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Abstract

Artificial intelligence has been called the fourth wave of industrialization following steam

power, electricity, and computation. The field of aerospace engineering has been significantly im-

pacted by this revolution, presenting the potential to build neural network-based high-performance

autonomous flight systems. This work presents a novel application of machine learning technology

to develop evolving neural network controllers for fixed-wing unmanned aerial systems.

The hypothesis for an artificial neural network being capable of replacing a physics-based au-

topilot system consisting of guidance, navigation, and control, or a combination of these, is eval-

uated and proven through empirical experiments. Building upon widely use supervised learning

methods and its variants, labeled data is generated leveraging non-zero set point linear quadratic

regulator based autopilot systems to train neural network models, thereby developing a novel imi-

tation learning algorithm.

The ultimate goal of this research is to build a robust learning flight controller using low-cost

and engineering level aircraft dynamic model and have the ability to evolve in time. Discovering

the limitations of supervised learning methods, reinforcement learning techniques are employed

to learn directly from data, breaking feedback correlations and dynamic model dependence for a

control system. This manifests into a policy-based neural network controller that is robust towards

un-modeled dynamics and uncertainty in aircraft dynamic model. To fundamentally change flight

controller tuning practices, a unique evolution methodology is developed that directly uses flight

data from a real aircraft: factual dynamic states and the rewards associated with them, in order to

re-train a neural network controller.

This work has the following unique contributions:

1. Novel imitation learning algorithms that mimic “expert” policy decisions using data aggre-
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gation are developed, which allow for unification of guidance and control algorithms into a

single loop using artificial neural networks.

2. A time-based and dynamic model dependent moving window data aggregation algorithm is

uniquely developed to accurately capture aircraft transient behavior and to mitigate neural

network over-fitting, which caused low amplitude and low frequency oscillations in control

predictions.

3. Due to substantial dependence of imitation learning algorithms on “expert” policies and

physics-based flight controllers, reinforcement learning is used, which can train neural net-

work controllers directly from data. Although, the developed neural network controller

was trained using engineering level dynamic model of the aircraft with low-fidelity in low

Reynold’s numbers, it demonstrates unique capabilities to generalize a control policy in a

series of flight tests and exhibits robustness to achieve the desired performance in presence

of external disturbances (cross wind, gust, etc.).

4. In addition to extensive hardware in the loop simulations, this work was uniquely validated

by actual flight tests on a foam-based, pusher, twin-boom Skyhunter aircraft.

5. Reliability and consistency of the longitudinal neural network controller is validated in 15

distinct flight tests, spread over a period of 5 months (November 2019 to March 2020),

consisting of 21 different flight scenarios. Automatic flight missions are deployed to conduct

a fair comparison of linear quadratic regulator and neural network controllers.

6. An evolution technique is developed to re-train artificial neural network flight controllers di-

rectly from flight data and mitigate dependence on aircraft dynamic models, using a modified

Deep Deterministic Policy Gradients algorithm and is implemented via TensorFlow software

to attain the goals of evolution.
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Chapter 1

Introduction

Artificial intelligence (AI) is a fast growing field that attempts to develop autonomous cognitive

systems without the use of formal, explicit, standard programming practices that distinctly define

decision making processes through a set of rules, protocols or mathematical functions. AI lever-

ages the power of machine learning (ML) and the recently discovered potential of deep learning

techniques using highly nonlinear and deep artificial neural networks (ANN) with a huge number of

parameters, to realize this goal. AI has been named as the “fourth wave” of the industrial revolution

that has directly impacted our daily lives, finding applications in agriculture [127, 46, 98, 45, 87],

healthcare [81, 29, 7, 48, 92, 147, 71], natural language processing [144, 106, 35, 105], finance

[61, 139, 41, 37], etc. The aviation industry has also been significantly impacted by this revolution.

Machine learning has found numerous applications in aircraft design [99, 113, 9, 8, 97], defense

[47], autopilot systems [18, 17, 26, 14, 73, 27, 13, 33], etc.

Advancements in autopilot systems are driven by increased use of autonomous unmanned

aerial systems (UAS) in the field of aerospace engineering. UAS or drones are becoming an ac-

tive and rapidly growing area of research among the scientific and engineering community due

to their emergent demand for many civilian applications such as precision agriculture, remote

sensing, aerial 3D mapping or geological surveying, hurricane hunting, search and rescue, etc.

[123, 152, 90, 49]. Both fixed-wing [90] and rotor-craft UAS [49] are finding applications in these

areas. One of the greatest challenges that lies in front of engineers is to tackle the problem of

designing robust guidance and control algorithms for drones, especially for fixed-wing aircraft.

Fixed-wing aircraft must maintain a minimum speed and have many structural and aerodynamic

constraints, characterizing highly nonlinear dynamics that are further amplified by effects from
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external weather conditions and noise on the onboard devices and sensors.

The goal of this research is to develop evolving flight controllers that directly train neural net-

works from real flight data, specifically for fixed-wing aircraft. To begin with, this work tests the

hypothesis of replacing a standard autopilot system with an artificial neural network. In this foun-

dational step, neural network autopilot models are trained using supervised learning techniques

by leveraging existing standard autopilot systems. An imitation learning framework known as the

data aggregation set (DAgger [118, 119]) algorithm is utilized, which aims to mimic a unified GNC

system to fly a fixed-wing UAS. Utilizing nonlinear six-degrees-of-freedom (6-DOF) aircraft sim-

ulations, it is shown that several modifications in the existing imitation learning techniques must

be considered. DAgger algorithm when applied sequentially to augment data along the desired

flight trajectory to train the neural network autopilot is unable to generalize across turning and

straight-line maneuvers, and hence cannot learn to fly stably, eventually terminating the simula-

tion. Monte-Carlo methods when incorporated into the DAgger algorithm allow for sampling of

random data along the desired flight trajectory, proved to be effective to train the neural network

autopilot to fly indefinitely with acceptable tracking errors, but with low frequency oscillations in

aircraft states. The oscillatory behavior is dealt with by introducing a time-based moving window

(Mw) along the trajectory for data addition in conjunction with the standard DAgger algorithm

(MwDAgger). All these models are tested and compared using closed-loop 6-DOF flight simu-

lations, in which 3-dimensional (3D) trajectory tracking and stability in states are evaluated with

evidence supporting the idea that a neural network autopilot can behave as a unified GNC system

and fly a fixed-wing UAS.

After obtaining empirical evidence that a neural network can mimic guidance, and control, in

simulated flight tests, this research explores the goal of learning directly from environment: re-

inforcement learning. A controller is the most complex, important, and integral part of autopilot

systems. In this phase of the research, the hypothesis of replacing a flight controller with an arti-

ficial neural network is tested, with an ambitious goal of directly learning from data and evolving

the flight controller with subsequent flight tests. Thus a controller is formulated and parameterized
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using artificial neural networks that are trained utilizing reinforcement learning techniques. The

greatest challenge in using a learning flight controller onboard an aircraft is that its nonlinear and

unpredictable training nature raises safety concerns that make it difficult to certify the autopilot.

Federal Aviation Administration (FAA) approval requires a high degree of assurance on the air-

worthiness of the onboard guidance, navigation and control software, which can only be met by

deterministic controllers. Verification of adaptive and learning control techniques is at the fore-

front of the aircraft safety assessment and certification process. A straightforward solution to this

problem is to fly the aircraft with two flight controllers running in parallel: a standard GNC system

and an evolving neural network controller. The standard GNC software runs as a backup system in

the mainstream autopilot software while the neural network is in control of the aircraft. This soft-

ware is augmented with a safety monitoring algorithm that tracks and observes the neural network

controls in real-time (and the corresponding predicted aircraft states based on a time horizon), and

raises a safety-critical flag if the aircraft is on the verge of becoming unstable, thereby switching

the control from the learning autopilot to the standard GNC. The safety switching algorithm was

developed in collaboration with the “Robotics Laboratory” at the Kansas State University.

An artificial neural network longitudinal controller for a fixed-wing UAS is trained offline via

reinforcement learning using the Deep Deterministic Policy Gradients (DDPG) learning algorithm

[88]. The training is performed using a linear time invariant (LTI) decoupled longitudinal model

of the aircraft. The neural network controller is tested and validated using LTI and full nonlinear

6-DOF models of the aircraft. It is shown that the neural network controller performs well under

significant noise and disturbance inputs, and is able to generalize its outputs when tested with

the 6-DOF model of the aircraft. Several validation and verification flight tests with the DDPG

trained longitudinal neural network controller are conducted in varying wind conditions using the

Skyhunter UAS platform. Flight test is performed using a backup LQR (linear quadratic regulator)

controller together with the safety monitor switch and it is shown that the switching takes place

safely. The backup LQR controller is part of a “base autopilot” system that runs the whole package

of standard GNC algorithms and is capable of performing fully autonomous flights.
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The base autopilot is tuned and tested thoroughly using the full 6-DOF aircraft model. A to-

tal of 100,000 Monte-Carlo simulation flight tests were performed on the base autopilot with a

broad range of random initial conditions in terms of aircraft states and its inertial position. In all

these simulated flights, the aircraft states, controls and control rates are evaluated against specific

and safety-critical threshold criteria in which it is shown that 99,690 flights (99.69%) passed this

evaluation of stability and boundedness. The decoupled LQR controllers for both lateral and longi-

tudinal dynamics are evaluated using the LTI closed-loop aircraft models. It is found that the LQR

controller has stable (negative) poles, and all modes are sufficiently damped, satisfying a level I

handling quality requirement as specified in MIL-SPEC C 8785.

During initial flight tests, the LQR controller fails to fly the aircraft stably (real aircraft, not

simulation), and imparts unstable lateral and longitudinal oscillations. The LQR controller gains

are tuned during the flight several times to achieve a reliable and robust performance from the

autopilot. In contrast, the DDPG trained neural network controller when activated during the

real flight test exhibits excellent performance and does not require any tuning nor re-training to

acclimate to the real environment. The DDPG neural network exceeds in performance as compared

to the LQR controller in terms of tracking of guidance commands. Not only is the DDPG neural

network able to generalize and adapt to a realistic environment, it is able to perform stable flights

in the presence of high wind conditions in an unstructured environment.

The DDPG longitudinal neural network flight tests are subjected to climb and descend maneu-

vers for which the ANN was not trained in the DDPG-LTI simulation environment. The desired

altitude is changed dynamically while the longitudinal neural network controller is flying the air-

craft autonomously. Note that the LTI model used for training the neural network controller is

only designed around steady-state straight line cruise condition and therefore any controller de-

signed using this model is only valid for small state and control value perturbations around that

trim point. However, the neural network controller is able to follow the altitude commands (via

the longitudinal guidance) while generalizing control outputs and stably climbing and descending

to the desired altitude. Also, the desired airspeed is commanded dynamically while the aircraft is
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in autopilot mode and is flying using the longitudinal neural network controller. The flight tests

show that the DDPG trained neural network is able to follow dynamically changing airspeed and

pitch commands, which are no longer small perturbations around the trim point and still is able to

generalize the control outputs which are stable, not aggressive and safe.

Using the DDPG reinforcement learning algorithm, a lateral neural network controller is also

developed. A unique methodology involving the scheduling of reward function, based on roll angle

and roll rate ranges, is developed to train the lateral neural network controller. This controller is

evaluated using closed-loop LTI simulations and is also subjected to noise. The performance of the

lateral neural network controller is found to be satisfactory with stable control outputs and bounded

control rates.

1.1 Motivation

Autonomous UAS principally involve pre-programmed guidance, navigation and control (GNC)

algorithms. An intelligent GNC system should entail adaptive characteristics that allow the UAS

to take proper decisions in case of a system failure or off-the-norm flight conditions (wind, gust,

turbulence, etc.). Most of the controllers for an aircraft are designed using linearized and decoupled

dynamics of its six-degrees-of-freedom equations of motion (EOM) [116, 136, 83]. The system

dynamics are often linearized around desired trim points that entail specific flight conditions like

steady-state rectilinear flight, level turn and symmetrical pull-up. Therefore, the controllers work

well as long as the aircraft characteristics do not change substantially with respect to its trim point.

However, nonlinear aerodynamics due to external disturbances such as wind, gust, etc, together

with the uncertainties in dynamic model and un-modeled dynamics can degrade the performance

of controllers that rely heavily on aircraft physics-based dynamic models. In a manned aircraft,

skilled pilots can control the aircraft even under abnormal flight conditions; they have the ability

to compensate for nonlinearity and react appropriately. As stated previously, many controllers

rely heavily on physics-based models and are pre-programmed, therefore a flight controller is only

as good as the reliability and accuracy of an aircraft model. Developing high-fidelity aircraft
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dynamic models is very expensive and the progress is usually slow [136]. Such efforts demand

for large financial investments and special facilities. A simple question that confronts this, is: can

we design a flight controller that is capable of generalizing (learning) over a large range of trim

conditions from a low-fidelity, low-cost aircraft dynamic model and still perform on a real aircraft

under extreme external disturbances? This thesis attempts to address this question and validate a

flight controller through real flight tests over a broad flight envelope.

Standard control practices used for designing a flight controller involve classical single-input-

single-output (SISO) techniques, gain scheduling, linear parameter varying, dynamic inversion,

feedback linearization, model predictive and adaptive control. SISO techniques are not practical

for aircraft involving coupled unstable dynamic modes, and especially they are not applicable to

different trim points. Gain scheduling is a widely used technique for designing aircraft controllers

at different trim points; however, there is no systematic procedure for selecting the scheduling

variables [55] and stability is not guaranteed at other than the selected trim points. Linear param-

eter varying [16] attempts to express the nonlinear model of an aircraft at different equilibrium

points based on first order linear approximations. However, these models are valid around the trim

points selected and hence the controllers work well only around the acceptable trim region [93].

Techniques such as dynamic inversion and model predictive control directly and heavily rely on the

accuracy of the aircraft dynamic model. The main driving motivation in this work is to mitigate the

need for high-fidelity physics-based aircraft dynamic model, and develop a method that adapts a

neural network control system across varying trim conditions while preserving previously learned

generalizations, and thus evolving the flight controller.

Designing autonomous UAS, fully capable of performing intelligent guidance and control is

one of the highly challenging tasks in the aerospace engineering field. In recent years, there has

been a tremendous increase in autonomous UAS; however, pre-programed flight controllers cur-

rently used in UAS cannot operate over a broad range of trim conditions, fail to react to unforeseen

failures, and more importantly, the whole design process must be repeated for different UAS plat-

forms. This absence of adaptability is rooted in the lack of intelligence in current flight control
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systems whereas in contrast, a skilled pilot can acclimatize to different flight conditions, safely

perform wide range of maneuvers at the edge of aircraft flight envelope, compensate for aerody-

namics and propulsive nonlinearity, and even improvise during system failures. While pilots learn

and sharpen their skill-sets through several years of flight experience, current autopilot systems

lack such learning ability. This research aims to develop evolving flight control systems that can

learn from each flight experience and ultimately perform at a comparable or better level than skilled

human pilots. The goal is to reduce the dependency of controllers on the quality of physics-based

dynamic models of aircraft and to develop machine learning algorithms that can be used for control

while adding evolving intelligent features towards designing a fully autonomous UAS capable of

flying over a broad range of flight envelope and that gets better after each flight test experience.

Robustness and performance are the most important required characteristics for a fixed-wing

flight controller, especially for flights in unpredictable, uncertain and unstructured environments.

Nature often guarantees the presence of these uncertainties together with exogenous inputs and

disturbances. In the absence of ability to predict such disturbances and their interactions with the

aircraft aerodynamics, robustness of controller and achieving good permanence becomes a major

challenge. Therefore, in order to ascertain a reliable flight control system it becomes intrinsic to

this problem to introduce adaptive controllers that have the capability to interact with the envi-

ronment and evolve by learning during real-time flight operations. This research aims to design

a learning and evolving flight controller for a fixed-wing UAS using artificial neural networks

that are thoroughly flight test validated showcasing repeatability, robustness and performance in

presence of external disturbances.

1.2 Why Artificial Neural Networks

There are many independent and mathematical studies [39, 132, 66, 57, 146, 150] that showcase

the excellent approximation and generalization capabilities of artificial neural networks. One of

the most important work in this area of research is in Reference [39], which shows that artificial

neural networks with only one hidden layer consisting of a sigmoidal activation function(s) can

7



universally approximate any arbitrary but continuous function to an arbitrary degree of accuracy,

given that the number of nodes and size of weights are not constrained. The applications of neural

networks in the field of control systems has proven to be effective for feedback control of nonlinear

systems [53, 111, 15, 86]. It is shown in Reference [132] that neural networks with as few as two

hidden layers are sufficient for feedback stabilization of a nonlinear control system.

A very important study on neural networks was conducted in 1987 by MIT Lincoln Laboratory,

which was directed by Defense Advanced Research Projects Agency (DARPA) [142]. It was

concluded that neural networks will provide the necessary ingredients for the next generation of

intelligent machines. They offer knowledge formation and organization. The major conclusions

from the study were that neural networks can basically replace application-specific software due

to their capability of self-adaptation and learning. And, that the mathematical advances in the

study of neural networks that have been made in the recent years has helped the research to mature

greatly. The study also concluded that significant demonstrations in the use of neural networks

have been made for speech recognition, signal processing robotics, etc. Another major study

conducted at the National Aeronautics and Space Administration (NASA) Ames Research Center

on using artificial neural networks for flight control, concluded that neural network algorithms can

solve certain problems that standard control methods were not able to address effectively [73].

The study indicated that the generalization capabilities may increase robustness characteristics for

control systems designed using artificial neural networks.

1.3 Literature Review

There has been considerable research in utilizing neural networks and applying machine learning

techniques for assisting in the development of autopilots and control systems. However, the work

presented in this thesis is unique as it entails development of neural network flight controllers that

directly learn from data, breaking feedback correlations and generalizing a policy-based control,

with a potential to continuously evolve with subsequent flight tests. The work on using ANNs

for an aircraft autopilot goes back to the year 1991 [140]. Most of the research conducted in
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this area has been concentrated around developing or training neural networks to act as low-level

control systems [60, 104, 122, 17, 36] that compute control surface outputs when provided with

guidance commands. In Reference [26] neural networks are employed for predicting if the stability

augmentation system’s gains are too high. The major difference in the approach presented in this

dissertation is to directly use the neural network as the controller which has all the nonlinear gains

and system embeddings as its internal parameters that generalizes over a large range of system

and environmental conditions. In Reference [140] an artificial neural network is used to output

longitudinal controls using pilot commands as inputs. In Reference [20], neural networks are

used as controllers but they estimate the gains in the varying trim conditions regime using gain

scheduling techniques.

Another major application of ML techniques that use neural networks has been in developing

dynamic models, also known as aircraft system identification [91, 110, 120, 124]. Overall, the

specific areas in which ML based ANN approximations are applied can be broadly categorized

into the following areas:

• Control systems: gain scheduling [20], adaptive [14], nonlinear [27], wing rock [131], de-

coupled controllers [140], optimal control for spacecraft landing [125, 30].

• Aircraft system identification or modeling of flight dynamics [109], modeling of nonlinear

aerodynamics [134], inverse plant model identification for feedback linearization [74, 78].

• Navigation path planning, trajectory optimization [151, 65, 64].

• On-board system failure detection[103], sensor validation [28].

None of the above applications utilize the universal approximation and generalization capabili-

ties of neural networks that can truly build a fully autonomous and intelligent neural network flight

controller. Such neural network controllers have the potential to evolve and learn to generalize

across a wide range of flight envelope and environmental conditions.
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Recently, reinforcement learning techniques, where an agent makes decisions in a simulated

environment, have emerged as a new direction for ML control. The revival of reinforcement learn-

ing for control and the new excitement for this work comes from the use of deep neural networks as

the policy learning agent. In this dissertation the aim is to extend successful reinforcement learning

algorithms from the application to rotary wing aircraft [54, 31, 10, 67, 79, 110, 40, 34, 43, 24, 6, 5,

124, 33, 84] to a fixed-wing aircraft. The fundamental reason behind the application of reinforce-

ment learning techniques limited to this domain is that these types of aircraft (quadcopters) can

often take a “stop-think-act” approach as part of control decisions resulting in very quick align-

ment of neural networks to a steady “hover” state. Quadcopters behave as point mass objects and

do not have the same complexity of a fixed-wing aircraft that has to maintain a minimum velocity

(above stall) to keep flying. This presents a stronger challenge for initial learning as well as more

complicated flight dynamics in the presence of even minimal adverse environmental conditions.

In Reference [119], an imitation learning algorithm is implemented in conjunction with DAg-

ger algorithm for collision avoidance of a quadcopter through difficult forest environments. This

is done using a monocular camera and using input images and correct control surface outputs from

an expert pilot that demonstrates avoiding obstacles. In standard imitation learning paradigms,

researchers use expert policy decisions to train a controller. The control decisions of the expert are

used to provide feedback to the learner such that the learner converges to the expert policy over the

course of training. This type of approach has resulted in state-of-the-art controllers in a variety of

different applications including in robotics and vehicle control e.g. [11, 107, 12]. In the research

herein, this approach is adapted to fixed-wing UAS where policy decisions jointly capture guid-

ance, navigation and control decisions. While previous research has considered using imitation

learning [119] or reinforcement learning e.g. [75, 31, 67, 151] for parts of UAS flight control, the

application of these techniques has been elusive in fixed-wing aircraft, especially towards valida-

tion and verification flight tests.

Reference [151] describes a geometric reinforcement learning algorithm that is applied to the

problem of path planning for single and multiple UAS. The effectiveness is shown via simulations
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and there is no indication about the adaptability and generalization of the learned policies. Ref-

erence [50] presents a reinforcement learning algorithm for motion planning applied to a specific

quadrotor platform, with a suspended weight with the objective of producing minimal residual

oscillations.

Microsoft Research is using machine learning for aerial photogrammetry processing that is

applied to agricultural applications [143]. Their aircraft platform mainly consists of quadrotors

[32]. Unlike Microsoft Research, the approach used here is to design neural network controllers

for high-speed and high-inertia fixed-wing aircraft. Google’s Project Wing, a part of X – The

Moonshot Factory, is focused on developing delivery drones with hybrid rotary and fixed-wing

aircraft platforms [1]. The research involves development of collision avoidance systems using

object detection techniques for making decisions in real-time [2].

Reference [153] presents a technique that utilizes a model predictive controller to train a deep

neural network policy that is applied to a quadrotor platform. In references [5, 33, 6] learning

techniques are implemented on a helicopter using apprenticeship learning algorithms. Based on

the literature surveyed, learning techniques have not been explored extensively to the application

of fixed-wing UAS for developing a fully autonomous system involving guidance and control.

There is one example Reference [148], where reinforcement learning techniques are employed to a

fixed-wing UAS, for navigating through thermal updraft with an objective of autonomous soaring.

However, this application is representative of only path planning and guidance algorithms.

More recent research utilizing reinforcement learning algorithms for hybrid unmanned aerial

systems capable of vertical take-off and landing [149] shows the application of neural networks as

controllers. However, the neural network controller applies only to the quadcopter thrust control

and does not extend to fixed-wing control surfaces which is a crucial difference in this research.

Reference [145] shows application of reinforcement learning techniques to control a flock of un-

manned aerial vehicles. However, only roll angle maneuvers are controlled as an outer loop through

reinforcement learning techniques and the low level control is still performed by standard PID

(Proportional-Integral-Derivative) autopilot systems. Reference [23] presents an application rein-
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forcement learning technique into designing an attitude controller for a fixed-wing aircraft using

proximal policy optimization [126] algorithm; however, only simulated flight tests are conducted

to showcase neural network generalization capabilities.

The application of machine leaning methods being limited to rotary-wing platforms is undoubt-

edly due to higher complexities innate to a fixed-wing aircraft owing to fast changing dynamics

due to high speed and nonlinear, unsteady aerodynamics. In contrast, a rotary wing aircraft flies

relatively slowly, with hovering capabilities, potentially allowing the aircraft to have a minimum

velocity of ‘0’. This leads to slow changing dynamics and almost a linear behavior in the system,

with a capacity to stop, think and act.

1.4 Unique Contributions

1. Empirical evidence demonstrates drawbacks in simple supervised learning algorithms, such

as data aggregation set, that collect fixed labeled data sequentially, and are not applicable to

complex flight missions for a nonlinear fixed-wing aircraft. Monte-Carlo DAgger algorithm

that can aggregate variable data needed to train an artificial neural network along complex

flight paths is developed to successfully mimic an “expert” guidance, navigation, and control

policy.

2. A novel imitation learning algorithm called Moving Window DAgger that can generalize

over complex flight paths without causing oscillations in aircraft states is developed for train-

ing neural networks. A time-based window that successfully captures aircraft transient be-

havior and hence mitigates oscillatory and over-fitted predictions is employed in the standard

DAgger algorithm for data collection along the flight trajectory.

3. The imitation neural network models inherently depend on the “expert” policy that in turn de-

pends on flight controllers, which are designed using physics-based aircraft models. There-

fore, in order to design neural network controllers that are aircraft model agnostic, rein-

forcement learning techniques are used. Neural network controllers are directly trained from

12



data generated using engineering level dynamic model of the aircraft with low-fidelity in

low Reynold’s numbers. The neural network controller demonstrated unique capabilities to

generalize a control policy in a series of flight tests and exhibits robustness to achieve the

desired performance in presence of external disturbances (cross wind, gust, etc.).

4. Extensive Monte-Carlo software in the loop simulation flight tests are conducted to verify

the developed neural network flight controller. Hardware in the loop tests are also conducted

after implementing the neural network controller onboard the aircraft computer, and finally

it is flight tested using a Skyhunter UAS that exhibits nonlinear characteristics and is a foam-

based, twin-boom, pusher aircraft.

5. The longitudinal neural network controller trained using reinforcement learning and low-

fidelity aircraft dynamic model is validated for performance in 15 distinct flight tests, spread

over a period of 5 months (November 2019 to March 2020), consisting of 21 different flight

conditions. Flight missions consisting of automatic deployments based on aircraft’s inertial

location are programmed on the onboard flight computer. The missions are activated through

the ground control station to conduct a fair assessment and comparison of LQR and neural

network flight controllers.

6. The Deep Deterministic Policy Gradients (DDPG), a reinforcement learning algorithm, is

implemented to re-train and evolve the longitudinal neural network flight controller directly

from realistic flight data. Portions of the DDPG algorithm are extracted and modified to

implement the evolution learning paradigm using TensorFlow software [4].
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Chapter 2

Theory and Background

2.1 Guidance, Navigation and Control

A complete autonomous software for an aerospace vehicle consists of individual guidance, navi-

gation and control (GNC) algorithms. Each of these GN&C algorithms as laid out in blue boxes

of Figure 2.1 entail an inherent level of complexity in terms of computation, processing of sensor-

state-measurement information, and intra-signal exchange among algorithms [76]. Navigation al-

gorithms (where am I?) generally consist of sensor - instrumentation data acquisition, pre-processing,

signal conditioning, filtering, etc. Kalman filtering algorithms that perform real time state estima-

tion are a part of the navigation block. The navigation system accepts inputs (raw data) from

various sensors such as Global Positioning System (GPS), Inertial Measurement Unit (IMU), Dif-

ferential Pressure Sensor connected to a Pitot Tube, etc.

After the state estimation algorithms and data pre-processing, these state outputs are fed into the

guidance block (where should I go?). Guidance algorithms can be broadly divided into two major

types: (1) path planning, and (2) state commands. In addition to the state estimation inputs, user

Figure 2.1: Navigation→ Guidance→ Control: General Architecture
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defined waypoints are also fed into the guidance block. Using the state information and waypoints,

the path planner finds the trajectory, generally in inertial coordinates that the aircraft needs to

fly at. The path planner can involve optimal path planning algorithms, such as the LQR (Linear

Quadratic Regulator) path planner [129], in conjunction with any automatic collision avoidance

algorithms. The next major part of the guidance block is the state command generator. Generally,

the state command generator can output the desired velocity (airspeed: VTcmd ), altitude (hcmd), pitch

(θcmd) and roll (φcmd) angles [76]. These guidance algorithms are further divided into longitudinal

and lateral logic. Longitudinal guidance generally provides the pitch angle command that the

aircraft nose (body X-axis) should achieve relative to the local geographic horizontal plane, and

velocity command. Lateral guidance outputs the roll angle command, or the approximate bank

angle required to guide the aircraft to the desired lateral path.

Control algorithms (how should I go there?) take the commanded states as inputs and their goal

to reduce the errors between these commands and the actual measured or estimated states. These

algorithms include optimal controllers such as LQR, robust controllers such as H-∞ [56], etc.

This block can also include systems, such as Stability Augmentation System (SAS) and Control

Augmentation System (CAS) to provide further stability to the aircraft. The longitudinal and lateral

guidance outputs serve as inputs to their respective counterpart control algorithms. Longitudinal

control returns the throttle (δt) and elevator (δe) control variables, and Lateral control returns the

aileron (δa) and rudder (δr) control variables, see Figure 2.1.

To provide a complete picture of the software architecture used for GNC simulation based

design, tuning, and tests; the last block on the far right of Figure 2.1 depicts the full six-degrees-

of-freedom (6-DOF), equations of motion (EOM) of the aircraft. In a real flight test, this is simply

replaced by the aircraft itself or the sensors that measure its states.

2.2 Aircraft Equations of Motion

For this research a “Skyhunter” UAS platform is used for various simulations and flight test exper-

iments, see Section 3.1. A 6-DOF rigid body model for Skyhunter is developed using the approach

15



in Reference [136]. Skyhunter is a twin-boom aircraft, equipped with a pusher electric motor, and

three aerodynamic control surfaces: one elevator, one set of differential ailerons and two rudders.

The nonlinear equations of motion are represented in 2.1. Here, {u,v,w} and {p,q,r} are the

translational and angular velocity components respectively defined in the aircraft body coordinate

frame. The 3-dimensional (3D) position coordinates are defined in an inertial right-handed frame

of reference called as NED (North-East-Down), and the corresponding inertial coordinates are de-

noted as: {N,E,D}. The Euler or the attitude angles are denoted by: {φ ,θ ,ψ}. The body-axis

aerodynamic forces and moments are denoted as: {XA,YA,ZA} and {LA,MA,NA}, respectively, and

{XT } is the thrust force in the body X-axis direction.

u̇ =
(XT +XA)

m
+gx + rv−qw (2.1a)

v̇ =
YA

m
+gy− ru+ pw (2.1b)

ẇ =
ZA

m
+gz +qu− pv (2.1c)

ṗ = (IzzL+ IxzN− (Ixz(Iyy− Ixx− Izz)p+((I2
xz)+ Izz(Izz− Iyy))r)q)/(IxxIzz− (I2

xz)) (2.1d)

q̇ = (M− (Ixx− Izz)pr− Ixz((p2)− (r2)))/Iyy (2.1e)

ṙ = (IxzL+ IxxN +(Ixz(Iyy− Ixx− Izz)r+((I2
xz)+ Ixx(Ixx− Iyy))p)q)/(IxxIzz− (I2

xz)) (2.1f)

ẊI = (cosθ cosψ)u− (cosφ sinψ− sinφ sinθ cosψ)v+(sinφ sinψ + cosφ sinθ cosψ)w (2.1g)

ẎI = (cosθ sinψ)u+(cosφ cosψ + sinφ sinθ sinψ)v− (sinφ cosψ− cosφ sinθ sinψ)w (2.1h)

ŻI =−(sinθ)u+(sinφ cosθ)v+(cosφ cosθ)w (2.1i)

φ̇ = P+ tanθ(Qsinφ +Rcosφ) (2.1j)

θ̇ = Qcosφ −Rsinφ (2.1k)

ψ̇ = (Qsinφ +Rcosφ)/cosθ (2.1l)

The terms {Ixx, Iyy, Izz} are the moments of inertia of the aircraft and {Ixy, Iyz, Ixz} are the prod-

ucts of inertia [135]. As an instance, Ixx =
�

body(y
2 + z2)dm, where y and z are the position vector
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components of a small point mass on the aircraft (dm). They are generally represented in the inertia

matrix (JI), which is symmetric and is defined as in Equation 2.2.


Ixx −Ixy Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

 (2.2)

The dynamics of the pusher electric motor, elevator, aileron and rudder servos are modeled as

first order differential equations with time constants {τt ,τe,τa,τr} respectively and the servo states

are denoted as: {δt ,δe,δa,δr}, respectively. Mass of the aircraft is denoted as m.

In the above Equations 2.1, {gx,gy,gz} are the gravitational acceleration components in the

aircraft body-axis. These are represented by Equations 2.3.

gx = gsinθ (2.3a)

gy = gsinφ cosθ (2.3b)

gz = gcosφ cosθ (2.3c)

In Equations 2.1, the first three sub-equations are replaced with the following states: total ve-

locity (VT ), angle of attack (α) and the side slip angle (β ) for implementation in the simulator. The

relationship between translational aircraft velocities and these states are represented in Equations

2.4 and 2.5.

u =VT cosα cosβ (2.4a)

v =VT sinβ (2.4b)

w =VT sinα cosβ (2.4c)

VT =
√

u2 + v2 +w2 (2.5a)

α = sin−1
( v

VT

)
(2.5b)

β = tan−1
(w

u

)
(2.5c)

The differential equations for {VT ,α,β} are shown in Equation 2.6.
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V̇T =
uu̇+ vv̇+wẇ

VT
(2.6a)

α̇ =
uẇ−wu̇
u2 +w2

(2.6b)

β̇ =
v̇(u2 +w2)− v(uu̇+wẇ)

VT
2
√

u2 +w2
(2.6c)

The servo dynamics, Equations 2.7 are modeled as first order ordinary differential equations.

The variables δtx ,δex ,δax ,δrx are the previous step integrated values or the actual servo deflections

for throttle, elevator, aileron, and rudder, respectively, which the aircraft actually experiences. The

variables δt ,δe,δa,δr are the commanded values of these control surfaces.

δ̇t =−
1
τt

δtx +
1
τt

δt (2.7a)

δ̇e =−
1
τe

δex +
1
τe

δe (2.7b)

δ̇a =−
1
τa

δax +
1
τa

δa (2.7c)

δ̇r =−
1
τr

δrx +
1
τr

δr (2.7d)

The states from equations of motion, Equations 2.1 are augmented with servo dynamics (Equa-

tions 2.7) to represent the complete EOM of the aircraft that take into account the actuator dynam-

ics. Therefore, the complete state vector consists of 16 variables:

X =
[
VT ,α,β ,φ ,θ ,ψ, p,q,r,N,E,D,δtx ,δex ,δax ,δrx

]T (2.8)

The control vector consists of four variables:

U =
[
δt ,δe,δa,δr]

T (2.9)

Therefore, the complete set of coupled nonlinear differential EOMs are represented in 2.10.

Ẋ = f(X,U) (2.10)
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2.3 Base Autopilot

The base autopilot software consists of standard decoupled guidance and control algorithms, with

a top-level path follower (waypoint switching logic). The base autopilot is designed around and

tested to perform race-track trajectory tracking, altitude and velocity holds, and navigating via four

waypoints defined by a user.

The path follower module of the software enables the guidance to follow straight waypoint

lines comprised of two waypoints at an instant (wpt1 and wpt2). The path follower switches to

the next two waypoints from a set of waypoints defined by a user, when the aircraft comes in

close proximity (switching distance) to a waypoint (wpt2). This switching distance is a function of

heading change, minimum turn radius of the aircraft and the GPS velocity (Vgps).

Figure 2.2: Base Autopilot

Decoupled lateral and longitudinal guidance produce roll and pitch commands respectively.

The Lateral controller is designed using a NZSP-LQR algorithm [59]. The longitudinal controller

is a command tracking LQR algorithm that minimizes the integral error for airspeed and pitch

angle commands. For designing the decoupled controllers, separate linear time invariant (LTI)

models for lateral and longitudinal dynamics are used. A LTI model equation is shown in 2.11.

ẋ = Ax+Bu (2.11)

In Equation 2.11, x is the state vector and u is the control vector. The system matrices are
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defined as A and B. The controller is designed assuming full state feedback.

2.3.1 Guidance

Lateral Guidance: The guidance algorithm used for roll command is inspired by L+
2 algorithm

as described in Reference [38]. For completeness, the main equations are detailed here. The

algorithm mainly computes a lateral centripetal acceleration, see Equation 2.12, that is required to

follow a circular arc that connects from the aircraft’s current location to a reference point (RP) on

the desired path, see Figure 2.3.

Figure 2.3: Roll Angle Attitude Guidance Logic

alat = 2
VXY

T ∗
sin(ηlat) (2.12)

As shown in Figure 2.3, the lateral acceleration is generated to minimize the ηlat angle so as

to follow a line of sight path towards the desired trajectory. ηlat is the angle between the aircraft’s

ground speed VXY (L2 norm of XY components of
−−→
Vgps) vector and an imaginary

−→
Llat vector. The

−→
Llat vector is defined by its magnitude called the lookahead distance and is a guidance tuning

parameter. Based on the lookahead distance and the aircraft location, a line is projected from the
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aircraft to the desired waypoint path. The intersection point of this
−→
Llat vector with the desired

waypoint path, is called the reference point (RP). This guidance law was designed by applying a

suitable modification to its original counterpart presented in [108]. The L+
2 logic compensates for

roll response lag, and mitigates the dependency of pole location of roll dynamics on VXY . Here,

T ∗ is a constant, the value of which should be selected around three to four times the roll response

lag of the aircraft, as shown in Reference [38]. Using the lateral acceleration (alat) from Equation

2.12, the roll command can be computed as shown in Equation 2.13. Here, g is the gravitational

acceleration constant.

φcmd = tan−1
(alat

g

)
(2.13)

The complete procedure for generating the roll guidance commands is shown in Algorithm 1.

Note that all the vector inputs to this algorithm have finite values for their X and Y components

but their third component is set to zero. The third component is needed to make the cross products

work.

Figure 2.4: Pitch Angle Attitude Guidance Logic

Longitudinal Guidance: This guidance algorithm generates a pitch attitude command and is
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Algorithm 1 Roll Command Guidance

Inputs: L1,T ∗,−→w1,
−→w2,~P,

−−→
VXY ,φlimit

Output: φcmd

1: Vector from −→w1 to UAV position ~P
−→w1P = ~P−−→w1

2: Vector from −→w1 to −→w2−→w12 =
−→w2−−→w1

3: Perpendicular distance or the shortest distance from the UAV to the waypoint line
pd = ||−−→w1P×−→w12||2

||−→w12||2
4: Distance from −→w1 to the intersection point (shortest distance point) of the perpendicular line

from UAV
w1d =

−−→w1P·−→w12
||−→w12||2

5: Angle between waypoint line and X-North axis: desired heading
ψd = tan−1

−→w12(y)−→w12(x)

6: Distance between shortest distance point and RP (RP = intersection point of
−→
Llat vector with

the waypoint line)

dRP =
√

L2
1− p2

d
7: Coordinates of the intersection point RP

−→
RP =

−→w1(x)+(w1d +dRP)cos(ψd)−→w1(y)+(w1d +dRP)sin(ψd)
~P(z)


8: The lookahead vector−→

Llat =
−→
RP−~P

9: Cross track error angle: ηlat

ηlat = sin−1 ||
−−→
VXY×

−→
L1||2

||−−→VXY ||2||
−→
L1||2

10: Lateral Acceleration
alat = 2 ||VXY ||2

T ∗ sin(ηlat)
11: Roll angle command

φcmd = sgn((
−−→
VXY ×

−→
L1)(z)) tan−1

(
alat
g

)
12: if |φcmd|> φlimit then
13: |φcmd|= sgn(φcmd)φlimit
14: end if

22



designed based on a lookahead distance in a decoupled vertical plane that places a waypoint line

in the direction of ground speed (VXY ) at the desired altitude. The geometry of this guidance is

represented in Figure 2.4. The desired path is represented by a blue line. The algorithm projects

a straight line (shown in yellow) in the direction of ground speed VXY but at an altitude of the

desired path. Using this projected waypoint path, the ηlon angle is computed between the
−−→
Llon and

−−→
Vgps(≡

−−→
VXY Z) vectors as shown in Figure 2.4. The goal is to minimize the ηlon angle by generating

an equivalent pitch command. This ηlon angle is passed through a sigmoid type function to smooth

out any abrupt variations and is multiplied by a scaling factor to generate the pitch command

(θcmd). The complete algorithm for pitch attitude guidance is shown in Algorithm 2.

2.3.2 Control

Lateral Controller: The lateral controller is designed to regulate four states and also command

two states to a non-zero value. The four lateral states for this controller are: side slip angle (β ), roll

angle (φ ), roll rate (P) and yaw rate (R). All of these four states are regulated to zero values, but

the side slip angle and the roll angle are also commanded to some non-zero values generated by

the lateral guidance algorithm. The lateral state vector (x) and the control vector (u) are defined in

Equations 2.14. Note that the controllers are designed using the linear time invariant model (LTI)

of the aircraft which is obtained by perturbation around a trim point. Hence, the states and controls

involved in this design are also perturbed and not total values.

x =

[
β φ P R

]T
(2.14a)

u =

[
δa δr

]T
(2.14b)

A non-zero set-point (NZSP) lateral controller [59] is used to control the roll and side-slip

angles of the aircraft. In order to control these variables to non-zero values, new state and control

trim points are defined as x∗ and u∗, respectively. The new trim point x∗ is assumed to have the

same LTI dynamics as x, see Equation 2.15a. Therefore, the error in states and controls for the
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Algorithm 2 Pitch Command Guidance

Inputs: Llon,Hd,~P,
−−→
VXY Z,θlimit

Output: θcmd

1: Perpendicular distance or the shortest distance from the UAV to the desired altitude
pd = |−Hd−~P(z)|

2: Coordinates of the intersection point (shortest distance point) of the perpendicular line from
UAV to the imaginary waypoint line in the vertical plane

−→w1d =
[
~P(x) ~P(y) −Hd

]
3: Ground course or aircraft heading from GPS ground speed - VXY

ψGPS = tan−1
−−→
VXY Z(y)−−→
VXY Z(x)

4: Coordinates of a point Llon distance away from −→w1d in the opposite direction of
−−→
VXY−→

w− =
[−→w1d(x)−Llon cos(ψGPS)

−→w1d(y)−Llon sin(ψGPS)
−→w1d(z)

]
5: Distance between shortest distance point and RP (RP = intersection point of

−−→
Llon vector with

the waypoint line)

dRP =
√

L2
lon− p2

d
6: Coordinates of the intersection point RP

−→
RP =


−→
w−(x)+(Llon +dRP)cos(ψGPS)−→
w−(y)+(Llon +dRP)sin(ψGPS)−→

w−(z)


7: The lookahead vector−−→

Llon =
−→
RP−~P

8: Angle between
−−→
Llon vector and the horizontal plane

Γ = tan−1
−−→
Llon(z)√−−→

Llon(x)2+
−−→
Llon(y)2

9: Flight Path Angle

γ = tan−1
−−→
VXY Z(z)√−−→

VXY Z(x)2+
−−→
VXY Z(y)2

10: Vertical track error angle: ηlon

ηlon = sin−1 ||
−−→
VXY Z×

−−→
Llon||2

||−−→VXYY ||2||
−−→
Llon||2

11: Pitch angle command
θcmd = sgn(γ−Γ)θlimit

eηlon−e−ηlon

eηlon+e−ηlon
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original trim points x and u with respect to the new trim points are as shown in Equations 2.15b.

From Equations 2.15a and 2.15b, the error dynamics can be derived as shown in Equation 2.15c.

ẋ = Ax+Bu and ẋ∗ = Ax∗+Bu∗ (2.15a)

x̃ = x−x∗ and ũ = u−u∗ (2.15b)

˙̃x = Ax̃+Bũ (2.15c)

The goal of the LQR control theory is to minimize a cost function J, using Q and R weighting

matrices, in order to solve for control, see Equation 2.16.

J =

� (
x̃T Qx̃+ ũT Rũ

)
dt (2.16a)

ũ =−Klat x̃ (2.16b)

The dynamic system equations are shown in 2.17. From these equations, it can be seen that the

new trim state (x∗) has the same system matrices A and B. At steady state, ẋ∗→ 0 and the system

output reaches the commanded states, that is, y→ ym.

ẋ∗ = Ax∗+Bu∗ (2.17a)

y = Hx∗+Du∗ (2.17b)

Therefore, at steady-state, the new system is shown in Equations 2.18. The matrix shown on

the left hand side of this equation, consisting of elements: A,B,H,D is called the Quad-Partition-

Matrix (QPM). This equation can be solved if the QPM is full rank, by taking its inverse, to obtain

the values for x∗ and u∗, as shown in Equations 2.18.

A B

H D


x∗

u∗

=

 0

ym

 (2.18a)
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Figure 2.5: Non Zero Set Point Lateral Controller

x∗

u∗

=

A B

H D


−1 0

ym

 (2.18b)

x∗

u∗

=

X11 X12

X21 X22


 0

ym

 (2.18c)

From Equations 2.15b and 2.16b, it can be seen that u = u∗+Klatx∗−Klatx. Therefore, using

the values for x∗, u∗ the final control is computed as shown in Equation 2.19.

u = (X22 +KlatX12)ym−Klatx (2.19)

Here, X22 and X12 are elements of the inverse of QPM. Klat is a 2× 4 matrix, with first row

representing gains that regulate the state vector (x) using aileron controls (δa), in the respective

order of elements of the state vector, and similarly the second row represents gains that regulate

the state vector using rudder controls. ym is a 2×1 vector consisting of state commands for the roll

and the side-slip angles. X12 and X22 are 4×2 and 2×2 matrices respectively, which convert the

state guidance commands to non-zero set point inputs to the regulator. The controller architecture

is represented in Figure 2.5.

Longitudinal Controller: The longitudinal state and control vectors are shown in Equations

2.20. These four states are regulated to zero and two more integral states are added for command

tracking of airspeed and pitch angle. Here, VT is the total velocity which is assumed to be approx-

imately equal to the forward airspeed (u), α is the angle of attack, θ is the pitch angle, and Q is
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pitch rate.

x =

[
VT α θ Q

]T
(2.20a)

u =

[
δt δe

]T
(2.20b)

The new state vector after augmenting the integral errors states is shown in Equation 2.21a.

Assuming full state feedback, the new system equations are shown in 2.21b, see Reference [22].

xaug =

[
VT α θ Q

�
VTcmd −VT

�
θcmd−θ

]T
(2.21a)

ẋaug = Aaugxaug +Baugu (2.21b)

Using LQR cost function, J and weighting matrices Q and R, the longitudinal control gain

matrix (Klon) can be computed as shown in Equation 2.22.

u =−Klonx (2.22)

The Klon gain matrix is a 2×6 matrix, with the first four columns with both rows representing

the gains for regulating the states, and the last two columns with both rows are the gains for the

integral error states. The control input generated by this equation can end up accumulating integral

errors and hence saturate to the maximum allowable control values. Therefore, if the control input

saturates, then an anti-windup integral logic is used to reduce the control input. The control input

u is assigned the maximum allowable value, if it increases the limit and it is denoted as usat,

otherwise it is simply usat = u. An anti-windup gain (Kaw) is multiplied with this error: usat−u

and added to the actual integral state errors (xint =
[�

VTcmd−VT
�

θcmd−θ
]T ). Then the controls

for the integral error states is computed as shown in Equation 2.23, where Kint (2×2 matrix) is a

part of the Klon matrix.

uint =

�
Kint(xint +Kaw(usat−u))dt (2.23)
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The final control input is computed using the difference between utrim and uint as shown in

Equation 2.24, where utrim = Ktrimx and Ktrim (2×4 matrix) is a part of the Klon gain matrix.

u = utrim−uint (2.24)

2.4 GNC to Artificial Neural Networks

Artificial neural networks or specifically feedforward neural networks are multi-layer perceptrons

(MLPs) that in essence approximate complex relationships between inputs and outputs (mapping)

and can operate as highly nonlinear functions or functions of functions (multiple layers) [58] that

are parameterized by entities known as weights (w) and biases (b). ANNs can be thought of as

nonlinear function approximation entities that generalize (statistically) over a large population of

data, and are loosely inspired by the functioning of a human brain, containing hidden units (nodes

or neurons) that perform computations in parallel, see Figure 2.6. Multi-layer ANNs are capable

of performing nonlinear mapping and address the limitations inherent to single layered networks

[89].

Figure 2.6: Artificial Neural Network: General Architecture

A single layer fully connected neural network parameterized by weights and biases, with a

sigmoidal function can be represented as follows:
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f (x|w,b) = σ(xT w+b) (2.25)

Here, x is the input to the neural network and σ is a sigmoidal type smoothing function, which

can be a sigmoid, tanh (hyperbolic tangent), etc. A neural network’s parameters are estimated

using the so called “supervised learning” algorithms. In supervised learning the input to output

data is given and it is labeled, meaning the inputs that correspond to specific outputs are known.

Therefore, an objective function representing the mean squared error (MSE) between the actual

outputs and the estimated outputs by the neural network, is minimized to estimate the weights and

biases 2.26.

J(w,b) =
1
n

n

∑
i=1

(yi− f (xi|w,b))2 (2.26)

The general ANN architecture shown in Figure 2.6 is composed of three layers: two hidden

and one output. The input stage is loosely called an “input layer” in most literature, however

it is just a representational node. A generic L layer neural network is defined as consisting of

an input stage, (L− 1) hidden layers, and one output layer [69]. Some layers are called hidden,

because the training data does not explicitly represent the internal outputs of the “hidden layers”.

Mathematically, a multi-layer or a deep layer neural network, with two hidden and one output

layers, can be represented as follows [58]:

f (x) = f3( f2( f1(x))) (2.27)

Comparing the properties of neural networks with a standard GNC system, it is empirically

tested if the whole complex process of navigation→ guidance→ control can be learned with high

enough fidelity for a stable flight by a neural network. A theoretical GNC block diagram to a neural

network transformation is depicted in Figure 2.7.

Consider that the navigation block has an input vector consisting of state
−→
S1 , thereby outputting

a vector of state
−→
S2 . The state

−→
S2 can be realized to include the feedback term from the sensor
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Figure 2.7: GNC to Deep Neural Network

measured states before becoming an input to a function f2 and so forth. The main control output,

represented here by
−→
S4 , can be considered an output of a functional (function of functions) shown as

−→
S4 = f3( f2( f1(

−→
S1))). This is a general notion to show how a holistic GNC system, or its individual

algorithms can be represented through a neural network that can learn its internal representations

through data alone, without explicitly programming the logic and tuning the GNC parameters

manually. Note, that the number of neural network layers required to perform this representation

can vary significantly depending on the complexity of the problem at hand, the input states chosen,

etc.

2.5 Artificial Neural Networks: Training

Artificial neural networks are generally trained using supervised learning techniques. Training an

ANN means estimating its internal parameters: weights and biases, see Equation 2.25. The term

supervised learning originates from the idea of a teacher teaching a student by simply associating

correct answers to the questions in concern. For an ANN the questions correspond to inputs and

the correct answers correspond to targets. In other words, the data given to a neural network

is labeled, in a sense that the correct targets to the respective inputs are known in a supervised
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learning paradigm. These supervised learning techniques utilize back-propagation [121] procedure

and gradient descent algorithms to estimate the internal parameters of an ANN. Back-propagation

algorithm provides a method of computing the gradients of the objective function with respect to

the internal parameters of the network. Gradient descent is used to iteratively optimize the ANN

parameters by driving the objective function to a low value.

2.5.1 Back-Propagation and Gradient Descent

Back-propagation, or simply referred to as backprop algorithm [58] is a method to compute gra-

dients of a objective or cost function with respect to internal parameters of an ANN by back-

propagating the errors or cost through multiple layers of the network. There is often a misconcep-

tion that backprop is the complete algorithm that estimates these internal parameters. Backprop

only refers to the method that provides gradients and propagates errors to the deep layers back-

wards (output→ input). In contrast, the information flows in the forward direction from input to

output in a typical neural network when it is used for prediction.

Backprop algorithm takes advantage of the chain rule of calculus to compute gradients for a

neural network, and using these gradients the weights and biases are updated in the descending

direction, that is applying gradient descent. Consider a single layer feedforward network with a

sigmoid function as the activation:

ŷ = σ(wx+b) (2.28)

Here, x is the input, w is the weight, b is the bias, ŷ is the predicted output and σ is the sigmoid

activation function, see Equation 2.29.

σ(z) =
ez

ez +1
(2.29)

Here, z = wx+b. Let the loss function be defined as follows:
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L(y, ŷ) =
n

∑
i=1

(yi− ŷi)
2 (2.30)

Then, the derivative of a weight in the output layer can be derived as follows:

δL
δw

=
δL
δ ŷ

δ ŷ
δ z

δ z
δw

(2.31a)

δL
δw

= 2(y− ŷ)σ(z)(1−σ(z))x (2.31b)

Here, σ(z)(1−σ(z)) is the derivative of the sigmoid function. The derivative computation for

a bias parameter follows the similar method and can be derived in a straightforward way. This

chain rule methodology can be extended to multiple layers by computing the gradients of the loss

function to a weight which is situated further behind the output layer. After finding the derivative

of a parameter (in this case w), the weight can be updated using gradient descent as follows:

wn+1 = wn−αlr

(
δL
δw

)
(2.32)

The learning parameter αlr must be chosen to be a small number (0 < αlr << 1) to update

the parameters slowly and prevent overshooting the minima of the loss function. Intuitively, the

gradients provide useful information about the loss function regarding the direction in which the

internal parameters should be changed in order to minimize the cost. There are certain practical

and numerical issues that arise while following the straightforward gradient descent rule. When

the gradients at a certain point are zero, then there is essentially no information about the direction

to take for minimization. These points are known as critical points and can consist of undesired

places such as local minima and saddle points. In a highly nonlinear neural network with deep

layers and multi-dimensional inputs and outputs, numerous local minima and saddle points can

exist. Other numerical minimization problems arise due to non-optimal and fixed learning rates.

To mitigate these issues, second order gradient methods can be utilized.

The second derivative or gradient of the gradient, which is known as Hessian (multi-dimensional
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inputs and outputs) gives information about how the gradient would change if the internal param-

eters are varied and can be used to detect local minima, local maxima and saddle points. In order

to find the optimal learning rates, second order Taylor series approximation methods can be em-

ployed. Also a much faster class of second order approximation techniques known as Newton’s

methods can be used to directly jump to minimum using Hessian information. Let the Hessian

be denoted by H, and the objective or the loss function be J(θ), where θ is a vector of internal

parameters (weights and biases). A typical Newton iteration to update the θ parameter is shown in

Equation 2.33.

θi = θi−1−H−1
∇θ J(θi−1) (2.33)

The Equation 2.33 is obtained by second order Taylor series approximation of the objective

function J(θi), evaluated at iteration i. However, these methods only work well when the loss

functions are of quadratic nature or when the Hessian is positive definite. In the latter case, New-

ton’s method can be applied iteratively to approximate the internal parameters while finding the

minimum. However, the use of Newton’s method for estimating large number of internal param-

eters for neural networks presents a great computational burden due to inverse Hessian matrix

calculations. This leads to the utilization of a class of methods known as Conjugate Gradient

Methods [62, 52] that avoid the calculation of Hessian inverse.

2.5.2 Scaled Conjugate Gradient Descent Algorithm

Gradient descent methods or methods of steepest descent are applied iteratively to move the loss

function in the decreasing gradient direction. Each iterative step which tends to decrease the loss,

moves in a direction which is essentially orthogonal to the previous descent direction. This makes

the method of steepest descent to move towards the minimum in a zig-zag fashion, making the

overall optimization process relatively slower. In a sense, the iterative directions undo the progress

made at the previous step in terms of finding the minimum. Therefore, conjugate directions [128]
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are used which tend to add some weighted form of previous direction to the current descent direc-

tion. To compute conjugate directions, Eigen vectors of the Hessian matrix can be found in order

to calculate the magnitude of previous direction that is to be added to current direction. However,

Hessian calculations are avoided and the magnitude that incorporates previous search direction,

can be computed by using several well known methods such as Fletcher-Reeves [51] or Polak-

Ribière [115]. Let the current iteration direction be denoted by di, and let a coefficient βi represent

the magnitude of the previous iteration direction. Then, the current direction can be approximated

as shown in Equation 2.34.

di =−∇θ J(θi−1)+βidi−1 (2.34)

Conjugate gradient methods are well known to handle large scale problems and are typically

faster than standard back-propagation gradient descent methods [72, 101]. However, these methods

still involve a computationally demanding step of line search, in which the best or optimal learning

rate is found via minimizing the objective function evaluated with the updated parameters with

a given conjugate direction. Let the optimal learning rate be denoted by α∗lr, then this rate is

estimated by using the following equations:

α
∗
lr = min

αlr

1
m

m

∑
j=1

J(θi) (2.35a)

θi = θi−1 +αlrdi (2.35b)

The Scaled Conjugate Gradient method (SCG) [102] instead uses a Levenberg-Marquardt [85]

approach to compute the learning rate and hence avoids the line search step. First, the Hessian is

approximated by using the first order derivative of the objective function and then a scalar factor

is used to regularize the indefiniteness of the Hessian approximation. The complete details of the

algorithm can be found in Reference [102].
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2.5.3 The Adam Algorithm

Another class of first order algorithms that use adaptive learning rates holds significance for learn-

ing neural network parameters. The learning rate is the most important hyper-parameter that sig-

nificantly affects a model’s performance [58]. The notion of adapting learning rates can be tracked

back to Reference [68], in which a parameter specific learning rate is increased if the derivative

with respect to that parameter does not change sign, and vice-versa. In other methods such as Ada-

Grad [44], the learning rates are inversely scaled using square root of sum of all squared historical

gradients. A slight modification to this algorithm known as RMSProp [63], takes into account

exponentially weighted moving average of the square of gradients, and applies them to scale the

learning rates in a similar way as AdaGrad. Other methods use a momentum term in the gradient

descent step that reduces oscillations in the optimization process. The basic idea of using mo-

mentum is to incorporate an exponentially decaying moving average of the previous gradients in

the current parameter update, see Equation 2.36. Let mi denote the momentum value at learning

iteration i and ε be the momentum or the gradient decay factor.

mi = εmi−1−αlr∇θ J(θi−1) (2.36a)

θi = θi−1 +mi (2.36b)

The Adam algorithm [80] incorporates both the momentum and RMSprop style scaling of learn-

ing rates, as its major learning step. The name Adam reflects the use of “Adaptive Momentum”

in the gradient descent update equations. In a sense, momentum is directly applied to RMSprop

rescaling with a major modification of applying bias corrections to momentum and squared gradi-

ent terms. The gradient is sometimes referred to as the first moment and the square of the gradient

is referred as the second moment. Let ρ1 and ρ2 represent the first moment and second moment

discount factors. Let si denote the second moment value at learning iteration i. The correction in

the moment and second moment terms is represented by m̂ and ŝ respectively. Then the parameter

updated equation in the Adam algorithm can be represented as in Equations 2.37.
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mi = ρ1mi−1 +(1−ρ1)∇θ J(θi−1) (2.37a)

si = ρ2si−1 +(1−ρ2)[∇θ J(θi−1)�∇θ J(θi−1)] (2.37b)

m̂ =
mi

1−ρ1
(2.37c)

ŝ =
si

1−ρ2
(2.37d)

θi = θi−1−αlr
ŝ√

r̂+δ
(2.37e)

Here, δ is a small constant value that provides numerical stabilization by avoiding division by

zero. The Adam algorithm is regarded as a robust learning algorithm in terms of hyper-parameter

tuning [58].

2.6 Imitation Learning: Data Aggregation Set

As previously shown in Figure 2.1, a fully autonomous flight control system for an aerospace vehi-

cle involves three major algorithms: guidance, navigation and control (GNC). The whole system of

algorithms is jointly implemented in a feedback system that minimizes errors in control, guidance,

and trajectory tracking. To design a fully functional GNC autopilot, a very thorough tuning of

guidance parameters, controller gains, and path planning constraints needs to be carried out before

implementing the system onboard an aircraft. The inter-algorithmic couplings, and nonlinear de-

pendence of the G, N, and C blocks makes the task of tuning and designing a robust autopilot very

tedious. The field of machine learning has a wide set of adaptable tools that are capable of learning

these types of complex mappings of inputs to outputs; one of the most widely useful implementa-

tions of adaptive control has been neural networks but this type of adaptive control has been elusive

in fixed-wing autopilots due to added complexity and stability issues. In this section we propose

training a neural network autopilot with one hidden layer to unify and replace the current GNC

system by directly mapping aircraft input variables (dynamic states and distances to waypoints),
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to control surface values. Hence the neural network learns to preserve the meaningful correlations

among the individual GNC blocks by simultaneously updating its parameters (weights and biases)

to output optimal control values.

The neural network autopilot is trained on supervised data from an “expert” GNC policy imple-

mented via closed-loop 6-DOF flight simulations. The data is generated in a collaborative manner,

using the neural network in training and the GNC system, by applying a modified data aggregation

set, DAgger [118] algorithm. When using the standard implementation of DAgger, we find many

shortcomings that prevent robust learning leading to a neural network autopilot that cannot suc-

cessfully fly the aircraft. Several modifications to the algorithm are proposed to address the specific

problem of a stable fixed-wing UAS flight with multiple conditions, such as steady-state straight

line, level turn, and altitude and airspeed holds. For each modification, the results are quantified

by flight time and other metrics of flight stability.

A novel supervised learning algorithm to train artificial neural networks to behave as fully

autonomous trajectory tracking autopilot for a small fixed-wing UAS is developed. The algorithm

provides a training paradigm that allows the neural network to learn a direct mapping of sensor

states to control values. Strong empirical evidence of drawbacks in standard supervised learning

approaches and proposed solutions to deal with the features of complex 6-DOF dynamics with

varying flight conditions is demonstrated. This leads to certain modifications to data collection

and training, DAgger variants: Monte-Carlo-DAgger (McDAgger) and Moving-Window-DAgger

(MwDAgger).

For the algorithmic implementation and data collection the nonlinear model of a Skyhunter

aircraft is used as the training environment, which is developed using Advanced Aircraft Analysis

(AAA) [42] software, and further tuned using flight test data. The wing span of the aircraft is

5.9 ft, the aircraft weighs about 8.4 pounds, and flies at a cruise speed of 50.63 ft/s. It has been

suitably modified to reinforce its primary structural parts, such as wing, fuselage, etc. with the

addition of winglets for increasing aerodynamic performance. The details of this platform with all

the modifications and an in-depth analysis of flight dynamics can be found in [21].
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Figure 2.8: Guidance, Navigation, and Control Replaced by an Artificial Neural Network Autopilot

2.6.1 Imitation Neural Network Autopilot

The goal of the neural network autopilot is to fly user defined waypoints (in this case: four) while

performing steady-state straight line flight, maintaining altitude and airspeed, including level turns.

The ANN autopilot takes in high level input information and directly maps it to four control vari-

ables (throttle, elevator, aileron, and rudder).

The feedforward artificial neural network used for imitation learning consists of one hidden

layer (35 neurons) and one output layer (4 neurons). All the neurons or nodes are assigned with

tanh activation function. The ANN directly maps higher level features (namely sensor states and

distance to waypoints) to end-effector control surface values, see Figure 2.8 where the box at the

bottom represents the neural network. A feedforward neural network with one hidden layer is

analytically proven to be sufficient to universally approximate any arbitrary measurable function

[66, 39]. The primary goal here is to investigate the unification of GNC algorithms through ANN,

therefore, the main focus is on higher level algorithmic development. Hence, the architecture
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shown in Figure 2.9 would suffice to evaluate the methodology that fulfills this goal of unifica-

tion. For training purposes, MATLAB’s Neural Network toolbox [95] is used. From this Neural

Network toolbox, scaled conjugate gradient descent [102] algorithm, see Section 2.5.2, is used for

training the parameters of the neural network.

Figure 2.9: ANN architecture

Designing a neural network architecture also involves choosing appropriate input variables that

are uncorrelated, so that it can learn a meaningful mapping to outputs. In the case of an aircraft, the

inputs are the dynamic states and outputs are generally four control variables. An aircraft involves

multiple dynamic states that are pertinent to its stable operation, that should be evaluated properly

before choosing them as inputs to a neural network, for example the states can be chosen from a

set of velocity (Va), angle of attack (α), side-slip angle (β ), attitude angles (φ ,θ ) and attitude rates

(P,Q,R). It is stated here with great emphasis, that selection of input states for this research was

extremely challenging. In general, neural networks can learn relatively more efficiently if the cross-

correlations among the inputs are as low as possible. The inputs selected to design a neural network

autopilot should represent maximum causal variability across the outputs, and hence possess all the

characteristics that define the physical dynamic system, in order for the model to learn quickly and,

ideally, learn a set of parameters that generalize well to real world flight.
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The “expert” GNC policy, details in Reference [76], consists of an intelligent path planning

algorithm that uses information from four waypoints (user defined) and the initial position of the

aircraft (where autopilot is turned on) to decide which waypoint to initially follow based on min-

imum change in heading angle. Path planning accounts for waypoint completion and switching

to the next waypoint as the aircraft progresses in its flight trajectory. For our ANN autopilot, we

provide the North-East-Down (NED) distances to each of the four waypoints, as inputs, so that it

will learn to path plan and automatically switch around the waypoints. This ∆NED input to the

ANN autopilot, which consists of 12 variables can be defined as follows:

∆K j =
−→
Wj−

−→
P , K ∈ {N,E,D}, j ∈ [1,4] (2.38a)

−→
Wj = {N j,E j,D j} (2.38b)

−→
P = {Na,Ea,Da} (2.38c)

Here,
−→
Wj is one of the waypoints: {N j,E j,D j} and

−→
P is the aircraft location: {Na,Ea,Da}. In

addition to (∆NED), it would be sufficient to provide the aircraft heading angle as part of the input

representation to capture all the information needed by the path planning block in the “expert”

GNC policy. The guidance algorithm of the “expert” GNC policy provides the roll angle, pitch

angle and airspeed commands (φcmd,θcmd , Vacmd ) as controller inputs. Therefore, it should be

adequate to provide these aircraft states: roll, pitch and airspeed (φ ,θ ,Va), as additional inputs to

the ANN autopilot.

Using the above inputs, the neural network is trained to output control values for throttle (δt),

elevator (δe), aileron (δa), and rudder (δr), with the goal to follow a race-track type trajectory

composed of four waypoints shown as black dots in Figure 2.11.

A single training data point x(i) is defined as the following input vector:

x(i) =
[
∆
(i)
N j
,∆

(i)
E j
,∆

(i)
D j
,φ (i),θ (i),ψ(i),V (i)

a

]
, j ∈ [1,4] (2.39)
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Here, ∆N j ,∆E j ,∆D j are the NED distances of the aircraft from the jth desired waypoint, φ ,θ ,ψ

are the attitude angles, and Va is the airspeed. y(i) is output or target data value at time i and consists

of the control surface variables of the aircraft, namely: throttle, elevator, aileron and rudder.

y(i) =
[
δ
(i)
t ,δ

(i)
e ,δ

(i)
a ,δ

(i)
r

]
. (2.40)

In Equation 2.39, it is important to note that the value of j changes from 1 to 4. Therefore,

the inputs comprise four distances to waypoints as 3D NED vectors. With the other state inputs,

the inputs add up-to a total of 16. These inputs are chosen for a specific case of four waypoints

only; however, it is noted here that the value of j can be arbitrary, that is, it can go up-to a positive

integer n. Hence, by changing the input architecture a neural network autopilot can be trained to

fly the aircraft to follow any number of waypoints.

The input-output labelled data is generated using the “expert” GNC policy. There are multiple

ways to gather this data, the simplest way would be to fly the GNC on its normal race-track flight

path, wait for the flight to finish and use the whole flight data to train the ANN autopilot. This

approach detailed in Section 2.6.3 is very naive, and cannot train a working ANN autopilot, due

to error accumulation. Therefore, it becomes essential to use algorithms such as DAgger, that

allow for data aggregation for those flight points where error accumulation starts building up.

However, it is shown in the following sections that this technique also fails for complex tasks of

flight paths consisting of multiple conditions (steady-state straight line, level turn, and altitude and

airspeed holds). Various and incremental modifications are experimentally applied and tested to the

DAgger algorithm, which finally manifests into Moving Window DAgger (MwDAgger) approach

that is able to train an ANN autopilot for stable ans sustained flights with steady-state straight line,

level turns, and airspeed and altitude holds.
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2.6.2 DAgger for Fixed-Wing Aircraft

The basic idea behind the DAgger algorithm [118], or data aggregation, is to add new and perturbed

training data, which become labeled inputs and outputs, from an expert policy. The perturbed data

is novel to the neural network as well as the expert policy, see Figure 2.10. In this research, the

ANN is trained iteratively using the newly added data, until it is capable of flying in the flight

simulation. The new data is generated in a coordinated way by the neural network and the “expert”

GNC policy. First step is to perform supervised training on the ANN using fixed trajectory data

generated by the GNC independently. However, this trained ANN does not perform identical to the

GNC, and hence generates control outputs with small errors that accumulate over the course of a

flight simulation. These slightly different outputs generated by the trained ANN, become the inputs

to the aircraft 6-DOF model, which is propagated to generate a new perturbed state. These new

states provide novel input to the GNC and when paired with the GNC control decisions become

new labeled data from which the neural network can use for further training.

Figure 2.10: Data Aggregation Concept: Novel Data and Error Propagation

In other words, the ANN predicted controls ŷ(t) are fed to the 6-DOF aircraft model, which in

turn puts the aircraft in a new state x̂(t+1). This new data point is then fed into the GNC system

such that a new training data pair, D∗ :=
{

x̂(t+1), GNC
(
x̂(t+1))}, is generated, which has been

influenced by ANN control decisions. This new data point is then added to the original data set,

and the neural network parameters are updated based on the complete data set. This process is

continued iteratively until the neural network is considered trained via a stopping criterion which
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Algorithm 3 DAgger for Aircraft

1: Initialize state x(0), D := [ ], T
2: for t = 0, T do
3: y(t) = GNC

(
x(t)
)

4: x(t+1) = 6-DOF
(
y(t)
)

5: D := D ∪
{

x(t),y(t)
}

6: end for
7: Initialize ANN
8: while stopping criteria not met do
9: ANN = train_model(X ,Y ⊂ D)

10: Initialize state x(0), t = 0
11: while safe

(
ŷ(t)
)

& safe
(
x̂(t)
)

& t < T do
12: ŷ(t) = ANN

(
x(t)
)

13: x̂(t+1) = 6-DOF
(
ŷ(t)
)

14: D∗ :=
{

x̂(t+1), GNC
(
x̂(t+1))}

15: t = t +1
16: end while
17: D = D ∪ D∗

18: end while

is defined as a small threshold difference between the GNC and ANN predicted control decisions.

In addition to these more traditional stopping criteria for training, the ANN is also tested on its

ability to fly the aircraft (see Figure 2.14 and Table 2.1).

The detailed steps of this methodology are given in Algorithm 3. The data is sampled and

collected at 20Hz update rate. The first six lines of the algorithm show data collection process

from the “expert” GNC policy for doing standard supervised learning. Step eight starts the data

aggregation process and simultaneous training which is carried out until 1) the error between y and

ŷ is near 0, and 2) the ANN autopilot has flown the aircraft for full flight time that is “T” seconds.

Steps 12, 13 and 14 show the generation of novel data which is unlikely to have been produced by

the “expert” GNC policy alone. This process is repeated until any control predictions or aircraft

states are deemed unsafe by the validation system. The weights of the neural network are updated

in line 9 and will include control decisions from the “expert” GNC policy as new training data. The

DAgger algorithm becomes the basis for the McDAgger and MwDagger algorithms as described

in the subsequent sections.
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2.6.3 Simulation Setup and Data Aggregation Models

A general simulation flight test setup runs the “expert” GNC policy to fly the aircraft, exciting and

propagating 6-DOF aircraft equations of motion (EOM). Four waypoints are setup by the user and

the GNC system guides the aircraft in a racetrack pattern around these four waypoints while main-

taining altitude and airspeed, as shown in Figure 2.11. The coordinates of the four waypoints are

selected and converted from geodetic coordinates from a flight test location in Lawrence, Kansas

that is utilized for research flight tests by KU’s flight research team, shown as black dots in Figure

2.11.
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Figure 2.11: All models are evaluated in a simulated flight test setting to follow the dashed desired
waypoint path, and the corresponding aircraft trajectories are compared.

Evaluating the distance that the UAS has to cover in about one racetrack loop around the

waypoints (≈ 7,000 ft), the time taken is approximately 140 to 150 seconds at a cruise airspeed

of 50.63 ft/s. Depending on the initial aircraft position with respect to the waypoints, at which the

flight starts in the autopilot mode, it takes about 50 to 100 seconds for the aircraft to converge on

to the desired trajectory and altitude. For collecting an initial dataset and deciding on a reasonable
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flight time to evaluate the ANN, about four and a half loops of racetrack trajectory was determined

to be appropriate. Therefore, a flight time of 750 seconds was chosen as the target flight time for

validation and data collection for the neural network autopilot.

Five different types of data aggregation algorithms are considered that train the ANN autopi-

lot. All the ANN autopilot models produced by their respective data aggregation algorithms, are

evaluated and addressed in the context of their results, as shortcomings of the preceding models

motivate the changes made in later models. These models are defined as follows:

• Baseline: Supervised Learning with fixed data set. Only first nine lines from Algorithm 3

are utilized for this model, skipping the while loops and lines 10 to 17.

• Sequential DAgger: See details in Algorithm 3.

• Monte Carlo DAgger (McDAgger): Select a random time t between 0 and T . Use the

“expert” GNC policy until t instead of executing lines 12 to 14 in Algorithm 3, and then start

normal DAgger after time t, such that the ANN is encouraged to fly at different time points

throughout the course of flight.

• GNC McDAgger: Select a random time t between tdelay and T , that is tdelay ≤ t < T . The

GNC is allowed to fly the aircraft to a steady-state until delay time (tdelay), and then the ANN

autopilot is invoked at some random time following Monte-Carlo data aggregation.

• Moving Window DAgger (MwDAgger): DAgger for a fixed time window of flight, al-

lowing to focus learning on a fixed flight path (time-based). After learning a fixed path the

time window is incremented and the ANN autopilot’s parameters are re-initialized, until the

whole flight path is covered.

For all these five models, the “expert” GNC policy used to provide data for training the ANN

autopilot is detailed in Reference [76]. This GNC policy is implemented in MATLAB SIMULINK

[94] simulator, and is set up to accept 3D waypoints as inputs (user defined), and follow them

by exciting 6-DOF equations of motion in a closed-loop time-series flight simulation. The GNC
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policy tracks the waypoints based on their indices, while maintaining altitude and airspeed, and

performs right or left steady-state turns based on the desired heading computed from waypoint

path lines. The ANN autopilot is trained from this type of flight data, specifically a case of four

waypoints laid out as vertices of an approximate rectangular box that exhibits a racetrack flight

pattern and hence represents data for multiple flight control conditions: steady-state straight line,

level turn, and altitude and airspeed holds.

Baseline Model: In this model, the ANN is trained via supervised learning using labeled data

generated independently by the “expert” GNC policy. The training is carried out until the mean

squared error (MSE) is (≈ 0) or the gradient (used to update the weights during training) is below

(≈ 1e−20). Even when applying cross-validation by dividing data into training (70%), validation

(20%) and testing (10%) sets, and means to reduce over-fitting, it is found that the MSE is not a

good indicator for the neural network’s ability to mimic the GNC system for a stable flight.

Figure 2.12: Aircraft Lateral states comparison for first 4 models. Left column shows roll angle
(φ ) and right column shows yaw angle (ψ).

The neural network baseline model, when tested on flying the aircraft via interaction with the 6-
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DOF EOM in closed-loop simulations, chose a flight trajectory that was nowhere close to the GNC

path (see the magenta plot in Figure 2.11). Since the ANN autopilot, trained using the baseline

algorithm, cannot predict controls with absolute zero error with respect to the “expert” GNC policy,

the aircraft enters a different state in a consecutive time-step, thereby error is accumulated over

closed-loop time-series simulation leading to unstable control values predicted by the baseline

ANN autopilot, and the aircraft becomes unstable within 16.375 seconds. This instability in aircraft

flight, using the baseline model, is depicted in the top pane of Figures 2.12 and 2.13.

Figure 2.13: Aircraft Longitudinal states comparison for all models. Left column shows total
velocity (VT ) and right column shows pitch angle (θ ).

Sequential DAgger Model: The baseline model, a standard ANN autopilot trained in a su-

pervised manner, is not capable of mimicking the GNC controls with high enough accuracy and

precision to fly the aircraft. One way to address such an issue is to allow the ANN autopilot to

make control decisions that result in novel states but to return to the “expert” GNC policy in order

to find out what actions are optimal in such states. Sequential DAgger, as explained previously, al-

lows the neural network to fly the aircraft until it is uncontrollable or if the control inputs to 6-DOF,

as outputted by the ANN, become physically unrealistic. The stopping criterion for training is set
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as root mean squared errors (RMSE) thresholds between the GNC controls and ANN controls:

et <= 1e−3. This number is found by manually looking at the ANN predicted controls from the

baseline model and observing when the data fit is reasonably accurate without any extreme values

or oscillatory behavior.
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Figure 2.14: Flight time slopes for DAgger training, comparison for all models.

While adding data in each sequential DAgger iteration, it was found that the aircraft is able to

fly and the ANN autopilot shows signs of learning. However after certain number of iterations, the

ANN autopilot is not able to control the aircraft beyond a specific flight time (≈ 60-70 seconds).

A general trend of decrease in flight path learning is observed. This trend is shown in Figure 2.14,

where the sequential DAgger graph is in red color. The ANN autopilot is able to fly the aircraft for

complete 750 seconds in a few select cases, but it flies the aircraft on a path which is completely

off-track and loses altitude continuously. The RMSE values never decrease below 0.0051 and thus

the training procedure is manually stopped at DAgger iteration 239.

Monte Carlo DAgger (McDAgger) Model: The intermediate training and flights for the Se-

quential DAgger ANN autopilot have large trajectory tracking errors (see Figure 2.11) and high
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levels of instability in flight as depicted by second rows of Figures 2.12 and 2.13. Figure 2.15

visualizes the data aggregation steps (lines 12 to 14 in Algorithm 3) such that the light to darker

color transitions indicate the increment in successive DAgger training iterations. As can be seen

from the plot, some of the light colored trajectories show significant amount of flight time (500

- 750 seconds), however, the darker colored trajectories are limited to around (60 - 70 seconds).

One of the major reasons that the training appears to converge around 60 seconds, and the slope

of flight time is negative, is apparent by looking at Figure 2.15, that is, the additional data being

aggregated to the original data set is non-uniformly distributed around the four waypoint trajectory.

Or in other words, the data being added is more or less concentrated around the first 60 seconds of

the flight path resulting in the model over-fitting to the earliest part of the flight. To overcome this

issue, a straight-forward modification to the original DAgger algorithm was applied, in which the

aircraft starts data addition at a different state at each iteration, selected by randomly sampling the

starting time of the simulation, this would result in updating lines 10 to 16 in Algorithm 3.
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Figure 2.15: Sequential DAgger: Intermediate trajectories flown by ANN during data aggregation.

The modification of choosing a random time to initialize data collection, and thus a correspond-

ing random state (x(t)) of the aircraft that does not have the accumulated errors from all previous
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flight decisions, leads to the terminology: Monte Carlo DAgger. Surprisingly, the flight times per

McDAgger iteration were found to often be even shorter than for the Sequential DAgger autopilot

but it is noted that the slope (e.g. the trend in flight length over training time) is at least positive (see

the green line in Figure 2.14), indicating that with longer training or more computational power

this model may have eventually converged to the required 750 seconds of flight.

GNC McDAgger Model: The “expert” GNC policy used to generate correct input-output map-

ping data, is designed in such a way that it does not react to errors abruptly and always ensures

a very smooth transition if initialized from a large state or control error. When the simulation for

GNC and 6-DOF, is initialized at a random state for the aircraft, it will always have a warm-up

time (tdelay) to converge to the correct cruise altitude and hence the desired trajectory. In other

words, even if the simulator is initialized at an exact point on a previously flown trajectory, the

GNC outputted control values will not be the same as the controls on the original path, and hence

the aircraft flying with GNC policy does not follow a particular pattern of flying when initialized

randomly. This causes data distribution mismatch issues, because the neural network now is learn-

ing from policy decisions that are variant even for the same set of states. Hence the flight time for

McDAgger autopilot stays around 40 seconds (Figure 2.14).

If data addition is desired to be initialized at a random location on the original trajectory, the

GNC induced flight behavior needs to be kept effectively the same, or at least the flight trajec-

tory the ANN is trying to learn (i.e. post initialization phase of the GNC). This is addressed by

initializing the simulator from a fixed initial condition (x(0): aircraft state). The GNC then flies

from this initial condition until a randomized time t which is at least delayed for the warm-up time

(tdelay). After the GNC has flown the aircraft up to this random point, then the ANN is invoked to

take over the flight and McDAgger data addition resumes. This modification to McDAgger algo-

rithm ensures proper data aggregation and is mainly applied to work around this specific “expert”

GNC policy. This modified version of McDAgger algorithm is termed as model: GNC McDagger

and would require two main changes to Algorithm 3, namely t would be selected at random after

adding delay time and the GNC would be initialized to run from x(0) until t−1. The slope of flight
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times during GNC McDAgger iterations is shown in Figure 2.14 in blue color and indicates that

this training procedure is allowing the ANN autopilot to increase flight time steadily by adding

data that is useful for ANN learning. The flight times are consistently increasing and reaching up

to 750 seconds which is the maximum flight path time. Additionally, while the model is not fol-

lowing the GNC trajectory exactly, the ANN learning curves, depicted in Figure 2.16 do suggest

that the flights are getting longer and more closely aligned with the desired trajectory as training

proceeds.

Figure 2.16: GNC McDAgger: Intermediate trajectories flown by ANN during training: ANN
Learning Curves

On comparing the learning curves from models: Sequential Dagger and GNC McDAgger (Fig-

ures 2.15, 2.16), it can be clearly observed that the flight paths during learning are closer to the

desired trajectory for the GNC McDAgger model. After training is completed, each ANN au-

topilot is subjected to a simulated flight test, starting the aircraft at the same initial state used for

training and without any involvement of GNC. The aircraft 6-DOF equations are excited by ANN

outputted control values in a time-series closed-loop simulation. We can then compare the tra-

jectory as flown by all the ANN autopilot models (trained via DAgger variants) with the “expert”

GNC trajectory. Results for all the five models are shown in Figure 2.11. It is observed that the
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overall flown flight path for only the GNC McDAgger ANN autopilot is satisfactory with respect

to GNC flown path. This ANN autopilot has approximately ±20 ft of North distance errors along

the East-West waypoint legs of the desired path, and approximately ± 80 ft of East distance errors

along the North-South legs. The largest tracking errors are observed around the South-West corner

of the desired trajectory, which is about 267 ft. These trajectory errors are not ideal in terms of a

realistic flight test and must be improved before putting this ANN autopilot on an actual aircraft,

but a measurable progress is shown in improving imitation learning in order to construct a ANN

autopilot.

For the simulated flight tests with the Baseline, Sequential DAgger, McDAgger and GNC

McDAgger neural networks, the aircraft states are analyzed in both longitudinal and lateral di-

rections which are depicted in Figures 2.13 and 2.12, respectively. Figure 2.13 shows longitudinal

states, namely: total velocity and pitch angle of the aircraft for all four ANN autopilot models. Os-

cillations are observed in both the aircraft states for the GNC McDAgger neural network. There are

low frequency (≈ 1.2 Hz) pitch oscillations observed on the aircraft. It is also worth mentioning

that the aircraft is able to hold the desired cruise altitude of 300 ft.

In the bottom panel of Figure 2.12, some lateral states, namely, roll angle and yaw (or ≈

heading) angle, are shown for the GNC McDAgger ANN autopilot and compared to the GNC

simulation states. There are again low frequency oscillations observed in the roll angle of the

aircraft, which are not ideal for a realistic flight, and must be addressed before putting this autopilot

on a real aircraft.

Table 2.1 shows the statistics of training for the first four models. In terms of computational

complexity, the GNC McDAgger is the most expensive, and it also uses the largest amount of data

set to train the ANN autopilot.
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Table 2.1: Comparison of ANN autopilots trained using different imitation learning paradigms.
Model evaluation focuses on training feasibility and flight time during validation and testing.

Model DAgger Epochs Training Training Slope of Flight Time

(Training) Examples Time Flight Times (seconds)

Baseline N.A. 1.50e4 0h 4m N.A. 16.375

Seq. DAgger 239 6.08e5 7h 35m -0.54132 750

McDAgger 279 1.27e5 1h 52m 0.12801 48.5

GNC McDAgger 325 > 1e6 9h 14m 0.57104 800+

2.7 Moving Window DAgger: Addressing Oscillations

The GNC McDAgger ANN autopilot was able to combine and imitate the complete functionality

of the GNC policy. However, low frequency oscillations in the control surfaces (and consequently

aircraft states) raised serious questions on the reliability and safety of using these imitation neural

networks for real flight applications. These oscillations are imparted due to oscillatory neural

network outputs, but it was found that the major shortcoming was in the data aggregation algorithm

used.

The low frequency state oscillations indicate that the ANN autopilot was unable to make correct

control decisions for small state perturbations, and would react only when the aircraft state (and

hence 2D trajectory) would drift enough for the ANN to take corrective action. To mitigate this

issue, the sequential data aggregation was applied to a fixed time-window, and the ANN was trained

iteratively over this window until the stopping criterion was met. This aggregated data along a short

time window is saved in a data buffer, and the ANN parameters are reinitialized. The time-window

for data aggregation is increased, and new data is added to the data buffer, and the ANN is re-

trained for this time-window with the whole data buffer. The process is repeated until the whole

flight path is covered by the time-window, increasing up-to the maximum flight time. Algorithm 4

shows the details of the Moving Window DAgger (MwDagger) algorithm applied to a fixed-wing
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aircraft with an “expert” GNC policy. It took 753 DAgger iterations, and the algorithm aggregates

a total of 1.52e5 data points, taking a total of about 8 hours and 55 minutes. This ANN autopilot is

able to fly indefinitely around the waypoint path, maintaining stable states at all times. Since this

is the first neural network autopilot that can mimic “expert” policy decisions stable and accurately,

the neural network is termed as “Imitation Model 1”. The detailed results are presented in Section

4.2.1.

Algorithm 4 Moving Window DAgger for Aircraft

1: Initialize state x(0), D := [ ], T
2: for t = 0, T do
3: y(t) = GNC

(
x(t)
)

4: x(t+1) = 6-DOF
(
y(t)
)

5: D := D ∪
{

x(t),y(t)
}

6: Initialize w and ws
7: end for
8: while stopping criteria not met do
9: Initialize ANN

10: ANN = train_model(X ,Y ⊂ D)
11: Initialize state x(0), t = 0 and t f = w
12: while safe

(
ŷ(t)
)

& safe
(
x̂(t)
)

& t < t f do
13: ŷ(t) = ANN

(
x(t)
)

14: x̂(t+1) = 6-DOF
(
ŷ(t)
)

15: D∗ :=
{

x̂(t+1), GNC
(
x̂(t+1))}

16: t = t +1
17: end while
18: if RMSE

{
ŷ(t), GNC

(
x̂(t+1))} ≤ ∆c then

19: w = w+ws
20: end if
21: D = D ∪ D∗

22: end while

2.8 Grid Search for Optimal Neural Network Architectures

A basic grid search algorithm is designed for optimizing the neural network architecture. This

search runs at the top level of a data aggregation and training procedure. The grid search is de-

signed to mainly tune two important neural network parameters: (1) number of neurons or nodes
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and (2) number of tanh hidden layers. An additional parameter is introduced in the overall train-

ing paradigm that defines the maximum number of DAgger training iterations per neural network

architecture (maxiann). Before performing the training step in Algorithm 3 (line 6), a logic check is

implemented that compares the number of training iterations with the maximum allowed iterations

per neural network architecture. If the current training iteration (ti) exceeds maxiann , then a neu-

ron is added to the neural network architecture which is being trained currently. Subsequently, if

the number of neurons in the current architecture exceeds maximum neurons (maxnodes), then one

hidden layer is added to the overall architecture.

Algorithm 5 Grid Search: Optimal Neural Network
1: Initialize min and max neurons: minnodes,maxnodes
2: Initialize hidden layers: HL
3: Initialize max training iterations per ANN architecture: maxiann

4: if ti == maxiann then
5: D = empty()
6: if nodes< maxnodes then
7: nodes = nodes + 1
8: else
9: HL = HL + 1

10: nodes = minnodes
11: end if
12: Restart Training and Data collection
13: end if

This straightforward grid search algorithm is designed around the data aggregation concept,

meaning if different neural network architectures are used, then the data-set added to D will be

different at each training iteration. Since the data is collected while the neural network is being

trained and each neural network architecture, even with just one node addition, would output just

slightly different controls, the overall data addition will become dissimilar. And, hence the training

will have to be restarted for a new architecture, and previous data-set will have to be discarded (see

line 5 in Algorithm 5). Due to this, a fixed data-set generated by any DAgger variant cannot be

utilized to train and evaluate different neural network architectures, because the data generation

itself is dependent on the neural network used.

Algorithm 5 can be used as a sub-routine inside Algorithm 3 before line 6 and also with other
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variants of DAgger. The fundamental idea behind this algorithm is that if the data addition per

training iteration supports better performance (given a neural network architecture), then the num-

ber of iterations are automatically reduced and hence a particular network is superior than its

previous counterparts. The algorithm is not designed to reduce computation time, but to find the

optimal neural network architecture based on a user defined tuning parameter: maxiann . Therefore,

the optimal ANN is only as good as the pre-defined number of explored iterations and will be

limited in performance if a relatively large value is used.

2.9 Reinforcement Learning

Reinforcement learning describes an approach to learning from data in which an agent learns di-

rectly from interactions with an environment. There are two main elements within the reinforce-

ment learning problem framework: agent and environment. Agent is the entity that takes actions to

control the environment and learns through this interaction process. Environment is a dynamical

system that reacts to the agent’s inputs and changes its state accordingly while providing a reward

feedback signal to the agent. In this research, the environment consists of the equations of motion

of the aircraft and reward function. For a control system problem, the environment can be thought

of as a generic mapping function (discretized dynamics) that relates the current state of the system

to the next state, given a control input that excites the system, see Equations 2.41a and 2.41b, while

numerically evaluating the new state using a reward function.

Xt+1 = f (Xt ,Ut) (2.41a)

rt+1 = R(Xt ,Ut) (2.41b)

Equation 2.41a is a dicretized representation of a nonlinear dynamic system which is the 6-

DOF model of the aircraft, see Section 2.2, where state Xt+1 is computed as a function of both

the previous state (Xt) and the control input (Ut). The reward function computes a numerical

scalar which is a function of current state and controls. The agent is a learner that can be as

simple as a linear regression model or can be a more general function approximation element
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such as an artificial neural network. The agent learns its internal representations of parameters

through maximization of long term rewards from the environment. A general architecture of a

reinforcement learning problem setting is shown in Figure 2.17.

Figure 2.17: Reinforcement Learning Problem Framework

Reinforcement learning frameworks are typically applied to discrete time, stochastic sequen-

tial decision problems known as Markov Decision Processes (MDPs) [138]. Sequential decision

problems that satisfy the “Markov Property” are known as MDPs. The Markov property states

that the current state of a dynamical system depends only on the previous state, enabling the dy-

namics of the system to be a one-step process. This Markov property is a very important factor in

reinforcement learning problems because the actions and rewards are dependent on current state

only.

2.9.1 Preliminaries

In a typical reinforcement learning setting, the agent consists of a policy function (controller) that

makes the decisions, and a value function (cumulative feedback) that quantifies the “goodness”

of the decisions of the policy. The value function which is defined as the expectation of future

rewards if a current policy is followed, arises from the learning goal of maximizing cumulative
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long-term reward. The reward function (or immediate reward) is usually designed by the user

utilizing the environment feedback available, and depends on the problem at hand. This reward

function directly affects the immediate decisions providing feedback to the controller or policy

function. For a deterministic problem setup, the value function is defined as:

V (s0) = R(s0)+ γdR(s1)+ γ
2
d R(s2)+ γ

3
d R(s3)+ ... (2.42)

Here, V is the value function, R(st) is the immediate reward received from entering state st , γd

is a discount factor (not to be confused with γ , the flight path angle) that controls how much to

discount (expected) future rewards. The value of γd should lie between 0 ∼ 1, depending on the

problem setting. A higher value of γd represents higher weighting on future rewards, and vice-

versa. The Bellman equation readily provides an efficient way to solve the above problem [138].

It aggregates the long term reward function and separates it elegantly into two terms as shown in

Equation 2.43.

V (st) = R(st)+ γdV (st+1) (2.43)

Therefore, according to Bellman equation, the long term reward consists of immediate reward

and sum of future discounted rewards. The next state st+1 is achieved by following a policy,

generally denoted by π if it is stochastic and µ if it is deterministic. In this research, since the

aim is to develop a deterministic policy or flight controller, the policy notation used will be µ .

Equation 2.43 can be efficiently used to solve for an optimal value function given that the problem

or the dynamical system exhibits only a finite number of states. If the number of states |S| is

finite, then there can be |S| equations written down that can in turn be solved iteratively to estimate

the optimal value function (V ∗(s) = maxµ V (s)). Thus the optimal policy can be calculated using

µ∗(s) = argmaxaV ∗(s′), where s′ is the next state of the system and a is a particular control action.

This process is generally known as “value iteration” and works well for learning policies that are

optimal for dynamical systems when there are a finite number of actions. Value iteration serves

as a core part of the Q-learning algorithm [138], which basically solves the Bellman equation

iteratively, Equation 2.43.
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Particularly, it is often desired to estimate the action-value function, denoted by Q(s,a). For a

controlled dynamical system, the evolution of states is significantly dictated by the action input to

the dynamical system. And, hence it is generally required to know the value of not only being in a

state, but also what action to take, given a particular state, so as to maximize the value.

2.9.2 Deep Q-Network

In practice, many dynamic systems consist of a large number of continuous control actions, as well

as states (∼∞), and hence the value iteration algorithm cannot be applied to such a system, for ex-

ample an aircraft. To handle the large number of observed states, deep neural networks can be

employed to estimate a nonlinear action-value function which learns an embedded state represen-

tation that can be easily compared to other, even unobserved states resulting in good generalization

capabilities. Deep Q-network (DQN) [100] is one of the algorithms used to solve this problem.

Traditionally, nonlinear function estimators such as deep neural networks have been avoided to

approximate value functions. This is due to the fact that the training becomes highly unstable be-

cause of a large number of internal parameters and highly nonlinear behavior of neural networks.

The core of this problem arises during training due to high correlations among sequential data and

the dependence of target value on the original value function, see Equation 2.43. Reference [100]

addresses these issues by introducing two important innovations. Firstly, a collection of experien-

tial data is accumulated and then the agent is trained from samples randomly chosen in batches;

thereby removing auto-correlations among data samples. Secondly, a target neural network is used

while applying Bellman’s iterative update (see Equation 2.43) to estimate the numerical “value”,

instead of the original value function neural network. This target neural network is referred to as

a delayed temporal difference backup of the original value function neural network, whose param-

eters are generated using exponential moving averages of the original network’s parameters. The

second innovation imparts stability during training by providing consistent target values.

However, DQN can only handle a finite number of discrete actions. The continuous action

space can be discretized to employ the DQN algorithm, however, the problem of the “curse of di-
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mensionality” arises in such a setting. For an aircraft such as Skyhunter, with four control variables

(throttle, elevator, aileron, and rudder), even with a practically viable coarse discretization around

a trim point, the total action values would amount to ∼ 1.45 million, see Equations 2.44.

δtp =−20 : 2 : 20(%) = 21values (2.44a)

δep =−2 : 0.1 : 2(◦) = 41values (2.44b)

δap =−2 : 0.1 : 2(◦) = 41values (2.44c)

δrp =−2 : 0.1 : 2(◦) = 41values (2.44d)

Therefore, it becomes impractical to explore all these actions using iterative algorithms, and

the problem only exacerbates when ranges of control surfaces are widened to cover routine air-

craft maneuvers. The innovation of utilizing deep neural networks offers a potential solution for

addressing continuous policy decisions. In conjunction with the Deep Deterministic Policy Gra-

dients (DDPG) algorithm [88] deep neural networks can be trained to behave as policy functions,

that directly map states to actions. With this solution of using neural networks as an optimal policy,

the major challenge that arises is that of training, or that of correct input-output data generation.

When training the deep Q-network, the output data or target values for this network are estimated

using Bellman’s equation, however, there is not an iterative procedure that directly estimates the

target output values for the policy neural network. This problem is addressed using policy gradi-

ent algorithms [138], specifically deterministic policy gradients [130] which directly provides the

gradients of the neural network policy parameters without the need for output target values.

2.9.3 Policy Gradients

The goal of a reinforcement learning problem is to maximize a long-term reward or an objective

function. This objective function can be represented as in Equation 2.45a. Here, Q(s,a) is the

action-value function and it is the expectation of the future discounted rewards. If a deterministic

policy µ : S← A is followed the action-value function is as follows:
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J = Q(s,a) (2.45a)

Qµ(st ,at) = E[r(st ,at)+ γdQµ(st+1,µ(st+1))] (2.45b)

Equation 2.45b is the recursive relationship or the Bellman equation that is used to estimate the

expected cumulative reward, also known as the action-value function. Sampling a batch of “N”

data points, the target values can be set as follows:

yt = r(st ,at)+ γdQ(st+1,µ(st+1)|θ Q) (2.46)

Here, yt are the estimated target values and note that the Q function is parameterized by θ Q.

The parameters of Q function are updated (via training) using the following loss function (L) that

minimizes the difference between the target values and the values predicted by the Q approxima-

tion:

L = E[(Q(st ,at)− yt)
2] (2.47)

Generally, once the Q function is updated, the optimal policy is computed using a Q-learning

greedy policy update, where the single most likely action is chosen by the agent, which is equiva-

lent to:

µ(s) = argmax
a

Q(s,a) (2.48)

However, as described in Section 2.9, solving Equation 2.48 becomes impractical due to large

and continuous action space, even if a feasible coarse discretization is used. To address this issue,

deterministic policy gradients (DPG) [130] are utilized. Instead of solving Equation 2.48, the de-

terministic policy can be updated simply in the direction of the Q function gradient which reduces

the total number of actions and states that must be considered, as only the general direction of

the gradient must be calculated. If the policy µ is parameterized by θ µ , then these parameters

can be updated in proportion to the gradients of the action-value function, that is, ∇θ Qµ(s,µ(s)).

Therefore, the policy parameters can be updated as follows:
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θ
µ

k+1 = θ
µ

k +αlrE[∇θ Qµ(s,µ(s))] (2.49)

Using chain rule, the term inside the expectation on right hand side of Equation 2.49 can be

further decomposed into two terms: (1) Gradient of policy with respect to its parameters, and (2)

Gradient of action-value function with respect to actions, as shown in Equation 2.50. The proofs

can be found in Reference [130].

∇θ Qµ(s,µ(s)) = ∇aQµ(s,a)∇θ µ(s) (2.50)

Therefore, using Equations 2.45a and 2.50, the gradient of the objective function can be derived

as follows:

∇J = ∇aQµ(s,a)∇θ µ(s) (2.51)

This gradient of objective function can be utilized to update the policy neural network param-

eters.

2.9.4 Deep Deterministic Policy Gradients

The DDPG algorithm starts with initializing four ANNs: actor (µ), target actor (µ ′), critic (Q) and

target critic (Q′). Let θ denote the parameters of a neural network (weights and biases), then µ is

parametrized by θ µ and so on. Since the critic network depends on both state (s) and action (a),

critic network notation is: Q(s,a|θ Q), and actor notation is: µ(s|θ µ). Initially, the parameters of

the target neural networks (target actor and target critic) are set to be the same as their respective

actor and critic networks, i.e., θ Q′← θ Q and θ µ ′← θ µ . The copies of the original neural networks

(target networks) provide additional stability and increase the probability that the ANN models

converge as discussed in Reference [100].

After initialization, the iterative learning procedure is started. At the start of each iteration,

the noise process is initialized N , and the dynamic system is reset to an initial state. The noise

(N ) is a temporally correlated Gauss-Markov process, which is generally used for control system
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problems that have inertia, and is called the Ornstein-Uhlenbeck process as discussed in Reference

[88].

An episode proceeds with first obtaining an action at from the neural network policy µ(st |θ µ)

and noise is added to this action to incentivize exploration. Exploration is a methodology used in

reinforcement learning algorithms that explores new actions given a state, that could lead towards

improving the current policy and potentially converge to an optimal policy. In reinforcement learn-

ing problems, there is always a dilemma between exploration and exploitation. Exploitation simply

means the use of those actions (or current policy) that are known to produce good corresponding

next states (or maximize value), given a current state of the system.

This noisy control action is then applied to the dynamic system to get the next state (st+1), a

flag (done: d) is set if this next state is terminal, an immediate reward is received (rt), and the data

set (state, action, reward, next state, done) are saved in a data stream called the experience or replay

buffer (RB). After collecting a series of initial data points, a random mini-batch of N experiences

is selected and an estimate of state-action values (y(i)t ) are computed using Equation 2.43, the

respective immediate reward (r(i)t ), the target critic (Q′) and the target actor (µ ′). Note here, that

the target critic (Q′) and target actor (µ ′) are used for calculating the next state-action value (next

state = s(i)t+1, next action = a(i)t+1 = µ ′(s(i)t+1|θ µ ′)), that is required as the second expression in the

Bellman’s equation.

These state-action values (yt) serve as the “true” or target values to compute the loss for training

the critic ANN. Mean squared error loss is computed, between the target values (yt) and the pre-

dicted output state-action values by the critic neural network (Q). This loss is utilized to compute

gradients of the critic parameters (θ Q) and the Adam gradient descent algorithm is used to update

the critic parameters [80].

One of the major steps of the DDPG algorithm involves training the actor ANN using policy

gradient method as outlined in Reference [130], also see Section 2.9.3. Gradients of the critic

ANN with respect to actions (∇aQ) and that of actor with respect to its own parameters (∇θ µ µ),

are utilized to find the gradients of the objective function for the actor ANN, which are in turn
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used to update actor ANN parameters. Gradient ascent is used to update the actor neural network

together with the Adam learning algorithm.

Algorithm 6 DDPG Algorithm
1: Initialize ANNs: Q(s,a|θ Q) and µ(s|θ µ)
2: Initialize target ANNs: Q′(s,a|θ Q′) and µ ′(s|θ µ ′)
3: Initialize replay buffer: RB
4: θ Q′ ← θ Q

5: θ µ ′ ← θ µ

6: for E = 1, K do
7: Initialize N
8: Initialize LTI state s1
9: for t = 1, T do

10: d = 0
11: at = µ(st |θ µ)+Nt
12: st+1 = LT I(st ,at)
13: if st+1 is terminal then
14: d = 1
15: end if
16: rt = R(st ,at)
17: RB≡ RB∪{st ,at ,rt ,st+1}
18: Sample a mini-batch N transitions from RB
19: for i = 1, N do
20: y(i)t = r(i)t + γdQ′(s(i)t+1,µ

′(s(i)t+1|θ µ ′)|θ Q′)
21: end for
22: L = 1

N ∑
N
i=1(y

(i)−Q(s(i),a(i)|θ Q))2

23: Minimize L, and update Q(s,a|θ Q)
24: ∇θ µ J ≈ 1

N ∑
N
i=1 ∇aQ(s(i),µ(s(i))|θ Q)∇θ µ µ(s(i)|θ µ)

25: Update µ(s|θ µ) using ∇θ µ J
26: θ Q′ ← τθ Q +(1− τ)θ Q′

27: θ µ ′ ← τθ µ +(1− τ)θ µ ′

28: end for
29: end for

One of the most important and final steps of the DDPG algorithm is to perform soft updates to

the target actor (µ ′) and target critic (Q′) neural networks. This update method provides smoothed

parameters and takes temporal difference backup of the original actor and critic neural networks.

This provides stability in the overall training procedure, see Equation 2.52.

actortarget = τ(actor)+(1− τ)(actortarget) (2.52)
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The step-by-step process of DDPG is outlined in Algorithm 6.

As shown in Algorithm 6, in line 12, the dynamic system is a linear time invariant (LTI) model

of the aircraft that is discretized to produce next step states based on input controls and initial state,

see Section 3.3. This mathematical model, see Section 3.1 is obtained for a specific flight condition

around a trim point and hence predicts perturbed states while accepting perturbed controls. As

shown in line 8, the initial state vector s1 is randomly chosen from a range of “perturbed” states

before the start of each episode.
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Chapter 3

Aircraft Platform, Hardware and Software Development

3.1 Skyhunter Aircraft

The platform chosen for this research is a twin-boom, foam based structure aircraft known as a

Skyhunter UAS. The Skyhunter features a 71 inch wingspan and a fuselage length of 25 inches.

The operating weight of this aircraft with all avionics and components is approximately 8.4 pounds.

This aircraft is propelled by a brushless DC (direct current) motor and is capable of sustaining a

cruise speed of 50.63 ft/s. This UAS features three powered control surfaces, two differential

ailerons and one elevator, which come pre-installed on the standard commercially off-the-shelf

(COTS) aircraft.

(a) Top View Picture on the Ground (b) Bottom View Picture in Flight

Figure 3.1: Skyhunter UAS Picture

A picture of one of the Skyhunters used can be seen in Figure 3.1, courtesy of the Department

of Aerospace Engineering, The University of Kansas. The aircraft foam structure is modified
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by reinforcing it with fiber glass laminates at several different important locations including the

bottom surface of the fuselage, the aileron and elevator joints, and the horizontal and the vertical

stabilizers. The COTS Skyhunter does not have landing gears and rudder control surfaces, therefore

these are assembled in-house and installed on the aircraft.

To determine the aircraft’s moments of inertia, a bifilar pendulum test is conducted on the full

aircraft with all avionics onboard (see [70]). The resulting moment of inertia estimates are shown

in Table 3.1. The Ixz component of the aircraft was assumed to be negligible due to a relatively

small magnitude.

Moment of inertia slug-ft2

Ixx 0.1

Iyy 0.1

Izz 0.35

Table 3.1: Moment of Inertia Estimates from Bifilar Pendulum Tests

Figure 3.2: AAA Model: Top, Front, and Side Views

To characterize the motor dynamics of the system, engine testing is conducted at the Mal

Harned Propulsion Lab at the Garrison Flight Research Center in Lawrence, Kansas. This provides
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the static thrust values for the engine across a RPM (Revolutions Per Minute) range, as well as

correlates the static thrust with the input pulse width modulation (PWM) signal for controller

design. These static thrust values are then used to estimate the in-flight thrust values at the cruising

velocity of 50.63 ft/s using methods proposed in Reference [77] that convert thrust values for a

similar propeller across varying advance ratios [25]. Using the moment of inertia estimates and

the motor dynamics, an aircraft modeling approach is taken to obtain the values of aircraft stability

and control derivatives. The software used is Advanced Aircraft Analysis (AAA), a product of

DARcorporation, which uses aircraft geometry and flight conditions to construct a dynamic model.

The stability and control derivatives are estimated based on both the explicit equations and by

correlating variables using historical data across a vast aircraft database. The AAA geometric

model is shown in Figure 3.2. Flight tests are conducted and the dynamic model is fine-tuned by

making slight adjustments to stability and control derivatives until the recorded flight data and the

physics-based model converge across large portions of the flight. The notation for these stability

and control derivatives are developed and outlined in Reference [117]. The aircraft geometry data

is shown in Table 3.2. The dynamic model, stability and control derivatives are developed with the

help of the Flight Research Laboratory’s team member Mr. Hady Benyamen at The University of

Kansas. His contribution towards developing a practical model is greatly appreciated.

Planform Area: S ( f t2) MGC: C̄ (inches) Span:b (ft) Aspect Ratio (AR = b2/S)

4.82 8.78 5.92 9.81

Table 3.2: Aircraft Main Wing Geometric Parameters

3.2 Skyhunter 6-DOF Equations

The aircraft equations of motion (see Section 2.2) are integrated in time using the classical Runge–Kutta

fourth order method [82]. In order to compute the derivatives in Equations 2.1, first the lift and drag

coefficients, and the aerodynamic forces and moments coefficients need to be computed. The lift

and drag coefficients used for the calculation of non-dimensional aerodynamic force coefficients,
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are shown in Equations 3.1.

CL =CL1 +CLα
(α−αtrim)+

CLq(Q−Qtrim)c̄
2utrim

+
CLα̇

α̇ c̄
2utrim

+
CLu(u−utrim)

utrim
+CLδe

(δex−δetrim)

(3.1a)

CD =CD0 +
C2

L
π(AR)0.88

(3.1b)

The non-dimensional aerodynamic moment coefficients are shown in Equations 3.2. These are

calculated in the aircraft stability axis of motion.

Cls =Clβ β +
Clp(P−Ptrim)b

2utrim
+

Clr(R−Rtrim)b
2utrim

+Clδa
δax +Clδr

δrx
(3.2a)

Cms =Cm1 +Cmα
(α−αtrim)+

Cmq(Q−Qtrim)c̄
2utrim

+
Cmα̇

α̇ c̄
2utrim

+

Cmu

(u−utrim)

utrim
+Cmδe

(δex−δetrim)+2Cm1

(u−utrim)

utrim
+

(Cmtu
+2Cmt1

)
(u−utrim)

utrim
+Cmtα

(α−αtrim)

(3.2b)

Cns =Cnβ
β +Cnp

(P−Ptrim)b
2utrim

+Cnr

(R−Rtrim)b
2utrim

+Cnδa
δax +Cnδr

δrx (3.2c)

The non-dimensional aerodynamic force coefficients are shown in Equations 3.3.

Cxa =CL sinα−CD cosα (3.3a)

Cya =Cyβ
β +

Cyp(P−Ptrim)b
2utrim

+
Cyr(R−Rtrim)b

2utrim
+Cyδa

δax +Cyδr
δrx

(3.3b)

Cza =−CL cosα−CD sinα (3.3c)

The non-dimensional aerodynamic moment coefficients in the aircraft body frame are shown

in Equations 3.4

Cl =Cls cosα−Cns sinα (3.4a)

Cm =Cms
(3.4b)

Cn =Cls sinα +Cns cosα (3.4c)

69



The aerodynamic force calculations are shown in Equations 3.5, where q̄ is the dynamic pres-

sure.

XA = q̄SCxa
(3.5a)

XT = xt0 + xt1(100δtx)+ xt2(100δtx)
2 (3.5b)

YA = q̄SCya
(3.5c)

ZA = q̄SCza
(3.5d)

Aerodynamic moments can be computed as shown in Equations 3.6, where dT is the moment

arm between the aircraft center of gravity and the motor (thrust) location.

L =Cl q̄Sb (3.6a)

M =Cmq̄Sc̄−XT dT (3.6b)

N =Cnq̄Sb (3.6c)

Using the above equations and the equations of motion defined in Section 2.2, the 6-DOF

simulator is implemented by propagating the states using RK4 integrator and control inputs.

3.3 Skyhunter LTI Model

The LTI model is developed by linearizing the equations of motion around a trim point for steady-

state wings level condition. For longitudinal dynamics the trim point is, velocity: 50.63 ft/s, angle

of attack: 0.73 degrees, pitch attitude: 0.73 degrees, throttle trim: 63.2% and elevator trim: 1.5

degrees. For lateral dynamics the trim point is zeros for all states and controls. The longitudinal

LTI model of the Skyhunter aircraft is represented in Equation 3.7. The longitudinal state vector is

defined as: xlon = [VT α θ Q]T and the control vector is defined as: ulon = [δt δe]
T .
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V̇T

α̇

θ̇

Q̇


=



−0.1240 19.0662 −32.1974 0

−0.0250 −6.2646 −0.0080 0.9405

0 0 0 1

0.0224 −14.6920 0.0051 −2.7085





u

α

θ

q


+



5.9203 −0.7755

−0.0544 −0.3158

0 0

0.2737 −19.4782


δt

δe


(3.7)

The lateral LTI model is shown in Equation 3.8. The lateral state vector is defined as: xlat =

[β φ P R]T and the control vector is defined as: ulat = [δa δr]
T . Both the LTI model Equations

3.7 and 3.8 are shown in the form: ẋ = Ax+Bu.



β̇

φ̇

ṗ

ṙ


=



−0.6048 0.6359 −0.0153 −0.9797

0 0 1.0000 0

−35.6302 0 −8.2173 2.4916

34.3722 0 −1.3352 −2.1524





β

φ

p

r


+



0 0.2484

0 0

74.0768 3.8109

0.2435 −26.3714


δa

δr

 (3.8)

3.4 Monte-Carlo Simulations: Off-Nominal Initial Condition Flights

One of the main tools and practices for validation and verification of developed guidance, nav-

igation and control algorithms is Monte-Carlo analysis [19]. Software in the loop simulations

with complete guidance, navigation and control algorithms combined with aircraft six-degrees-of-

freedom equations of motion are conducted to test the reliability and robustness of the autopilot

systems. These end-to-end experiments are performed to find any underlying flaws in the existing

algorithms such as path planning, guidance or control. As discussed in Reference [19], Monte-

Carlo analysis is a statistical tool that can help predict the behavior of an autopilot system prior to

a flight test.

A Monte-Carlo simulation setup is similar to Figure 2.2, except an outer loop generates dif-

ferent initial conditions for the aircraft states and repeats the flights. The initial conditions for 12
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Table 3.3: Ranges and Intervals for Aircraft States Used to Generate Initial Conditions for Monte-
Carlo Flight Simulations

State Minimum Maximum Interval Number of Values
VT0( f t/s) 45 55 1 11

α0(
◦) -5 5 1 11

β0(
◦) -5 5 1 11

φ0(
◦) -30 30 2 31

θ0(
◦) -10 20 2 16

ψ0(
◦) -30 30 3 13

P0(
◦/s) -50 50 2 51

Q0(
◦/s) -30 30 2 31

R0(
◦/s) -20 20 2 21

N0( f t) n0 - 100 n0 + 100 10 21
E0( f t) e0 - 100 e0 + 100 10 21
H0( f t) h0 - 50 h0 + 50 5 21

aircraft variables are varied, namely: total velocity, angle of attack, side-slip angle, roll, pitch and

yaw angles, roll, pitch and yaw rates, and the inertial north, east and height. For each of these 12

variables, a vector consisting of a set of values is defined. The ranges and the resolution of these

set values are based on flight test data. These ranges are shown in Table 3.3.

From each of the aircraft states’ vector, a value is sampled uniformly at random without re-

placement and combined to create an initial aircraft state condition. Using this state, a randomly

chosen combination of velocity, attitude angles, aircraft location with respect to the waypoint path,

etc., a flight simulation is carried out. After, each simulated flight test, a monitoring algorithm

checks if the flight test was a “success” or a “failure” case. Each simulated flight test result is

assigned a boolean flag and saved in its respective success or failure directory, to analyze the data

further.

The success or failure algorithm is mainly based on boundedness of all the aircraft states, the

control rates and the shortest distance of aircraft from the waypoint path. Therefore, in essence the

Monte-Carlo simulation checks the bounded input-output (BIBO) stability of the complete closed-

loop system with the GNC algorithms. It also checks the reliability of the guidance algorithm, its

behavior to off-nominal flight conditions and its convergence to waypoint flight path. The test of

control rate boundedness provides information about the stability of the control system to some
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Table 3.4: Ranges for Aircraft States, Controls and Control Rates Used to Test a Success or Failure
Case for a Monte-Carlo Flight Simulation

State Minimum Maximum
VT ( f t/s) 40 60

α(◦) -10 10
β (◦) -10 10
φ(◦) -45 45
θ(◦) -20 20
P(◦) -40 40
Q(◦) -20 20
R(◦) -15 15

δt(%) 10 100
δe(
◦) -10 10

δa(
◦) -10 10

δr(
◦) -10 10

δt/dt(%/s) -30 30
δe/dt(◦/s) -10 10
δa/dt(◦/s) -10 10
δr/dt(◦/s) -10 10

extent and statistically signifies the validity of the controller. The bound conditions representing a

successful simulation flight are shown in Table 3.4.

3.5 Aircraft Avionics

The advances in compact and computationally efficient computer systems, which are ideal for

small unmanned aerial systems, has made a significant impact in the aerospace and robotics com-

munity. Computational platforms, such as NVIDIA Jetson-Nano, comprise the characteristics that

are ideal for implementing autopilot software onboard a UAS. It consists of a powerful Quad-

core Arm based A57 chip processor with 1.43 GHz clock speed. Combined with an efficient

128-core graphical processing unit (GPU), the computer has the potential for running vastly par-

allel systems, such as neural networks, with a potential for real-time learning. Another economic

and computationally competitive computer unit is the Odroid-XU4. With heterogeneous proces-

sors composed of two quad-core processors, clock speeds of 2 GHz and 1.4 GHz respectively,

Odroid-XU4 offers a computationally efficient platform to run real-time demanding software sys-
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tems. Both these computer units (NVIDIA Jetson-Nano and Odroid-XU4) are fully equipped to

run real-time processes at high update rates (tested at 20 Hz up-to 50 Hz), comprising of demand-

ing autopilot software: guidance, navigation and control together with sensor peripheral devices,

all in parallel with real-time data exchange and execution of high rate control on a UAS. However,

the NVIDIA Jetson-Nano computer provides an edge over Odroid-XU4 due to its 128-core CUDA

(Compute Unified Device Architecture) enabled GPU, providing parallel computing capabilities

for computationally intensive machine learning applications.

For the aircraft platform used in this research (Skyhunter UAS), two different avionics systems

are developed, fabricated and flight tested. The details of both avionics with a complete list of

peripherals, interfacing, connections, data acquisition devices and sensor integration are given in

the following paragraphs. But, here it is important to note the following major differences that

contrast the two avionics systems:

• One of the avionics systems utilizes the Odroid-XU4 computer. Another major component

that is a distinctive feature of this avionics, is the Microhard Nano - n920 telemetry module.

• The second avionics system consists of the NVIDIA Jetson-Nano as the main computing

platform. It is interfaced with Microhard Pico 900 (P900) telemetry module.

The readily available accurate sensor fusion platforms with multiple redundancies, such as Pix-

hawk Flight Control Unit (FCU), have surged during the drone technological revolution within the

last decade. Autopilot hardware devices such as Pixhawk 1 and Pixhawk 2.1 cube, readily provide

reliable and economic platforms for sensor data collection with redundancies, control output pro-

cessing and classical guidance and control algorithms. These boards can act as data acquisition

and input-output control devices in conjunction with computationally powerful boards (NVIDIA

Jetson-Nano and Odroid-XU4) that behave as companion computers. These companion computers

can run computationally demanding algorithms such as, deep neural networks, robust and adaptive

controllers, path planning and high-level decision making processes.

A complete, general avionics block diagram is shown in Figure 3.3. The main components
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of the avionics are the companion computer, Pixhawk version 2.1 FCU, a GPS, pressure sensor

with a Pitot tube and an Electronic Speed Controller (ESC). The Pixhawk board acts as the sen-

sor interface or the data acquisition board for the whole system and it receives external control

inputs from the companion computer via a Serial-Mavlink interface. Pixhawk provides IMU data,

interfaces with GPS, processes I2C signal from the pressure sensor, processes PPM (Pulse Posi-

tion Modulation) input signal from a remote control (RC) receiver (via PPM encoder) and outputs

PWM signals to control servo motors (Elevator, Aileron and Rudder) and also to ESC to control

an electric engine (forward thrust). The companion board acts as the main onboard computer on

the aircraft. It runs a Linux based operating system (OS) Ubuntu, and a middleware meta OS

called: Robot Operating System (ROS) [114, 133]. The ROS framework runs all the guidance,

navigation and control sub-systems, sensor data acquisition process and the wireless communica-

tion node. For wireless communication between the aircraft and the ground control station (GCS)

[3] a Microhard telemetry module is used that operates around 900 MHz frequency.

Figure 3.3: Skyhunter Avionics Setup

The Pixhawk units can run two different types of firmware or software operating systems with

autopilot functionalities: (1) Ardupilot, and (2) PX4. Each software sends out data over Mavlink

software protocol, which consists of all sensor variables (airspeed, GPS, IMU, RC and Flight mode

data) and controller values can also be received over this protocol. The two-way data transmission
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has different properties such as update rates, for the two distinct firmware. This data can be har-

nessed by a companion computer over USB-COM or a serial interface cable and parsed by an

open source ROS package called MAVROS. The MAVROS package gives access to published

data topics for the sensor variables and advertising capabilities for the controller values. Ardupilot

firmware uses an RC override functionality through MAVROS to change the flight mode and have

the Pixhawk FCU accept controller values from the companion computer. On the other hand, PX4

firmware simply uses an “offboard” flight mode function to pass on controller values from the

companion computer to the Pixhawk.

3.6 Onboard ROS-Autopilot Software Architecture

All the autopilot sub-systems are implemented as custom designed ROS processes, also called ROS

nodes (executables), that interact with each other using the ROS master server. ROS provides a set

of software tools and libraries, or drivers for various peripherals and sensors, that are open-source

and can be readily used for real-time robotic applications. The ROS library provides state-of-

the-art algorithms for sensor data processing, vision systems, robot navigation and path planning,

motor control, etc.

The main advantage of using ROS framework is its flexibility to run on different platforms

(software portability), such as NVIDIA Jetson-Nano, Odroid-XU4 or a desktop computer with

standard CPU architecture (such as x86 or AMD) and a Linux operating system (Ubuntu), which

readily supports development, testing and implementation on different sized UAS platforms. The

major components or processes of this ROS-Autopilot software are: (1) 6-DOF node, (2) Pixhawk

node, and (3) autopilot node, as shown in blue circles in Figure 3.4. The 6-DOF node computes

and outputs the aircraft states for the next time step. It integrates the aircraft differential equa-

tions of motion, based on an initial state value and control excitation. The servo dynamics are

modeled as a part of these differential equations, thereby the servo time delays affect the control

surface deflections and hence the corresponding states in this step, as described in Section 2.2. The

Pixhawk node has a similar output functionality, except it does not integrate the equations of mo-
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tion, rather it just takes in measured, filtered and estimated sensor values from the Pixhawk FCU

through Serial-Mavlink interface, parsed via MAVROS. The aircraft states’ output ROS topic is of

the same data type for both the 6-DOF and the Pixhawk nodes. Based on the software mode: HiTL

or Flight, this “states” topic is populated, represented in a green box in Figure 3.4.

Figure 3.4: ROS Onboard Software Architecture: HiTL and Flight Modes

This states topic then serves as the input to the Autopilot node. The Autopilot node runs all

the guidance and control functions of the system, with additional functionalities including GPS

data conversions and path follower (waypoint line switching). As shown in Figure 3.4, the LQR

and ANN (orange boxes) control values are computed in parallel and are analyzed by the safety-

critical switch (yellow box). The switch chooses the appropriate stable control outputs and sends

them through servo controls topics to the 6-DOF and Pixhawk nodes, depending on the HiTL or

flight test mode flag. It is important to note that during HiTL mode, the topic is subscribed by

both the 6-DOF and the Pixhawk nodes in parallel. This allows for an end-to-end systems test for

the whole avionics, software and hardware, in which case the control surfaces are deflected based

on the control output values via the servo controls topic. In the flight test mode, only the servo

controls topic is sent to the Pixhawk node, and the 6-DOF node is completely disabled.

77



The Pixhawk and the 6-DOF nodes are coded in the C++ programming language [137]. On the

other hand, the functions inside the autopilot node are written in Python programming language

[112]. The autopilot node handles waypoint data parsing and their conversion to local coordinates;

sensor data variable assignment and their passing to guidance and control functions; aggregation

of all variables: state, control, and various flags for a time stamp synchronized logging of all

flight data. The autopilot node also contains a functionality that allows the user to modify certain

flags and variables within the autopilot node. This parameter modification functionality is invoked

whenever there is a waypoint data upload from the ground control station. The parameter modi-

fication functionality allows a user to change various guidance parameters, stability augmentation

system (SAS) gains, LQR’s Longitudinal and Lateral gains, IMU filter parameters, ANN activation

and deactivation flags, airspeed and altitude commands, trim values for all control variables, etc.

Through this parameter modification functionality, the user can change these variables dynami-

cally in a real flight while the aircraft is flying, in either RC (manual) or auto modes. Note that

these modes (RC and auto) are different than the HiTL and Flight modes. The RC and auto modes

are sub-modes of the Flight mode, and can be toggled in real flight, allowing a pilot to take off the

aircraft in RC mode and turn the auto mode “ON” after reaching the approximate desired altitude

and airspeed.

During the HiTL testing, the aircraft 6-DOF equations of motion are propagated through a

ROS node. This ROS node consists of all the stability and control derivatives of the Skyhunter

aircraft developed using the AAA software [21]. These derivatives are used to compute respective

aerodynamic coefficients that in turn determine the aircraft forces and moments. The equations

of motion are integrated using standard Runge-Kutta integrator after augmenting servo dynamics,

and hence states are emulated at 20 Hz frequency. The GNC node subscribes to these states’ topic

and computes controller outputs which are sent back to the 6-DOF node. The whole process is

implemented in a feedback manner, exchanging data via subscribing and advertising ROS topics.

A ROS graph for the whole software implementation is shown in the right part of Figure 3.5.

During HiTL process run, as shown in Figure 3.5, the controller outputs are sent to a topic,
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Figure 3.5: ROS Graph: Communication and Data Exchange Among the Autopilot Processes
(nodes)

namely, /servo_op. The /servo_op topic sends the control surface commands to the Pixhawk_PX4

node, which acts as an interface node between onboard controller and MAVROS package that in

turn communicates to Pixhawk hardware directly via Serial-Mavlink interface. Hence, the control

angles and throttle percentage, after conversion to PWM values are transferred to Pixhawk to be

sent out to the control surface servos and the ESC. All the aircraft states and controller values

are aggregated via the /data topic and are sent to the Microhard telemetry module (via Mavlink

protocol) to show real-time updates of aircraft location on the GCS. Therefore, HiTL validates

the whole system in an end-to-end sense, by verifying the software, hardware, telemetry and data

communication.

3.7 Evolution: Learning From Flight Data - TensorFlow Software

A separate software is developed using Python programming language and TensorFlow (tf) ma-

chine learning system [4], to handle custom learning through Deep Deterministic Policy Gradients
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(DDPG) algorithm and real flight data. For details of the DDPG algorithm see Section 2.9.4. Since

the goal here is to learn directly from flight data and re-train the actor neural network, several steps

of the original DDPG algorithm are skipped. The actor neural network does not need to be trained

from scratch, rather it has to be fine-tuned using real flight data, which represents relatively more

accurate aircraft dynamics. Therefore, the learning rates selected for the evolution task are very

small (1e−10).

The DDPG algorithm used for evolution does not need to run a time-series episode for data

collection. Rather, the experience buffer is readily made available using the flight data. The episode

concept changes to simply mini-batch training from the replay buffer data. For completeness, the

DDPG steps used for evolution are shown in Algorithm 7.

Algorithm 7 DDPG Algorithm for Evolution
1: Copy pre-trained ANNs: Q(s,a|θ Q) and µ(s|θ µ)
2: Copy pre-trained target ANNs: Q′(s,a|θ Q′) and µ ′(s|θ µ ′)
3: Populate replay buffer with flight data: FD
4: for B = 1, K do
5: Sample a mini-batch N transitions from FD
6: for i = 1, N do
7: y(i)t = r(i)t + γdQ′(s(i)t+1,µ

′(s(i)t+1|θ µ ′)|θ Q′)
8: end for
9: L = 1

N ∑
N
i=1(y

(i)−Q(s(i),a(i)|θ Q))2

10: Minimize L, and update Q(s,a|θ Q)
11: ∇θ µ J ≈ 1

N ∑
N
i=1 ∇aQ(s(i),µ(s(i))|θ Q)∇θ µ µ(s(i)|θ µ)

12: Update µ(s|θ µ) using ∇θ µ J
13: θ Q′ ← τθ Q +(1− τ)θ Q′

14: θ µ ′ ← τθ µ +(1− τ)θ µ ′

15: end for

The neural networks’ parameters are assigned using tf.variables and the values are copied from

the pre-trained and flight tested neural networks. The target networks’ parameters are assigned

the “apply” operation from tf.train.ExponentialMovingAverage method to update these parameters

using temporal difference backups.

The critic optimizer is defined in the TensorFlow operation graph using the Adam optimizer ob-

ject: tf.compat.v1.train.AdamOptimizer and the parameter updates are carried out using the “min-
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imize” method directly applied to cost (estimated vs target cumulative rewards). For the actor

network, the training is done using policy gradients, therefore a cost cannot be directly minimized

(or maximized). First, a gradient operation is defined using “tf.gradients” object that computes

gradients of Q with respect to actions a, where Q is the graph variable output from the critic neural

network and a is the input “tf.variable” to the critic network. This gradient operation is denoted by

∇aQ(s(i),µ(s(i))|θ Q) in the Algorithm 7.

Another “tf.gradients” object is defined to compute the gradients of a or policy with respect

to actor’s parameters θ µ , where a is the output “tf.variable” from the actor network. This gra-

dient operation is denoted by ∇θ µ µ(s(i)|θ µ). While defining this gradient operation, the third

argument to the “tf.gradients” is passed containing the negative of the numerical values of the

∇aQ(s(i),µ(s(i))|θ Q) operation. The gradients ∇θ µ µ(s(i)|θ µ) are clipped before passing to the

“apply_gradients” method of the tf.compat.v1.train.AdamOptimizer class that is used to update the

actor parameters.
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Chapter 4

Validation, Verification, and Discussions

4.1 Base Autopilot - LQR Controller

Implementation: The base autopilot software was implemented using MATLAB scripts, and was

optimized by using matrix computations wherever possible. Due to this new implementation of

base autopilot, the computational efficiency improved by at least 31 times, as compared to the

SIMULINK based GNC simulator [76]. For 500 seconds of flight simulation using the SIMULINK

based GNC system, the time taken is about 25 seconds; however the time taken for the same flight

(500 seconds) simulation using the base autopilot takes only 0.8 seconds. The training time for

the imitation neural networks also improves drastically if this base autopilot policy is used for data

generation, as discussed in Sections 4.2.2 and 4.2.3.

LQR Stability Analysis: The decoupled longitudinal and lateral LQR controllers developed as

described in Section 2.3.2 are tested for stability. The controller gain matrices are used to find the

closed-loop system matrices for the linear time invariant dynamic model of the Skyhunter aircraft,

as shown in Equation 4.1.

ẋ = Ax+Bu (4.1a)

u =−Kx =⇒ ẋ = (A−BK)x (4.1b)

Here, A−BK is called the closed-loop system matrix (ACL) [83] and can be directly used to

analyze the absolute stability of the controller with respect to the LTI system dynamics. Using the

damp function in MATLAB, the poles, natural frequency, and damping ratio of the closed-loop
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Table 4.1: Lateral Controller Closed-Loop System Properties

Poles Damping (ζ ) Natural Frequency (rad/s)
-10.31 1 10.31

-2.05 ± 5.96i 0.325 6.30
-0.614 1 0.614

Table 4.2: Longitudinal Controller Closed-Loop System Properties

Poles Damping (ζ ) Natural Frequency (rad/s)
-6.51 ± 3.07i 0.904 7.20

-0.418 ± 0.649i 0.542 0.772
-0.0362 1 0.0362
-0.368 1 0.368

system matrix are computed. The lateral closed-loop system’s properties are summarized in Table

4.1. As it can be observed from the table, all the poles are negative, that is they are located in the

left-half complex plane, and therefore the system exhibits stable behavior. The damping ratio for

the second order Dutch Roll mode is 0.325, which increased from 0.174 for the open-loop system

matrix.

The closed-loop system properties for the longitudinal controller are shown in Table 4.2. It can

be seen that since all the poles are negative, the closed-loop system is stable. Also, the damping

ratio for the second order Short Period mode increased from 0.806 (open-loop) to 0.915 for the

closed-loop system, and that for the Phugoid mode, it changed from 0.155 to 0.643.

Monte-Carlo 6-DOF Simulations: The base autopilot (LQR controller) was subjected to

Monte-Carlo flight test simulations with multiple random initial conditions (aircraft states) as de-

scribed in Section 3.4. Different combinations of aircraft states consisting of 100,000 cases were

chosen to test the statistical reliability of the complete GNC system. A standard race-track way-

point path consisting of four waypoints was set up for the flight simulations. Every test case is

subjected to a “success” and “failure” monitoring algorithm, the results of which are shown in

Table 4.3.

Out of a 100,000 flight test simulations, more than 99% of cases were successful, demonstrating

that statistically the LQR-GNC system is very reliable and most likely will perform well in a
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Table 4.3: Success and Failure Rates for Monte-Carlo Flight Test Simulations Conducted on the
Base Autopilot

Total Cases Success Failure Percentage Success Failure Conditions
100,000 99,690 310 99.69% δa/dt : Max = 15.89◦/s

real flight test. Rigorous hardware in the loop tests were also conducted with the base autopilot

software, checking its end-to-end system reliability.

Skyhunter Flight Tests: Real flight tests were conducted using the base autopilot, with match-

ing guidance parameters and controller gain matrices as used for 100,000 Monte-Carlo flight simu-

lations. It was found that the Skyhunter aircraft went into both lateral and longitudinal oscillations,

as soon as the autopilot mode was engaged in-flight. As described in Section 2.3.2, the lateral

controller gain matrix Klat is a 2× 4 matrix as shown in Table 4.4. The table shows the matrix

elements that are associated with particular states and their respective control variable.

Table 4.4: Base Autopilot Lateral Controller Gain Matrix

β φ P R

δa K11 K12 K13 K14

δr K21 K22 K23 K24

In order to reduce the lateral oscillations and achieve the desired tracking performance, the

elements of Klat matrix were fine-tuned dynamically in-flight via the ground control station. The

element K13, which represents the gain from roll rate to aileron control, was reduced by about

86.69% of the original value. Also, the element K24, which represents the gain from yaw rate to

rudder control, was reduced by about 56.68% with respect to its original value. To further improve

lateral tracking performance, the element K12, which represents the gain from roll angle to aileron

control, was increased by about 15.18%. The summary of these necessary changes for flight testing

is shown in Table 4.5.

Similarly, the elements of the longitudinal controller gain matrix (Klon) were tuned in-flight to

obtain smooth performance and mitigate oscillations. The longitudinal gain matrix Klon is shown
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Table 4.5: Base Autopilot Lateral Controller Gain Tuning: Flight Test

K12 K13 K24
Variation +15.18% -86.69% -56.68%

Description φ/δa P/δa R/δr

Table 4.6: Base Autopilot Longitudinal Controller Gain Matrix

VT α θ Q
�

VTcmd −VT
�

θcmd−θ

δt K11 K12 K13 K14 K15 K16
δe K21 K22 K23 K24 K25 K26

in Table 4.6.

During the flight test, very fast pitch oscillations were observed, therefore the gain matrix ele-

ment K24, which represents gain from pitch rate to elevator control, was tuned in-flight through the

ground control station. This gain (K24) was reduced by 77.61% to mitigate longitudinal oscillations

and achieve a steady-state flight. Also, the element K23, which represents gain from pitch angle to

elevator control, was reduced by 80.17%. Further, to improve altitude tracking performance, the

gain element K26 was tuned. K26, which represents gain from the error integral of pitch angle to

elevator control, was increased by 5.45%. The summary of the changes to longitudinal gain matrix

elements is shown in Table 4.7.

Although the LQR controller was tested rigorously via 100,000 Monte-Carlo simulations, in

which it was shown that the controller always performs well, tracks guidance commands with

no oscillations, produces bounded states, controls and control rates, this controller was unable to

perform well in a real flight test. This shows that most likely the dynamic model used (LTI) was

either inaccurate or this particular LQR controller was not robust to un-modeled dynamics that

could very well occur during real flight tests. After tuning the base autopilot’s LQR controller, a

total of 36 successful flight tests were conducted, in which the base autopilot functions as the main

Table 4.7: Base Autopilot Longitudinal Controller Gain Tuning: Flight Test

K23 K24 K26
Variation -80.17% -77.61% +5.45%

Description θ/δe Q/δe
�
(θcmd−θ)/δe
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or background autopilot system, while testing more risk prone guidance and control algorithms.

4.2 Imitation Autopilots Trained via Moving Window DAgger

Using moving window data aggregation methodology (MwDAgger), see Section 2.7, three dif-

ferent ANN autopilot models are developed. They are named as Imitation Models 1, 2, and 3.

Imitation Model 1 is trained using supervised data generated from the “expert” GNC policy as

detailed in Reference [76]. And, the Imitation Models 2 and 3 are trained using the Base Autopilot

“expert” policy that combines guidance and control algorithms, as described in Section 2.3. The

reason for switching to the base autopilot as the “expert” policy was the computational efficiency of

the software implementation for the base autopilot’s guidance and control, see Section 4.1. As seen

in Tables 2.1 and 4.8, the training times for each of the ANN autopilot models is relatively high (7

to 9 hours), and therefore the base autopilot is used as the “expert” policy for further development

of ANN autopilot models.

4.2.1 Imitation Model 1: Unification of Guidance, Navigation and Control

The neural network autopilot used to unify guidance, navigation and control is the same architec-

ture as described in Section 2.6.1, see Figure 2.9. This ANN architecture is named as: Imitation

Model 1. The neural network was trained for 750 seconds of trajectory flown by the aircraft, which

is about four and a half loops around the waypoints. After training, separate flight simulations are

conducted for the “expert” GNC policy and ANN autopilot using 6-DOF EOM. The results are

shown in the following figures. In Figure 4.1, the ANN flown trajectory and GNC flown trajectory

are compared, the 2D race-track trajectory as flown by the neural network is shown in color cyan

(greenish blue) which practically overlaps the 2D trajectory in gray color that is flown by the GNC

policy. The training statistics for this model are shown in Table 4.8, see Section 2.7.
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Table 4.8: Imitation Model 1 - Training Statistics

Model DAgger Epochs Training Training Slope of Flight Time

(Training) Examples Time Flight Times (seconds)

MwDAgger 753 1.52e5 8h 55m N.A. 800+

The lateral-directional and the longitudinal states and control are shown in Figures 4.2 and 4.3

respectively. From Figure 4.2, it can be seen that the roll and yaw rates are almost identical for the

GNC and ANN based closed-loop 6-DOF flight simulations, with slight overshoots showing that

the ANN control rates are relatively higher by a very marginal amount. For instance, at around

75 seconds, the GNC flight roll rate is ≈ −6◦/s, but for the ANN flight it is ≈ −11◦/s, which is

within reasonable limits. This over-prediction only occurs twice within a period of 240 seconds of

ANN flight. The ANN control outputs, aileron and rudder are bounded and exhibit no oscillatory

behavior.
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Figure 4.1: Trajectory Comparison: Expert Policy and ANNs: DAgger, McDAgger, GNC McDAg-
ger and MwDAgger

From Figure 4.3, representing longitudinal states and control, a very interesting behavior for

ANN predicted throttle control is observed. The ANN learns the appropriate value of steady-state
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throttle needed to maintain the airspeed, while the GNC longitudinal controller takes time to react

to error buildup and slowly reaches the required throttle. As a result, from Figure 4.2, it can be

seen that the airspeed drops to about 48 ft/s while the GNC is controlling the aircraft and reaches

steady-state (≈ 50.62 ft/s) only after about 30 seconds. Both the throttle and elevator controls

predicted by the ANN through the closed-loop simulated flight exhibit no oscillatory behavior.

Velocity tracking is reasonable and within an error margin of 0.5 ft/s, which is exactly the same

behavior of the expert GNC policy exhibited.
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Figure 4.2: Moving Window DAgger ANN-Simulation Flight Test: Lateral States and Controls
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Figure 4.3: Moving Window DAgger ANN-Simulation Flight Test: Longitudinal States and Con-
trols

In Figure 4.4, 3-Dimensional trajectories for GNC and ANN flying the aircraft are compared.

It is very interesting to note that in GNC flight the aircraft loses altitude by about 15 ft in the

beginning, but the ANN is able to maintain the altitude throughout the flight. From Figure 4.3,

particularly the total velocity plot shows that an even higher velocity is maintained by the ANN

at turning maneuvers which indicates the learning capability of the neural network in terms of

altitude hold. This clearly shows the compensation of lost lift force due to loss of wing surface

area at turns, by increasing throttle control by the ANN.
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Figure 4.4: Moving Window DAgger - 3-Dimensional Trajectory Comparison with GNC

The goal to imitate an “expert” GNC policy is achieved, and note that the lateral tracking errors

(see Figure 4.1) that are caused by this GNC policy are not rectified by the imitation ANN. This

shows that the imitation neural network can be only as good as the GNC policy, or the expert from

which the ANN is learning and cannot improve or rectify errors without some external feedback.

4.2.2 Imitation Model 2: Unification of Guidance and Control

The moving window DAgger algorithm successfully trains a neural network to imitate an expert

policy while unifying the complete sub-systems of a GNC policy. The ANN can safely fly in

closed-loop 6-DOF simulations while maintaining aircraft stability at all times, achieving long

flights without crashing (no error accumulation). However, there is an inherent drawback in the

design of this particular neural network input architecture. This ANN, detailed in Sections 2.6.1

and 4.2.1, does not have flexible inputs in terms of “number” of waypoints. For completeness, the

inputs to Imitation Model 1 are shown here, in Equation 4.2.

x(i) =
[
∆
(i)
N j
,∆

(i)
E j
,∆

(i)
D j
,φ (i),θ (i),ψ(i),V (i)

T

]
, j ∈ [1,4] (4.2)

90



The first 12 inputs (NED distances between the aircraft and the waypoints) limit the application

of this neural network to only four waypoints. Once trained, the input state vector dimension

cannot be changed and hence the number of desired waypoints cannot be dynamically updated by

the user for different flight test missions. Rather, the ANN weights and biases would have to be

re-initialized and then trained to incorporate any more or less number of waypoints. To address this

issue, the ANN input architecture is modified and the inputs are made independent of the number

of waypoints.

Instead of using the distances between the aircraft and all the waypoints, the perpendicular or

the shortest distance from the aircraft to a particular waypoint line (the line being tracked currently)

is used as an input. This way, behaviorally the neural network will be trained to track a line,

instead of waypoints. By introducing this perpendicular distance as an input, and by removing the

NED distances, the directional information (desired heading) is inherently lost from the input state

vector. To account for this direction information, the error in heading angle (aircraft vs desired

heading) is used as an additional input, see Equation 4.3. This input state vector allows the user

to configure and dynamically update to any number of waypoints, and hence the neural network

becomes mission agnostic. The only extra effort in this architecture then would be to implement

an outer loop that provides the perpendicular distance, heading error and also switches waypoint

lines as the aircraft progresses in its flight mission. Another major modification to the neural

network input architecture is to utilize error in states, such as airspeed, heading and altitude, so as

to represent guidance type inputs to the network.
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Figure 4.5: Imitation Model 2: Unification of Guidance and Control via Neural Network

Moreover, it was found that the incorporation of navigation filters as internal representations of

the neural network makes the training relatively complex and slow, and hence the focus is shifted to

unification of guidance and control functionalities only. The complete block diagram showing the

ANN implementation and unification is represented in Figure 4.5. This block diagram represents

ANN in place of the guidance and control parts of the base autopilot (see Figure 2.2, Section 2.3

for more details).

One input data point for this ANN is defined as follows:

x(i) =
[
∆
(i)
P ,∆

(i)
VT
,∆

(i)
H ,φ (i),θ (i),∆

(i)
ψ

]
(4.3)

Perpendicular distance from the waypoint line is denoted as ∆P and the errors in total airspeed,

altitude and heading are denoted as: ∆VT ,∆H , and ∆ψ , respectively. One output data point for the

Imitation Model 2 neural network is the same as Imitation Model 1, that is the neural network

outputs throttle, elevator, aileron, and rudder controls.

A waypoint switching logic is used that changes the waypoint line based on aircraft proximity

to the next waypoint, see Section 2.3. Moving window DAgger algorithm is used for ANN data

collection and the scaled conjugate gradient descent algorithm is used for training. Training is

carried out in mini-batches without the need for reinitialization of the neural network. This neural

network is able to generalize much faster (as compared to Imitation Model 1) to stable flights and
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complex waypoint paths. Trajectory comparison results are shown in Figure 4.6 for a complex

waypoint path that resembles a figure-8 pattern.
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Figure 4.6: Moving Window DAgger - Trajectory Comparison Imitation Model 2 and GNC

The Imitation Model 2 is trained around a trajectory containing 4 waypoints, but instead of

following a race-track, the flight path is a figure-8 pattern. As shown in Figure 4.6, the waypoints:

1→ 2→ 3→ 4 are arranged from South-North-South-North pattern respectively. This ensures

that the data used for training consists of both right and left maneuvers so that the learning is

unbiased for lateral tracking. All the longitudinal and lateral states match between the GNC and

ANN simulated flights.

The training for Imitation Model 2 is carried out in conjunction with the grid search neural net-

work architecture optimization algorithm, see Section 2.8. And therefore, the MwDAgger training

progresses efficiently and very fast, while finding an optimal neural network architecture for this

problem. The architecture obtained consists of one hidden layer with 24 nodes or neurons and one

output layer consisting of four nodes. All nodes are assigned tanh activation function. The time

taken for this training is about 4 hours and 11 minutes and it takes 86 MwDAgger iterations to

complete.
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4.2.3 Imitation Model 3: Decoupled Longitudinal and Lateral Controllers

The Imitation Model 2 exhibits excellent properties in terms of mimicking the expert GNC policy,

generalizing over right and left maneuvers and is waypoint mission agnostic. However, it was

found that the Imitation Model 2 cannot generalize over certain difficult initial conditions (aircraft

states) mainly pertaining to large drift from the input magnitudes with respect to the data that was

used to train it. For example, the first input used to train the neural network, consisting of the

perpendicular distance from the waypoint line, is mostly concentrated in the range of 0 ∼ 20 ft

with an average value of 34.77 ft. Due to this bias in data, the neural network used in Imitation

Model 2 is unable to predict and extrapolate to perpendicular distances that are out of this range;

this is also true for other inputs, such as the error in velocity and the error in altitude.

Figure 4.7: Imitation Model 3 Training Concept

In order to generalize over a large range of inputs, a new methodology is developed in which

a randomized initial condition for the aircraft state is selected before the start of MwDAgger train-

ing. Moreover, the training does not need to be carried out around a fixed waypoint pattern, instead

the training can be focused on achieving steady-state level wings flight and tracking convergence

to just one waypoint path given that the dataset consists of multiple initialization points. These

multiple random initial conditions consist of aircraft location with respect to the waypoint path

(straight line), different airspeeds and airflow angles, different attitudes and attitude rates. There-
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fore, in essence an outer loop for training is implemented that runs as a Monte-Carlo random initial

condition generator. Also, the Imitation Model 3 is divided into decoupled lateral and longitudinal

neural networks that are mainly used as controllers. The concept of this method is depicted in

Figure 4.7.

Lateral Neural Network: One input data point to this neural network consists of three variables

as shown in Equation 4.4. First input variable is the angle (ηLat) between the aircraft’s ground

speed and an imaginary
−→
Llat vector as defined in Section 2.3.1. Other inputs include the ground

speed (VXY ) and the roll angle (φ ). As described in Section 2.3.1, the ηLat angle is used to generate

the lateral acceleration required to fly the aircraft towards the waypoint path, which in turn gener-

ates the required roll angle (φcmd). Hence, the neural network learns to directly map from this ηLat

angle, the ground speed and the roll angle, to aileron and rudder controls.

x(i) =
[
η
(i)
Lat ,V

(i)
XY ,φ

(i)
]

(4.4)

The lateral ANN is trained to output perturbed values for aileron and rudder controls instead

of total values as shown in Equation 4.5. Therefore, the trim values need to be added to these

perturbed controls before exciting the aircraft model. This ANN consists of one hidden layer with

20 nodes or neurons, and one output layer with two nodes. Both layers’ nodes consist of tanh

activation functions.

y(i) =
[
δap,δrp

]
(4.5)

Longitudinal Neural Network: One input data point for this neural network consists of four

inputs as shown in Equation 4.6. The input variables are: error in pitch angle, error in velocity and

the integrals of these error states.

x(i) =
[

∆θ
(i),∆V (i)

T ,

�
∆θ

(i),

�
∆V (i)

T

]
(4.6)

The longitudinal neural network is trained to output perturbed throttle and elevator controls as
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shown in Equation 4.7. This ANN consists of three hidden layers with 50 neurons each, and one

output layer with two neurons. Both layers’ nodes consist of tanh activation functions.

y(i) =
[
δtp,δep

]
(4.7)
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(a) 2D Trajectory Tracking Anticlockwise
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Figure 4.8: Imitation Model 3

Both lateral and longitudinal neural networks are trained using MwDAgger data aggregation

with scaled conjugate gradient descent algorithm. For the lateral neural network, the outer loop

Monte-Carlo random initial condition generator is run 10 times to provide sufficient data for gen-

eralization, and it is run 100 times for the longitudinal neural network. The time taken for training

the lateral neural network is only about 2 minutes and 5 seconds; and for the longitudinal network

it is approximately 3 hours 21 minutes. When these neural networks are tested together in closed-

loop 6-DOF flight simulations, the combined controllers are able to generalize to different initial

conditions, clockwise, anticlockwise and figure-8 trajectories, see Figures 4.8a, 4.8b, and 4.9.
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Figure 4.9: Imitation Model 3: 2D Trajectory Tracking Figure-8

After training completion, both the neural networks are subjected to closed-loop 6-DOF flight

simulations with multiple random initial conditions. These Monte-Carlo evaluation simulations

consist of 10,000 different cases of flights, for each longitudinal and lateral neural networks, in

which the aircraft states at the start of the simulation are varied as described in Section 3.4. The

success and failure rates for these neural networks is shown in Table 4.9.

Table 4.9: Success and Failure Rates for Monte-Carlo Flight Test Simulations Conducted on Imi-
tation Model 3

ANN Total Cases Success Failure Percentage Success Failure Conditions

Longitudinal 10,000 9988 12 99.88% δa/dt : Max = 24.61◦/s

Lateral 10,000 9997 3 99.97% δa/dt : Max = 18.08◦/s

With more than 99% success rate in each case for longitudinal and lateral neural networks,

the reliability of these neural network controllers are proven to be effective in closed-loop 6-DOF

flight simulations. However, as shown in Section 4.1, the initial (real) flight tests for the base

autopilot were unsuccessful even after passing more than 99% Monte-Carlo flight test simula-
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tions, the reliability of these simulated flight tests highly depend on the aircraft 6-DOF model used

(physics-based). Since the controllers in the base autopilot were specifically designed around a

low-fidelity aircraft model, they are only reliable and optimal with respect to that aircraft model. If

the actual aircraft dynamics are significantly different than the estimated model parameters, then

the controller may fail in real flight tests. Therefore, a similar case is observed with the real flight

tests for Imitation Model 3, as described in the next section.
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Figure 4.10: Imitation Model 3: Lateral Neural Network - Trajectory Tracking

Flight Test Results for Imitation Model 3: The flight test results for the Imitation Model 3 are

shown in Figures 4.10 and 4.11. From Figure 4.10, it can be seen that the controllers were switched

in-flight from the base autopilot (Base AP) to the Imitation Model 3 lateral neural network, at the

South waypoint leg around 200 ft East local frame coordinate. From this switching point, the

lateral neural network controller cannot track the waypoint path, however it maintains stability

throughout its flight time of about 18.5 seconds, after which the autopilot mode is disabled by the

pilot and manual control is taken of the aircraft. The Imitation Model 3 longitudinal neural network

was engaged twice, dynamically in-flight, as shown in Figure 4.11. During each engagement, the

longitudinal neural network controller reacted abruptly resulting in a loss of altitude of about 32 ft

in just 3.5 seconds. The longitudinal neural network controller was kept engaged longer the second

time and it did try to recover in altitude, however at the cost of very fast control rates, due to which
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it was disabled.

Monte-Carlo simulation results for reliability analysis and the initial flight test results for both

the base autopilot and the Imitation Model 3 clearly show that the GNC autopilot designs are

inherently dependent on the physics-based aircraft dynamic model reliability and accuracy. The

traditional controllers, such as LQR, simply lack the structure to encompass all the non-linearity

associated with actual aircraft, if low quality dynamic model of an aircraft is used. On the other

hand, it has been shown that neural networks can effectively behave as standalone GNC systems

or just controllers; however, if they are trained on existing GNC systems, their reliability is again

questionable and they can be only as good as the expert policy.
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Figure 4.11: Imitation Model 3: Lateral Neural Network - Altitude Tracking

In light of this conclusion, the research question that lies ahead is that of designing reliable

controllers that possess the mathematical structure which can safely extrapolate to unseen flight

conditions, and also learn from low-fidelity aircraft models and in turn generalize over real aircraft

flights. A mathematical structure that not only generalizes but also learns a behavior or “policy”

that is agnostic to large variations in aircraft model parameters and can continue to learn such

behaviors is needed. Such a design of a neural network controller is shown to surpass expectations

in real flight tests which is trained using Deep Deterministic Policy Gradients algorithm, as detailed

in the next section.
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4.3 DDPG Trained Neural Network

After success with imitation learning, learning from environment methodology (reinforcement

learning) is explored. Since a flight controller is one of the most difficult parts from the sub

algorithms of a GNC system, the focus here is shifted to designing a neural network controller

policy using the reinforcement learning paradigm. Decoupled longitudinal and lateral controllers

are trained using aircraft’s respective LTI models with the goal of minimizing perturbations in

states and maintaining a steady-state wings-level flight. Validation and verification for the longi-

tudinal neural network controller is carried out in closed-loop simulations as well as flight tests.

In real flight tests, it is shown that this neural network is able to generalize predictions over large

perturbations or errors in airspeed and pitch angle inputs, and safely produce required perturbed

throttle and elevator outputs. The lateral controller is developed using a unique reward scheduling

technique and is validated in LTI and 6-DOF closed-loop simulation flights.

In this research, MATLAB’s reinforcement learning toolbox [96] is used, as it readily provides

the Deep Deterministic Policy Gradients (DDPG) learning algorithm. The basic idea behind this

algorithm is to simultaneously train two deep neural networks representing the actor (policy) and

critic functions. To use MATLAB’s reinforcement learning toolbox the user has to set up a few

functions and variables. A one step dynamic model (aircraft model) needs to be set up that pro-

vides next step states based on control input excitation, in turn providing a crucial part of data for

training. This dynamic model is defined inside a “step” function, an object property of MATLAB’s

reinforcement learning toolbox. A “reset” function is also set up by the user that resets the initial

state of the dynamic system before start of every episode. The reward function (immediate reward)

needs to be carefully designed by the user depending on the control problem, and is implemented

as part of the “step” function. Other significant properties for the “step” and “reset” functions that

are set up by the user include: ranges for terminal states, ranges for selecting randomized states,

and control variable ranges. Apart from these standard functions, the user defines and tunes some

crucial parameters, such as the learning rates for the actor and the critic neural network functions,

the discount factor, mini batch size, neural network architectures for both actor and critic (layers,
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neurons and activation functions) and the noise parameters.

4.3.1 Longitudinal Environment: Aircraft Model and Reward Function

The environment is formulated using the longitudinal Linear Time Invariant (LTI) model of the

Skyhunter UAS, see Section 3.1. A discrete model is created using aircraft continuous A and B

matrices, see Equation 4.8.

Xk+1 = ADXk +BDUk (4.8)

Here, X represents the longitudinal state of the aircraft, consisting of {VT ,α,θ ,Q}, and U

consists of the control variables: {δt ,δe}. AD and BD are the discrete system matrices of the LTI

model.

The environment-based reward function that is used as the learning signal for the reinforcement

learning procedure must be defined in such a way that it can represent the desired goals effectively

and also not restrict data collection. The goal for the longitudinal controller is straightforward:

maintain a steady-state flight with airspeed and altitude holds. Since, in the LTI model the total

velocity of the aircraft is available, it can be directly incorporated in the reward function. How-

ever, altitude is not part of the LTI model. Hence, the flight path angle (γ) is used as an indirect

measurement for the altitude of the aircraft, and a flight path angle of zero indicates an altitude

hold. Note that the flight path angle is denoted by (γ) and the discount factor is denoted by γd see

Equation 4.9, with a subscript of d to differentiate them from each other. Other goals for this con-

troller involve forcing the dynamic system (aircraft) to its trim point while minimizing the energy

input into the system (minimize controls). Therefore, the reward function consists of three major

elements divided as discrete and continuous rewards:

• The first element consists of a discrete reward which gives a high positive value each for

the perturbed velocity (VTp) and the γ angle, when each of these variable values are less

than certain independent thresholds. Since perturbed velocity is used, ideally the threshold

101



for velocity should be close to zero. In a real flight the total velocity is estimated using

the Pitot tube - differential pressure airspeed measurement. It would be prudent to model the

uncertainty bounds from this sensor and use that value as the threshold for perturbed velocity

when giving positive reward to the system.

Similarly, the flight path angle which is estimated using vertical GPS velocity (Vz) and the

Z-acceleration (az) from the IMU, the uncertainty bounds from these sensors can indicate

the uncertainty in the flight path angle measurement, which can be utilized as the threshold

for providing reward to the system based on the flight path angle.

• Second element represents a high negative value when VTp and γ are above certain inde-

pendent thresholds. The perturbed velocity is a value representing how much off trim the

aircraft velocity is, or in other words, it represents the difference between actual and trim ve-

locities. The minimum airspeed, which is 1.3 times the stall speed (Vmin = 1.3Vstall) must be

maintained to generate enough lift throughout the flight. The difference between the aircraft

trim speed and this minimum velocity is used as the threshold to give a high penalty to the

system.

The maximum rate of climb (or rate of descent) can be determined for a specific aircraft

depending on the flying qualities desired and also its structural integrity. Depending on this

factor (ḣmax), the maximum flight path angle can be computed using the direct relationship:

ḣ =VT sinγ (4.9)

• Third element represents a quadratic continuous valued reward function combining VTp , γ ,

and perturbed controls: δtp and δep . Quadratic rewards (penalties) for states ensure that the

data collected with its corresponding reward values exhibits a smooth transition from a non-

steady to a steady-state. The quadratic penalties for the control variables force the controller

to use less energy input to the system and also puts a limit (indirectly) on the control rates:

sudden changes in control values.
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The reward function is represented in Equations 4.10. The first reward element (R1) returns a

reward value of r11 if the square of the perturbed velocity (V 2
Tp

) is less than t11 threshold, and it also

adds a reward value of r12 if the absolute value of the flight path angle is less than t12 threshold.

The second reward element (R2) returns a high negative value (−r21), if the absolute value of

perturbed velocity exceeds t21 threshold, and also adds to it a high negative penalty (−r22), if the

absolute value of the flight path angle exceeds t22 threshold. The third element (R3) simply adds

the weighted (w31,w32,w33,w34) and squared values for the perturbed velocity, flight path angle,

perturbed throttle and perturbed elevator.

The total reward (R) is the summation of the three reward elements (R1,R2,R3).

R1 = r11
[
V 2

Tp
< t11

]
+ r12

[
|γ|< t12

]
(4.10a)

R2 =−r21
[
|VTp|>= t21

]
− r22

[
|γ|> t22

]
(4.10b)

R3 =−w31V 2
Tp
−w32γ

2−w33δ
2
tp
−w34δ

2
ep

(4.10c)

R = R1 +R2 +R3 (4.10d)

Here, r, t, and w are discrete rewards, state thresholds and quadratic function weights respec-

tively. All these three elements of the reward function are added together to provide a scalar reward

feedback for training. Therefore, the reward function ensures smooth changes in states and con-

trols for the aircraft while maintaining steady-state straight line flight, with airspeed and altitude

holds.
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Figure 4.12: Longitudinal Neural Network Controller Architecture

4.3.2 Actor and Critic Neural Networks - Longitudinal Controller

Using reinforcement learning terminology, the ANNs consisting of the actor and critic functions,

combined together as one entity are called as the reinforcement learning “agent”. One neural

network behaves as the controller policy, called the “actor” and the other neural network provides

cumulative reward feedback and is called the “critic”. For the Longitudinal LTI model, the actor

neural network is trained to output perturbed throttle and elevator controls. The inputs to the

neural network consist of perturbed states: total velocity and pitch angle. It is a two input and two

output neural network consisting of three hidden layers and one output layer. The three hidden

layers consist of rectified linear units (relu) as the activations for the neurons and the output layer

activation is tanh function. All layers are fully connected with weights and biases in each node.

Each fully connected hidden layer consists of 50 nodes (or neurons). The total learnable parameters

consisting of weights and biases sum to 5,352, which shows that the complexity of ANN controllers

is orders of magnitude more than LQR controllers as designed in Section 2.3.2. The actor ANN

architecture is represented in Figure 4.12.

The critic ANN architecture is shown in Figure 4.13. The critic ANN takes in the observation

(perturbed states) passes them through one fully connected layer with relu activations and 50 nodes

(Hidden Layer 1, see Figure 4.13). The outputs of Hidden Layer 1 are passed through a linear
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Figure 4.13: Critic Neural Network Architecture: For Longitudinal Controller

fully connected layer (Hidden Layer 2). On a different input path to the critic neural network, the

perturbed control values are passed through a fully connected linear activation layer (Hidden Layer

3). The outputs of Hidden Layers 2 and 3 are added element-wise before passing them through a

relu fully connected layer (Hidden Layer 4). The outputs from Hidden Layer 4 are passed through

another relu fully connected layer (Hidden Layer 5). The Output Layer of the critic neural network

consists of a fully connected linear layer, and outputs the Q value (cumulative reward). Each

hidden layer in this neural network consists of 50 nodes (or neurons). In total, the critic network

consists of five hidden layers and one output layer, with a total of 5,451 learnable parameters.
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4.3.3 Training Results - Longitudinal Controller
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Figure 4.14: Cumulative Rewards during training: Longitudinal Neural Network

Using the reward function and the discretized aircraft dynamics, the agent is subjected to training.

The maximum number of training episodes are set to 200,000. An episode is defined as the time

period in which the agent makes control decisions, receives reward and collects data for training

until the states reach an unstable or impractical threshold value or the maximum episode time is

reached. The cumulative reward or the value depends on the episode length and the immediate

reward attained at each step. An experience buffer size of 100,000 data points is set, with ini-

tial learning rates of 0.001 each for actor and critic neural networks. For both networks, Adam

optimizer (see Section 2.5.3) is chosen to update network weights and biases, which is based on

adaptive momentum estimation [80]. A discount factor of 0.9 is chosen to account for future

rewards.

The training is carried out on an Intel Core i7-8700 CPU, 3.20 GHz, with matrix computations

offloaded to a NVIDIA GeForce GT740 GPU. The training stopping criterion was chosen as a high
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positive value for the average cumulative reward. The moving average cumulative rewards and the

predicted value (Q) are shown in Figure 4.14. This training duration was 50 hours and 17 minutes,

with the stopping criterion being achieved at episode number 152,404. During training, agents

with a specific positive threshold value for cumulative reward are saved intermediately.

4.3.4 LTI Simulations - Longitudinal Neural Network Controller
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Figure 4.15: Longitudinal Neural Network Controller, Closed-Loop LTI Simulation Results: States

After training the agent, the actor ANN with highest cumulative reward is selected from all the

saved agents and it is subjected to numerous closed-loop simulations using the LTI model of the

aircraft at an update rate of 20 Hz (0.05 seconds discrete time steps). During LTI simulations, the

states are subjected to a temporally correlated Gauss-Markov process noise (Ornstein-Uhlenbeck

process [141]) to test the robustness of the ANN predictions. Results from one of the tests are

shown in Figures 4.15 and 4.16. The Skyhunter aircraft has a cruise speed of 50.63 ft/s, a trim

angle of attack of 0.73 degrees, and a trim throttle of about 60%. The LTI model is initialized

with a set of difficult initial conditions: VT = 65.63 ft/s, α = 5.73◦, θ = −10◦, and Q = −20◦/s.
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The ANN predicts throttle and elevator in such a way that it tries to bring the aircraft back to

trim conditions. It can be clearly seen that the ANN controller predicts stable throttle and elevator

controls, which are well bounded, and all the states converge to trim points.
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Figure 4.16: Longitudinal Neural Network Controller, Closed-Loop LTI Simulation Results: Con-
trol Variables and Rates

As seen in Figure 4.15, airspeed and angle of attack, both settle around the trim value, and the

pitch angle and pitch rate settle around zeros. While running closed-loop LTI and ANN simulation,

temporally correlated noise is added to all four states at every five time steps (4 Hz or 0.25 seconds).

The mean for the noise is set as zero, and the variances for the states are: σVT = 5 ft/s, σα = 1◦,

σθ = 2◦, σQ = 1◦/s. It can be seen in Figure 4.16, that the control rates are well bounded, throttle

being within ±40%/s and elevator rate within ±8◦/s.

4.3.5 Lateral Environment: Aircraft Model and Reward Function

As described in Section 4.3.1, the reinforcement learning environment is formulated using the

aircraft LTI model. Referring to Equation 4.8, in this case it represents the lateral LTI model

with X ≡ {β ,φ ,P,R} and U ≡ {δa,δr}. The goal for the Lateral neural network controller is

to maintain a leveled flight with roll angle attitude of zero degrees, while minimizing the use of
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aileron controls and its rate. In contrast to the general consensus that a Lateral controller design

should be relatively less difficult than its Longitudinal counterpart, it was otherwise found that

tuning the reward function and the neural network architecture was particularly very difficult for

this problem. Therefore, a novel idea is developed, in which the reward function is “scheduled”

based on the lateral state of the aircraft. This new terminology is defined as “Reward Scheduling”

and was found to be very effective in training the DDPG neural network controller, in terms of

both training time and achieving desired controller performance.

The reward function consists of two major parts based on the lateral states (φ ,P) of the aircraft:

(1) a positive discrete reward combined with a low negative quadratic continuous reward, and (2) a

negative quadratic continuous reward. Note that only one of these rewards is applied in an episodic

step. The first part of the reward function is further divided into seven different rewards based on

roll angle and roll rate conditions. The basic idea behind these different sub rewards for the first

part is that the discrete value of reward should be lower if there is a large error in roll angle and

vice-versa. Also, each sub reward combines another necessary condition involving roll rate, which

ensures that the reward is applied only if the roll rates are bounded.

The first part of the reward is mostly positive, which encourages the agent to be in these states.

This first part of the reward is applied only if the error in roll angle and the roll rate state are of

opposite sign, or in other words, if the aircraft is in a positive roll angle state and if the roll rate

is negative, this condition is considered good, and a positive reward is given. On the other hand,

if the aircraft is in a positive roll angle state and if the roll rate is also positive, this will lead to

instability, and hence the second part of the reward is applied which is negative. The structure of

this reward scheduling is detailed in Algorithm 8.

In the Algorithm 8, conditions C0 and C1 apply very small positive rewards in case of high roll

perturbations and high roll rates. The four conditions (C2 to C5) ensure that if the roll angle is in a

particular range and if the roll rate is also in some bounded value, then there is a positive reward.

The discrete rewards (D0 to D5) are in increasing order, that is, D0 < D1 < D2 < D3 < D4 < D5,

and the corresponding roll angle bounds are in decreasing order, that is, φ0 > φ1 > φ2 > φ3 > φ4.
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Algorithm 8 Reward Scheduling for Lateral Neural Network Controller
1: C0 : |φ |> φ0 and |P| ≥ P0
2: C1 : |φ |> φ0 and |P|< P0
3: C2 : |φ | ∈ (φ1,φ0] and |P| ∈ (0,P1)
4: C3 : |φ | ∈ (φ2,φ1] and |P| ∈ (0,P2)
5: C4 : |φ | ∈ (φ3,φ2] and |P| ∈ (0,P3)
6: C5 : |φ | ∈ (φ4,φ3] and |P| ∈ (0,P4)
7: C6 : φ = 0
8: if sign(φ ) 6= sign(P) then
9: if C0 then

10: R =−w(φ 2 +P2)+D0
11: else if C1 then
12: R =−w(φ 2 +P2)+D1
13: else if C2 then
14: R =−w(φ 2 +P2)+D2
15: else if C3 then
16: R =−w(φ 2 +P2)+D3
17: else if C4 then
18: R =−w(φ 2 +P2)+D4
19: else if C5 then
20: R =−w(φ 2 +P2)+D5
21: else if C6 then
22: R =−WPP2 +Dφ=0
23: end if
24: else
25: R =−w(φ 2 +P2)
26: end if
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The roll rates associated with these conditions are also in decreasing order, that is, P0 > P1 > P2 >

P3 > P4. Therefore, these conditions dictate the behavior of roll rate control based on the roll angle

state: if the roll angle perturbation is higher, then the controller can react fast to reduce the error

and on the other hand if the roll angle perturbation is small then it will only be rewarded if the roll

rates are very small in value. The last condition C6, line 21 of Algorithm 8 applies when the roll

perturbation is zero degrees and gives a highly weighted negative (WP) reward to roll rate (−WPP2),

combined with a high positive reward for achieving level wings condition (Dφ=0).

The second part of the reward, line 25 of Algorithm 8 applies a quadratic continuous reward

when the controlling behavior is opposite of what is expected.

4.3.6 Actor and Critic Neural Networks - Lateral Controller

Figure 4.17: Lateral Neural Network Controller Architecture

The Lateral neural network controller (Actor) is trained to output aileron (δa), based on perturbed

roll angle (φ ) input. It is a single input and single output neural network consisting of two hidden

layers and one output layer. All layers are fully connected with weights and biases in each node.

The first hidden layer consists of one node (or neuron) and the second hidden layer consists of

20 nodes, with both layers having relu as their activation function for all nodes. The output layer

consists of the tanh activation function with one output node. The total learnable parameters con-
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sisting of weights and bases are 63. This Lateral neural network controller is represented in Figure

4.17.

For this Lateral controller, the critic neural network is shown in Figure 4.18. The architecture

of this neural network critic is very similar to the one used for the Critic for Longitudinal controller.

The number of hidden and output layers are same for this critic (Lateral controller) as of the critic

for the Longitudinal controller, and equal to five hidden layers and one output layer. The number

of nodes or neurons in each hidden layer is equal to 20. The total learnable parameters for this

critic neural network are 545.

Figure 4.18: Critic Neural Network Architecture: For Lateral Controller

4.3.7 Training Results - Lateral Controller

Using the reward function, Lateral environment and the neural network agent, the training is carried

out on an Intel Core i7-8700 CPU, 3.20 GHz, with matrix computations offloaded to a NVIDIA

GeForce GT740 GPU. The maximum number of episodes are set to 10,000, with both actor and

critic learning rates of 0.001, and a discount factor value of 0.99 is chosen. For both neural net-
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works, Adam optimizer [80] is used. The moving average cumulative rewards and the predicted Q

value are shown in Figure 4.19 up to episode 3000.
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Figure 4.19: Cumulative Rewards During Training: Lateral Neural Network

This training duration was 58 hours and 37 minutes for all 10,000 episodes; however, the train-

ing could be stopped manually around episode 2,100 because the best neural network performance

is achieved at training episode 2,037. The time taken for training up to episode 2,037 is approxi-

mately 16 hours and 32 minutes.

4.3.8 LTI Simulations - Lateral Neural Network Controller

The lateral neural network controller with the best performance (highest cumulative reward) is

selected for evaluation using closed-loop LTI simulations with different initial conditions. The

closed-loop simulations are carried out at 20 Hz update rate with discretized LTI Lateral model.

A temporally correlated noise (Ornstein-Ulenbeck) is also implemented and applied to the lateral

states at every 5 time steps (4 Hz or 0.25 seconds). One of the initial conditions used for the lateral
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states is very difficult: β =−4◦,φ =−20◦,P =−30◦/s,R = 15◦/s, the results of which are shown

in Figures 4.20 and 4.21.
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Figure 4.20: Lateral Neural Network Controller, Closed-Loop LTI Simulation Results: States

The mean for the noise used is zero, and the variances for the states are: σβ = 1◦,σφ = 2◦,σP =

15◦/s,σR = 10◦/s. The Lateral neural network controller predicts aileron controls based on per-

turbed roll angle input. From Figure 4.20, it can be clearly seen that the neural network is able

to produce effective control outputs to drive the roll angle to zero degrees, while the roll and yaw

rates are small and bounded. During the initial transient phase of state propagation in time, there

are minor oscillations as seen in Figure 4.20.

As seen in Figure 4.21, the aileron output is very smooth, changing from about positive 0.8◦

and settling down to zero. The rate of change of aileron (control rate) is well bounded between

±0.01◦ after the initialization phase.

114



0 5 10 15 20

Time (s)

0

0.5

1

A
ile

ro
n
 (
°
)

0 5 10 15 20

Time (s)

-0.05

0

0.05

A
ile

ro
n
 r

a
te

 (
°
/s

)

Figure 4.21: Lateral Neural Network Controller, Closed-Loop LTI Simulation Results: Control
Variables and Rates

4.4 Flight Test Validation - Longitudinal Neural Network Controller

Flight tests were conducted at the Clinton International Model Airport in Lawrence, Kansas. Four

waypoints are set by the ground station operator representing a racetrack flight path pattern. A

total of 15 distinct flight tests were conducted with varying wind conditions (from low ideal to

high extreme), different trim airspeeds, different altitudes, and most importantly, challenging test

scenarios consisting of climb and descent maneuvers. Tests consisted of dynamically changing the

airspeed command or trim velocity of the aircraft while the aircraft was performing autonomous

flight controlled by the DDPG Longitudinal neural network. The climb and descent maneuvers

were also tested dynamically while in autonomous flight. The flight test software incorporates a

safety-critical switch, implemented in the ROS framework that monitors the neural network control

outputs in real time. It outputs a stable or unstable flag that either allows the neural network to

be in control or switches to command tracking LQR Longitudinal controller, respectively. The

complete system level software architecture implemented onboard the aircraft is represented in a

block diagram in Figure 4.22.
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Figure 4.22: Aircraft Software-System Architecture: Flight Test

All flight test scenarios can be divided into 21 distinct categories or flight conditions. Most

of the flights consisted of an anticlockwise (ACW) North-East pattern around the waypoints, with

one test being clockwise (CW). The test scenarios with different aircraft conditions and complete

statistics are detailed in Table 4.10. A total flight time added over all the flight tests was recorded

at about 1 hour and 8 minutes. A total distance of about 40 miles was flown by the aircraft with

altitude ranging from 328 ft to about 500 ft - Above Ground Level (AGL). The flight tests were

conducted on different days spread out over 5 months (November 2019 to March 2020). Therefore

flight tests encountered a large range of weather conditions: wind and temperature that in turn af-

fect air density which directly affects the dynamic pressure over the aircraft and hence its dynamics

characteristics.

All the flights conducted using the DDPG longitudinal neural network exhibited stable

behavior and desired performance characteristics. There was no need for re-training or

tuning the neural network for any flight condition or scenario, and it performed equivalently

well in each case, even though it was trained on Skyhunter’s linear time invariant model.

The trim speed of the Skyhunter aircraft is 50.63 ft/s, and according to standard system dy-
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Table 4.10: General Flight Test Statistics: DDPG Longitudinal Neural Network

Flight Scenarios 21
Flight Time 1 hr, 8 m, 48 s

Number of Flights 15
Total Flight Distance 214,114 ft (40.5 miles)
Race-Track Loops 1 42.65
Wind Range (MPH) 0 - 13.9 (Gust to 17.4)

Altitude Range (ft-AGL) 328 - 500
Airspeed Range (ft/s) 41 - 78

namics and control theory, the controllers perform well as long as the perturbation around the trim

points are small. The DDPG longitudinal neural network was flight tested with “large” perturba-

tions and variations in flight airspeed, ranging from 41 ft/s to about 78 ft/s. The data distribution

for airspeed collected over all 15 flight tests and 70,792 data points, is shown in Figure 4.23a.

The longitudinal neural network was also flight tested at different altitudes, the data distribution of

which is shown in Figure 4.23b.

(a) Airspeed Data (b) Altitude Data

Figure 4.23: Airspeed and Altitude Data Distributions for all Flights with DDPG Trained Neural
Network Longitudinal Controller

Figures 4.24a and 4.24b show the variations of control outputs generated by the neural network

controller across all flight tests, for throttle and elevator respectively. The throttle trim for the

Skyhunter aircraft is around 50% ∼ 60% and the throttle outputs in flight tests were changed from

1One Race-Track Loop ≈ 5020 ft
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about 40% to 100% in different flight tests showing large perturbations. The data distribution for

elevator controls, Figure 4.24b, likely shows two distinct elevator trim points, indicating that the

aircraft mass distribution and the overall weight was changed across different flights.

(a) Throttle Data (b) Elevator Data

Figure 4.24: Throttle and Elevator Controls Data Distributions for all Flights with DDPG Trained
Neural Network Longitudinal Controller

The flight test scenarios are mainly divided into three sub-categories: (1) flight tests at different

altitudes, with different airspeed commands and varying wind and gust condition (see Table 4.11),

(2) flight tests with specific missions in which the airspeed command was changed dynamically

from the ground control station (see Table 4.12), and (3) flight tests with altitude climb and descent

missions in which the desired altitude is changed dynamically (see Table 4.13).

Flight scenarios in Table 4.11 are arranged in the increasing order of wind speed. From Table

4.11, the flight test results for test scenario 1.9 (marked with an asterisk) that showcase worst

possible wind conditions, are presented in Section 4.4.1 with lateral and longitudinal states and

controls, and 2D trajectory tracking.

Flight scenarios in Table 4.12 are arranged in the increasing order of altitude. From Table 4.12,

the results from flight test scenario 2.5 (marked with an asterisk) are presented in Section 4.4.2.

These results showcase DDPG longitudinal neural network flight controlling airspeed commands

which are dynamically changing from the ground control station.

Flight scenario 2.1 (marked with a pound sign) is a special case of airspeed commands mission.
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Table 4.11: Flight Test Scenarios with Varying Altitude, Airspeed and Wind Conditions: DDPG
Longitudinal Neural Network

F.S. Wind (MPH) Alt. (ft-AGL) Vacmd (ft/s) δetrim (◦) F.T. (s)
1.1 ≈ 0 370 62 -9.2 12
1.2 5.6→ 7.4 328 58 -9.8 44
1.3 5.8→ 9.8 347 61 -9.4 100
1.4 6.7→ 7.4 360 73 -10.0 40
1.5 7→ 7 411 54 -1.3 272
1.6 9.2→ 12.3 380 45 -5 129
1.7 9.8→ 12.3 460 78 -10.4 123
1.8 12→ 15 428 69 -9.3 216
1.9∗ 13.9→ 17.4 370 65 -9.2 60

Table 4.12: Flight Test Scenarios with Airspeed Command Maneuvers: DDPG Longitudinal Neu-
ral Network

F.S. Wind (MPH) Alt. (ft-AGL) Vacmd (ft/s) δetrim (◦) F.T. (s)
2.1 # 8.1→ 9.8 380 50:55:50:45 -3.8 287
2.2 9.2→ 9.8 400 46:51:46:41 -4 373
2.3 4→ 5 400 52:48:45 -5 150
2.4 4.9→ 4.9 400 52:57:52 -10.0 182
2.5∗ 7.2→ 9.8 450 63:68:60 -9.6 236
2.6 6→ 10 466 55:60:52 -4 655

This flight test had airspeed commands programmed to change automatically in-flight based on the

inertial location of the aircraft. This was done in order to compare LQR controller with the DDPG

trained longitudinal neural network controller under almost similar flight conditions. In the same

flight, while LQR controller is active, the mission is deployed from the ground control station and

the mission program automatically commands different airspeeds at pre-defined inertial locations.

After this mission with LQR controller is completed, the longitudinal neural network controller

is activated and the mission is deployed again. This way the airspeed command maneuvers are

performed under approximately same conditions for both LQR and the DDPG neural network

controllers. The results of this flight test scenario are presented, discussed and analyzed in detail

in Section 4.4.4.

Flight scenarios in Table 4.13 are arranged in the increasing order of airspeed. The flight test

results from flight scenario 3.6 (marked with an asterisk) are presented in detail in Section 4.4.3.
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Table 4.13: Flight Test Scenarios with Altitude Command Maneuvers: DDPG Longitudinal Neural
Network

F.S. Wind (MPH) Alt. (ft-AGL) Vacmd (ft/s) δetrim (◦) F.T. (s)
3.1# 11.4→ 12.3 380:330:380 45 -4.2 175
3.2 4→ 5 400:450 45 -5 254
3.3 13.9→ 17.4 400:330:400 46 -4.5 174
3.4 4.9→ 4.9 415:350:400 52 -10.0 299
3.5 4→ 5 450:400 52 -5 296
3.6∗ 8.1→ 9.8 450:500:450 60 -9.6 111

Flight scenario 3.1 (marked with a pound sign) is a specifically designed flight mission in which

altitude descend and climb maneuvers are tested while changing the desired altitude commands

automatically based on the aircraft’s inertial position. The flight mission is performed with both

LQR controller and the DDPG trained neural network controller in approximately matching flight

conditions. The detailed analysis of the results from this flight test scenario are presented in Section

4.4.4.

A total of five different flight test scenarios are presented in detail:

1. Scenario 1.9: This flight test was conducted in extremely high wind conditions with wind

speed of 13.9 miles per hour (MPH) or ≈ 20 ft/s. Since the trim speed for Skyhunter air-

craft is 50.63 ft/s and its stall speed is around 30 ft/s, these wind conditions present very

difficult conditions for the flight controller in terms of maintaining stability throughout the

autonomous flight. In this scenario, the aircraft was commanded to fly at 65 ft/s which is a

large perturbation from the actual trim speed.

2. Scenario number 2.5: In this test, initially the desired airspeed was set at 63 ft/s. During the

flight, the airspeed command was changed dynamically by sending commands through the

ground control station via wireless telemetry. The aircraft was able to adjust the airspeed

accordingly while maintaining stability and altitude.

3. Scenario number 3.6: This test scenario consisted of changing the reference altitude dynami-

cally through the ground control station. Initially, the autopilot was engaged at 450 ft altitude
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above ground level (AGL) and then changed to 500 ft and back to 450 ft via ground control

station.

4. Scenario 2.1: This flight test scenario is an airspeed command variation test for performance

comparison of LQR and DDPG trained neural network controller.

5. Scenario 3.1: This flight test scenario is an altitude command variation test for performance

comparison of LQR and DDPG trained neural network controller.

In all the flight test scenarios, a pilot takes off the aircraft from ground using a remote control

(RC) and continues to control it through climb phase, and once at the desired altitude and in a

trimmed, steady-state level-wing flight condition, the base autopilot is engaged. Using onboard

sensor information and desired waypoints, the aircraft flies around the waypoint path in a racetrack

pattern. Once the autonomous flight has completed a few racetrack loops around the waypoints,

the DDPG trained longitudinal neural network controller is engaged by sending an activation flag

from the ground control station. For each flight test, the switching takes place in a smooth manner,

and the aircraft throttle and elevator are commanded by the neural network.

4.4.1 Flight Scenario 1.9: Extreme Wind Conditions

This test was a high risk flight due to high steady wind conditions with a speed recorded at 13.9

MPH and a gust to 17.4 MPH. The pilot monitored the aircraft continuously in his line of sight, in

case of any catastrophic failure or aircraft becoming unstable.

Longitudinal states for this flight test scenario are shown in Figure 4.25. The green portion of

the parameter plots represent autonomous flight and the magenta color portion represents when the

ANN Longitudinal controller was commanding throttle and elevator variables. The blue portions

represent the desired or commanded variables. The airspeed was trimmed around 65 ft/s and the

reference or desired altitude was around 367 ft. The ANN flew the aircraft for about 60 seconds

before the switching monitor predicted an unstable flag, thereby automatically switching control to
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LQR controller. As can be seen from the state plots, Figures 4.25 and 4.26, the aircraft was stable

and was able to maintain autonomous path tracking.
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Figure 4.25: Flight Scenario 1.9: Longitudinal States for Flight Test Under Extreme Wind Condi-
tion

Note that from the Longitudinal state plots, Figure 4.25, it can be observed that the airspeed and

pitch command tracking are better when Longitudinal ANN controller was active. And as a result,

we see a better altitude hold, within ±5 ft at least for the straight line flight. During the straight

line flight for ANN controller, the airspeed hold is within ±2.8 ft/s whereas when base autopilot is

active, the airspeed hold is ±5 ft/s. The pitch command tracking when the base autopilot is active

is adequate but there is a considerable and variable delay of about 2 to 4 seconds. But the pitch

tracking for the ANN controller has negligible delays and magnitude errors during straight line

flight.

The 2-dimensional (2D) trajectory tracking for this flight is shown in Figure 4.27. The aircraft

was able to complete almost one full loop around the waypoint path. The lateral tracking for when

the ANN controller is active is very similar to that of base autopilot, indicating that the Longitudinal

ANN controller was stable enough so as not to impart coupled lateral state variations.
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Figure 4.26: Flight Scenario 1.9: Lateral States for Flight Test Under Extreme Wind Condition
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Figure 4.27: Flight Scenario 1.9: 2D Trajectory for Flight Test Under Extreme Wind Condition
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4.4.2 Flight Scenario 2.5: Airspeed Command

In this test scenario, large perturbations from the trimmed airspeed are introduced as inputs to the

Longitudinal neural network to test its generalization and robustness characteristics. The aircraft

is flown typically starting from base autopilot and the ANN is activated mid-flight through the

ground control station. Initially the airspeed hold commands are set at approximately 63 ft/s for

both base autopilot and the ANN controller. After flying for about 100 seconds (≈ one loop), the

airspeed command is dynamically changed from 63 ft/s to 68 ft/s.
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Figure 4.28: Flight Scenario 2.5: Longitudinal States for Flight Test with Different Airspeed Com-
mands

The Longitudinal states for this test scenario are shown in Figure 4.28, in which it can be

observed that the first transition from airspeed of 63 ft/s to 68 ft/s takes place in about 3 seconds

and this airspeed hold (68 ft/s) persists for about 68 seconds, before the command is changed again.

During this period (time: 1171 to 1239 seconds), while the airspeed is commanded from 63 ft/s

to 68 ft/s, the altitude hold is kept almost a constant by adjusting the elevator controls via ANN

Longitudinal controller. The ANN controller is capable of generalizing this complex coupling
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between throttle and elevator tied to both the states: airspeed and pitch angle, and hence only the

airspeed is changed while the altitude is maintained.

Figure 4.29: Flight Scenario 2.5: Three dimensional trajectory - three different airspeed commands

Figure 4.29 shows the 3D trajectory of flight path when the longitudinal neural network con-

troller was active and the airspeed commands were dynamically changed from the ground control

station. The different airspeed commands are represented in colors red (62.617 ft/s), green (68

ft/s), and blue (60 ft/s). During all the airspeed transitions, altitude was maintained within ± 15 ft.
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Figure 4.30: Flight Scenario 2.5: Lateral States for Flight Test with Different Airspeed Commands
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The second airspeed command from 68 ft/s to 60 ft/s is sent to the aircraft at around time 1239

seconds. Again the transition takes place in about 2 seconds without causing any instability to

any of the aircraft states. The altitude is maintained while the airspeed is adjusted by the ANN

controller. The lateral states for this test scenario are shown in Figure 4.30. The 2D trajectory for

this test scenario is shown in Figure 4.31.
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Figure 4.31: Flight Scenario 2.5: 2D Trajectory for Flight Test with Different Airspeed Commands

4.4.3 Flight Scenario 3.6: Altitude Command

In this test scenario, the reference or desired altitude is changed dynamically from the ground con-

trol station. The goal of this test is to introduce large perturbations from the trimmed pitch angle as

inputs to the longitudinal neural network and test its generalization and robustness characteristics.

Initially the desired altitude hold commands are at approximately 450 ft above ground level for the

ANN controller flight. The altitude command is dynamically changed from 450 to 500 ft at about

time 1306 seconds as shown in Figure 4.32. The longitudinal states for this test scenario are shown

in Figure 4.32, in which it can be observed that the first transition from altitude of 450 ft to 500 ft
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takes place in about 12 seconds and this altitude hold (500 ft) persists for about 72 seconds, before

the reference altitude is changed again.
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Figure 4.32: Flight Scenario 3.6: Longitudinal States for Flight Test with Different Altitude Com-
mands

Figure 4.33: Flight Scenario 3.6: Three dimensional trajectory - two different altitude commands
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The 3D trajectory for the flight path showing altitude transitions is depicted in Figure 4.33, first

the aircraft climbs to 500 ft and then descends back to 450 ft. During this period (time: 1306 to

1378 seconds), while the altitude is commanded from 450 ft to 500 ft, the airspeed hold is kept

almost a constant by adjusting the throttle controls via ANN Longitudinal controller. This again

shows that the ANN controller is capable of generalizing the complex coupling between throttle

and elevator tied to both the states: airspeed and pitch angle, and hence only the altitude is changed

while the airspeed is maintained.
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Figure 4.34: Flight Scenario 3.6: Lateral States for Flight Test with Different Altitude Commands

The second altitude command from 500 ft to 450 ft is sent to the aircraft at around time 1378

seconds. Again the transition takes place in about 7 seconds without causing any instability to

any of the aircraft states. The airspeed is maintained while the altitude is adjusted by the ANN

controller. The lateral states for this test scenario are shown in Figure 4.34.
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4.4.4 Flight Scenario 2.1 and 3.1: Flight Test Comparison LQR vs ANN

These flight scenarios are automatic flight missions that are activated through telemetry commands

via the ground control station. A flight mission is activated with a specific identification parameter

and an “ON” flag, sent simultaneously via the ground control station. After take-off, base autopilot

engagement and achieving steady racetrack flight, each of these missions are activated manually

when the aircraft is around the mid-point of the South waypoint leg, see the top left corner plot

in Figure 4.35. The approximate location of mission activation is around North: -500 ft and East:

0 ft. After activating the mission, the mission does not start (deploy) until it reaches a point on

the East waypoint leg, where the switching algorithm automatically switches to the next waypoint

line which is the North waypoint leg. The idea behind this logic is that the mission is deployed

automatically based on an approximate inertial location of the aircraft (North-East corner) which

repeats itself if the aircraft speed is maintained. This way comparison tests can be conducted

between different controllers within the same flight test, approximately 5 minutes apart, so that the

wind conditions do not change significantly.

Table 4.14: Flight Test Statistics: DDPG Longitudinal Neural Network vs LQR Base Autopilot

F.S. 2.1 S.S. Vaerr Total Vaerr S.S. Alterr Total Alterr Transient Time

LQR: Vacmds 1.49 ft/s 1.80 ft/s 11.87 ft 11.76 ft 1.4 s

ANN: Vacmds 1.39 ft/s 1.53 ft/s 13.09 ft 13.24 ft 1.4 s

F.S. 3.1 S.S. Vaerr Total Vaerr S.S. Alterr Total Alterr Transient Time

LQR: Altcmds 0.76 ft/s 0.88 ft/s 11.34 ft 17.20 ft 9 s

ANN: Altcmds 2.73 ft/s 2.81 ft/s 9.83 ft 15.67 ft 9 s

Two different missions are designed for comparing the performance of LQR and the DDPG

trained longitudinal controller. One mission changes the airspeed commands automatically and

the other changes the altitude commands. The summary of results for these two scenarios is shown

in Table 4.14. The top part, first three rows show the results for flight scenario 2.1 (airspeed

129



commands) and the bottom three rows show the results for flight scenario 3.1. The columns of

the table represent steady-state airspeed errors, overall airspeed errors, steady-state altitude errors,

overall altitude errors and the transient time chosen for transition from non-steady to a steady-

state. All the values are the average over the whole flight mission. In both the cases, it can be

seen that the performance of LQR and the neural network controllers are quite similar. For the

flight scenario 2.1, airspeed commands, the neural network’s average steady-state airspeed error

is 1.39 ft/s and that of LQR is 1.49 ft/s. For flight scenario 3.1, altitude commands, the average

steady-state altitude error for the neural network is 9.83 ft and that of LQR is 11.34 ft.
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Figure 4.35: Airspeed Command, Flight Scenario 2.1: 2D Trajectory, Airspeed Commanded and
Measured Values, and Altitude Commanded and Measured Values

Flight Scenario 2.1: The results from this scenario are shown in Figure 4.35 with green color

used for LQR based flight and magenta color used for ANN based flight. When the mission is

deployed close to the North-East corner, the airspeed command is set to 55 ft/s. As the aircraft

progresses in its flight, the airspeed commands are changed three more times at each waypoint
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corner. The airspeed commands are changed to 50 ft/s, then 45 ft/s and to 50 ft/s at the North-

West, South-West and South-East corners respectively. The left column of Figure 4.35 shows the

plots for LQR deployed mission and the right side column shows results for the neural network

deployed mission. The 2D trajectory tracking in both cases is very similar. It can be seen that for

airspeed commands of 55 ft/s the airspeed errors for the neural network flight are lower than for

the LQR flight. The average airspeed error during 55 ft/s commands for the ANN flight is 0.78

ft/s, whereas for the LQR flight it is 1.15 ft/s. For both the cases, the altitude is maintained around

the desired value of 380 ft-AGL within ±23 ft.
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Figure 4.36: Altitude Command, Flight Scenario 3.1: 2D Trajectory, Altitude Commanded and
Measured Values, and Airspeed Commanded and Measured Values

Flight Scenario 3.1: The results from this flight test scenario are shown in Figure 4.36. At the

start of the mission around the North-East corner of the waypoint path, the altitude is set at 330

ft-AGL and then it is changed back to 380 ft-AGL at the South-West corner. For both cases, LQR

and ANN the altitude tracking performance is similar, with average altitude errors for ANN at
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steady-state as 9.83 ft as compared to 11.34 ft for the LQR flight. The overall and average airspeed

errors for the LQR flight (S.S. 0.76 ft/s) are slightly better than the ANN (S.S. 2.73 ft/s). The 2D

trajectory tracking performance is very similar in both the cases.

The steady-state airspeed errors plotted at 0.05 s of time steps for the airspeed command sce-

nario are shown in Figure 4.37a, and the altitude errors for the altitude mission are plotted in Figure

4.37b. From the airspeed errors it can be seen that the performance of LQR and ANN were very

similar in this flight scenario. And from the altitude errors plot, it can be seen that at most locations

the ANN based flight outperforms the LQR based flight.
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Figure 4.37: Airspeed and Altitude Errors for Varying Airspeed and Altitude Commands, respec-
tively

The throttle and elevator controls for both the missions 2.1 and 3.1 are shown in Figures 4.38a

and 4.38b, respectively. The left column of these plots show the airspeed commands scenario and

the right side shows the altitude commands case. In each mission, it is seen that the behavior of

ANN is quite similar and the same can be said for the LQR flight. The ANN tends to use more

throttle controls throughout the flight and varies it more as compared to LQR to achieve the same

goals. Whereas, the LQR prefers to make more elevator variations as compared to ANN. This

shows that the neural network controller has learned a novel control behavior in which it performs

similarly to that of LQR but uses completely different combinations of throttle and elevator con-

trols.

This type of novel behavior learned by the neural network controller cannot be extracted using
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standard and existing control techniques. This novel result sets a series of new research questions

about how many more possibilities of different types of controller behaviors can be adapted and

explored using neural network learning methodologies. Moreover, with the possibility of tuning

a neural network architecture in many different ways, the neural network is capable of learning a

huge amount of coupled controllers generalizing over an ever increasing flight envelope.
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Figure 4.38: Throttle and Elevator Controls Comparison

4.5 Neural Network Evolution using Flight Test Data

The DDPG trained Longitudinal neural network controller is subjected to re-training using all the

flight test data collected in the above flight tests, as explained in Section 3.7. This neural network

was originally trained using aircraft LTI model, which is a perturbed model around a trim point as

mentioned in Section 3.1. Therefore, the input states to the neural network are perturbed around

an assumed trim point, consisting of the desired airspeed and desired pitch angle. The airspeed

command is set initially as the measured airspeed at the time the autopilot is turned “ON” and the

pitch attitude commands are outputted by the Longitudinal guidance algorithm as mentioned in

Section 2.3. Hence, these input states to the neural network are taken as the difference between
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the measured and the desired respective state. Similarly, the ANN outputs are taken as perturbed

values, around the trim throttle and trim elevator controls during the flight. Inertial NED velocity

from the GPS is also recorded to estimate (post-process) the flight path angle from the flight data.

Table 4.15: DDPG Longitudinal Neural Network Trained using Flight Data

Number of Experiences from Flight 67,393

Initial Conditions (LTI) for Validation (Random Selection) = 100

VT 45 f t/s to 55 f t/s

α −5◦ to 5◦

θ −10◦ to 10◦

Q −20◦/s to 20◦/s

Training Episodes 1,149

Time Taken 10 hours, 57 minutes, 37.96 seconds

Average Validation Cumulative Reward Start 24,261.47

Average Validation Cumulative Reward End 51,980.79

The experience buffer (real flight data) should be saved in proper format before re-training the

neural network. The desired format for the data is: (state, action, reward, next state, done), as

explained in Section 2.9.4. Using the reward function as explained in Section 4.3.1, the immediate

reward for each data point (state) is calculated. The done flag is set to zero for each next state data

point, as the flight data collected always exhibits stable aircraft states.

The training statistics are shown in Table 4.15. The flight data, total number of experiences

used is 67,393. After each training episode, the neural network is tested to control the aircraft

longitudinal LTI model for 100 different initial conditions, randomly selected as a combination of

VT ,α,θ ,Q. The different initial conditions are uniformly sampled from the ranges shown in Table

4.15. The training is manually stopped at episode 1149, because the learning does not improve

after this episode. The training duration is 10 hours and 57 minutes and the average cumulative

reward for all 100 test cases at the start of first episode is 24,261.47, which reaches up to 51,980.79
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Table 4.16: DDPG Longitudinal Neural Network Trained using Flight Data: Monte-Carlo Simu-
lations

Monte-Carlo 6-DOF Simulations 10,000 each
Simulation Percentage with Higher Value 70.03%

Normalized Mean Cumulative Reward Difference (Evolved - Original) 0.0774%
Normalized Max Cumulative Reward Difference (Evolved - Original) 11.64 %

Normalized Original ANN: Mean Cumulative Reward 82.816 %
Normalized Evolved ANN: Mean Cumulative Reward 82.890 %

at the end of episode 1149. The cumulative rewards averaged over the 100 cases per episode

are shown in Figure 4.39. It can be seen that the average cumulative reward is consistent across

randomly selected 100 different test cases throughout the training, and increases steadily.
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Figure 4.39: Cumulative Rewards Averaged Over 100 Test Episodes with Different Initial Condi-
tions, During Re-Training of Longitudinal Neural Network from Flight Data

The re-trained or evolved neural network and the original flight tested neural network are sub-

jected to 10,000 Monte-Carlo simulations (for details see Section 3.4). From all the 10,000 differ-

ent conditions, it was found that the cumulative reward for the evolved ANN was higher in more

than 7,000 cases of Monte-Carlo flight simulations. The normalized mean cumulative reward dif-

ference (Evolved - Original) improvement is relatively small at about 0.077%, and the maximum

normalized cumulative reward difference is 11.64%.
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Figure 4.40: Airspeed and Altitude States Comparison for Original and Evolved Longitudinal
Neural Network: 6-DOF Simulations

Airspeed and altitude tracking comparisons for the evolved and the original neural networks

are shown in Figure 4.40, from one of the closed-loop 6-DOF flight simulations. From the airspeed

plot it can be seen that the performance is very similar for both the evolved and the original ANNs.

And, the altitude tracking has a very small improvement in the case of the evolved ANN.
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Chapter 5

Conclusions

The research hypothesis initially focused on exploring whether an artificial neural network would

be able to behave as a standalone flight controller and learn to fly while maintaining stability.

A novel imitation learning methodology called moving window data aggregation was developed

and used to train an artificial neural network to mimic a complete autopilot system consisting of

guidance, navigation, and control algorithms. The moving window data aggregation was shown to

be robust for different imitation learning models and “expert” policies. This algorithm successfully

trained decoupled neural network controllers that were able to pass 10,000 Monte-Carlo flight

test simulations. Due to lack of robustness of the LQR based autopilot, as seen in initial flights,

the decoupled neural networks were inherently dependent on the “expert” policy and could not

generalize and perform in real flight tests.

This work has demonstrated the potential of using artificial neural networks as flight controllers

that can generalize across a wide range of flight envelope. Multiple validation and verification flight

tests were conducted on the DDPG trained longitudinal neural network flight controller, showcas-

ing its generalizing capabilities on a highly nonlinear Skyhunter aircraft and a broad range of flight

conditions (wind, gust, altitude and airspeed). A total of 15 successful flight tests with 21 dis-

tinct scenarios were conducted over a period of 5 months (November 2019 to March 2020), with

different goals and flight missions, proving the performance validity of the neural network flight

controller. It was shown that the initial design of a standard LQR based controller did not perform

well in a real flight test, even after passing 99.96% (99,960 out of 100,000) Monte-Carlo flight test

simulations, and which had to be tuned in-flight to conduct a stable flight test. Both the LQR and

the neural network controllers used the same linear time invariant model (LTI) of the Skyhunter
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aircraft to find the control gains and train, respectively. Both controllers showed excellent perfor-

mance in LTI and 6-DOF closed-loop simulations; however, only the neural network was able to

perform a stable and robust flight in its first test using the real Skyhunter aircraft.

Through real flight tests, it is shown that the “dependency” of a standard flight controller design

on a physics-based aircraft model can be mitigated through the use of artificial neural networks.

The neural networks can be directly used as controllers, and trained to generalize a “policy” that

breaks feedback correlations through the use of reinforcement learning. Moreover, a practical

comparison of LQR and neural network controllers over the same flight missions, shows a signifi-

cantly different control behavior. For performing the same types of maneuvers, the neural network

chooses completely different combinations of throttle and elevator controls, indicating the potential

of further learning and numerous possibilities for applying neural networks for flight controls.

This research produced a methodology that enables a neural network controller to learn from

real flight data and evolve to perform better in a new flight condition. Training a neural network

controller directly from flight data eliminates the requirement of developing a costly physics-based

aircraft dynamic model. The re-trained neural network flight controller demonstrates better per-

formance than its counterpart in more than 70% of flight test simulations (7,003 out of 10,000),

showing signs of evolution and a prospect for outperforming and offering a competitive alternate

to standard robust and optimal controllers.
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