advanced functionality/source code similarity checks in the context of package repositories

would only provide evidence which may bolster typosquatting claims. Two packages with similar

code but sufficiently different names fall outside the realm of typosquatting.

17

Chapter 4

Threat Model

4.1 Terminology

Throughout this thesis, for the purpose of consistency and clarity, the following terms are used

to describe various parts of a standard typosquatting attack in the context of package repositories.

Here, the term attacker denotes the individual who intentionally uploads the malicious package

with a name that closely resembles that of a popular package. The victim is the individual who in-

stalls the malicious package. The terms perpetrator and target refer not to people, but to packages,

specifically the malicious package and the legitimate (benign) package, respectively.

The definition of typosquatting encompasses more than lexical similarity. For a package to be

typosquatting, it must intentionally attempt to deceive users into mistaking it for its target. If a

package has a name very similar to a popular package, it is not automatically typosquatting. Pack-

ages exist which are intentionally given names that could reasonably be used for typosquatting, but

they either have no functionality or direct the user’s attention to the targeted package [3]. These

packages are performing defensive typosquatting and are not typosquatting perpetrators since they

make the conscious effort to alert the users of their mistake. Similarly, if a package coincidentally

has a name similar to that of a popular package, and it has radically and blatantly different yet

benign functionality, it is not considered a typosquatting perpetrator. Because this hypothetical

package makes no attempt to intentionally deceive users, any alerts that flag it as a typosquatting

perpetrator are false positives.

18

4.2 Motivation

Malicious packages are created for a variety of reasons. Like with domain name typosquatting,

this motivation can be financial. Packages which aim to collect and export sensitive information

from the victim’s machine could very well be used for the financial gain of the attacker. Multiple

historical typosquatting attacks have had financial motivations. A number of packages were created

which stole cryptocurrency [33] or stole credit card numbers and passwords [34]. The motivation

of many other packages is unknown. Packages whose payloads were hidden or those that opened

reverse shells had unknown effects. It can be assumed that the creators of these packages likely

had financial or other generally antagonistic motivations.

4.3 Capabilities

The exact capabilities of a package typosquatting attack depends on the repository being used and

do not surpass the capabilities afforded to benign package developers. Past typosquatting attacks

do not typically harness elaborate exploits. Historical payloads utilize the existing features present

in modern programming languages. They simply exploit the inherent characteristics of package

repositories and package managers, along with the blind trust that is essentially required of package

consumers.

Malicious package creators are given a significant amount of freedom and power. For instance,

in contrast to domain names, packages can be uploaded for free. Without a monetary restriction,

package typosquatting attacks could theoretically be performed by anyone with Internet access.

The fees associated with registering domain names introduce risk, essentially creating an invest-

ment. This risk, though admittedly minimal, may discourage attackers and prevent some number

of attacks from taking place. Since no such risk exists for package typosquatting, very little stands

in the way of an individual carrying out any number of attacks.

Not only can packages be uploaded for free, they can also have arbitrary functionality. This

choice by repository maintainers allows legitimate packages to provide a greater level of utility.

19

However, it also permits attackers to distribute more devastating payloads. The attacker can exe-

cute arbitrary commands during either installation or runtime. Clearly, the contents of the package

are executed at runtime. For a language like Python or an environment like Node.js, system calls

can be executed with the privileges of the user executing the program. These platforms allow at-

tackers to do many things. Files can be deleted, sensitive information can be stolen, and perhaps

worst of all, reverse shells can be opened, giving attackers a substantial amount of access to the vic-

tim’s machine, ultimately enabling a multitude of negative effects [33, 34, 35]. Other packages can

deploy these payloads long before runtime, needing only a modicum of interaction on the victim’s

part. Installation scripts are a common feature for most package managers. Usually, they perform

specialized operations required by the package which are not a part of the standard package in-

stallation process. Legitimate installation script uses are generally limited to initialization-related

functions. Examples include building programs from its source code or manipulating environment

variables to add to a user’s PATH. Attackers can leverage install scripts to deploy payloads the

instant a victim installs the typosquatting perpetrator. While this attack vector is direct and can be

effective, other tactics may prove more rewarding.

Attacks could leverage the transparent nature of package repositories in their favor. As pre-

viously mentioned, these repositories are inherently open source, since source code is usually the

key deliverable. Those performing typosquatting attacks could easily download the content of the

package they’re targeting, then reupload the code under the typosquatting name. At first, it may

seem that this has no benefit to the attacker. However, this is far from the truth. Doing this gives

the attacker some limited form of access to their victims, in that they have the ability to deploy

code through package updates. Meanwhile, the victim installed the typosquatting package would

possess the expected functionality, helping to reduce any suspicion. Then, at a time of the at-

tacker’s choosing, the typosquatting package can be updated to contain the payload. This payload

can supplement the original package’s functionality, making detection slightly more challenging.

When any users who mistakenly installed the typosquatting package update this package, they will

promptly be served the malicious payload. Attackers could opt to wait until obtains some degree of

20

popularity in order to affect the most victims. There are additional methods of disguising function-

ality that the attacker may also employ. In order to circumvent the transparent nature of package

repositories, the attacker could store the payload remotely. Then, at either during installation or at

runtime, the malicious package could be configured to fetch and execute the remote payload.

Typosquatting target candidates can be found quickly. Weekly download counts along with

the number of dependents are official and readily available for packages on npm. PyPI, on the

other hand, has official hidden download counts and dependents, though this information is still

accessible through package metadata and third-party APIs. Attackers could sort lists of pack-

ages by popularity, whether that means weekly downloads or number of dependents, and target

those to theoretically have the largest impact. Once a target has been identified, attackers can

upload malicious packages under virtually any name. The selected typos could be simple varia-

tions, such as swapping two consecutive characters or duplicating a single character. Other more

complex strategies also exist. Should a package name consist of two distinct parts, delimited

by some form of punctuation, the attacker could swap these two components. For instance, the

package oauthlib-requests could be used to typosquat the popular Python package named

requests-oauthlib. These two packages could reasonably be mistaken for one another, which

opens an attack vector for advanced typosquatting perpetrators.

To further decrease the likelihood of being detected, attackers could target dependency trees.

At installation time, package managers routinely gather all direct and indirect dependencies. Ty-

posquatters who decide to target dependency trees could affect those who never intend to explicitly

install the package being targeted. Typosquatting attacks in package repositories an affect users

transitively. Package creators who make a typo when installing a dependency for their package

could affect all users of the package they produce, along with any users of package that depends

on their package. This cycle can continue, making the chain of dependencies arbitrarily long, af-

fecting users along any point in the chain. This style of typosquatting presents a new opportunity

for attackers. Analogous to the relationship between domain name typosquatting and phishing,

package typosquatting in this case could utilize visual similarity in addition to common typos.

21

Because the package names in the dependency tree are not explicitly requested, or even seen, by

package consumers, the attack surface is much broader. Characters with visual similarity may be

interchanged to deceive users. For instance, the package 1odash could reasonably be mistaken

for lodash when seen in a list of dependencies. Using the concept of dependencies to help aid

typosquatting attacks has the added ability of affecting those who never make a typo, but install a

package created by someone who did.

22

Chapter 5

Technical Details

This chapter outlines the series of experiments that were performed in order to quantify the efficacy

and performance of the proposed solution. Throughout this chapter, low-level details pertaining to

the experiments performed are also given.

5.1 Typosquatting Detection Scheme

The core goal of this work is to programmatically detect typosquatting. Given a package name and

a set of packages considered to be popular, the defense must be able to determine whether or not

the given package is a typosquatting perpetrator.

The foundation of any defense protecting users against typosquatting attacks is its typosquat-

ting detection scheme. By definition, a typosquatting perpetrator’s name must have lexical simi-

larity to the name of a popular package. The selected method of string similarity which compares

typosquatting targets to perpetrators directly determines the efficacy of the solution. Simple Lev-

enshtein distance (colloquially referred to as edit distance) is commonly used to measure string

similarity, though it is far too aggressive when detecting typosquatting, especially with shorter

strings. This flaw stems from its indiscriminate handling of characters. When using standard edit

distance, any character can be inserted, removed, or replaced with any other character. Mean-

while, realistic typos (specifically miskeys) are typically limited to a small list of candidates for

each character. These candidates are typically determined by physical locality on the keyboard

being used. Because most typosquatting attacks are character-discriminant, past domain name ty-

posquatting detection schemes were essentially a restricted form of edit distance. Typosquatting

23

detection that relies on pure edit distance would inevitably lead to a dramatic increase in false pos-

itives. More advanced detection schemes outline a set of characteristics, or signals, found in the

names of typosquatting perpetrators. These signals can be thought of typo categories and they in-

clude single-character omission, adjacent-character transposition, substitution based on keyboard

locality, and character duplication [50]. In this thesis, these signals are adapted and extended to

more effectively apply to package names. The six signals used to detect package typosquatting are

listed below with accompanying definitions and examples.

1. Repeated Characters – The presence of consecutive repeated characters. The potential typo

being made here is one where a key on the keyboard had been struck twice or held slightly

too long. This signal is limited to one excess character. Examples of this signal include

reeact, which targets react, and expresss, which targets express.

2. Omitted Characters – The omission of a single character. This signal checks for typos in

which a character is simply not entered, as if the corresponding key hadn’t been pressed

hard enough. Examples of this signal include event-strem, which targets event-stream,

and reques, which targets request.

3. Swapped Characters – The transposition of two adjacent characters. This typo could occur

when typing the package name quickly, hitting keys out of order. Examples of this signal

include erquest, which targets request, and loadsh, which targets lodash.

4. Swapped Words – The reordering of delimited substrings. In the context of package names,

delimiters include periods, hyphens, and underscores. This signal checks for alternate per-

mutations of substrings which are delimited by these characters. Additionally, it checks for

possible delimiter substitutions and omissions. For example, stream-event, event.stream,

and eventstream all target event-stream.

5. Common Typos – The substitution of characters based on physical locality and visual sim-

ilarity. This signal checks for two distinct but similar forms of typosquatting, miskeys and

24

visual confusion. The first results from a typo made during package installation, where one

character is replaced by another which is physically close to it on a standard QWERTY key-

board. For example, cpmmander targets commander. The other form of typosquatting is

meant to gives packages a passing resemblance to their targets. By replacing certain charac-

ters with others which are visually similar. For example, 1odash targets lodash.

6. Version Numbers – The inclusion of version numbers after the package name. This signal

checks for typosquatting perpetrators which attempt to target a specific version of a package.

These perpetrators could affect victims who request a specific version of a package using

incorrect syntax, or those who mistake the perpetrator for the target in a set of transitive

dependencies. For example, debug-4.1.0 targets debug version 4.1.0.

5.2 Quantifying Popularity

The targets of typosquatting attacks are typically popular, for obvious reasons. When a package is

used more frequently, more opportunities exist in which a typo can be made during the installation

process. A typosquatting attack which targets a popular package can, in theory, affect many more

victims than one that targets a particularly unpopular package. There is almost no incentive in

typosquatting a package which receives no attention. If a package is used infrequently, the overall

likelihood that a mistake is made during its installation, thus falling victim to the typosquatting

attack, is even smaller.

Typosquatting perpetrators, on the other hand, are inherently much less popular than their

targets. The utility they provide is generally less than or equal to the utility offered by their targets.

In most cases, once a typosquatting perpetrator gains a significant amount of popularity, one of

its victims will catch on and report the incident through the proper channels. While this approach

ultimately results in the removal of the malicious package, it does so at the cost of infecting users.

A proper solution to the problem of package typosquatting should help users identify perpetrators

before the payload has a chance to propagate.

25

To programmatically detect typosquatting, popularity must be quantified and distinction be-

tween popular and unpopular packages must be established. Allegations of an unpopular package

typosquatting an unpopular target hold little merit. Likewise, if the name of two extremely popular

packages are similar, users should not expect to see typosquatting warnings when downloading

one of the two. Since both packages in this example are considered to be popular, both are equally

qualified to be intentionally installed. A package is most likely a typosquatting perpetrator if it

is unpopular and its name differs from the name of a popular package through one of the typo

categories, or signals, described in Section 5.1.

Two main candidates for quantifying package popularity exist: download count and dependent

count. The former, depending on the repository, is a rough indication of the number of users who

request the package either directly or indirectly. The latter is the number of other package on the

repository which directly depend on the package in question. Both of these metrics are publicly

available either officially or through third-party tools. On npm, for example, the page for each

package displays the number of weekly downloads the package receives alongside the number of

dependents. PyPI does not make this information readily available, however it can be found in

package metadata and officially endorsed data sets.

Weekly downloads and dependent counts both clearly represent the popularity of a package,

but weekly downloads give a more accurate approximation of true use. Dependents are a subset of

downloads, since the creator of the dependent was required to download the package in order to

include it in their own package. Furthermore, dependents are only packages which have also been

uploaded to the repository. Some packages exist as command-line tools, which are installed with

no intention of being included in other packages. The dependent count for a package of this nature

could reasonably be zero, despite potentially being downloaded thousands of times per week. In

any dependent-based definition of package popularity, a package like this could have the same

popularity as a newly uploaded package. For this reason, weekly download counts will be used to

quantify package popularity for the typosquatting defense proposed in this thesis.

Selecting a metric to quantify popularity is simply the first step towards establishing a distinc-

26

tion between popular and unpopular packages. A simple solution to this problem is to select a

popularity threshold. Packages with weekly download counts greater than or equal to the popu-

larity threshold are classified as popular while packages with weekly download counts below the

threshold are considered unpopular. The only parameter required with this approach is the pop-

ularity threshold itself. Setting a popularity threshold that is too high would restrict the number

of typosquatting targets, which would ultimately increase the detection scheme’s false negative

rate. Conversely, setting the popularity threshold too low would cause too many packages to be

considered popular, granting them exemption from being considered a typosquatting perpetrator,

and also increasing the detection scheme’s false negative rate. In order to select an appropriate

popularity threshold, analysis of package download distributions and package namespaces had to

be performed.

5.3 Package Namespace Analysis

Transitive analysis of the npm and PyPI package namespaces was performed to explore the effect

that a variable popularity threshold had on the degree to which typosquatting affected the repos-

itory. These repositories were specifically chosen because of their popularity and history with

typosquatting attacks. The analysis began by collecting lists of all publicly available packages on

each platform along with weekly download counts and full dependency trees. Using the set of all

transitive dependencies was preferable to examining only direct dependencies as doing so more

accurately emulated the real-world use cases of modern package repositories. By default, when

installing a new package, the package manager also installs all transitive dependencies, not only

direct ones. Once the package names and metadata had been collected, the analysis continued by

utilizing the proposed typosquatting detection scheme.

For each of the recorded packages, the entire dependency tree was examined. Packages through-

out the dependency tree were passed to functions which implemented each of the signals outlined

in the typosquatting detection scheme. These functions were created to look for every other pack-

age on the repository which was similar to or confusable with a given moniker. For example,

27

when given the package name loadsh, the functions would return package names like load_sh,

lodash, and loads. The most popular of these candidates (lodash, in this case) was labeled the

most likely typosquatting target, and was recorded. This process is illustrated in Figure 5.1. After

this operation had been performed for the entire dependency tree of all packages on both npm and

PyPI, the process of determining the effect that popularity threshold would have on the degree of

typosquatting could begin.

Start

Get package
dependency

tree

End

All packages
processed?

All
dependencies
processed?

Apply signals
to a dependency,
find all candidates

Record most
popular

candidate

Yes

No

Yes

No

Figure 5.1: Transitive analysis of the repository namespace.

When determining appropriate popularity thresholds, one key question is worth keeping in

mind. That is, how are download counts calculated? The creators of npm have provided insight

into their download statistics. According to an official npm blog post, download counts are simply

the number of HTTP 200 status codes returned for package archive requests [26]. This has a few

important implications. First, local caches reduce package download counts. Downloading a pack-

age and utilizing it for several projects on the same machine, will result in only a single download.

Second, downloads are not entirely the result of user interaction. HTTP requests can also come

from repository mirrors and other scripts which download packages for large-scale analysis. In

fact, npm states that a package can receive upwards of 50 downloads per day exclusively from

28

automated sources. In other words, a package could realistically be downloaded 350 times, all

while never being requested by a single person. For this reason, 350 weekly downloads will be the

absolute lower bound of the popularity threshold. Analysis will search for appropriate thresholds

above this figure.

The degree of typosquatting was characterized in two separate ways: the percentage of the

namespace and the percentage of all weekly downloads. Because packages are obviously not

downloaded equally, it is important to examine both definitions of the degree of typosquatting.

To determine these two measures, evenly spaced popularity thresholds are selected between the

lower and upper bounds. At each of these thresholds, one counter records the total number of

individual packages containing a potential typosquatting perpetrator anywhere in its dependency

tree. Another accumulates the download counts of these packages. These values will accumulate so

long as the dependency (or hypothetical perpetrator, e.g. loadsh) is below the popularity threshold

and the potential target (e.g. lodash) is on or above the popularity threshold. Graphs of these

values at each threshold can be used to illustrate the effect that popularity threshold has on the

level of typosquatting in programming language repositories.

5.4 Package Manager Integration

To determine the effective temporal overhead that the proposed typosquatting detection scheme

would impose on the standard package installation process, the official npm package installer was

modified. The modified package installation workflow is illustrated in Figure 5.2. The revised

installation process operates as follows:

1. The user issues an installation request, explicitly soliciting a package from the command

line.

2. The package manager pulls metadata from the corresponding package repository to construct

a dependency tree.

29

3. The package manager removes any packages from the dependency tree which are already

installed on the user’s system. A list of all packages that need to be installed is given to the

typosquatting detection system.

4. All of the packages that remain in the dependency tree are scanned for typosquatting. Each

of the signals described in Section 5.1 are applied to every package name.

5. A list of potential typosquatting targets is constructed.

6. If the list of potential typosquatting targets is not empty, then typosquatting has been de-

tected. Details regarding each of the suspected typosquatting perpetrators are presented to

the user. The user is asked if they would like to continue or abort the installation. Example

prompts are shown in Figure 5.3.

7. The user’s response to the prompt is captured.

8. If the list of potential typosquatting targets is empty, or the user has decided that they would

like to continue the installation, then the standard installation process continues. All required

packages are installed.

9. If all required packages are successfully installed, or the user has decided to abort the in-

stallation, the process gracefully comes to an end. If the user chose to abort the installation

when presented with the typosquatting alert prompt, no packages are installed whatsoever.

30

Package
installation

request

Build
dependency

tree

Remove
preinstalled
packages

Check each
package for

typosquatting

Typosquatting
detected?

Exit

Install packages

Print details,
prompt user to

confirm installation

User confirms
installation?

Typosquatting Detection System

Yes

No Yes

No

1

2

3

4

5

8

9

6

7

Figure 5.2: The modified package installation process.

31

Figure 5.3: Sample prompts warning users against both direct and indirect typosquatting.

After the installation process had been modified, one thousand packages were weighted by

popularity and selected at random. Weighting packages in this context helps more accurately

emulate real-world use cases. Each of these packages were first cached in order to minimize any

network-based latency that could delay the package installation process. Once cached, the amount

of time taken to install each of the packages via the official package manager was recorded. Then,

packages were uninstalled. Finally, the amount of time taken to install each of the packages through

the modified package manager was recorded, so it could be compared to the control. It is worth

noting that the package manager should be configured to ignore any installation scripts during this

test, to avoid executing potentially dangerous commands as a result of installing a large number of

packages at random. The prompt which paused installation and requested input from the user was

removed for this test so that the overhead of the typosquatting check alone could be measured.

5.5 Implementation and Infrastructure

All of the programs and modifications that were involved in the data collection and analysis de-

scribed in the previous sections were written in Python 3 and Node.js. Due to the sheer size of

the repository namespaces being analyzed, intensive operations routinely lasted hours, if not days.

Clearly, this was undesirable. Distributed computing techniques were quickly employed to resolve

this issue. The Information and Telecommunication Technology Center at the University of Kansas

32

comes equipped with a high-performance computing cluster. This cluster utilizes the Slurm Work-

load Manager which simplifies the process of managing a large number of jobs. Fortunately, the

analysis performed here was extremely parallelizable, as the same general operations had to be

performed to every package in the repository namespaces with no importance placed on the order

in which packages are processed. Sets of package names were evenly distributed among more than

one hundred nodes in the cluster, resulting in a dramatic speedup.

33

Chapter 6

Evaluation

6.1 Results

This section presents the direct findings of the experiments described in the previous chapter.

6.1.1 Download Distribution

When creating a defense dependent on the popularity of packages, which is based on their re-

spective weekly downloads, it is quite important to understand the download distribution of the

repositories to which they belong. These download distributions can be represented in many dif-

ferent ways. Figure 6.1 breaks down npm and PyPI repositories, showing what percentage of the

platforms consist of packages in various download ranges. They demonstrate that a vast majority

of packages on both platforms are downloaded quite infrequently. In fact, over 90% of the pack-

ages on both repositories fall below the 350 weekly download cutoff proposed by the creators of

npm; below which, all downloads could theoretically come from non-human sources. These initial

findings reveal a stunning imbalance in package downloads.

In other words, a relatively small subset of packages are responsible for an overwhelming

majority of downloads. On a weekly basis, npm packages collectively receive around 18 billion

downloads, where as PyPI packages collectively receive just over 1 billion downloads. The top

one percent of all npm packages account for more than 98% of all weekly downloads. In a similar

fashion, PyPI’s top one percent account for nearly 96% of all weekly downloads. This means that,

for all intents and purposes, that a majority users see no no need for a majority of packages on

34

0 - 10
11 - 100

101 - 1,000

1,001 - 10,000

10,001 - 100,000
> 100,000

Weekly Downloads

0

10

20

30

40

50

60

70

80

Pe
rc

en
t o

f A
ll

Pa
ck

ag
es

npm
PyPI

Figure 6.1: The download distributions of npm and PyPI.

100 101 102

Percent of Most Popular Packages

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
t o

f A
ll

Do
wn

lo
ad

s

npm
PyPI

Figure 6.2: Cumulative download distribution for npm and PyPI.

these platforms. A cumulative distribution function representing what share of downloads belong

to the most popular packages is plotted in Figure 6.2. Even with the log scale shown in the figure,

the initial increase is staggering.

The fact that the an incredibly small percentage of packages are responsible for practically

35

all downloads leads to an interesting conclusion. The myriad of undesirable packages effectively

pollutes the repository namespace and presents serious implications for the proposed typosquatting

defense. Clearly, the popularity threshold somewhere near, if not above, the top one percent mark.

Doing this ultimately forces the set of packages capable of being typosquatting perpetrators to

include nearly every package in each repository.

6.1.2 Popularity Threshold

The results of the transitive namespace analysis described in the Section 5.3 are shown in Figures

6.3 and 6.4. Both of these figures show how a variable popularity threshold affects the degree

of typosquatting from the previously established lower bound of 350 weekly downloads to the

arbitrarily-chosen upper bound of 100,000 weekly downloads, which was considered to be the

point beyond which packages were unquestionably popular. Figure 6.3 represents the degree of

typosquatting as the percentage of all packages on the repository. Since, however, it was discussed

in Section 6.1.1 that incredibly severe download imbalances exist on these platforms, the result was

computed with downloads taken into consideration. Figure 6.4 shows the degree of typosquatting

as a percentage of all weekly downloads.

The first noteworthy phenomenon displayed in these figures is the qualitative difference be-

tween the trends in Figure 6.3. The curve representing PyPI almost exclusive decreases as the

popularity threshold rises, while the curve corresponding to npm steadily increases. The behavior

of npm’s degree of typosquatting is initially counterintuitive. As the popularity threshold rises,

the number of popular packages, and therefore targets, decreases. With fewer targets, one would

expect there to be fewer typosquatting perpetrators. This is the case for the PyPI curve, but not the

npm curve. The unexpected growth in the npm curve is due to a rather interesting characteristic

36

20000 40000 60000 80000 100000
Popularity Threshold (Weekly Downloads)

3

4

5

6

7

8

Ty
po

sq
ua

tti
ng

 P
er

pe
tra

to
rs

 (%
 o

f A
ll

Pa
ck

ag
es

) npm
PyPI

Figure 6.3: Percentage of all packages considered typosquatting perpetrators as a function of pop-
ularity threshold.

20000 40000 60000 80000 100000
Popularity Threshold (Weekly Downloads)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ty
po

sq
ua

tti
ng

 D
ow

nl
oa

ds
 (%

 o
f A

ll
Do

wn
lo

ad
s) npm

PyPI

Figure 6.4: Percentage of all weekly downloads containing a potential typosquatting perpetrator as
a function of popularity threshold.

37

of npm which is exploited by the implementation proposed in this thesis. The characteristic in

question is the name similarity between reasonably popular packages. Table 6.1 shows examples

of this phenomenon in which hypothetical typosquatting perpetrators are reasonably popular. The

discrepancy between pairs shown in Table 6.1 is large enough that once the popularity threshold

surpasses the less popular package, it loses its exemption and becomes a typosquatting perpetrator.

Package Name Weekly Downloads

object-assign 16,759,898

object.assign 10,919,355

camelcase 36,187,784

camel-case 6,283,067

isarray 29,874,329

is-array 66,852

kind-of 51,413,827

kindof 24,273

memorystream 1,142,090

memory-stream 6,423

Table 6.1: Instances where typosquatting targets and perpetrators are both popular.

Although the packages in cases like these may not be malicious, a case could be made that

they do have a negative effect on the quality of the platform. These cases could create confusion

among package consumers, however this topic is out of scope for this thesis. The effect of this

phenomenon, however, still must be taken into consideration when developing the proposed de-

fense. An ideal popularity threshold should be set at a point where false positives like the cases

shown above are minimized. To remove these false positives along with any other defensive ty-

posquatting packages in either repository, a popularity threshold of 10,000 weekly downloads was

selected. At this threshold, the increase in typosquatting perpetrators due to false positives in npm

has yet to take place. Also, this threshold coincides with the steep drop in perpetrators observed in

38

PyPI, which is due to a relatively large number of targets with between 12,000 and 14,000 weekly

downloads.

The selected popularity threshold has little effect on the total number of downloads affected

by the proposed solution. As seen in Figure 6.4, the curves are fairly constant, for the most part,

remaining around 0.5% for PyPI and 0.1% for npm. This means that for any reasonable popularity

threshold, package consumers can expect to see alerts regarding the potential installation of a

typosquatting risk once for every 200 packages installed on PyPI and for every 1,000 packages

installed on npm. A low alert rate such as this helps to ensure that users will grow tired of seeing it

and simply ignore its warning. Again, it is worth mentioning that the analysis performed here was

transitive; meaning the rates discussed here are manual installs and do not count entire dependency

trees, which as previously said, can be quite large.

6.1.3 Runtime Overhead Analysis

Modifications that were made to perform the timing analysis were made to version 6.12.0 of npm’s

command line tool. The test was performed on a machine with an Intel Core i9-9980HK processor

clocked at 2.40 GHz and 32 GB of RAM. With package contents cached, the average installation

time using the standard process (without the typosquatting check) was 2.604 seconds, while the

average installation time using the modified process (with the typosquatting check) was 2.669

seconds. The addition of the typosquatting check added an average of 0.065 seconds to the standard

installation process – an overhead of 2.5% – ultimately imposing no perceptible impact on package

installation time.

6.2 Discussion

This section touches on the indirect findings of the experiments and other miscellaneous details

that pertain to the work performed.

39

6.2.1 Undiscovered Typosquatting

After the transitive analysis of both npm and PyPI had finished, a list of the most popular packages

flagged as potential typosquatting perpetrators was manually inspected. This was done with the

goal of discovering novel typosquatting attacks. Interestingly, one of the first packages found was

one named loadsh which was possibly targeting the popular utility – and most depended upon

npm package – called lodash. Upon further inspection, loadsh was functionally identical to its

well-renowned peer. The creator of loadsh had actually reuploaded a past version of lodash

under a new name, making not a single change [24].

Despite containing no malware, this discovery was significant for a number of reasons. One

could argue that this package was simply another case of defensive typosquatting. However, if

this is true, it was the epitome of poor execution. In reality, the creation of loadsh introduced

more harm than good. First, the exact version of lodash that was copied a since well-documented

vulnerability called prototype pollution, which has been exploited to perform denial of service and

remote code execution attacks. A new version of lodash was eventually released which patched

the exploit, but loadsh was never updated and the vulnerability persisted. Second, loadsh had

quite a significant user-base. At the time of its discovery, loadsh had been consistently earning

2,000 weekly downloads and had over 60 dependents. Due to this level of popularity, the creators

of all packages that depended on loadsh were contacted to ask if they had intended to use lodash

instead. All of the few developers who responded to the inquiry confirmed that their use of loadsh

was accidental and were unaware of the mistake they had made. Eventually, loadsh was brought

to the attention of the npm Security Team who further investigated the package, and ultimately

deprecated it.

6.2.2 Limitations

The current implementation of package repository typosquatting detection scheme has room for

improvement. Adjustments to the signals which described in Section 5.1 would have the most

direct on the performance of the system. The current signals are relatively conservative in order

40

to reduce false positive. As a result, they are incapable of detecting more elaborate typos. For

example, the signal which checks for swapped words strictly relies on the presence of delimiters.

However, a common practice is to simply concatenate multi-token package names together, totally

omitting punctuation. In these cases, swapping words cannot be performed unless word boundaries

are assumed. Also, intersections of signals are not checked for as doing so would exponentially

increase the execution time of the typosquatting check, though instances of historical typosquatting

did contain intersections of multiple signals.

Another limitation with the proposed defense stems from its method of distinguishing between

popular and unpopular packages. Separating these two types of packages using a single static

threshold eliminates the possibility of detecting typosquatting pairs with less extreme differences

in popularity. Regardless of where the threshold is set, there may be non-malicious packages which

fall slightly below it and malicious packages which reside slightly above it. Adjusting it in either

way does nothing to solve this. Essentially, this problem calls back to the Sorites Paradox because

of its vague predicates. This paradox highlights the need for a more robust definition popular-

ity. The loadsh example and the pairs listed in Table 6.1 show that typosquatting perpetrators

could garner a non-negligible number of downloads, effectively making them indistinguishable

from their targets. Any perpetrators that surpasses the static threshold would immediately become

exempt from detection. In that vein, adversaries could theoretically manipulate the basic system

which tracks downloads on these repositories to artificially inflate the popularity of a malicious

package, granting it immunity from the proposed defense. The static differentiation between pop-

ular and unpopular packages basically creates a "gray area" of targets and perpetrators near the

boundary. This "gray area" is likely responsible for most of this system’s false negatives and false

positives.

6.2.3 Typosquatting Signal Efficacy

Of the hundreds of previously discovered typosquatting attacks against the users of npm and PyPI,

this set of signals were able to detect slightly more than 68%. The reason this figure is not higher is

41

primarily due to extended typosquatting campaigns against two npm packages named js-sha3 and

buffer-xor [44]. The typosquatting perpetrators involved in these campaigns contained stochas-

tic character replacements. For example, these campaigns contained packages like jsmsha3,

js-shas, zs-sha3, js-sxa3, js-sha7, buffez-xor, buffgr-xor, buffer-xov, buffe2-xor,

and bqffer-xor. Although the typos made in these examples are unreasonable, they can still tech-

nically be considered typosquatting due to the context of the extended campaign. Modifying the

signals to detect typosquatting of this nature would effectively revert back to basic edit distance.

Doing this would inevitably and drastically increase the typosquatting detection system’s false

positive rate, as mentioned in Section 5.1. When omitting these campaigns, the aforementioned

signals detect about 81% of historical typosquatting perpetrators. The remaining packages were

undetected predominantly because they contained multiple signals simultaneously. For instance,

mogobd (targeting mongodb) combines the omits and swaps characters while koa-body-parse

(targeting koa-bodyparser) both inserts and removes characters. Combinations of signals are

not checked in this implementation of the proposed defense as it would exponentially increase

execution time, and therefore, the burden imposed on the end user’s workflow.

42

Chapter 7

Conclusion

In recent years, package managers have completely transformed the software development work-

flow. The ability to quickly import packages allows developers to create more complex projects

faster than ever. As a result, package managers have unsurprisingly gained astonishing levels of

popularity. Unfortunately, adversaries began using package managers to spread malware. Due to

the nature in which packages are installed, adversaries were able to employ a technique known as

typosquatting, in which a malicious package is given a name incredibly similar to or confusable

with a popular package. Hundreds of package typosquatting attacks have been orchestrated since

the popularization of package managers.

This thesis focused specifically typosquatting attacks against package repositories. By extend-

ing the techniques used to detect typosquatting domain names, analysis was performed which

uncovers the underlying degree of typosquatting in modern package repositories. The transitive

namespace analysis revealed that typically 0.5% of all packages downloaded from PyPI and 0.1%

of all packages downloaded from npm. Considering the sheer number of downloads each of these

platforms receive each week, these percentages ultimately amount to millions of potentially com-

promised downloads. In an effort to protect users against these attacks, a programmatic defense

against package typosquatting attacks was implemented. The proposed defense warned users of

possible typosquatting during installation. With an average temporal overhead of 2.5%, this de-

fense notified users of both direct and indirect typosquatting by checking not only the requested

package, but the entire dependency tree. Users were presented with all the information regard-

ing the suspected typosquatting attack and were asked to either continue or abort the installation.

Although the presented implementation is far from perfect, it did confirm a majority of past ty-

43

posquatting attacks and even uncovered a novel typosquatting perpetrator that presented serious

security risks.

The results presented in this thesis imply that a proactive, automated defense against pack-

age typosquatting is possible. Developers who make typos during package installation, those who

install a package as a dependency, and application end users who never install packages are all

better protected with the proposed defense. Repository maintainers could comfortably incorporate

a typosquatting check to their official package manager releases thanks mainly to the low temporal

overhead. Researchers can view this work simply as a single step towards protecting the use-

ful package managers which have become commonplace in contemporary software development.

Natural extensions of the work done in this thesis include improving the typosquatting signals and

definition of popularity. The typosquatting signals constitute much of the defense’s core func-

tionality. More advanced signals will undoubtedly be able to detect more elaborate typosquatting

perpetrators while simultaneously minimizing false positives.

Alternative applications of this proposed solution can be adopted to gain a variety of advan-

tages. The implementation described in this thesis heavily relies on experienced and diligent users

making the right decisions. Furthermore, it does nothing to prevent repository namespace pollu-

tion which can cause the previously discussed confusion that packages consumers may face when

using a repository with the sheer scale of npm. If repository maintainers prefer to reduce clutter

in their namespaces, the typosquatting check performed during package installation could instead

be performed during package creation. Before a package is allowed to exist on the repository, it

must be cleared of typosquatting. This solution would effectively extend the existing typosquat-

ting defenses employed by npm discussed in Section 2.6 which check only for punctuation-based

differences on an unknown set of packages. An approach such as this comes with considerable

long-term performance benefits. Rather than typosquatting checks be performed on all packages

for all users during installation (which would certainly test packages that have already been ana-

lyzed millions of times, if not more), the typosquatting check is performed a single time. Also,

this approach could prevent typosquatting packages which contain malware from being offered

44

in the first place, creating a more secure development environment. False positives for a system

implemented in this way, however, would restrict the naming freedom that users currently have on

these platforms. The process of manually investigating and resolving false positive claims could

create a large burden for repository maintainers and should be taken into account before a solution

like this is deployed.

To both protect package naming freedom and eliminate repetitive testing, bulk typosquatting

checks could also be performed by repository maintainers at times of their choosing. Similar to

the strategy which led to the discovery of the loadsh package, the entire namespace could be

analyzed and the most promising leads could be examined further. This, like the first alternative

solution, comes with the added benefit of minimal retesting. Yet, this solution does nothing to

protect users from accidentally installing malicious packages. For that reason, this solution is

ideally implemented alongside the modifications to the package manager. The combination of

these two techniques would both protect users from packages they unintentionally request and

remove packages from the repository which may not be requested frequently.

The definition of popularity dictates what packages can and cannot be considered targets. A

static threshold may be outperformed by a dynamic popularity differential system in which pack-

ages are considered typosquatting if they receive some fraction of the targets downloads, regardless

of what the popularity of the two packages are. Dynamic strategies in this regard could aid in re-

ducing the "gray area" side effect of the static threshold. Finally, improved definitions of package

popularity could prevent adaptive adversaries from circumventing defenses. Taking the number of

dependents into consideration may develop a more robust interpretation of popularity. These ideas

are the next steps towards the everlasting goals of improving digital security and safeguarding the

welfare of software developers around the world.

45

References

[1] Agten, P., Joosen, W., Piessens, F., & Nikiforakis, N. (2015). Seven months’ worth of mis-

takes: A longitudinal study of typosquatting abuse. In Proceedings of the 22nd Network and

Distributed System Security Symposium (NDSS 2015): Internet Society.

[2] Alrwais, S., Yuan, K., Alowaisheq, E., Li, Z., & Wang, X. (2014). Understanding the dark

side of domain parking. In 23rd {USENIX} Security Symposium ({USENIX} Security 14) (pp.

207–222).

[3] Bengtson, W. (2018). Defensive typosquatting packages created by pypi user wbengtson.

https://pypi.org/user/wbengtson/.

[4] Bullock, M. (2017). Python package: pypi-parker. https://pypi.org/project/

pypi-parker/.

[5] Cappos, J., Samuel, J., Baker, S., & Hartman, J. H. (2008). A look in the mirror: attacks on

package managers. In CCS.

[6] Chakradeo, S., Reaves, B., Traynor, P., & Enck, W. (2013). Mast: Triage for market-scale

mobile malware analysis. In Proceedings of the Sixth ACM Conference on Security and Privacy

in Wireless and Mobile Networks, WiSec ’13 (pp. 13–24). New York, NY, USA: ACM.

[7] Chatterjee, R., Doerfler, P., Orgad, H., Havron, S., Palmer, J., Freed, D., Levy, K., Dell, N.,

McCoy, D., & Ristenpart, T. (2018). The spyware used in intimate partner violence. In IEEE

Symposium on Security and Privacy (pp. 441–458).: IEEE Computer Society.

[8] Chiew, K. L., Yong, K. S. C., & Tan, C. L. (2018). A survey of phishing attacks: their types,

vectors and technical approaches. Expert Systems with Applications, 106, 1–20.

46

https://pypi.org/user/wbengtson/
https://pypi.org/project/pypi-parker/
https://pypi.org/project/pypi-parker/

[9] Crussell, J., Gibler, C., & Chen, H. (2015). Andarwin: Scalable detection of android applica-

tion clones based on semantics. IEEE Trans. Mob. Comput., 14(10), 2007–2019.

[10] Denvraver, H. (2019). Malicious packages found to be typo-

squatting in python package index. https://snyk.io/blog/

malicious-packages-found-to-be-typo-squatting-in-pypi/.

[11] Duan, R., Alrawi, O., Kasturi, R. P., Elder, R., Saltaformaggio, B., & Lee, W. (2020).

Measuring and preventing supply chain attacks on package managers. arXiv preprint

arXiv:2002.01139.

[12] Fulton, W. (2015). 14 ways to misspell google... that

still take you to google. https://www.thrillist.com/tech/

ways-to-misspell-google-that-redirect-to-google-domain-names-google-owns.

[13] Gagnon, Peacock, . V. (2020). What is typosquatting? https://www.gapslegal.com/

articles/what-is-typosquatting/.

[14] Gonzalez, H., Stakhanova, N., & Ghorbani, A. A. (2014). Droidkin: Lightweight detection

of android apps similarity. In SecureComm (1), volume 152 of Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications Engineering (pp. 436–453).:

Springer.

[15] Hovsmith, E. (2017). Why brand monitoring is a secu-

rity issue - typosquatting. https://www.anomali.com/blog/

why-brand-monitoring-is-a-security-issue-typosquatting.

[16] ICANN (2020). Domain name dispute resolution policies. https://www.icann.org/

resources/pages/dndr-2012-02-25-en.

[17] Imperva (2020). Phishing attacks. https://www.imperva.com/learn/

application-security/phishing-attack-scam/.

47

https://snyk.io/blog/malicious-packages-found-to-be-typo-squatting-in-pypi/
https://snyk.io/blog/malicious-packages-found-to-be-typo-squatting-in-pypi/
https://www.thrillist.com/tech/ways-to-misspell-google-that-redirect-to-google-domain-names-google-owns
https://www.thrillist.com/tech/ways-to-misspell-google-that-redirect-to-google-domain-names-google-owns
https://www.gapslegal.com/articles/what-is-typosquatting/
https://www.gapslegal.com/articles/what-is-typosquatting/
https://www.anomali.com/blog/why-brand-monitoring-is-a-security-issue-typosquatting
https://www.anomali.com/blog/why-brand-monitoring-is-a-security-issue-typosquatting
https://www.icann.org/resources/pages/dndr-2012-02-25-en
https://www.icann.org/resources/pages/dndr-2012-02-25-en
https://www.imperva.com/learn/application-security/phishing-attack-scam/
https://www.imperva.com/learn/application-security/phishing-attack-scam/

[18] Kintis, P., Miramirkhani, N., Lever, C., Chen, Y., Romero-Gómez, R., Pitropakis, N., Niki-

forakis, N., & Antonakakis, M. (2017). Hiding in plain sight: A longitudinal study of com-

bosquatting abuse. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security (pp. 569–586).

[19] Lhoussain, A. S., Hicham, G., & Abdellah, Y. (2015). Adaptating the levenshtein distance

to contextual spelling correction. International Journal of Computer Science and Applications,

12(1), 127–133.

[20] McAfee (2013). What is typosquatting? https://www.mcafee.com/blogs/consumer/

what-is-typosquatting/.

[21] Miller, F. P., Vandome, A. F., & McBrewster, J. (2009). Levenshtein Distance: Information

Theory, Computer Science, String (Computer Science), String Metric, Damerau?Levenshtein

Distance, Spell Checker, Hamming Distance. Alpha Press.

[22] Moore, T. & Edelman, B. (2010). Measuring the perpetrators and funders of typosquat-

ting. In International Conference on Financial Cryptography and Data Security (pp. 175–191).:

Springer.

[23] Norman, J. (2017). How to protect your domain from typosquatting. https://www.

techspark.co/blog/2017/12/29/protect-domain-typosquatting/.

[24] npm (2020a). loadsh - npm. https://www.npmjs.com/package/loadsh.

[25] npm (2020b). npm by the numbers, official package and download counts. https://www.

npmjs.com/.

[26] npm Maintainers (2014). The npm blog - numeric precision matters: how

npm download counts work. https://blog.npmjs.org/post/92574016600/

numeric-precision-matters-how-npm-download-counts.

48

https://www.mcafee.com/blogs/consumer/what-is-typosquatting/
https://www.mcafee.com/blogs/consumer/what-is-typosquatting/
https://www.techspark.co/blog/2017/12/29/protect-domain-typosquatting/
https://www.techspark.co/blog/2017/12/29/protect-domain-typosquatting/
https://www.npmjs.com/package/loadsh
https://www.npmjs.com/
https://www.npmjs.com/
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts

[27] npm Maintainers (2015). npm-scope | npm documentation. https://docs.npmjs.com/

using-npm/scope.html.

[28] npm Maintainers (2017a). New package moniker rules. https://blog.npmjs.org/post/

168978377570/new-package-moniker-rules.

[29] npm Maintainers (2017b). The npm blog - ’crossenv’ malware on the npm registry. https:

//blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry.

[30] npm Maintainers (2019a). New security insights api: Sneak peek. https://blog.npmjs.

org/post/188234999089/new-security-insights-api-sneak-peek.

[31] npm Maintainers (2019b). npm security insights api preview

part 2: Malware. https://blog.npmjs.org/post/188385634100/

npm-security-insights-api-preview-part-2-malware.

[32] npm Maintainers (2019c). npm security insights api preview part

3: Behavioral analysis. https://blog.npmjs.org/post/189189888357/

npm-security-insights-api-preview-part-3.

[33] npm Security Team (2019a). npm malicious package report - cryptocurrency theft. https:

//www.npmjs.com/advisories/1415.

[34] npm Security Team (2019b). npm malicious package report - passwords and credit cards.

https://www.npmjs.com/advisories/1106.

[35] npm Security Team (2019c). npm malicious package report - reverse shell. https://www.

npmjs.com/advisories/1307.

[36] Research, D. (2018). Don’t get reeled in by financial phish-

ing scams. https://www.domaintools.com/resources/blog/

dont-get-reeled-in-by-financial-phishing-scams.

49

https://docs.npmjs.com/using-npm/scope.html
https://docs.npmjs.com/using-npm/scope.html
https://blog.npmjs.org/post/168978377570/new-package-moniker-rules
https://blog.npmjs.org/post/168978377570/new-package-moniker-rules
https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry
https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry
https://blog.npmjs.org/post/188234999089/new-security-insights-api-sneak-peek
https://blog.npmjs.org/post/188234999089/new-security-insights-api-sneak-peek
https://blog.npmjs.org/post/188385634100/npm-security-insights-api-preview-part-2-malware
https://blog.npmjs.org/post/188385634100/npm-security-insights-api-preview-part-2-malware
https://blog.npmjs.org/post/189189888357/npm-security-insights-api-preview-part-3
https://blog.npmjs.org/post/189189888357/npm-security-insights-api-preview-part-3
https://www.npmjs.com/advisories/1415
https://www.npmjs.com/advisories/1415
https://www.npmjs.com/advisories/1106
https://www.npmjs.com/advisories/1307
https://www.npmjs.com/advisories/1307
https://www.domaintools.com/resources/blog/dont-get-reeled-in-by-financial-phishing-scams
https://www.domaintools.com/resources/blog/dont-get-reeled-in-by-financial-phishing-scams

[37] snyk (2020a). Vulnerability db - npm. https://snyk.io/vuln?type=npm.

[38] snyk (2020b). Vulnerability db - pip. https://snyk.io/vuln?type=pip.

[39] Spaulding, J., Nyang, D., & Mohaisen, A. (2017). Understanding the effectiveness of ty-

posquatting techniques. In Proceedings of the Fifth ACM/IEEE Workshop on Hot Topics in

Web Systems and Technologies, HotWeb ’17 New York, NY, USA: Association for Computing

Machinery.

[40] Stats, P. (2020). Analytics for pypi packages. https://pypistats.org/.

[41] Stufft, D. (2015). Pep 503 – simple repository api. https://www.python.org/dev/peps/

pep-0503/#normalized-names.

[42] Szurdi, J. & Christin, N. (2017). Email typosquatting. In Proceedings of the 2017 Inter-

net Measurement Conference, IMC ’17 (pp. 419–431). New York, NY, USA: Association for

Computing Machinery.

[43] Szurdi, J., Kocso, B., Cseh, G., Spring, J., Felegyhazi, M., & Kanich, C. (2014). The long

“taile” of typosquatting domain names. In 23rd {USENIX} Security Symposium ({USENIX}

Security 14) (pp. 191–206).

[44] Taylor, M., Vaidya, R. K., Davidson, D., Carli, L. D., & Rastogi, V. (2020). Spellbound:

Defending against package typosquatting.

[45] Tompkins, A., Bernasconi, J., Davidson, A., & Toohey, J. (2019). On security vulnerabilities

stemming from the usage of open-source dependencies.

[46] Tschacher, N. P. (2016). Typosquatting in Programming Language Package Managers. Bach-

elor, University of Hamburg, Hamburg.

[47] Tunggal, A. T. (2019). What is typosquatting? https://www.upguard.com/blog/

typosquatting.

50

https://snyk.io/vuln?type=npm
https://snyk.io/vuln?type=pip
https://pypistats.org/
https://www.python.org/dev/peps/pep-0503/#normalized-names
https://www.python.org/dev/peps/pep-0503/#normalized-names
https://www.upguard.com/blog/typosquatting
https://www.upguard.com/blog/typosquatting

[48] Vaidya, R. K., Carli, L. D., Davidson, D., & Rastogi, V. (2019). Security issues in language-

based sofware ecosystems.

[49] Viennot, N., Garcia, E., & Nieh, J. (2014). A measurement study of google play. In ACM

SIGMETRICS Performance Evaluation Review, volume 42 (pp. 221–233).: ACM.

[50] Wang, Y.-M., Beck, D., Wang, J., Verbowski, C., & Daniels, B. (2006). Strider typo-patrol:

Discovery and analysis of systematic typo-squatting. SRUTI, 6(31-36), 2–2.

[51] Wermke, D., Huaman, N., Acar, Y., Reaves, B., Traynor, P., & Fahl, S. (2018). A large scale

investigation of obfuscation use in google play. In Proceedings of the 34th Annual Computer

Security Applications Conference, ACSAC 2018, San Juan, PR, USA, December 03-07, 2018

(pp. 222–235).: ACM.

[52] Zimmermann, M., Staicu, C.-A., & Pradel, M. (2019). Small World with High Risks: A

Study of Security Threats in the npm Ecosystem. In USENIX (pp.1̃7).

51

	Introduction
	Background
	Terminology
	Dependencies
	How Package Managers Work
	Installing Packages
	Creating Packages

	Historical Domain Name Typosquatting
	Historical Package Typosquatting
	Past Typosquatting Defenses
	Legal Domain Name Typosquatting Defenses
	Defensive Domain Name Typosquatting
	User-led Package Typosquatting Defenses
	Maintainer-led Package Typosquatting Defenses

	Review of Related Literature
	Domain Name Typosquatting
	Package Repository Vulnerabilities and Defenses
	General Software Repository Defenses

	Threat Model
	Terminology
	Motivation
	Capabilities

	Technical Details
	Typosquatting Detection Scheme
	Quantifying Popularity
	Package Namespace Analysis
	Package Manager Integration
	Implementation and Infrastructure

	Evaluation
	Results
	Download Distribution
	Popularity Threshold
	Runtime Overhead Analysis

	Discussion
	Undiscovered Typosquatting
	Limitations
	Typosquatting Signal Efficacy

	Conclusion

