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Abstract

In the wake of the Facebook data breach scandal, users begin to realize how vulnerable their per-

sonal data is and how blindly they trust the online social networks (OSNs) by giving them an

inordinate amount of private data that touch on unlimited areas of their lives. In particular, stud-

ies show that users sometimes reveal too much information or unintentionally release regretful

messages, especially when they are careless, emotional, or unaware of privacy risks. Additionally,

friends on social media platforms are also found to be adversarial and may leak one’s private in-

formation. Threats from within users’ friend networks – insider threats by human or bots – may be

more concerning because they are much less likely to be mitigated through existing solutions, e.g.,

the use of privacy settings. Therefore, we argue that the key component of privacy protection in

social networks is protecting sensitive/private content, i.e. privacy as having the ability to control

dissemination of information. A mechanism to automatically identify potentially sensitive/private

posts and alert users before they are posted is urgently needed.

In this dissertation, we propose a context-aware, text-based quantitative model for private in-

formation assessment, namely PrivScore, which is expected to serve as the foundation of a privacy

leakage alerting mechanism. We first explicitly research and study topics that might contain private

content. Based on this knowledge, we solicit diverse opinions on the sensitiveness of private infor-

mation from crowdsourcing workers, and examine the responses to discover a perceptual model

behind the consensuses and disagreements. We then develop a computational scheme using deep

neural networks to compute a context-free PrivScore (i.e., the “consensus” privacy score among

average users). Finally, we integrate tweet histories, topic preferences and social contexts to gener-

ate a personalized context-aware PrivScore. This privacy scoring mechanism could be employed to

identify potentially-private messages and alert users to think again before posting them to OSNs.

It could also benefit non-human users such as social media chatbots.
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Chapter 1

Introduction

Abstract

With the increasing popularity of online social networks (OSNs) like Twitter, we have ob-

served large amounts of potentially sensitive/private posts being published to OSNs inadver-

tently or voluntarily. The owners of these posts may become vulnerable to online stalkers or

adversaries, and they often regret their postings later on. However, the definition of sensitive

information is subjective and different from person to person. Therefore, in this chapter, we

will first discuss what is private protection on OSNs, why it is critical for OSN users, how

the current researches address this issue, and how our research contributes to solving this

problem, from a high point of view.

1.1 Introduction

In the wake of the Facebook data breach scandal, users begin to realize how vulnerable their per-

sonal data is and how blindly they trust the online social networks (OSNs) by giving them an

inordinate amount of private data that touch on unlimited areas of their lives. Furthermore, so-

cial networks fundamentally encourage users to share their privacy to improve their presence in

the virtual world. According to a report administered by Twitter, 500 million tweets are sent each

day [106]. Thus, boundless amounts of private information are buried in the massive amounts of

text format post. Human stalkers or automated bots can navigate/crawl through historic posts to

re-assemble scattered pieces of sensitive information.

1



According to surveys, many individuals regret previous post on their social media platforms

[118, 91]. The consequences of these posts are often not realized until the damage is already done

and too late to mend. For example, the singer Justin Bieber would have unlikely been aware of

the ramifications of his purported racial tweet as a 15-year-old. [30]. This phenomenon is quite

common among younger teens. According to [58], 81 percent of parents and 79 percent of online

teens report that “teens are not careful enough about giving out their personal information online.”

Even the most privacy-savvy users are likely to post something aggressive or divulge too much

information. Even worse, for most of the users, their posts are only intended to be shared with

friends/followers. However, the audience of OSNs is significantly larger than users’ expectation

which includes advertisers, recruiters, search engine bots, etc. Though users may have predeter-

mined notions about their audience before posting tweets, imagining is difficult, and these notions

are often inconsistent with the actual audience, as examined by Vitak et al. [110]. Moreover, Luo

et al. and Yang et al., [67, 124] used information theory methods to examine users’ identifiability

and quantified the amount of information leaked through user attributes from seemingly little and

harmless data. When personal data about individuals are collected, processed, stored and retrieved

without their consent, their information security is under threat. Many people are unaware of the

fact that their privacy has already been jeopardized, and do not take action to protect their per-

sonal information from being used by others [7]. Therefore, it is critical to automatically identify

potentially sensitive posts and alert users before they are posted, i.e., #DontTweetThis.

Additionally, friends on social media platforms are also found to be adversarial and may leak

one’s private information. Threats from within users’ friend networks – insider threats by human or

bots – may be more concerning because they are much less likely to be mitigated through existing

solutions, e.g., the use of privacy settings [51, 99, 123, 107]. Thus, a mechanism to distinguish

potentially sensitive/private posts before they are sent is urgently needed. Such a mechanism could

also benefit non-human users such as social media chatbots. For instance, Microsoft’s Twitter bot,

Tay, started to deliver racist and hateful content soon after it was launched in 2016. Tay “learned”

from inappropriate messages it had received. Unfortunately, there did not exist a mechanism to
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assess the sensitiveness of tweets before they were exposed to Tay or posted by Tay.

1.2 What is privacy?

In order to protect privacy, we need to understand the concept of privacy. Privacy can be defined

from many different domains, including the rights of citizens, or political policies. The privacy

law itself even defines privacy from several different aspects. In short, privacy is not just about

hiding things, it is about self-possession, autonomy and integrity [31]. However, when referring to

the area of social networks, the private versus public boundaries are quite ambiguous. The privacy

paradox phenomenon is very common among social network users, which has been investigated

by Tufekci [100]. Tufekci found there was no relationship between users’ privacy concerns and

their level of disclosure on social networks. Even the users who expressed many privacy concerns

disclose large amounts of personal information. Therefore, the concept of sensitivity and privacy

on social network is unclear among users.

Furthermore, the degree of sensitivity and privacy is a subjective perception which differs from

person to person. For instance, some users are more conservative about health-related issues, while

others might be more protective on work-related information. Even though some users feel that

certain topics are sensitive, such as obscene content in posts, they may treat them to different

degrees of sensitiveness. That said, in developing a privacy protection mechanism for online social

networks, we cannot use a uniform measure of privacy for all users. Besides, users’ perception of

privacy varies from time to time. For example, although political attitude is thought to be private

normally, there were one billion tweets about the election during the 2016 election season. Under

this occasion, the political content would not be as sensitive when compared to a non-election

season.

Therefore, we can see that to understand the perception of privacy from the online social net-

work users’ perspective, we should consider the different meanings of privacy from different users

and consider to what extent it matters to them. The problem of privacy protection is dependent on

users, and affected by the social context, which should be customized.
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1.3 Existing Privacy Protection Methods

Conventional privacy protection mechanisms on data or OSN (e.g., k-anonymity [97], differential

privacy [23]) mainly focus on the protection of individuals’ identities. They are not suitable for

social networks. First, most of the OSN data is unstructured text, while traditional methods are

designed for structured data such as demographic and genetic datasets. More importantly, con-

ventional privacy protection mechanisms mainly focus on protecting users’ identities or private

attributes [97, 23, 75, 13, 40, 68, 124]. However, according to a survey in [42], only 0.1% of users

mentioned identifiable attributes such as email addresses or phone numbers in their tweets. There-

fore, leaking identities or identifiable attributes during normal socialization is not the only privacy

concern in OSNs. On the contrary, since the offline identities of OSN users are often known to their

online friends, especially in strong-tie oriented OSNs such as Facebook, sensitive or inappropriate

content is truly at risk due to careless or unintentional disclosure during socialization. The social

network user is vulnerable with social media which has powerful broadcastability. It would be

unknown who would access user’s published content, or more importantly, what their intentions

with this content would be. Thus, a user-centered protection mechanism is more meaningful for

the social network privacy protection.

There are also many fine-grained tools or control schemes for protecting personal profile data in

social media, including the “Privacy Wizards” [25] and the research project proposed by Lipford et

al. [62]. These projects contribute a great deal in optimizing user privacy settings to enhance access

control of profile data. However they all ignore an important factor – content which includes more

personal information. As we know, examining posts over a long time interval from a single user

could expose more habitual, personal information. Content-access control tools such as “Twitsper

[89]” are also well-researched, but they all have the assumption that the user is aware of what is

private or not. In fact, privacy is quite a blurred concept, and users themselves can have difficulties

defining privacy as definition changes overtime [54].

Therefore, we argue that another key component in privacy protection in OSNs is protecting

sensitive/private content beyond the protection of identities and profile attributes, i.e., privacy as
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having the ability to control the dissemination of sensitive information. Here, the dissemination

should not only regard the access to content, but also take into account whether such content

would result in regrettable or negative outcomes for users in the future.

1.4 Contribution

The ultimate goal of this dissertation is to provide a user-tailored privacy score based on context,

in which, the context depends on the sensitiveness of the topic at a specific time. Our research

furthers the goal of designing a useful mechanism beginning with the question, what content might

be privacy related, and what defines private content from the users’ perception? We summarized

13 topics that might be privacy related and built a semantic model to identify the different topics,

which benefited the process of personalization. Next, based on these 13 categories of content, a

user study of common perception of privacy on OSNs was launched. With the understanding of the

OSNs user study, we converted the human cognitive model into a computational model which can

capture user’s privacy perception in general terms. Considering the difference of human cognition,

this general model was further adjusted by user’s privacy preference and social context. The main

contributions of this paper are the following four-fold.

• We explicitly research and study topics that might result in eventual user’s regret while also

analyzing private content that may be unbeknownst to the user. Based on this knowledge,

vast amounts of tweets are extracted, processed and analyzed. We make the first attempt to

classify potentially sensitive tweets into a comprehensive set of likely sensitive categories.

Examples of these categories might include drugs and alcohol, family information, etc. The

classification model is built with both semantic features and users’ topic-preferences, which

boosts the accuracy, comparing with the models purely based on the semantic features.

• We launch a crowd-sourcing survey on Amazon Mechanical Turk and collect the privacy per-

ceptions from a diverse set of users. Through examining the consensuses in the responses of

the sensitiveness of content, the survey gives us primary insight to the evaluation of the com-
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mon perception towards content sensitiveness/privacy for average users in a neutral context.

This is the foundation of developing our privacy protection mechanism.

• We make the first attempt to develop a computational model for quantitative assessment of

content sensitiveness using deep neural networks. The context-free privacy score resembles

the “consensus” perception of average users on the purely textual content. This will be shorted

as PrivScore in this dissertation. PrivScore, to the best of our knowledge, is the first quantita-

tive assessment for sensitive content. It has the potential to be utilized in various applications.

• We further integrate social contexts and topic-specific personal privacy attitudes to extend the

predictive model to generate a context-aware score – adjusted based on the societal context

and personalized privacy scores – adjusted based on personal preferences. The adjusted mod-

els make it possible for the user to protect sensitive content, to an extent, without affecting

his/her normal socializing.

These results are published on [113, 114, 115].

1.5 Organization

The rest of the dissertation is organized as follows: Chapter 2 formally introduce the background

knowledge and related works, to give readers a basic understanding of what we are doing. Then

an overview of our proposed solution will be described in Chapter 3, which can make the previous

abstract introduction becomes more specific. Chapter 4 focus on the topic classification of sensitive

tweets. In Chapter 5, we will introduce our PrivScore, the context-aware, text-based quantitative

model for privacy information assessment in detail. We finally conclude the dissertation in Chapter

6.
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Chapter 2

Background and Related Work

Abstract
In this chapter, we will begin with the discussion of privacy in OSNs from three main angles:

privacy modeling, protecting user identities, and preventing unauthorized access to private

data. Then, based on our argument that privacy as having the ability to control the dissem-

ination of sensitive information, the related work of regret tweet and content-based privacy

protection are introduced. Meanwhile, since text classification and text understanding meth-

ods are intensively used in content-based protection, the background knowledge of natural

language processing (NLP) is also described briefly in this Chapter.

2.1 Privacy on Online Social Networks.

Compared with traditional user data such as age and location, which can be easily qualified or

quantified, social networks have more valuable and private information. This information lies in

much more complicated data formats, such as text and photos, which are also much harder to

extract and understand for computers. In addition, this content on social networks is always com-

pletely open to the Internet as a whole, especially if the user did not work on the user-unfriendly,

implicit private settings. Therefore, the privacy protection of OSNs has been attracting more and

more researchers across borders. Researchers analyze different angles to these problems and in-

troduce many conceptual and technological methods to address users’ privacy concerns. Existing

research on social network privacy primarily focuses three directions: (1) privacy modeling, (2)

protecting user identities and (3) preventing unauthorized access to private data.
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2.1.1 Privacy Modeling

The purpose of privacy modeling is to understand the OSNs users’ privacy perceptions, attitudes,

behaviors and expectations. Fogel et al. [29] studying, among other things, risk taking, trust, and

privacy concerns regarding social networking websites, found some interesting results. These find-

ings include that men partake in greater risk with potential sensitive information than women, and

general privacy concerns are of greater concern to women than men. Another important variable

to consider is the highly studied "Privacy Paradox", which focuses on an individual’s claim to care

about their privacy while simultaneously providing a great deal of personal information through

social media [39, 7]. In addition, a meaningful research is performed by Schomakers et al. [33].

They analyze the German users’ perception of sensitivity and compare it to the results from US

and Brazil. This research shows that there is a consensus on what constitutes sensitivity across na-

tions, which provides theoretical basis for our research. However, many of these researches employ

user studies to examine the factors that influence the privacy models, such as age, gender, culture,

education level, etc [88, 63, 9, 59].

2.1.2 Protecting User Identity

Most previous research in user identity protection primarily focused on anonymization. Take k-

anonymity [97] for example, which prevents joining attacks by suppressing portions of the released

micro-data, so that there is no unique individual in at least k candidates. Yet, with some background

knowledge or sensitive attributes, k-anonymity could be cracked. In succession, more sophisticated

privacy-enhancing techniques methods, like l-diversity [69], t-closeness [60] and differential pri-

vacy [23] are developed to sanitize the dataset before publishing. However, they have also shown

to be vulnerable against several re-identification attacks, e.g., [1, 37]. Meanwhile, these database

anonymization methods are not applicable in online socialization in two instances. First, the data

on social networks is not formatted or quantified as that in the database, and information is buried

in more complicated ways like text or picture. Second, a portion of friends in a user’s online so-

cial contacts are also personal friends offline. This means they have already known user’s profile
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information, and can access profile, posts, etc.

2.1.3 Preventing Unauthorized Access to Private Data

Preventing unauthorized access to private data is to anticipate and neutralize abuse before user’s

have future regret from posted data. Researchers in this area focus on privacy configuration and

control for OSNs. Access control frameworks such as Persona [5] and EASiER [48] have been

developed. Hummingbird [19], a privacy-enhanced variant of Twitter, encrypts pre-defined tweets

in a way that only authorized followers can decrypt tweets of interest. Arcana [78] presents a

fine-grained access control system for OSN content sharing through employing Ciphertext-Policy

Attribute-based Encryption (CP-ABE). However, these systems are based on a key assumption

that the private information is already known, which requires the user to explicitly define what is

private and what type of protection is needed. Moreover, since different users may have different

privacy definitions and expect different levels of protection, these approaches are too rigid to ad-

dress the varying needs of different users. Liu et al. proposes computing privacy scores based on

the uniqueness and visibility of information [65]. However, this work is still quite different from

our approach both on input data and applied algorithms. We utilize only textual content instead

of profile information and structure of social network. Since Liu’s article, more researches about

privacy scores have arisen. David Pergament et al. provides a system called FORPS [82] which

calculates friends-oriented reputation privacy scores based on topics, object types and behavioral

factors. These approaches take user profiles and network structures as input to learn private in-

formation types and protection requirements that are implicitly expressed by users. However, they

still require the users to be “conscious” about what to protect.

Different from these schemes, our privacy scoring system aims to autonomously assess the

scale of privacy or sensitiveness from the content shared by the user. The private content identified

by our scheme and the corresponding privacy scores can be fed into privacy configurations and

control systems discussed earlier which benefits their designs. Evaluating the sensitiveness of con-

tent, and letting users contemplate before posting or posting with access control will enhance user’s
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privacy awareness, reduce information abuse, and create a favorable social network environment.

2.2 Regret Post and Content-based Privacy Protection

The seemingly harmless and short posts can contain a large amount of information about users,

especially through examining posts over long-time intervals. There are countless amounts of sensi-

tive information that can be extracted from posts such as gender [66, 17], location [61, 44, 15, 14],

home [70, 83], socio-demographic and socio-economic status [84, 111, 55], etc. Research con-

ducted on private/sensitive post content on OSNs can be classified into two categories: private post

modeling and private post identification and classification. We will introduce the related work of

these two categories later in the paper. Most of this research utilizes the data from Twitter – tweets,

due to the openness of Twitter. Twitter users can view anything, and everything posted from another

Twitter user. This information can also be viewed from anywhere, and in present time. Twitter pro-

vides an easily accessible place for researchers to understand what users are discussing. Therefore,

our research is also based on the data from Twitter.

2.2.1 Content-based Private Post Modeling

A significant body of research attempts to model (i) regret tweets and (ii) privacy leakage from

various angles such as causes and cognitive models, cultural influences, and possible mitigation,

etc [122, 126, 118, 77, 80]. For (i), large-scale user studies have been conducted to analyze the psy-

chological and social perspectives of regret posts in OSNs [91, 118]. Through user studies, they

find the types of regrets most shared by users, which include sensitive content, criticism, private

information, etc. The cause of posting and regret are usually due to the negative emotions, un-

derestimated consequences, unperceived audiences, etc. The regrettable posts could lead to some

unexpected and unfavorable consequences, such as the ending of relationships or losing a job.

Thus, they suggest building some content-based private post identification systems to alert users.

However, they did not specify how such mechanisms can be developed. Similarly, for (ii), Mao et
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al. [71] models three specific types of privacy leakage to identify the nature, cause, and influencing

factors (culture) of such leaks. In both (i) and (ii), studies are followed up to model and examine

private and/or regrettable posts and user perceptions [122, 121, 21] towards regrettable content.

In the final part of these studies, the damage control of undesired disclosure of private/regrettable

content is also discussed. For instance, [118, 91] identify repair strategies for regret posts such as

deletion, apologise, excuse and justification. Presently, in the wake of topics concerning user’s on-

line privacy, more users realize that they have revealed too much information and have attempted

to withdraw their tweets. This has triggered researchers’ interest in investigating the privacy of

deleted posts. For example, Mondal et al. [76] shows that a significant amount of information re-

garding deleted tweets, or even characteristics from the deleted accounts, could be recovered from

the traces of residual activities, i.e., the replies of the deleted tweets or accounts. Age-based and

inactivity-based deletion of data have been proposed in the literature [125, 76] and adopted in

commercial OSN platforms, such as Snapchat, Dust, 4chan, WeChat. Recently, Minaei et al. [74]

identifies the phenomena of tweet deletion attracting unwanted attention from stalkers. In defense,

a temporary withdrawal mechanism is developed to offer deletion privacy, so that adversarial ob-

servers could not (confidently) identify users deleting their tweets.

2.2.2 Content-based Private Post Identification

The qualitative modeling of private/regrettable posts provides a theoretical basis for the automatic

tweet assessment, and the automatic assessment of private/regrettable posts has drawn evermore

attention from researchers. Liu et al. [65] proposes a framework to compute the privacy score of a

user. They utlize tweet owners’ attitudes, and rarity of information to calculate this privacy score.

In [71], Mao et al. develops one of the first mechanism to identify potentially private tweets. In the

paper, tweets are first filtered into three topics via keyword matching. Then, they design a classifier

for private tweets using naive Bayes and SVM classifiers. Inevitably, the features and classifiers

need to be fine-tuned for each category, and they only achieve approximately 80% accuracy in bi-

nary classifications. This mechanism demonstrates how the identification of sensitive tweets should
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be based on different and varying topics, and these results correspond with our motives. However,

we believe that by including more topics, this can have the potential of the program containing

further amounts of sensitive content. Due to the varying lengths of posts on online social networks,

including brief messages, and the heavy usage of slang, the information extracted, and the identi-

fication of posts can be far more difficult to obtain than longer documents, such as Wikipedia. To

tackle the challenges in handling short text in Twitter, [47] aggregates tweets for each user, extracts

topic matching, NER and sentiment features, and uses AdaBoost with Naive Bayes to classify each

user into categories labeled as privacy score 1, 2 and 3. Recently, Zhou et al. proposes to examine

the features of deleted tweets to predict the likelihood of a tweet being deleted [126]. They pre-

select ten topics that are commonly considered as sensitive (e.g., curses, drugs, etc.), and classify

tweets as being sensitive or non-sensitive by analyzing if the tweet contains keywords from the

sensitive topics. Existing private tweet identification/classification approaches employ term-based

features (BoW, TF-IDF, sentiment) and simple supervised classifiers, which cannot capture se-

mantic features, or accurately detect topics containing subtle yet sensitive content. Furthermore,

the classification approaches only generate a binary notion on whether a tweet belongs to a pre-

defined category. They also fail to quantitatively measure the levels of sensitiveness, which is

another goal we want to achieve from this work.

Our project is primarily motivated by private post modeling, which calls for methods to assess

private/sensitive tweet content, so that users can be alerted accordingly. While we have been in-

spired by existing methods in private post identification, our approach is novel in the following

aspects: (1) We employ state-of-art content representation and classification algorithms (word em-

bedding and RNN) to significantly improve the accuracy of assessing general tweet content. This

approach does not rely on keyword matching, which significantly improves the efficiency through

considering the semantic similarity among different words, whether these words are in the key-

words list or not; (2) Instead of a binary notion of sensitive vs. nonsensitive, we generate a real

score that provides more information on the level of sensitiveness, and enables personalization in

setting alerting preferences. (3) We have developed a general purpose solution that works for a
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broader scope of tweets, instead of only identifying specific types of private/sensitive tweets.

2.2.3 Topics Related to Regret Posts

In order to implement personalization in our mechanism, accurate topic classification is expected.

To the best of our knowledge, our project makes the first attempt to automatically classify mi-

croblog messages into a comprehensive set of potentially sensitive categories. In this part, we

assume that a set of potentially sensitive tweets, with controversial or private content, has already

been identified. Our goal is to properly classify these sensitive tweets into 13 pre-defined cate-

gories: Health & Medical, Work, Drugs & Alcohol, Obscenity, Religion, Politics, Racism, Family

& Personal, Relationship, Sexual Orientation, Travel, School life, Entertainment. The reason we

did not use cluster to find these 13 topics is because the topics in tweets are broad and sparse, and

the occurrence frequency of some extremely sensitive tweets can be low such as racist. To over-

come these deficiencies, we manually list these topics. These 13 topics are selected because some

of them are primary sensitive topics, such as drugs, racism and sexual orientation. Some of the

topics might cause controversial discussions or thoughts on Twitter, like religion and political atti-

tudes. Some seemingly harmless topics, such as family information, can also compromise a user’s

privacy. For example, the tweet about celebrating a user’s mother’s birthday might be associated

with the security question of Twitter owner’s bank/shopping accounts. Meanwhile, a user’s travel

plan, from another perspective, is a prediction of the user’s absence from home. Sometimes, users

also want to have access control functions for their tweets. For example, the tweets about going to

a bar is not intended to be shared with their bosses or teachers. Chapter 4 will describe this part in

detail.

2.3 Text Classification

Automatic text classification is the process of assigning a class label given a text document which

is tweet in our research. Both the topic classification problem and privacy score algorithm can be
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treated as text classification problems. To begin with the text classification problems, we should

know that text modeling is messy, and machine learning algorithms cannot work with raw text di-

rectly. In order to enable machines to understand text, the text need to be converted into numbers,

or vectors of numbers, which can be treated as feature extracting. In addition, the length of inputs

and outputs should be fixed. The common and traditional methods for feature extracting of con-

tent includes the Bag-of-Words and TF-IDF, which makes the feature-space exceedingly sparse.

Occasionally, principle component analysis (PCA) or single value decomposition (SVD) are used

to decrease feature-dimension, though these algorithms themselves also suffer from the high di-

mension curse. In addition, these methods only consider the occurrence of words instead of the

sentiment meaning which is the most important linguistic element in content understanding.

Deep learning has fundamentally changed the landscapes of text classification. The appearance

of word embedding which uses condensed vectors to represent each word is a breakthrough in natu-

ral language processing (NLP). Pre-trained context-free word embedding methods, like Word2Vec

and GLoVe, makes utilizing neural network for text classification feasible, and allows us to capture

relationships in language that are very difficult to capture otherwise. Along with the combination

of the neural network – Long Short Term Memory (LSTM) which has the ability to accumulate

increasingly richer information as it goes through the sentence [79], this supervised deep learning

method is widely adopted in text classification by both academia and industry. Recent research has

increasingly focused on unsupervised learning, semi-supervised learning, and transfer learning to

bridge the gap between the enormous amount of unannotated text on the web and the shortage of

training data in task-specific datasets. The most successful research into transfer learning, BERT

[20], is a deeply bidirectional, unsupervised language representation, contextually pre-trained us-

ing only a plain text corpus – Wikipedia. This pre-trained model can be fine-tuned on small-data

NLP tasks, and obtain decent results when compared to training on datasets from scratch. These

advantages make it extremely popular after its release.

In our work, for the topic classification portion, we utilize traditional feature extracting meth-

ods to obtain content features. These methods will be introduced in Chapter 4. The classifiers we
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selected for this section will again be traditional ones, such as Naive Bayes. However, the problem

of privacy assessment is a more complicated task, which is difficult to be solved by these tradi-

tional methods. Considering the advantage of deep learning neural networks, we leverage the word

embedding method – GLoVe and Long Short Term Memory (LSTM) network to train a model for

privacy assessment part. The evaluation metrics show the substantial improvements compared to

the traditional methods. The further measurements on different kinds of datasets demonstrate the

effectiveness of this method. We will subsequently explore the usage of state-of-the-art pre-trained

model – BERT on our project, which will reveal the advantage of the model on solving the shortage

of training data.

2.3.1 Related Work of Tweet Classification

Since Twitter is an ideal platform with numerous accessible tweets covering every aspect of daily

life, tweets classification attracts lots of researchers to study. However, the classification of tweets

is challenging due to the length of the tweet – up to 140 characters and the heavy usage of slang.

Traditional text classifiers based on vector space model typically use BoW or TF-IDF features. In

tweet classification, more features from the application domains are extracted to boost the clas-

sifier. For example, Lee et al. [57] classifies tweets about trending topics into 18 more general

trending topics, such as sports, politics, and technology, which can make people understanding

these topics easier and improve the performance of information retrieval. They integrate network

information with text features to classify tweets into trending topics, which improves the accuracy

of the result. Takemura et al. [98] separates tweets into three kinds: ‘expired’, ‘going to be ex-

pired’, ‘would not be expired’, in which ‘expired’ means the information value has vanished when

users read them. To filter out “expired” tweets and saves users from outdated ones, some time-

related features like the existence of bursty words and time expressions which are extracted from

tweets to train the classifier. Sriram et al. [94] introduces eight features which extracted from the

content of author’s profile and tweet history. Their method outperforms the traditional BoW-based

approaches on classifying generic topics–news, sports, etc. Vosoughi et al. [112] developed a sys-

15



tem to identify rumors on Twitter about real-world events. They first use syntactic and semantic

features of tweets to determine if a tweet is an assertion or not. Then, if the tweet is an assertion, the

hierarchical agglomerative clustering method is used to identify if an assertion is a rumor. Liu et

al. [64] propose that user-posted content could implicitly reveal users’ location context. And they

adopted time-period and users’ check-in history as boosting features to classify “check-in” tweets

to different locations. Although inspired by these approaches, our purpose and application domain

are completely different from them. In addition, our work focuses on tweets’ sensitiveness, which

is a very subjective perception whose cognitive process is not clearly understood yet.

2.3.2 Traditional Approach for Text Classification

2.3.2.1 Naive Bayes

Naive Bayes is a wildly used machine learning algorithm in text category [86]. The motivation of

the algorithm can be described as, if each tweet is treated as a document d and d is composed of

a bag of words w1,w2, . . . ,wn, then the posterior probability that the tweets belongs to category c

can be demonstrated as

p(c|d) ∝ p(c) ∏
1≤k≤nd

p(wk|c)

In this expression, p(c) is the prior probability of a tweet occurring in class c, defined as the number

of tweets in category c divide the total number of tweets in training set. p(wk|c) is the conditional

probability of words distribution in category c. The tweet is assigned to the best class determined

by

argmax
c∈C

p(c) ∏
1≤k≤nd

p(wk|c)

2.3.2.2 Bag-of-Words (BoW)

By using Bag-of-Words (BoW) model, a tweet can be treated as a bag containing all the words

appearing in the tweet, disregarding grammar or order [3]. For example, both “John likes Mary”

and “Mary likes John” can be represented as {“John′′,“likes′′,“Mary′′} in the BoW model. This
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method simply uses all words as features to represent each tweet, which will make data set very

sparse, and reduce the classification accuracy.

2.3.2.3 Term Frequency-Inverse Document Frequency (TF-IDF)

Comparing to BoW, tf-idf can reduce feature dimension effectively and distinguish the importance

of different words [27]. TF-IDF is short for term frequency-inverse document frequency, which is

intended to reflect the importance of a word to a document in a corpus. This scheme gives the word

w in the document d the weight as

T F-IDF(w,d) = TermFreq(w,d) · log(N/DocFreq(w))

where Weight(w,d) is the frequency of the word in the document, N is the number of all documents,

and DocFreq(w) is the number of documents containing the word w.

2.3.2.4 Principle Components Analysis (PCA)

Principle Components Analysis (PCA) is one of techniques for taking high-dimensional data, and

reducing the dependencies between the variables, to represent it in a low-dimensional form, with-

out loosing too much information [49]. PCA is a widely used simplest and robust dimensionality

reduction approach.

We assume the PCA starts with p-dimensional feature vectors and we want to summarize them

by projecting down into a q-dimensional subspace. To find the projection, one must minimize the

correlation (redundancy) and maximize the variance. Thus, the computing process covers standard

deviation, covariance, eigenvectors and eigenvalues, which will be described in more detail in the

corresponding chapter.
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2.3.3 Text Classification With Deep Learning

2.3.3.1 The GLoVe Model

The Global Vectors for Word Representation (GLoVe) [81] word embedding algorithm leverages

the global word co-occurrence statistics in the training set, and the vector space semantic structure

captured in Word2Vec. It represents an aggregated global word-word co-occurrence matrix as X,

in which the element Xi j denotes the number of times a word j occurs in the context of the word i.

The soft constraints for each word pair is defined as:

wT
i w̃ j +bi + b̃ j = logXi j (2.1)

where wi and w̃ j are the main and context word vectors, and bi and b̃ j are scalar biases for main

and context words. To avoid weighing all co-occurrences equally, GLoVe adopts a weighted least

squares cost function:

J =
V

∑
i=1

V

∑
j=1

f (Xi j)(wT
i w̃ j +bi + b̃ j− logXi j)

2 (2.2)

where f (Xi j) is the weighting function in the form of:

f (Xi j) =


(Xi j/Xmax)

α i f Xi j < Xmax

1 otherwise
(2.3)

The model generates two sets of word vectors, W and W̃. Since X is a symmetric matrix, W

and W̃ are equivalent and differ only as a result of their random initializations. Therefore, the sum

W+W̃ is used as the word vectors to reduce overfitting.

2.3.3.2 Recurrent Neural Network (RNN)

The Recurrent Neural Network attracted much attention especially for natural language processing

over the past few years, due to its advantage in processing sequential information. This is because

the architecture of RNN is a class of neural network whose identical units connect together, like a
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circle by itself, as shown in Figure 2.1. In the book “Deep Learning” [56], it gives us a deeper and

clearer explanation, which says parameter sharing makes it possible to extend and apply the model

to examples of different forms and generalize across them. If we had separated parameters for each

value of the time index, we could not generalize to sequence lengths not seen during training, nor

share statistical strength across different sequence lengths and across different positions in time.

Figure 2.1: Architecture of Recurrent Neural Network

However, the repeated training of the same parameters also brings some problems. During

the backpropagation, the gradient is passed back through many time steps; it tends to grow or

vanish. To overcome this shortcoming, long short term memory (LSTM) is a widely used practical

approach, which is a kind of gated RNN. The LSTM will be introduced in the following section.

2.3.3.3 Long Short-Term Memory (LSTM)

LSTM is introduced to overcome the issue that RNNs suffer from the problem of vanishing gra-

dients, with the help of a special designed memory cell [8]. The structure of LSTM is shown in

Figure 5.13. From the structure we can see, LSTM has several critical components compared with

the RNN, including the states, and three gates – input gate, forget gate and output gate. These

components control the flow of information. Therefore, LSTM can learn to memorize long time
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dependency if necessary and can learn to forget the past information if needed, which can avoid

the gradient vanishing/exploding and become more similar with the natural language processing

procedure. Due to limitation of page number, the detailed forward-propagation and backward-

propagation computing process will be introduced in Chapter 4.

Figure 2.2: Structure of LSTM

2.3.3.4 Bidirectional Encoder Representations from Transformers (BERT)

Before BERT, standard language models are unidirectional, either a left-to-right structure or a shal-

low concatenation of independently trained left-to-right and right-to-left language models (LMs)

[20]. Unlike these models, Bert uses a “masked language model”, which randomly masks some of

the tokens from the plain text input, and outputs the prediction of the original vocabulary id of the

masked word based only on its context. This mechanism makes the fusion of the left and the right

context information possible.

The overall pre-training and fine-tuning procedures for BERT is shown in Figure 5.16. BERT’s

architecture is a multi-layer bidirectional self-attention Transformer encoder. The Transformer is
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based on the original implementation described in [109]. The framework of Bert includes two steps:

pre-training and fine-tuning. For the pre-training part, it’s a unsupervised learning process, in which

model is trained on enormous amount of unlabeled plain text. For fine-tuning, the BERT model is

first initialized with the pre-trained parameters, then all of the parameters are fine-tuned/updated

using labeled data from the downstream tasks. More details about utilizing Berts in our project will

be described in Chapter 5.5.4.

Figure 2.3: The overall pre-training and fine-tuning procedures for BERT
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Chapter 3

Overview of the Proposed Solution

Abstract

In this chapter, we propose a mechanism for protecting users’ content privacy. We begin

with an analysis of threat model and objectives of this mechanism. Then, based on these

objectives, we propose a three-phrase privacy scoring model: context-free privacy scoring,

context-aware privacy scoring, and personalized privacy scoring. These three elements are

discussed briefly in this section. The expected outcome and the anticipated impacts of the

proposed solution are also analyzed in this chapter.

3.1 The Problem and Challenges

A significant amount of research has been done on identity privacy. However, in social networks,

offline identities are either known to friends/followers, or hidden to strangers through global pri-

vacy settings. Meanwhile, sensitive/identifiable attributes, such as SSN, phone numbers and emails,

are seldom mentioned during online socialization. Therefore, before proposing the solution, the

threat model and the objectives of our mechanism have been clarified below.

3.1.1 Threat Model.

In this work, we aim to protect social network users (and chatbots) from accidentally disseminating

any type of inappropriate content, especially the private or sensitive information about themselves.

We broadly classify the risk of inappropriate dissemination into two types of audiences: (1) fol-
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lowers or friends (insiders), those who receive updates of the user’s posts; (2) stalkers or strangers,

those who peek into a target user’s social network posts. Both types of audiences are likely to know

the offline identity of the user. We do not focus on protecting identities or attributes (e.g., location),

since they have been intensively studied in the literature. We do not block the user from publishing

the (sensitive) content or block the receiver from viewing the content. Instead, we provide an alert

to assist users’ decision making. We assume the adversaries can browse the OSN through the user

interface, or collect data using an automated crawler through the OSN’s API, i.e., there is no hack-

ing or phishing. Finally, we do not consider the retraction of previous posts. If user later regrets

doing so, the damage has been done and it is almost impossible to completely erase the posts and

the consequences.

3.1.2 Objectives.

The objective of this work is to develop a computational model to quantitatively assess the level

of privacy/sensitiveness of unstructured text content, and this will be further adjusted to reflect the

impacts of societal contexts and personal privacy attitudes. We make the first attempt to generate

a privacy score (PrivScore) for each short text snippet, e.g., a tweet (limits to 280 characters),

to reflect its level of sensitiveness within its societal context. The privacy scoring mechanism is

expected to serve as the foundation for a comprehensive privacy monitoring and user alerting

solution.

This research is exceedingly challenging due to several factors: (1) privacy or sensitiveness is

a very subjective perception [22, 43]. Due to the peculiarity, complexity and diversity of human

cognition, it is difficult to precisely capture the privacy calculus model for each individual, and

generate a consensus privacy score that is unanimously agreed by all users. (2) Text understanding

and natural language processing is still an area with active ongoing research. In particular, model-

ing and understanding of unstructured, short, and non-standard text snippets, such as microblogs, is

exceedingly difficult. (3) The subjective perception of privacy is often motivated by many different

aspects such as, personal privacy attitude, emotions, societal context, culture, etc. The complexity

23



Figure 3.1: Key components of the three-phase privacy scoring model.

of modeling the influencing factors is also problematic.

3.2 Overview of the Proposed Solution

We categorize the personalized privacy score into two sub-questions – the identification of sensi-

tive tweets and the classification of sensitive topics. The reason behind this categorization is that

we consider private tweet identification (i.e., automatically identify if a tweet contains private in-

formation) and private tweet classification as dual-problems. Progress towards one category will

eventually benefit the other. After this, we can obtain a topic classification model used for cus-

tomized privacy protection, and a widely-accepted sensitive content identification model.

To determine the mechanism of the privacy score, we propose a three-phase privacy scoring

model based on (Fig. 3.1): (1) context-free privacy scoring, (2) context-aware privacy scoring, and

(3) personalized privacy scoring.

1. The context-free PrivScore is an autonomous assessment of the degree of sensitiveness of short,

unstructured text snippets based purely on the textual content, i.e., free from its context. Our goal

of the PrivScore is to identify sensitive tweets based on widely accepted opinions concerning

sensitiveness. We do this by first collecting data regarding different users’ opinions pertaining to the

level of sensitiveness of potentially private content through a user survey on Amazon Mechanical

Turk (MTurk) (Fig. 3.1 (A)). We then statistically analyze the responses to identify the consensus
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of human perceptions (Fig. 3.1 (B)). Based on the results, we then develop a deep learning model

which is realized by the cutting-edge NLP methods, like word embedding with long-short term

memory, or Bert, to model text content to develop a privacy scoring mechanism (Fig. 3.1 (C)).

Ultimately, the context-free privacy scoring mechanism takes potentially sensitive text snippets

and generates a score that reflects the consensus of sensitiveness from the majority of users.

2. In Context-aware privacy scoring, we model the influence of the societal context and incorpo-

rate it into PrivScore. We had observed that privacy perceptions are dynamic and are influenced

by societal contexts. Particularly, we notice that when popular topics trigger significant interests

and/or discussions on OSNs, users became less concerned about its sensitiveness. For example, the

political attitude is normally considered private. When one billion tweets were posted regarding

the election during the midterm elections in 2018, the degree of sensitiveness of political content

implicitly decreases from the non-election periods. The context-aware PriScore model measures

the influence of societal context using the volume, duration, and relevance of trending topics (Fig.

3.1 (E)). We integrate this into context-free PrivScore to reflect the societal influence on privacy

perceptions (Fig. 3.1 (G)).

3. The Personalized privacy score adjusts PrivScore for each user with a personalized topic-specific

attitude. We recognize that the privacy perception is subjective, and differs for each user. Users

have varying levels of tolerance on private information disclosure on different topics. Therefore,

we treat the personalized privacy score as an additional step, combining the context-free privacy

score with the classification of sensitive topics. This will be further explained in detail in Chapter

4. Progress towards private tweet classification will eventually benefit the scoring of personalized

privacy. Moreover, individual privacy perception is also shaped by various psychological factors

such as personality and emotion [77]. To provide privacy alerts that are customized for each user,

we first analyze the activity history to discover the topic-based privacy attitude (Fig. 3.1 (D)). A

personalized privacy scoring model is then developed to integrate personal attitudes into a context-

free PrivScore (Fig. 3.1 (F)).

Sequentially, we develop a computational model for a personalized context-aware PrivScore
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(Fig. 3.1 (H)). A PrivScore is generated for each social network post (such as a tweet) to reflect a

quantitative assessment of the estimated sensitiveness. This scoring mechanism could be adopted

for individual users or integrated with AI-based interactive bots. For instance, when a user attempts

to post a tweet with sensitive content that is detected by the proposed mechanism, the user will be

alerted that the content has the potential of becoming a future regrettable tweet, i.e. #DontTweet-

This. This warning message intends to trigger self-censorship [90]. A delayed posting mechanism

suggested in [118] could be invoked, especially for impulsive sensitive posts made by users.

3.3 The Expected Outcome

For this mechanism to be utilized in self-censorship, the privacy scoring model could be imple-

mented as a browser plug-in that would include the pre-trained neural networks (w/o shipping the

training data to user). When the plug-in would be used for the first time, it would be configured

with the user’s topic-specific privacy attitude. For example, some users would configure tweets

concerning work related information as private information knowing their colleagues or employ-

ers are in their social network, while at the same time, the users may not consider information

regarding family as sensitive information. This process acts as the preparation for the customized

service. It monitors the socialization activities, for a personalized context-aware privacy score to be

displayed to the user before they click the “Tweet” button. If the privacy score of a post surpasses a

preset threshold, the user will be alerted that this post has the likelihood of becoming a regrettable

tweet, i.e. #DontTweetThis. This warning message again intends to trigger self-censorship for the

user [90]. A delayed posting mechanism suggested in [118] could be invoked in these instances.

During use, we will give a customized privacy score for each editing tweet before the user

clicks the “Tweet” button, as shown in Figure 3.2. The advanced functions in our pop-up window

includes the notification of whether this is a tweet containing sensitive information (PrivScore),

which kind of sensitive topic the tweet might be related to (private tweet classification), what is

the potential risk for this kind of topic, and whether the user should consider posting the content

with regards to future regret. The privacy score might be higher for instance, if the user initially
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Figure 3.2: UI for privacy protection

selected the topic of traveling as a sensitive privacy related issue.

3.4 Anticipated Impacts of The Proposed Solution

The meaningful use of our proposed privacy score mechanism is far more than what we have

described above. The implementation of this privacy score mechanism into the OSN industry will

benefit innumerable amounts of users. Horizontally, it can be utilized with all information sharing

networks including Facebook and Youtube. This mechanism can also be applied with chatbots,

which will be described in detail in 5.6.3. Vertically, it can be used as a filter for posting, and

further as a filter for receiving. A user can then select the topics that interest them, and that they

enjoy reading. Moreover, as society shows concerns regarding the online privacy of young teens

including the sharing of inappropriate content such as misbehavior, this mechanism provides a

self-examination platform for young users, and provides a monitorial approach for parents and

schools. Further use might also include the usage of this mechanism in company intranets to detect

information leakage. Overall, as a theoretical privacy protection framework, our work provides

an early warning with respect to information leakage, which will benefit many kinds of different

users.
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Chapter 4

Content-Based Classification of Sensitive Tweets

Abstract

In this Chapter, we will demonstrate how we get these pre-defined private topics, how to

classify tweets into these topics using text classification techniques, and how we improved

the classification accuracy. Our baseline approach used most common methods in text mining

and gave a relatively good performance. We further introduce two kinds of boosting features

into our classification model: user topic preference and domain knowledge. Results showed

the accuracy had improved notably.

4.1 Introduction

As the most popular open microblog platform, Twitter has 313 million monthly active users [103].

With this new socialization mechanism, users post tweets about every aspect of their daily life,

ranging from professional and career development to personal and family updates, from entertain-

ment to political opinions. Besides the diversity of users’ topics, Twitter accounts are public by

default, which makes Twitter an ideal source for advertisers and adversaries to collect personal

information. At the same time, it makes users’ private information exposed unexpectedly.

For most of the users, their tweets are intended for friends that follow them, called “followers”

on Twitter. However, Twitter is in fact an open platform – all messages posted on Twitter are acces-

sible to the public, including unregistered users and search engine bots. When users are emotional

and/or careless and want to post something, few of them remember this fact. Therefore, users
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sometimes become very vulnerable – private or sensitive information may be accidentally dis-

closed, even in tweets about trivial daily activities. Wang et al. [118] has shown that regret-tweets

are very common. Most of them involve sensitive content and rich sentiments, such as alcohol

and illegal drug use, sex, religion and politics, personal and family issues. However, the degree

of sensitivity and privacy is a subjective perception, which differs from person to person. For in-

stance, some users are more conservative about health-related issues, while some others might be

more protective on work-related information. With that said, in developing a privacy protection

mechanism for online social networks, we cannot use a uniform measure of privacy for all users.

Classification of topics of private tweets is necessary for customized privacy protection – we can

alert users for the pre-set types of private information they want to protect. Meanwhile, we consider

private tweet identification (i.e., automatically identify if a tweet contains private information) and

private tweet classification as dual-problems. Progress towards one of them will eventually benefit

the other. Moreover, after the classification of different tweets, different strategies for evaluating

degrees of sensitiveness can be applied appropriately.

In the rest of this Chapter, we will introduce the preliminary knowledge about the methods and

algorithms we used in the paper will be described. The data collection and preprocessing will be

followed. In this part, the process of data collection and labeling will be discussed in detail and

preprocessing approaches will also be explained. The experiment results will be analyzed at the

last part.

4.2 Approach

In this dissertation, we define 13 topics of privacy content, which is shown in Table 1. Our inten-

sion is to include topics that some twitter users may not want to share with everyone, i.e., tweet

messages that the owners may want to hide from a specific group of followers. While some topics

are usually considered as highly sensitive by most of the users, some other topics are only sensitive

to a smaller population. For instance, category Politics may appear to be far less sensitive than

topics such as Drugs & alcohol, however, it is not uncommon that some people do not want to
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Table 4.1: Tweet categories

Category Example
1. Health & Medical Seriously starting to regret this surgery...

I’m waiting for this cough syrup to go down
2. Work Nothing like being at work at 6 am! #ineedanewjob

Pretty sure @XXX and I spend more time snapchatting each other
at work than actually working.

3. Drugs & alcohol Nothin’ beats whiskey & coke
I’m thinking he gets pure Columbian cocaine Pseudo Prof. #druglord

4. Obscenity I hate fucking a skinny bitch!!! #ineedbigass
This spring break was kind of trash.

5. Religion Be strong and take heart and wait for The Lord.
If you put the Lord first, everything else will fall into place.

6. Politics If Obama wins I’m becoming a communist!
I wish I was at that debate to ask obama questions. #debate
#tearhimapart #romneyryan

7. Racism I hate black people and gay people as well
Nowadays these niggas always caught up in they feelings

8. Family & Personal Grandma and papa flying in tonight!!
Drinkin beer with future father in law and shondas uncle #buzzed

9. Relationship I have no problem flaunting my relationship.
On a date with a pretty cute girl. Hope @XXX doesn’t mind.

10. Sexual Orientation Tayler just admitted to me that she is bisexual...
One day I wanna convert a lesbo

11. Travel I wish I could just leave and go on a long road trip
4 more hours until a week of paid vacation

12. School life 3 hour class can suck my balls
What’s worse than immature freshman? Immature seniors.

13. Entertainment Watching bad girls club while I wait for class #noshame
Watched the series finale of Ally McBeal on #Netflix and now I’m
all in my feels about everything in life ever #alldafeels

share political opinions with their supervisors, colleague, or clients. On the other hand, students

may not want to share entertainment-related tweets (e.g., going to a party on a school day) with

teachers, thus topic Entertainment is also considered sensitive for some people.

Our system consists of the following parts: data collection, labeling, data normalization, feature

extraction and classification. The first three steps can be seen as preparation for data set, which will

be introduced in the data collecting and preprocessing part. In the feature selection part, besides

the content-based features, such as Bag-of-Words and TF-IDF, two kinds of boosting features are
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explored in our system. They are users’ topic preference and domain knowledge. To compare

the performance of classifiers trained by different feature sets, Bag-of-Words method is used as

the baseline, and another four methods are tested respectively: TF-IDF, TF-IDF with proposed

boosting features – users’ topic-preference, TF-IDF with proposed boosting features – domain

knowledge, TF-IDF with users’ topic-preference and domain knowledge which is called “All”

for short in the rest of the proposal. The whole process of classification is shown in Figure 4.1.

About the classification algorithm, the Naive Bayes model is selected, since it is commonly used

in text classification and has good performance. The following part will describe these methods

and models in detail.

Data

Labeling

Data

Preprocessing

Text Content

Representation

(BoW/TF-IDF)

Tweets

Classification

Domain Based

Feature

Extraction

Topic Based

Feature

Extraction

Data

Collection

All

Feature

Extraction

Figure 4.1: Diagram for classification process

4.2.1 Naive Bayes

Naive Bayes is a popular algorithm in text categorization. The motivation of the algorithm can

be described as: if each tweet is treated as a document d and d is composed of a bag of words

w1,w2, . . . ,wn, then the posterior probability that the tweets belong to the topic c can be demon-
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strated as

p(c|d) = p(c)p(d|c)
p(d)

=
p(c)p(w1,w2, ...,wn|c)

p(w1,w2, ...,wn)

∝ p(c)
n

∏
i=1

p(wi|c)

(4.1)

In this expression, p(c) is the prior probability of a tweet occurring in class c, defined as

p(c) =
Nc

N
(4.2)

Nc is the number of tweets in the topic c, and N is the total number of tweets in the training set.

p(wi|c) is the conditional probability of words distribution in category c, which can be calculated

as

p(wi|c) =
N(wi,c)

∑w j∈V N(w j,c)
(4.3)

where N(wi,c) is number of occurrences of word wi from topic c, if Bag-of-Words method is

applied. If TF-IDF is used, N(wi,c) will be the TF-IDF score in the certain topic which will be

described in the following part. The tweet which is assigned to the best class c can be determined

by

argmax
c∈C

p(c) ∏
1≤k≤nd

p(wk|c) (4.4)

4.2.2 Bag-of-Words

The Bag-of-Words model is a simplified representation used in a majority of information retrieval

and natural language processing techniques. Essentially a text is represented as the bag of its words,

disregarding grammar and even word order but keeping multiplicity. For example, both “John likes

Mary” and “Mary likes John” can be represented as {“John′′,“likes′′,“Mary′′} in BoW model.

The frequency of a term (TF), namely the number of times a term appears in the text is used as a

feature for training a classifier. By using Bag-of-Words (BoW) model, a tweet can be treated as a

set containing all the words appearing in the tweet.
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However term frequencies are not the best representation for the text. Common words like ‘a’,

‘the’, ‘to’ are the terms with highest frequency in the text. Thus having a high raw count does not

necessarily mean that the corresponding word is more important. Moreover, this method simply

uses all words that have appeared in a topic as the feature set to represent each tweet in this certain

topic, which will make data set sparse and large, and reduce the classification accuracy. Thus, we

use this method as our baseline.

4.2.3 TF-IDF

To address the problems posed by the Bag-of-Words model, a widely used technique of normal-

izing the term frequencies (TF) is to weight a term by the inverse of document frequency (DF) or

TF-IDF. TF-IDF can reduce feature dimension effectively, distinguish the importance of different

words and reflect the importance of a word to a document in a corpus[26]. This scheme gives the

word w in the document d the weight as

T F-IDF(w,d) = TermFreq(w,d) · log(N/DocFreq(w)) (4.5)

where TermFreq(w,d) is the frequency of the word in the document, N is the number of all docu-

ments, and DocFreq(w) is the number of documents containing the word w.

In our system, we first remove stop words from tweets. Then, for each category, they are treated

as a document, and the importance of each word in tweets belonging to a category can be calculated

based on TF-IDF. Most frequent words and their TF-IDF weights are used to represent each tweet

and build data set for classification [57].

4.2.4 Boosting with User Topic Preference

Because of the limitation of tweet-size (140 characters), each tweet contains very few features

compared with all the word-features, which makes accurate classification hard. To improve the

accuracy of a classifier, not only should semantic feature selection methods be used, such as TF-
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IDF, but also features from other perspectives should be considered. In this proposal, we add 13

features, which represent users’ topic preferences for 13 categories. The motivation behind intro-

ducing boosting features is that different users would have different posting preferences according

to these 13 topics. It is a very intuitive assumption that a user who likes traveling, for example, more

frequently posts tweets about Travel instead of Drugs and Alcohol. So by adding features about

their topic-preferences will improve the accuracy. A user’s preference for a topic is estimated by

two steps.

Firstly, we define topic-related words as the words which scored more than 1.5 after TF-IDF

calculation for each topic. The threshold is selected as 1.5 because during our experiments, this

score can decrease the number of features dramatically and still have a good classification effec-

tiveness. Then each user’s own topic preference can be calculated through counting the occurrence

of topic-related words in each topic and comparing with the occurrence of the whole words in the

user’s tweet history. The algorithm is stated in the following table 4.2.

Table 4.2: Algorithm for user’s own topic preference

Algorithm for a User’s Own Topic Preference
Input:
tweets: List of n tweets from a Twitter user u
wordList: Related words list of Certain Topic
Output:
ownPreferences: Topic preferences for Twitter user u

1: words = preProcess(tweets)
2: for topic from 1 to 13 do
3: prob[topic] = 0
4: for word in words do
5: if word in wordList do
6: prob[topic] += 1
7: ownPreferences[topic] = prob[topic]/# of words in tweets

However, for some popular topics, such as ‘Travel’, lots of users have a high own topic pref-

erence in their tweet history. If we just utilize users’ own topic preference as the topic preference,

the always low score topics, like ‘Racism’ or ‘Sexual Orientation’ might be influenced. To avoid

the influence of this evaluation method, the relative topic preference should be considered. The
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estimation of relative topic preference is our second step for users’ topic preference features’ ex-

traction. In this step, all users’ own topic preferences for a certain topic are sorted. We treat users

whose own topic preferences are among top 50% as having a preference for this certain topic.

Now the classification problem becomes trying to maximize the conditional probability of a

tweet belonging to a certain topic given its content and owner’s topic preference, which can be

defined as

argmax
c∈C

p(c|d, t) (4.6)

Consider a user with certain topic preferences. When she wants to post a tweet, it is probably

that the content related to her topic preferences. Thus, the conditional independence is presumed

in this situation. And it can be formally defined as follows in Naive Bayes.

p(c|d, t) = p(t)p(c|t)p(d|c) (4.7)

For a tweet, its owner’s topic preference can always be estimated. Therefore, the conditional

probability can be found by calculating

p(c|d, t) ∝ p(c|t)p(d|c) ∝ p(c|t)
n

∏
i=1

p(wi|c) (4.8)

where p(c|t) can be calculated as

p(c|t) = Nct

Nt
(4.9)

4.2.5 Boosting with Domain Specific Features

Besides the content of tweets which are the important features for tweet classification, the back-

ground knowledge of the information can also play a role for accurate prediction. Therefore, we

leverage the background knowledge of four specific topics – entertainment, work, religion and

drugs – as four extra features for each tweet. The judgement of these four features are described in

detail below.

35



4.2.5.1 Entertainment

The Entertainment topic can contain varied information. The tweets might have the information

about users’ preference for a particular kind of movie, music or artist. If a preliminary knowledge

about entertainment has been obtained and implemented in the judgement of tweets, it will be

helpful for the classification. Therefore, a script has been wirtten to look at individual tokens in

a tweet and check whether any of them reference to entertainment content. IMDB’s database,

IMDB’s API and the Google’s API are used to identify whether tweets have any reference to

entertainment features. For example, “Rachel is making me celebrate World Oceans Day with

her by watching Finding Nemo. No complaints. #wildlifeconservation”. In this tweet, the user

mentions the movie “Finding Nemo”, which can be found in IMDB’s database.

4.2.5.2 Work

A common observation for the tweets in the work category includes their work load, salaries and

professions. Therefore, a list of professions is created, which covers close to 1,100 job titles. More-

over, regular expressions are written to identify tweets where a monetary income is being discussed

e.g. $10,000. And for work load regular expressions are written to identify description of a time

like 5am, 6pm, 3 days etc. Take the following tweet as an example, “Act for 4 hours, then work for

7.. Tomorrows gonna kill me” contains a commonly used sentence “work for + number (hours)”,

which can be checked by our regular expression.

4.2.5.3 Religion

A lot of tweets that were categorized as religion had the name of a chapter in a religious text and

the verse number. For example, “I praise you, for I am fearfully and wonderfully made. Wonderful

are your works; my soul knows it very well. Psalm 139:14”. If a chapter name and a verse number

are detected, it’s definitely a Religion topic tweet.
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4.2.5.4 Drugs and Alcohol

Tweets categorized as drugs had a mention of a drug or an alcoholic drink. So we created two

lists. One list for all possible drugs that were illegal or used for recreational purposes and the other

list for all kinds of alcoholic drinks. These information is sourced from Wikipedia. For example,

in tweet “This song makes me want to do copious amounts of MDMA and cocaine”, MDMA

(methylenedioxy-n-methylamphetamine) and cocaine are on our list.

4.3 Data Collection, Labeling and Preprocessing

Before training classifier, the data set used for classification should be collected from Twitter. Once

the tweets are crawled, randomly selecting and labeling them to 13 pre-defined topics related to

privacy content is called data labeling. After these processes, tweets are still merely strings of text.

To make the classifier understand the document, there is a need to represent the document in a more

structured manner. Hence, the preprocessing of the data set and the text representation is necessary

for the experiment. The above process is shown in Figure 4.1.

4.3.1 Data Collection

Data Collection is the process of collecting data that is relevant to our project. The data collected

will then be preprocessed and used to make predictions and evaluate outcomes; thus, it is one of the

most important steps. The better the data for training the classifier is, the better prediction results

there will be. Therefore, some constraints are set during collection, which is demonstrated in the

following part of this section.

In this part, we randomly selected a user as the valid seed user and the crawler began from

a valid “seed user” by using Twitter Rest API, which provides programmatic access to read and

write Twitter data [101]. For a valid user, the following constraints are applied: (1) less than 500

followers or following count, (2) user’s account language should be English.

We think a user with more than 500 followers or followings means the user is extremely active,
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and their behaviors on the social network are quite different from “normal user”. Our research

does not target celebrities or public accounts, which are over-active and containing few private

information. The seed user’s recent 3,000 tweets (according to Twitter’s limitation), seed user’s

followers’ and followings’ accounts are recorded during crawling. Then we check the seed user’s

followers and friends to find more potential seed users. If the seed user’s friend or follower fulfills

the criteria of a seed user mentioned above, then we can start crawling this new seed user’s tweets.

This method is called snowball crawling. We repeated the snowball crawling method twice using

the Twitter Rest API.

More than 29,000 user accounts were crawled in our experiment, from March 10th to March

31th, 2016. From tweets obtained, we deleted tweets containing the term “RT@” or URLs for

better quality tweets, since most of them contained less personal information.

After obtaining tweets, the next logical step was to find the tweets most relevant to the project.

In order to get tweets that were relevant, a rough list of keywords for each category is created.

For example, keywords like hospital and surgery would be added to keyword list of ‘Health &

Medicine’, keywords like vacation and road trip would be added to keyword list of ‘Travel’, so on

so forth. To obtain these keywords, a seed word relevant to the category is selected and then fed the

Urban Dictionary [urban] which is an Internet dictionary containing lots of slang and shortenings.

Then the 20 most related words of each seed word on the website are extracted. For each related

word we found its related words. This process was repeated twice. After populating and proper

cleaning, keywords of each category are obtained. These keywords were then used to fetch relevant

tweets from the raw tweet data we collected.

4.3.2 Data Labeling

Once the tweets are filtered by keyword sets, the next step is to manually label the tweets into 13

pre-defined topics which might contain private information. The description and the criterion for

judging are listed below. Examples of each category are shown in Table 1.

• Health & Medicine: Tweets that describe users’ injury, pain, disease, medicine, surgeries or
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anything related to hospital visits, etc., are included in this topic category.

• Work: Tweets in this topic category pertain to users’ work or employment. Tweets contain

users’ feeling towards his profession, the work environment, colleagues, work hours or wages,

career, job hunt, etc.

• Drugs & Alcohol: Tweets are related to substance abuse or alcoholic consumption.

• Obscene & Abusive: Tweets that contain male and female intimate body parts, sex or porn

related text are included in this category. Also, tweets where people use obscene language or

complain about something fall in this topic category too.

• Religious: All tweets that indicate religious inclination or contain verses from holy books

or talk about faith in God are included in this topic category.

• Politics: Tweets talk about a country’s government, policies, elections, etc.

• Discrimination: Tweets that contain text related to discrimination against someone based on

cast, color, creed, religion, sexuality, etc.

• Family & Personal Life: Tweets that tell us about the users’ personal life. They include

birthday tweets, anniversary tweets, marriage or engagement tweets, or pregnancy tweets about

the user or his family members.

• Relationship: Tweets related personal relationship.

• Sexual orientation: Tweets that describes a person’s sexual orientation.

• Travel: It contains tweets where a user talks about taking a vacation.

• School Life: Tweets containing text related to school like homework, assignments, grades,

graduation etc., are included in this category.

• Entertainment: Tweets talk about movies, TV shows, books or music.

For each category, the distribution of tweets is different. For example, it’s easy to find a tweet

about work, while hard to find one about illegal drug use. To make sure our classifier can distin-

guish different topics correctly, we select around 500 tweets for each category to make the data set

balanced. The distribution of tweets for each category is shown in Figure 4.2.

During labeling, one annotator first labels almost equal number of tweets for each category.
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Figure 4.2: Number of tweets in each category

Then the second annotator checks whether the labelings are correct. Only tweets agreed upon by

both annotators remain in the data set. In case a tweet belongs to more than one category, the

tweet is saved in all relevant documents. For example, tweet like “anonymous yoo baby how’s that

sexy ass of yours? Just sitting here thinking about it while I’m working.” is about both work and

obscenity. Finally, there are 6,475 labeled tweets in our data set. Among these labeled tweets, 6,345

are distinguished and owned by 3,694 users. We also extract all the tweets of these 3,694 users to

analyze their topic preferences, which will be used in the feature selection part of this study.

4.3.3 Tweet Preprocessing

Tweets have the traits of shortness, full of slang and shortenings, and widely usage of hashtags,

which makes it hard to understand for computers if we don’t normalize it. Before doing natural

language processing for these tweets, a widely used text analyzing tool GATE is used to normalize

them. Gate is open source free software for many types of computational task involving human

language [GATE].

In GATE, there is a pipeline specifically developed to handle tweets, called TwitIE [11] which

includes the components used for recognizing the words in long hashtags and changing normal

shortenings to complete words. For example, “#lifeisbeautiful” will become “# life is beautiful”

and “lol” will become “laugh out loud”. This process is important, since hashtags usually contain

very important words for classification.
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After dealing with the hashtags and shortenings by GATE, further processing is also needed.

Tweets are tokenized to words through using python library nltk. For each word token, tokens

starting with @ are removed and tokens containing non ascii elements like emojis are also deleted.

4.4 Experiment Results

The experiments are performed using the popular machine learning tool – Weka [38]. Weka sup-

ports many machine learning algorithms for data categorization, clustering, and feature selection.

In our experiments, we implement the Naive Bayes model in Weka for five different feature-sets

extracting from the labeled data set. The first feature-set consists of labeled tweets processed by

Bag-of-Words model. The second one is data set processed by TF-IDF. And only words with a

TF-IDF score more than 1.5 are selected. The third one is based on the second one but adding

features of users’ topic-preferences. The fourth consists of the features in the second one and

domain-knowledge features. The last one combines the TF-IDF features and two kinds of boosting

features: users’ topic preference and domain-knowledge, which is called “All” in our experiment

for short. After classification, each tweet in the data set will be in only one category. We utilize 5-

fold cross validation to evaluate the classification accuracy, and the final results are averaged over

the five folds. The performances of these five different feature-sets are analyzed one by one in the

following part. And the experiment results show that compared with the Bag-of-Words, the effec-

tiveness of TF-IDF is obvious and after introducing boosting features, the accuracy of classification

improved from 85.4% to 89.2%.

Table 4.8 presents the comparison of classifiers’ accuracy, precision, recall and F-measure of

the five different feature-sets. The classifiers’ performances in each category are evaluated by F-

measure and shown in Table 4.9. To visualize the Table 4.9 and observe the result more directly,

Figure ?? is drawn.

As the baseline, the Bag-of-Words method achieves the accuracy of 78.8%. Table 4.3 shows

the Confusion matrix of Bag-of-Words approach. From the table we can see, the mis-prediction

happens in every category and distributes evenly compared with the other four methods. This is due
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to the mechanism of Bag-of-Words, which only counts the frequency of words, regardless of order

and without distinguishing the importance between words. For example, some common words like

“people” and “girls” will count in every category. Moreover, this method can not decrease the

feature-dimension effectively, which leads to the sparsity of the feature-matrix. A more advanced

representing method is needed for content-based feature extraction. Therefore, TF-IDF is used in

our second experiment.

Table 4.3: Confusion Matrix with Bag-of-Words

Truth
Predict

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 334 18 5 20 3 0 1 15 9 2 10 10 8
C2 10 401 4 21 3 2 1 7 12 3 16 8 12
C3 12 14 381 22 2 5 6 13 6 7 7 10 16
C4 25 31 10 307 3 0 14 20 36 13 8 20 16
C5 3 6 0 8 463 1 1 1 8 1 2 1 6
C6 6 18 3 13 5 412 12 6 7 5 2 5 7
C7 7 5 3 17 3 9 390 7 13 36 3 5 3
C8 11 14 7 8 2 2 1 390 28 2 16 9 19
C9 5 15 3 23 5 0 5 16 394 4 3 7 21
C10 9 8 7 31 6 2 26 12 18 365 2 8 7
C11 4 6 1 9 3 1 2 9 9 3 455 9 6
C12 10 6 3 13 7 1 6 3 7 5 12 409 12
C13 8 15 2 14 2 1 3 20 17 3 11 5 400

In the second experiment, each category is treated as a document, and each tweet is a sen-

tence in this document. Then, for each category, TF-IDF is utilized to dress the important words

in each topic. Finally, we select 1.5 as the threshold of TF-IDF score, which decreases the number

of features from a huge one – 10,107 – to an acceptable one – 2,369 – and increases the accuracy

of classification from 78.8% to 85.4% effectively. Table 4.4 shows the Confusion Matrix of the

classification results using the feature-set extracted by TF-IDF. We can see the results are quite

different from that of the Bag-of-Words method. Most of the wrong predicted tweets are catego-

rized as topic 13. This is because entertainment contains varied content. Except for the specific

words like ‘Netflix’, ‘cinema’ and ‘movie’ with extremely high scores, words like ‘club’ and ‘doc-

tor’ which might appear in other categories also have a score more than 1.5. For example, tweet

labeled as work –“When a parent tells me I was a huge impact on their daughter’s life when I
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worked at the boys and girls club” is hard to judge for the classifier and wrongly categorized as

topic 13. Although the overall accuracy of TF-IDF improved a lot compared with Bag-of-Words,

in some specific topics, such as ‘Entertainment’ and ‘Obscenity’ which share parts of important

words with other categories, this method cannot work very well. For example, on the topics of

‘Sexual Orientation’ and ‘Drug and Alcohol’, dirty words are common. One of the mis-prediction

shows this problem, “Anonymous is a lesbian but she had sex with hale so the makes her bisexual.

This notch got it down”. This tweet is labeled as topic 9 – sexual orientation, but with little dirty

meaning.

Table 4.4: Confusion Matrix with TF-IDF

Truth
Predict

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 372 0 1 0 0 0 0 2 0 0 0 1 59
C2 0 427 3 2 0 0 0 2 1 0 17 2 46
C3 2 0 455 6 0 0 1 0 0 0 0 1 36
C4 1 0 9 312 0 0 0 3 4 0 4 0 170
C5 0 0 0 0 487 0 0 0 3 0 0 0 11
C6 0 0 2 0 6 450 1 0 0 1 5 5 31
C7 0 0 0 1 1 4 420 0 2 16 0 3 72
C8 1 0 0 0 3 1 0 463 0 0 16 5 20
C9 0 0 0 7 3 0 0 2 436 0 0 0 53
C10 0 0 0 11 0 0 7 4 1 374 0 0 104
C11 0 3 0 1 0 0 0 1 0 0 412 3 97
C12 1 0 0 0 0 0 1 0 0 0 20 458 24
C13 2 0 1 0 1 0 0 3 0 0 5 6 483

Therefore, only using content-based features are not good enough for accurate classification. In

the following part, two kinds of boosting features are added to the TF-IDF feature-set respectively.

And finally, except for the Bag-of-Words, all methods are combined together, which improves

accuracy more than 10% compared with the baseline.

The very beginning intuition behind adding users’ topic preferences is that users are more likely

to post the tweets about their interested topics. However, for some extremely sensitive topics such

as racism or sexual orientation, though a few users might have a higher preference than that of the

other users, these topics are still seldom mentioned, compared with some other ‘popular’ topics like

‘work’ or ‘travel’. Thus, the user’s own topic preference is not accurate enough for classification.

43



1 1 2 3 4 5 6 7 8 9 10 11 12 13 13

0

0.2

0.4

0.6

0.8

categories

U
se

rs
’R

el
at

iv
e

Pr
ef

er
en

ce

max
mid

Figure 4.3: Users’ Relative Topic Preferences

The relative topic preferences are needed, which has been described clearly in section 3.4.

The Figure 4.3 shows the maximum of a user’s own topic preference and the medium of a

user’s own topic preference respectively. Combined with Table 4.9, we find, this method has an

obvious effect on category 4, 7, 10, 11 and 13. This is partial because, topic 4, 7 and 10 are seldom

talked about on Twitter. But for the topic active users, they still have more tweets on these topics

compared with the most users. For category 11 – travel, it is almost the most favorite topic for every

user in our sample set. Then the relative preference makes more sense for the extreme popular

topic. The improvement of topics 13 – ‘Entertainment’ is due to the decrease of mis-prediction.

The Confusion Matrix in Table 4.5 can confirm the demonstration of improvement for various

categories.

As mentioned before, through using domain knowledge, more accurate topic-related words

will be grasped. By observing the Confusion Matrix in Table 4.6, we can see improvement in

category ‘Work’ is obvious, due to the application of domain knowledge. So does the category

‘Entertainment’. Compared with TF-IDF, the accuracy of domain knowledge method is not im-
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Table 4.5: Confusion Matrix with TF-IDF + topic

Truth
Predict

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 374 0 15 1 7 0 0 2 0 0 0 8 28
C2 1 424 9 4 1 1 0 2 1 0 20 8 29
C3 2 2 460 7 1 1 1 0 0 0 0 5 22
C4 7 0 67 336 2 0 0 3 4 0 4 24 56
C5 1 0 0 0 486 0 0 0 3 0 0 0 11
C6 0 0 6 1 4 458 1 0 0 0 4 10 17
C7 0 0 18 5 7 5 414 0 1 15 0 7 29
C8 1 0 6 0 5 1 0 464 0 0 16 7 9
C9 2 1 17 10 2 0 1 2 435 0 0 4 27
C10 0 0 36 18 3 0 9 4 1 393 0 6 31
C11 0 3 17 0 3 0 0 1 0 0 430 6 57
C12 2 0 3 0 1 1 1 0 0 0 19 465 12
C13 2 0 5 0 0 0 0 3 0 0 5 9 477

proved in category ‘Religion’ and ‘Drug and Alcohol’. This phenomenon verifies that the topic

related words in these two categories are very distinct among topics and ubiquitous in the specific

topic, which makes TF-IDF a more powerful approach.

Table 4.6: Confusion Matrix with TF-IDF + domain knowledge

Truth
Predict

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 394 0 5 0 0 0 0 2 0 0 0 33 1
C2 0 454 2 1 0 0 0 3 0 0 8 3 29
C3 2 17 472 5 0 0 1 0 0 0 0 4 0
C4 5 0 38 318 0 0 0 3 5 0 4 130 0
C5 1 0 1 0 486 0 0 1 3 0 0 5 4
C6 0 0 2 0 9 465 1 0 0 1 5 18 0
C7 0 0 1 1 1 4 413 0 2 15 0 64 0
C8 0 0 2 0 3 1 0 463 0 0 16 24 0
C9 0 0 2 8 3 0 1 2 446 0 0 38 1
C10 0 1 4 12 0 0 7 4 1 388 0 82 2
C11 3 2 2 1 0 0 0 1 0 0 451 53 4
C12 1 1 3 0 0 0 1 0 0 0 19 475 4
C13 2 0 1 0 0 0 0 2 0 0 5 20 471

After combining TF-IDF, users’ topic preferences and domain-knowledge together, we get the

classification result as shown in Table 4.7. Compared with the previous results, fewer tweets are

mis-predicted as category 13, due to the usage of domain knowledge. However, at the same time,
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the mis-prediction on some topics increased. This is because our domain-knowledge features just

stress the characters on the four specific categories. For some categories with unobvious content-

based traits, such as ‘School life’, the accuracy will be compromised.

Table 4.7: Confusion Matrix with All

Truth
Predict

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 389 0 12 5 1 1 0 4 1 0 0 21 1
C2 0 457 4 0 0 0 0 2 0 0 8 2 27
C3 3 16 475 3 0 0 1 0 0 0 0 3 0
C4 16 0 40 373 1 0 0 4 4 0 4 59 2
C5 1 0 1 0 486 1 0 2 3 0 0 1 6
C6 4 0 2 4 4 464 2 0 0 0 4 14 3
C7 5 0 8 7 1 9 424 1 1 15 0 27 3
C8 6 0 0 3 2 2 0 468 0 0 16 12 0
C9 12 0 3 22 1 0 1 2 445 0 0 13 2
C10 11 0 10 33 0 6 9 4 1 402 0 23 2
C11 9 2 7 3 0 1 1 2 0 0 451 36 5
C12 4 1 3 0 0 1 1 0 0 0 19 471 4
C13 4 0 2 1 0 1 0 2 0 0 5 14 472

To make the comparison more clearly, Table 4.8 has shown the accuracy, precision, recall

and F-Measure for five different feature-sets respectively. And Table 4.9 lists the F-measure score

for each category under five conditions. From the results, we can see that TF-IDF is an effective

content-based feature extraction method, with significant improvement compared with the Bag-of-

Words. However, for some categories whose topic-related words are also parts of other categories’

topic-related words, this method performs bad, such as topic ‘Obscenity’ and ‘Entertainment’. To

make up this disadvantage, boosting features (i.e., users’ topic preferences and domain knowledge)

are introduced. After combining TF-IDF and boosting features together, the classification accuracy

has a notable improvement.

To make sure that our approach can be implemented in a real-time system, we also used Weka

to evaluate the time for building model on training data and time taken to test each tweet based on

five different classifiers, shown in Table 4.10. From the results we can see, BoW takes the most

time both of training and testing. This is because, the feature set of BoW contains more than 10,000

words, which is five times that of the other four methods. The module building time for the other
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Table 4.8: Comparison of Different Model

Models Accuracy Precision Recall F-Measure
BoW 0.788 0.793 0.788 0.789
TF-IDF 0.854 0.915 0.854 0.870
TF-IDF+topic 0.867 0.891 0.867 0.871
TF-IDF+domain 0.879 0.911 0.880 0.886
TF-IDF+topic+domain 0.892 0.902 0.892 0.894

Table 4.9: F-measure Score of Each Category

Category BoW TF-IDF topic domain All
1. Health & Medical 0.760 0.914 0.904 0.935 0.865
2. Work 0.752 0.918 0.912 0.931 0.936
3. Drugs & alcohol 0.819 0.936 0.793 0.911 0.890
4. Obscenity 0.609 0.740 0.759 0.749 0.780
5. Religion 0.919 0.972 0.950 0.969 0.975
6. Politics 0.879 0.941 0.946 0.958 0.940
7. Racism 0.805 0.881 0.892 0.893 0.902
8. Family & Personal Info 0.759 0.936 0.937 0.935 0.936
9. Relationship 0.740 0.920 0.920 0.931 0.931
10. Sexual Orientation 0.768 0.839 0.865 0.857 0.876
11. Travel 0.855 0.827 0.847 0.880 0.881
12. School life 0.810 0.927 0.875 0.654 0.785
13. Entertainment 0.774 0.566 0.730 0.926 0.918

four methods are almost the same. The testing time on each tweet decides whether our proposed

method is a real-time solution since the final goal of the project is to check users’ posts in the real

time and recommend users before they want to post something sensitive. The results in our table

shows, except for BoW, the others’ time consuming are around 0.01s, which is fast enough for

real-time realization.

Table 4.10: Training and Testing Time for five Different Models

Models Module Build Time Testing Time on each tweet
(second) (second)

BoW 10.13 0.0395
TF-IDF 2.7 0.0096
TF-IDF+topic 2.6 0.0091
TF-IDF+domain 2.36 0.0096
TF-IDF+topic+domain 2.07 0.0093
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Figure 4.4: F-measure Score of Each Category

4.5 Analysis and Discussion

The previous experiment results show that our motivation of adding boosting features has an impact

on the accuracy of classifiers. However, for the results, there are still several phenomena need to

be explained in the following part of this section.

From the results, we can see that even the simple bag of words model produces accuracy higher

than 70%, which is relatively high, especially considering that there are 13 categories. This is

partly due to the existence of bias in the dataset caused by the labeling process. The first annotator

quickly scans through a large number of tweets and labels tweets into a category when certain

keywords are spotted. For example, when the annotator sees terms like “drunk”, “intoxicated”, the
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tweet is labeled as Drugs & alcohol. If a tweet contains terms that are weakly associated with this

category, e.g. “a cup of beer before dinner”, the tweet is labeled as “not sensitive”, and eliminated

from the dataset. As a result, each category only contains tweets with strong indicator words. That

is, to some extent, inadvertent word filtering is made during the human cognitive process in data

labeling. In our future work, we will include a significantly larger amount of data labeled through

crowdsourcing platforms.

When compared with the result of TF-IDF, we might notice that the improvement after intro-

ducing users’ topic preferences seems not ideal enough. This is due to the size of the data set.

As we randomly selected the tweets from users’ tweet history pool, the chance of getting several

tweets from the same user is low. After checking, we find 30% of users have more than 1 tweets

in our data set. And the chance that these same user’s tweets belong to this user’s preferred topics

are even lower. With including more tweets in our data set and targeted on the specific users in the

future work, we believe the impact of this method will have a significant improvement.

4.6 Summary

In this Chapter, we study the problem of classifying private tweets into 13 different potentially sen-

sitive topics based on the common TF-IDF method and boosting features – users’ topic-preferences.

The experiment results show that with users’ topic-preferences and domain-knowledge, the accu-

racy of classification will increase notably. Our boosting features effectively boost the classification

performance of each category, especially for the ones that BoW and TF-IDF are most inaccurate.

This work was published on [113, 114].
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Chapter 5

Scoring Private Information in Social Networks

Abstract
In this chapter, we will describe our context-aware, text-based quantitative model for private

information assessment, namely PrivScore, in detail. This model serves as the foundation of

our privacy protection mechanism. We start from understanding diverse opinions on the sen-

sitiveness of private information from crowdsourcing workers, and discovering a perceptual

model behind the consensuses and disagreements. Then, a computational scheme using deep

neural networks is implemented to calculate a context-free PrivScore (i.e., the “consensus”

privacy score among average users). Finally, we integrate tweet histories, topic preferences

and social contexts to generate a personalized context-aware PrivScore.

5.1 Introduction

As we talked in the previous chapters, we argue that another key component in privacy protection

in OSNs is protecting sensitive/private content, beyond the protection of identities and profile

attributes, i.e., privacy as having the ability to control the dissemination of sensitive information.

Meanwhile, friends may leak one’s private information. Threats from within users’ friend networks

– insider threats by human or bots – may be more concerning because they are much less likely

to be mitigated through existing solutions, e.g., the use of privacy settings [51, 99, 123, 107].

Therefore, it is critical to automatically identify potentially sensitive posts and alert users before

they are posted, i.e., #DontTweetThis, and a mechanism to distinguish potentially sensitive/private

posts before they are sent is urgently needed. Such a mechanism could also benefit non-human
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users such as social media chatbots. For instance, Microsoft’s Twitter bot, Tay, started to deliver

racist and hateful content soon after it was launched in 2016. Tay “learned” from inappropriate

messages it had received. Unfortunately, there did not exist a mechanism to assess the sensitiveness

of tweets before they were exposed to Tay or posted by Tay.

In this Chapter, we present the first quantitative model for private information assessment,

which generates a PrivScore that indicates the level of sensitiveness of text content. PrivScore is

expected to serve as the foundation for a comprehensive user-centered privacy protection solution.

In this project, we examine users’ opinions on the levels of sensitiveness of content, and then build

a semantic model that comprehends the opinions to generate a context-free PrivScore. The model

learns the sensitiveness of the content from text features (e.g., word embeddings) and sentiment

features using a Recurrent Neural Network (RNN). Then the advanced model – Bert is leveraged in

this project to explore the benefits of the transfer learning model. To further personalize PrivScore

and make it aware of the societal context, we integrate the topic-based personal attitudes and the

trending topics into privacy scoring, to generate the personalized PrivScore and the context-aware

PrivScore, respectively. With intensive experiments1, we show that PrivScores are consistent with

users’ privacy perceptions.

PrivScore, to the best of our knowledge, is the first quantitative assessment for sensitive content.

It has the potential to be utilized in various applications: (1) It could be adopted by individual users

for self-censorship and parental controls, to prevent highly sensitive content from being posted to

online social networks, especially when the users are careless or emotional. (2) PrivScore could

be integrated with AI-based interactive agents, especially the ones with learning capabilities, such

as social media chatbots (Twitterbots, Dominator) and virtual assistants (Siri, Alexa, Cortana), to

evaluate the content before delivering to users. (3) PrivScore could be aggregated over a large

population (across demographic groups, friend circles, users in an organization, etc.) to examine

privacy attitudes from a statistical perspective. This method and the results could be used for re-

search purposes, assisting policy making, or privacy education/training.

1Since the experiments involve human subjects, we have obtained an IRB approval.
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The rest of the Chapter is organized as follows: Section 5.2 explains the data collection and an-

notation processes, followed by the context-free, context-aware and personalized PrivScore models

in Sections 5.6.1, 5.7, and . We present the security analysis and discuss the performance, usability,

and limitations in Section 5.6.2. We then summarize the literature in Section 8 and finally conclude

the paper in Section 9.

5.2 Data Collection and Labeling

Before training classifier, the data set used for classification should be prepared first. Since there is

no previous work same with us, which means we do not have an off the shelf data set to analyze,

we need to get the dataset from scratch. This process includes data collection, data labeling and

data normalization. In the data labeling part, we utilized widely-accepted online crowd-sourcing

approach – Amazon Mechanical Turk. And the design of the survey will be describe in detail on

portion 5.2.2.

5.2.1 Data Collection

We selected Twitter as the OSN platform because of its openness and popularity. While it is com-

parably easy to crawl large amount of data from Twitter, a number of privacy risks have been

identified due to this easy data harvesting. We performed a snowball crawling process in March

2016 for about a month and collected 31,495,500 tweets from 29,293 users. We eliminated non-

English speaking users, and tweets beginning with “RT @”, since forwarded articles and re-tweets

do not contain private information of the forwarder.

It is impractical to ask annotators to label 31 million tweets. Meanwhile, since the dataset is

highly imbalanced, if we randomly sampled tweets for labeling, the majority of the samples would

be non-sensitive. Therefore, we selected potentially sensitive tweets as candidates for labeling to

save labor and cost. Note that our goal is not to develop an accurate classifier in this step. Instead,

we aim to construct a balanced dataset by eliminating most of the clearly non-private tweets.
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First, we referred to [47, 126, 113, 71] to identify potentially private topics, such as Health

& Medical, Drugs & Alcohol, Obscenity, Politics, Racism, Family & Personal. For each topic,

we selected a root set of “seed terms” and expanded the set using Urban Dictionary, an Internet

dictionary containing slang words and abbreviations (frequently used in Twitter). For each seed

word, we expand it to 20 most relevant words.2. After proper cleaning, we collected more than

100 terms for each topic. Terms are available at http://bit.ly/privscore. By selecting a

relatively large set of keywords, we aim to increase recall, i.e., to include a majority of potentially

private tweets. We then filtered all the tweets with the candidate terms. In total, we extracted

6,917,044 candidate tweets (i.e., 21.9% of the crawled tweets) that contained at least one of the

terms. To confirm the recall of the filtering mechanism, we randomly sampled 500 tweets from

the non-candidate set. Close examination showed that only two of them appeared to be slightly

sensitive. Eventually, we selected more than 10,000 distinct tweets to be labeled in MTurk, among

which 9,936 tweets were included in the annotated dataset.

Collection for Analyzing Trending Topics: In order to collect testing samples that are irrelevant

to the training data and add trending topic information (for societal context modeling) into the

dataset, we performed a second crawl in March 2018. We monitored the trends at a 15-minute

interval, and recorded the corresponding tweet_volume [102]. In total, 1,130 trending topics with

volume larger than 10,000 were collected. We also collected 8,079 new tweets from the same set

of users that we crawled in 2016, during the same time period when we crawl the trending topics.

This new dataset is used later to evaluate our privacy scoring approaches.

5.2.2 Data Labeling

Keyword spotting could be used to coarsely identify potentially sensitive tweets. However, it is too

simple to mimic the human cognition of sensitiveness. In particular, our preliminary examination

revealed that a significant portion (> 50%) of the candidate tweet set were indeed not sensitive

to us. To annotate sensitive tweets, we collected opinions from a large number of users through a

2We recently noticed that the function was removed by Urban Dictionary
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crowd-sourcing platform Amazon Mechanical Turk.

We sampled from 6M potentially sensitive tweets to generate questionnaires of 20 tweets each.

The number of tweets containing each keyword conforms to Zipf’s distribution [52]. To ensure that

less frequent terms still get represented in the labeling set, we used a biased sampling process (i.e.,

using a biased die) that gives higher probabilities to rarer terms.

Turkers (English speakers in the US, with 95%+ approval rates) were asked to annotate each

tweet as: [1:Very sensitive]; [2:Sensitive]; [3:Little Sensitive]; [4:Maybe]; [5:Nonsensitive]. That

is, a score st ∈ {1, ...,5} is assigned to each tweet by a Turker. Note that we did not use the stan-

dard 5-level Likert: [2:very-sensitive][1:Sensitive][0:neutral/undecided] [-1:nonsensitive][-2:very-

nonsensitive], because it is hard to judge between [-1] and [-2] in the Likert scale, i.e., to tell if a

tweet is “more non-sensitive” than another.

Each Turker was paid $0.45 per questionnaire. For attention check, we embedded two non-

random questions in each questionnaire, which were selected from two very small sets of clearly

non-sensitive or very sensitive tweets, e.g. Q16 (non-sensitive): Btw if you’re my friend, I love you

and Q17 (sensitive): Wild crazy strip cloths off at club the. Forgot this morning where I parked /:

drank way to f–king much!!! #gayboyproblem. The screenshot of these two anchored questions is

shown in Figure 5.1. We thought if the score of question 17 less than that of 16 more than 1, the

worker treated it seriously enough and the questionnaire would be used for analysis. We discarded

questionnaires answering s16 6 s17 and re-posted the tasks to MTurk. Tasks passing the attention

check were completed in 140 to 647 seconds, with a median of 249 seconds. Each Turker was

limited to answer only one questionnaire and each questionnaire was answered by three Turkers.

Eventually, we collected 552 qualified questionnaires from 1,656 Turkers. After eliminating the

attention-check tweets, our final dataset contains 9,936 distinct tweets and 29,808 scores.

We also impose a question to survey the Turker’s self-reported attitude towards OSN privacy.

We define six levels of attitudes as: (1) “I am not concerned about my privacy. I would post just

anything on Twitter.”; (2) “I am a little concerned about my privacy. I would not post private

information, but I do not carefully check each tweet before I post it.”; (3) “I am concerned about
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Figure 5.1: Control Questions of the Questionnaire

Figure 5.2: An Example of the Questionnaire
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my privacy. I usually double check each tweet before I post it.”; (4) “I am concerned about my

public image. I will not post anything too extreme or anything that hurts my image.”; (5) “I am very

concerned about my privacy. I would never post anything related to myself or my family.”; (6) “I

seldom post anything on Twitter.” Since the last three options ask for users’ attitudes from different

aspects, Turkers can select multiple options in this question. The beginning of the questionnaire is

shown in Figure 5.2.

5.3 User Privacy Perception

We eventually collected 552 qualified questionnaires from 1,656 Turkers, with 9,936 distinct tweets

and 29,808 scores. Our first task is to model users’ privacy perceptions by analyzing their attitudes,

inter-rater agreement (IRA), and topic-specific attitudes. These initial analysis gave us insights to

questions such as “What are the consensuses for sensitive/private tweets? What are the common

attitudes among users? Are there consistencies between users’ self-reported attitudes and their

judgments on real tweets?” Such insights help us tune the collected dataset and design the compu-

tational model for privacy scoring.

5.3.1 Analysis of the User Privacy Attitudes

Since in the attitude part Turks can select several options, for each user, we calculate the self-

reported privacy attitude score as the mean score of the selected options, where 1 represents “do

not care” and 6 represents “really care”. The number of responses in each option is: [1]:42, [2]:429,

[3]:767, [4]:336, [5]:542, [6]:359 (multiple selections are allowed). From the distribution, we can

see that the self-reported privacy attitude is relatively diverse.

When we further examine their opinions on the levels of privacy of the candidate tweets, as

shown in Figure 5.3. For each question number, we have 1652 different Turks labeled 552 random

selected potentially sensitive tweets, except for question 16 and 17 (control questions). We find that

the sensitiveness distributed evenly among different questionnaires. Among the responses, 12.44%
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Figure 5.3: Score Distribution

of the annotated scores are [1: extremely sensitive]; 8.73% of the scores are [2: sensitive]; 18.17%

of the scores are [3: little sensitive]; 16.66% of the scores are [4: maybe]; and 44.01% of the scores

are [5: Nonsensitive].

Next, we analyze if there exists any correlation between Turkers’ self-reported attitudes and

their privacy scoring. Each questionnaire is answered by three Turkers. Hence, we examine the con-

sistency among each three-Turker group. In particular, we calculate the variance of self-reported

privacy attitudes in group i as va,i, where i∈ [1,552]. We also calculate the average score annotated

by each user, and denote the variance of group i as vs,i. The normalized average variance of self-

reported attitudes va is 0.34, while the normalized average variance of annotated scores vs is only

0.21. Moreover, we randomly selected 80 questionnaires to demonstrate normalized va,i and vs,i

in Figure 5.4. From the figure, we can see that although different Turkers report relatively diverse

privacy attitudes, their annotations of sensitiveness are more consistent. Moreover, we have not

observed a strong correlation between the self-reported attitudes and the annotated privacy scores.

Therefore, we choose not to include the self-reported privacy attitude in the predictive model for

privacy scoring. This also demonstrates the feasibility of a commonly-accepted sensitiveness/pri-
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Figure 5.4: Normalized variances of Turkers’ self-reported privacy attitudes (dashed orange line)
and normalized variances of Turkers’ annotated privacy scores (solid blue line).

vacy score mechanism.

5.3.2 Inter-Rater Agreement (IRA)

To examine the consistency across multiple annotators for each questionnaire, in this section, we

introduce three approaches that are used to assess Inter-rater Agreement (IRA): Fleiss’ Kappa

measures the agreements between raters on categorical labels, Pearson Correlation measures the

linear dependency between two variables, and Spearman Correlation measures the strength of

monotonic (but not necessarily linear) relationship between two variables.

Fleiss Kappa. To statistically measure the agreement between two raters on categorical labels,

Cohen’s Kappa was introduced as a more reliable indicator than calculating percentage of agree-

ments. Fleiss’ Kappa extended Cohen’s Kappa to measure the agreement between more than two

raters. The Kappa, k, is defined as:

k =
P̄− P̄e

1− P̄e
(5.1)

In this formula, the denominator denotes the agreement by chance, i.e., the degree of agreement

among multiple raters that is attainable above chance. The numerator denotes the observed agree-

ment, i.e., the degree of agreement that is achieved by these raters. That is, Fleiss’ Kappa quan-

titatively measures the actual degree of agreement in comparing with completely random raters,

i.e., the level of agreement when the raters’ selections are completely random [28]. A smaller k
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(e.g., k < 0) indicates poor agreement among raters, while a larger K (e.g., k→ 1) indicates good

agreement.

Pearson Correlation. Fleiss’ Kappa was designed for categorical data, therefore, it treats each

label as an independent category. In our experiments, when two raters label a tweet as [1 Very

sensitive] and [2 Sensitive], while another two raters label two tweets as [1 Very sensitive] and

[5 Nonsensitive], they are considered as equally inconsistent by Fleiss’ Kappa. But in reality, 1

and 2 are significantly more consistent than 1 and 5. To better handle numerical data, Pearson

Correlation was designed to capture the linear dependency between two variables X and Y , which

is denoted as:

r = (
n

∑
i=1

(xi− x̄)(yi− ȳ))/(

√
n

∑
i=1

(xi− x̄)2

√
n

∑
i=1

(yi− ȳ)2) (5.2)

where xi and yi are indexed samples from two variables, x̄ and ȳ denotes the sample mean. The

numerator captures the covariance of the two variables, while the denominator denotes the stan-

dard deviations of X and Y . For two non-negative variables, r = 0 indicates that there is no linear

correlation between X and Y , while r = 1 indicates a perfectly linear relationship between X and

Y .

Spearman’s Rank Order Correlation. Last, the Spearman Correlation captures the agreement

between two annotators in terms of the correlation between the ranks of their labels. It is very

similar to Pearson, but it considers the relationships between the ranks of X and Y , instead of

directly on X and Y . It is specified as:

rs =
cov(rgX ,rgY )

σrgX σrgY

(5.3)

where rgX and rgY denotes the rank order of X and Y . The correlation coefficient is interpreted

similarly as Pearson correlation, where 0 indicates no correlation in rank orders and 1 indicates

perfect correlation between rank orders of X and Y .

The results are shown in Table 5.1. Note that k in Fleiss’ Kappa and r in Person/Spearman
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Table 5.1: Interrater Agreement based on Fleiss’ Kappa, Pearson, and Spearman (P:Poor; Sl:Slight;
F:Fair; M+:Moderate+; VW:Very Weak; W:Weak; M:Moderate; St+:Strong+)

Fleiss’ Kappa Pearson Spearman

P k < 0 12 VW r < .2 35 VW r<.2 37
Sl [0, .2) 353 W [.2, .4) 125 W [.2, .4) 158
F [.2, .4) 175 M [.4, .6) 240 M [.4, .6) 249

M+ [.4, 1] 12 St+ [.6, 1) 152 St+ [.6, 1] 108

are not equivalent, so that we cannot directly compare the absolute values. In the table, we use

the category definitions that are widely accepted in the community. From the results, we observe

higher IRAs based on Pearson/Spearman than Fleiss’ Kappa. This is because: (i) Fleiss’ Kappa

treats each score as an independent label but ignores the similarity between different answers, i.e.,

it treats scores 1 and 2 in the same way as 1 and 5; and (ii) Pearson and Spearman capture the trend

between series. That is, when one Turker consistently provides “more sensitive” annotations than

another Turker, the correlation of the trend is still high.

5.3.3 Observations

Observations. Through further examination of the annotated tweets, we have the following obser-

vations:

I. A small number of users were extreme in their privacy perceptions: some were extremely open,

who rated most of the tweets as [5: nonsensitive], while some were extremely conservative. We

eliminated most of such users, who rated s16 = s17, with the quality-control questions in the ques-

tionnaire. The remainder Turkers appeared to be more consistent with the majority of users.

II. Turkers tended to be more consistent in rating clearly non-sensitive and extremely private/sen-

sitive tweets, while demonstrating a relatively low consistency in rating non-extreme tweets. The

use of labels 2 “Sensitive” and 3 “A Little Sensitive” were significantly less frequent that the use

of other categories. This may partially due to the variance of personal attitudes.

III. Consistency varied significantly across topics. For example, Turkers were more consistent in

rating highly private topics, e.g., obscenity, drug and racism, but less consistent with topics on
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work, politics and travel.

Such observations implicate the following: (1) Only using the binary notion of private/non-

private to identify private tweets is insufficient, especially with the large number of non-extreme

tweets. (2) Our collected dataset needs to be re-organized to (partially) eliminate the inconsistency

caused by the attitude variances. (3) A personalized privacy scoring mechanism needs to take users’

privacy attitudes on each topic into consideration.

5.3.4 Score Adjustment

We also observed: (I) “2 sensitive” and “3 little sensitive” were significantly less used than other

annotations. (II) In privacy protection practice, false negatives (undetected private information dis-

closure) are more harmful than false positives (false alarms). Hence, we need to ensure that all

potentially sensitive tweets are identified in the baseline model. Based on the above observations,

we decide to merge all “sensitive” categories (i.e., scores 1, 2 and 3) and assign with a new score

“1”. Correspondingly, we re-assign scores 2 and 3 to the other two categories. So, we have three

labels in the final dataset:

1 [Sensitive], 2 [Maybe], 3 [Nonsensitive]

The feasibility and validity of re-scaling Likert-type data was proved in [18], and similar re-

scaling or scale merging has been adopted in other projects such as [92].

Next, we examine the agreement of the raters for each tweet using the adjusted scores. There are

3,008 tweets receiving consistent (identical) scores from all three Turkers, among which 1,435 have

three “1 [Sensitive]” scores, 61 have three “2 [Maybe]”, and 1,512 have three “3 [nonsensitive]”.

This is consistent with Observation II presented above. Moreover, among 5,709 tweets receiving

two different scores from three raters, approximately half of them are annotated as [1, 1, 3] or

[1, 3, 3], indicating conflicting opinions among raters. Further examination of these tweets shows

that many of them are non-extreme tweets on less sensitive topics. This is consistent with our

Observation III. The annotated data and our observations will serve as the basis of the context-free

scoring model, which intends to capture the consensus of privacy opinions of the regular users.
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Figure 5.5: Statistics of tweets with 10 annotations: (a) Distribution of the mean annotated score,
X: Mean annotated score S̄A of tweets, Y: Number of tweets in each bin; (b) Distribution of Mean
Absolute Deviation (MAD), X: S̄A, Y: average MAD of tweets in each bin.

To confirm our prior observations and further examine the level of agreements among annota-

tors, we added another MTurk task, in which each tweet was labeled by 10 Turkers. Meanwhile, to

gain a deeper understanding of annotators’ rationale, we posted one more task that asked Turkers

to justify their labels.

I. More Annotators for Each Tweet. We posted 20 questionnaires to MTurk, and recruited 10

Turkers to annotate each questionnaire. Each tweet was annotated as: “1 Sensitive”, “2 Maybe”, or

“3 Nonsensitive”. Excluding attention check tweets, we collected 3,600 annotations for 360 tweets.

For each tweet, we calculated the mean annotated score S̄A, and displayed the distribution of S̄A

for all the tweets in Figure 5.5 (a). We also calculated the mean absolute deviation (MAD) of the

10 annotations for each tweet. Fig. 5.5 (b) shows the average of MAD for tweets in each category

of S̄A. The results are consistent with our observations: Turkers show more consistency with the

clearly nonsensitive tweets and highly sensitive tweets, i.e., both ends of X-axis in Fig. 5.5 (b).

They demonstrate relatively low consistency on non-extreme tweets.

II. Annotation with Open-ended Questions. In the second experiment, we asked each Turker to

justify his/her annotation in a textbox. We posted 65 questionnaires (10 tweets in each question-

naire) to MTurk at the rate of $1.2 per questionnaire. We accepted 61 responses that passed the

attention check tweets. They were completed in 286 to 2845 seconds. The median completion time
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was 811.5 seconds. Most of the responses that corresponds to “very sensitive”, “sensitive” and

“little sensitive” annotations point out a type of sensitive content. However, some of them were

simply justified as “inappropriate content” or “bad personal image”.

We qualitatively analyzed the responses by coding each response and categorize them accord-

ing to the types of sensitive information. The most popular types of sensitive tweets are “obscene

content”, “drug”, “cursing”, “attack”,“dirty words”, “discrimination”, and “personal information”.

Meanwhile, the most popular justifications for non-sensitive tweets are: “does not contain sensi-

tive/personal information”, “nothing harmful/offensive”, “positive or nothing negative”, and “noth-

ing big”. Although the scale of this experiment is small due to limited timing/budget, our results

are consistent with existing research in the literature [118, 91].

5.4 Tweet Content Analysis

5.4.1 Topic Analysis

The intuition for the topic analysis is that the sensitiveness/privacy is also related to topic, which

is also the reason we did topic classification in Chapter 4. In Chapter 4, the 13 topics are manually

selected rather than the naturally distributed. To analysis the naturally distribution among these

5-score tweet sets, in this part, Latent Dirichlet Allocation (LDA) [10] is used to extract the topic

of tweets in each level.

In natural language processing, latent Dirichlet allocation (LDA) is a generative statistical

model that allows sets of observations to be explained by unobserved groups that explain why

some parts of the data are similar [10]. The mathematical deduction process is quite complicated

and will not give unnecessary details in this part. To make LDA more easily to be used, several

popular software provide function of topic extraction based on LDA, such as Mallet which was

used in our experiment [72].

For the whole tweet set for analysis, we tried to extract 14 topics, shown in Figure 5.6. The

reason why we select 14 topics is because, we hope to see some similar topics as 13 topics in
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Figure 5.6: 14 topics from the tweet set for analysis

Figure 5.7: 4 topics from score 1-sensitive tweets

Chapter 4 and plus one topic as un-related. From the result we can see that, in fact, the 14 topics are

not obvious enough. This demonstrates, from another aspect, that the sensitive/private topics should

be selected manually instead of clustering, since they are not common or near natural distribution.

Then we decided to extract 4 topics from each score’s file. And the result of file scored 1 (very-

sensitive) and file scored 5 (non-sensitive) are shown in Figure 5.7 and Figure 5.8 respectively.

The topics in these two files are very different which partially demonstrates our hypothesis that

sensitive tweets are related to some sensitive topics. To further analysis this hypothesis, tf-idf and

other methods should be used, which are introduced in the following part.

5.4.2 Word Distribution

In this part, normalized tf-idf which has been explained in detail in Chapter 4, is used to analysis

the words distribution in these 5 score files. The reason why we need to normalize tf-idf score is

the number of tweets in each file differs a lot. Thus, depending on the definition of tf-idf which

introduced above, normalization should be done before further analysis. The normalization method

Figure 5.8: 4 topics from score 5-nonsensitive tweets
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we used is shown as below.

Normalized tf-idf =
tf-idf of a word

# of tweets in the file

To visualize the normalized tf-idf score, Word Cloud is used, shown in Figure 5.9. The size of

words shown in the Word Cloud is determined by tf-idf score. The higher the tf-idf score is, the

bigger the word will be. From the word clouds we can see, the more sensitive score differs, the

more the word distribution differs.

(a) (b) (c) (d) (e)

Figure 5.9: Word Clouds for files

5.4.3 Dominant Words

Based on the normalized tf-idf, for each word appeared in the files, a 5-dimensional word vector

could be established. In this vector, the normalized tf-idf scores of a word in each file were stored

in the corresponding position. Through comparing this vector, the importance of this word for a

certain file would be decided. Thus, we call it the dominant word for this file.

After we got the dominate words for each file, we wanted to infer the influence of these words.

The appearance times of each files’ dominant words in different files were counted, normalized

(appearance times divided by number of tweets) and drawn in Figure 5.10. From the figure, the

conclusion can be made safely, that dominant words had more obvious influence in their corre-

sponding files. This also means, the words used in different sensitive levels have obvious differ-

ence.
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Figure 5.10: Barchart for dominate words distribution

5.5 Preliminary

In this part, we will introduce some techniques and knowledge which are used in getting and

analyzing context-free privacy score. In fact, we have tried several different methods to build the

context-free privacy score framework, such as PCA, SVM and etc. Finally, we select deep learning

neural network – GloVe combined with LSTM to construct the framework, since they give us better

results compared with the traditional statistical methods. The preliminary of these approaches are

described below in detail.

5.5.1 PCA

Principle Components Analysis (PCA) is one of techniques for taking high-dimensional data, and

reducing the dependencies between the variables to represent it in a low-dimensional form, without

loosing too much information [50]. And we have used PCA for feature deduction.

We assume the PCA starts with p-dimensional feature vectors and we want to summarize them
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by projecting down into a q-dimensional subspace. The way of finding the projection is to mini-

mize the correlation (redundancy) and maximize the variance. Thus, the computing process covers

standard deviation, covariance, eigenvectors and eigenvalues

The calculation of PCA can be done in the following two steps. Firstly, we compute the co-

variance matrix of the data set. Before diving deep to the covariance matrix, let us recap some

mathematic background. The variance of a variable and the covariance between two variables are

defined as below. The correlation is a scaled version of covariance which can be got easily after we

have the covariance.

var(XXX) = cov(XXX ,XXX) =
∑

n
i=1(XXX i− X̄XX)(XXX i− X̄XX)

(n−1)
(5.4)

cov(XXX ,YYY ) = cov(YYY ,XXX) =
∑

n
i=1(XXX i− X̄XX)(YYY i− ȲYY )

(n−1)
(5.5)

cor(XXX ,YYY ) =
cov(XXX ,YYY )

σX σY
(5.6)

The way to get all the possible variance values between all the different dimensions is to cal-

culate them all and put them in a matrix – covariance matrix. If we define Cm×n is a matrix with m

rows and n columns, the covariance matrix would be

CCCm×n = (ci, j,ci, j = cov(Dimi,Dim j)) (5.7)

Suppose we have 3 dimensional data set (x,yz), then the covariance matrix can be written as

CCC =


cov(x,x) cov(x,y) cov(x,z)

cov(y,x) cov(y,y) cov(y,z)

cov(z,x) cov(z,y) cov(z,z)

 (5.8)

Then through calculating the eigenvalues and eigenvectors of the covariance matrix, we can re-

alize the dimension deduction. Figure 5.11 shows the each tweet spatial position on 3-dimensional
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Figure 5.11: 3-dimension PCA for 2-label data set

PCA representation. From the figures we can see there are no obvious clusters for them and this

also means the traditional statistical classifiers are not suitable enough for this problem. So from

the feature extraction aspect, we used Word2Vec and from the classifier aspect, we selected LSTM

to do the sequence classification. The reason why we use deep learning methods and their corre-

sponding advantages will be introduced in the following parts.

5.5.2 Vector Representation of Words – GloVe

Conventional text classification adopts the vector space model [36] to represent each document as a

vector in a feature space. The documents are considered as Bags of Words (BoW) and represented

by word frequency vectors which are further weighted by document frequencies, e.g., TF-IDF or

BM25 [87]. However, the bag-of-words approaches consider only word occurrences but neglect

word ordering and semantic meanings. The sparse vector space also incurs the curse of dimension-

ality. To tackle this problem, word-embedding approaches attempt to capture the semantic simi-

larities between words by modeling the contexts, e.g. co-occurrences. The Word2Vec model [73],
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for example, scans the corpus with a fixed-sized window and learns their vector representations. In

particular, a word-word matrix that contains co-occurrence counts, point-wise mutual information,

or similar metrics is constructed. GloVe [81] was proposed to further leverage the global word

co-occurrence statistics.

In this work, we used Word2Vec with the CBoW loss function to train a word embedding

model over our dataset of 30 million tweets, except for the tweets including “http” or “RT@”.

By comparing the word analogies discovered from the extracted word embeddings, the embed-

dings trained directly from our dataset was comparably poorer than the pre-trained datasets (e.g.,

Google’s Word2Vec dataset using 300-dimensional embeddings [35] and GloVe’s dataset using

100-dimensional embeddings [81]). This is partially because our dataset is much smaller than

two pre-trained datasets, e.g., the Google’s Word2Vec model was trained on 100 billion words

from a 1.5GB Google News dataset. Moreover, our dataset contains extremely informal writing,

such as “Gooooood!”, Due to these considerations, we adopted Glove’s 100-dimensional word-

representation instead of Google’s 300-d Word2Vec word vectors to avoid overfitting.

GloVe: The Global Vectors for Word Representation [81] word embedding algorithm leverages

the global word co-occurrence statistics in the training set and the vector space semantic structure

captured in Word2Vec. It represents an aggregated global word-word co-occurrence matrix as X,

in which the element Xi j denotes the number of times a word j occurs in the context of the word i.

The soft constraints for each word pair is defined as:

wT
i w̃ j +bi + b̃ j = logXi j (5.9)

where wi and w̃ j are the main and context word vectors, and bi and b̃ j are scalar biases for main

and context words. To avoid weighing all co-occurrences equally, GloVe adopts a weighted least

squares cost function:

J =
V

∑
i=1

V

∑
j=1

f (Xi j)(wT
i w̃ j +bi + b̃ j− logXi j)

2 (5.10)
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where f (Xi j) is the weighting function in the form of:

f (Xi j) =


(Xi j/Xmax)

α i f Xi j < Xmax

1 otherwise
(5.11)

The model generates two sets of word vectors, W and W̃. Since X is a symmetric matrix, W

and W̃ are equivalent and differ only as a result of their random initializations. Therefore, the sum

W+W̃ is used as the word vectors to reduce overfitting.

5.5.3 Long Short Term Memory (LSTM)

The extracted feature vector representations are input into learning algorithms for classification. It

is widely recognized that deep neural networks generate impressive performance in certain learning

tasks. In particular, the Recurrent Neural Network (RNN) has revolutionized the natural language

processing tasks [34]. It takes a complex architecture to deal with variable sized input, in which

the connections of units form a circle by itself to enable the sharing of parameters across different

parts of the model [56]. However, the repeated training of the same parameters also causes the

exploring/vanishing problems during backpropagation. To avoid overfitting, it is vital to adopt

proper regularization and complex architectures that fit the specific formats and requirements of

the data. The Long Short Term Memory (LSTM) RNN architecture [41] was proposed to add

several critical components, such as the self-looping state and the input, forget and output gates,

to solve this problem. Therefore, we selected LSTM to train the baseline classifiers for our textual

dataset, and implemented our scheme with the Keras deep learning library [16].

RNN The Recurrent Neural Network attracted many attentions especially for natural language pro-

cessing in these year, due to its advantage of processing sequential information. This is because

the architecture of RNN is a class of neural network whose connections of units form a circle by

itself, which makes it can share parameters across different parts of model, as shown in Figure

5.12. In book “Deep Learning” [56], it gives us a deeper and clearer explanation, which says pa-
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rameter sharing makes it possible to extend and apply the model to examples of different forms and

generalize across them. If we had separate parameters for each value of the time index, we could

not generalize to sequence lengths not seen during training, nor share statistical strength across

different sequence lengths and across different positions in time. To demonstrate this complicated

theoretical description, I will take a sentence for example. Considering two sentences, “I joined

KU in 2015.”, “In 2015, I joined KU.” If we want to find the year in which I joined KU, I need

2015 as the answer, no matter where it appears. But a traditional fully connected feed-forward net-

work would have separate parameters for each input feature, so it needs to learn all the rules of the

language separately at each position in the sentence. By comparison, a recurrent neural network

shares the same weights across several time steps, so it can generalized well.

Figure 5.12: Structure of Recurrent Neural Network

To simplify the process of calculation, we consider the simple neural network with only one

hidden layer. If we denote input as XXX , weight from input to hidden layer as WWW h, weight from hidden

layer to output layer as WWW y and weights of recurrent computation as WWW r. Hidden layer we can use
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hhh and output layer we can use y to represent. Then, the network is formalized as following:

hhht = σ(WWW hXXX +WWW rhhht−1)

y = σ(WWW yhhht)

(5.12)

However, the repeated training of the same parameters also bring some problem. During the

backpropagation, the gradient is passed back through many time steps, it tends to grow or vanish.

To overcome this shortcoming, long short term memory is a widely used practical approach, which

is a kind of gated RNN.

LSTM Long Short Term Memory was introduced to overcome the issue that RNNs cannot long

term dependencies, with the help of a special designed memory cell [8]. The structure of LSTM

is shown in Figure 5.13. From the structure we can see, LSTM has several critical components

compared with the RNN, including the self-looping state, and three gates – input gate, forget

gate and output gate. These components control the flow of information. Therefore, LSTM can

learn to memorize long time dependency if necessary and can learn to forget the past information

if needed, which can avoid the gradient vanishing/exploding and become more similar with the

natural language processing procedure.

For the three gates and self-loop state in LSTM, each of them receives a new input vector x(t)

and the previous time-step output h(t−1). And for each kind of input, they have the corresponding

input weights and recurrent weights. Now, We first introduce the forget gate

f (t)i = σ(b f
i +∑

j
U f

i, jx
(t) j +∑

j
W f

i, jh
(t−1)
j ) (5.13)

where x(t) is the current input vector and h(t−1) is the previous hidden layer vector. b f ,U f andW f

are respectively biases, input weights and recurrent weights for the forget gates.

The forward propagation equation of external input gate is similar with the equation of forget
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Figure 5.13: Structure of LSTM

gate unit. g(t)i is computed as

g(t)i = σ(bg
i +∑

j
Ug

i, jx
(t)
j +∑

j
W g

i, jh
(t−1)
j ) (5.14)

The self-loop weight is controlled by a forget gate unit f (t)i (for time step t and cell i), and also

affected by external input gate g(t)i . It can be calculated as

s(t)i = f (t)i s(t−1)
i +g(t)i σ(bi +∑

j
Ui, jx

(t)
j +∑

j
Wi, jh

(t−1)
j ) (5.15)

The output gate q(t)i is also computed similarly to the forget gate and can be obtained by

q(t)i = σ(bo
i +∑

j
Uo

i, jx
(t)
j +∑

j
W o

i, jh
(t−1)
j ) (5.16)
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The output h(t)i is controlled by output gate q(t)i .

h(t)i = tanh(s(t)i )q(t)i (5.17)

In our project, we used python library “Keras” [16] to help use build the neural network.

5.5.4 Bidirectional Encoder Representations from Transformers (BERT)

Before BERT, standard language models are unidirectional, either a left-to-right structure or a shal-

low concatenation of independently trained left-to-right and right-to-left language models (LMs)

[20]. Unlike these models, Bert uses a “masked language model”, which randomly masks some of

the tokens from the plain text input, and outputs the prediction of the original vocabulary id of the

masked word based only on its context. This mechanism makes the fusion of the left and the right

context information possible.

Transformer is a novel attention model in language modeling (LM). This structure is proposed in

the paper "Attention is All You Need" [109]. Compared to the attention mechanism of sequence-

to-sequence (seq2seq) models in NLP, the biggest advantage of the transformer is the ability of

parallelization. The key technical innovation of BERT is applying the bidirectional training of this

transformer, which makes combination of contextual attentions from both left and right possible.

The structure of the transformer and the zoomed major component – attention are shown in Figure

5.14. The transformer consists of encoder and decoder. The encoder block has one layer of a multi-

head attention followed by another layer of feed forward neural network. The decoder, on the other

hand, has an extra masked multi-head attention. The multi-head attention model is composed of

multi scaled-dot-product attention. In scaled-dot-product attention part, the input vectors are Query

(Q) Vector, Key (K) Vector, and Value (V) Vector. They are generated from the input embedding,

trained, and updated during the training process. The matrix output of scaled dot-product attention
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could be calculated through:

Attention(Q,K,V ) = so f tmax(
QKT
√

dk
)V (5.18)

According to the paper [109], multi-head attention allows the model to jointly attend to information

from different representation subspaces at different positions.

Figure 5.14: Structure of Transformer and its major component – attention

BERT is a multi-layer bidirectional self-attention Transformer encoder. The self-attention layer

in BERT pay attention to both directions. The structure of model BERT is shown in Figure 5.15.

The “Tm” in Figure 5.15 represents the transformer block mentioned above. The framework of

Bert includes two steps: pre-training and fine-tuning. For the pre-training part, it’s a unsupervised

learning process, in which model is trained by two kinds of prediction tasks on enormous amount

of unlabeled plain text. One of them is the masked language modeling (MLM). MLM randomly

masks some of the tokens from the input. In the output, model predicts the masked word based

only on its context. The other task is next sentence prediction (NSP). BERT uses pairs of sentences

as its training data and the objective of training is a binary classification – "IsNext" and "NotNext".
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For fine-tuning, the BERT model is first initialized with the pre-trained parameters, then all of the

parameters are fine-tuned/updated using labeled data from the downstream tasks. The overall pre-

training and fine-tuning procedures for BERT is shown in Figure 5.16. Through transfer learning,

language understanding tasks with low training data can benefit from this unsupervised learning

architecture. How does our mechanism benefit from BERT will be described in detail in section

5.9.

Figure 5.15: Structure of BERT

Figure 5.16: Pre-training and fine-tuning procedures of BERT

5.6 Context-free Privacy Score

The goal of context-free privacy scoring is to automatically identify sensitive/private tweets, give

a score of sensitiveness based on the content, and ensure that the score evaluated by machine is
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consistent with the score labeled by human evaluators. Next, we will define the context-free privacy

score and elaborate the process of building a computational model to calculate the score.

5.6.1 The Context-Free PrivScore

The Conceptual Model of Context-Free Privacy Score. From our observations (Section 5.3.3),

although different users have different opinions on the sensitiveness of a tweet, ordinary users are

likely to achieve weak, moderate, to strong consensus (Table 5.1), depending on the content of

the tweet. Since the context-free PrivScore is to reflect a “commonly agreed” perception among

average users, it is reasonable to define:

Sc f = ∑ri×P(sensitiveness(T ) = i) (5.19)

where P(sensitiveness(T ) = i) is the percentage of users who assess the sensitiveness level of a

tweet T as i, and ri is the sensitiveness score of level i. If there are m sensitiveness levels and

ri ∈ [1,m], Sc f is also between 1 and m since ∑P(sensitiveness(T ) = i) = 1.

The ideal Sc f should be calculated as the average opinion from all users, which is practically

impossible. We resemble this assessment process at a smaller scale by recruiting 1,656 qualified

Turkers to provide 29,808 individual opinions over 9,936 distinct tweets. We carefully filtered

the returned assessments (as described in Section 5.2) to eliminate extreme raters. The remaining

Turkers is a reasonable representation of the general population, whose opinions do not deviate

far from the “consensus” perception. Based on the opinions, we train a classifier to estimate the

sensitiveness of an input tweet. Note that this probability only captures the percentage of annotators

who would assess T with a sensitiveness level of i. Therefore, the PrivScore approximates the ideal

privacy score defined in Equation (5.19), if the annotators closely resemble average users’ attitudes.

Training Dataset Construction. With the above considerations, we expect to select the most reli-

able data to train the classifier. So, we exclude data with low IRA due to conflicting opinions among

the raters, and chose the set of tweets receiving consistent scores from all raters. Meanwhile, this
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set is biased since only “potentially sensitive” tweets are selected for annotation. To offset the

bias, we add back “non-sensitive” tweets (i.e., filtered out in keyword spotting in Sec. 5.2, not la-

beled). The resulting training set contains 2,870 tweets, with 1,435 sensitive tweets receiving three

“1 [Sensitive]” scores and 1,435 non-sensitive tweets (including 718 tweets sampled from tweets

receiving three “3 [non-sensitive]” scores and 717 tweets sampled from the non-sensitive tweets

filtered out in keyword spotting).

RNN-based Classifier. We build our classifier using the RNN architecture, which consists of an

embedding layer, an LSTM layer and a dense layer with softmax activation. In the embedding

layer, we tokenize each tweet into a matrix, in which rows are vector representations of the tokens

in the tweet. With Twitter’s new 280-character limit, there are at most 140 tokens in a tweet (140

single-letter words and 140 spaces/punctuation). Hence, we set LSTM sequence length to 140. To

represent the token, word embeddings are used to model the semantic meanings of words, based

on the assumption that words appearing in similar contexts have similar meanings. We use GloVe’s

100 dimensional embeddings to obtain a better performance. Finally, each tweet is converted into

a 140×100-dimension tensor and input into the LSTM layer.

Our LSTM layer takes text features as input and generates a 16-dimensional vector. In training,

we use “dropout” regularization that randomly drops neuron units at a rate of 20%, to overcome

overfitting. The output of LSTM is connected to a dense layer to reduce dimensionality. The dense

layer with an output of length 2 returns two probabilities p1 and p2 (p1 + p2 = 1), denoting the

probabilities that the input belongs to the “sensitive” and “nonsensitive” class, respectively. We

use cross-entropy to compute training loss and the Adam optimizer [53] to accelerate the learning

process. Due to the lack of training data compared with the large number of neural network param-

eters, we have also utilized “Dropout” in the whole model, and the dropout rate is 20%. The output

of the last neuron of LSTM layer is connected to a dense layer. The dense layer with output of

length 2 returns two probabilities p1 and p2 (p1+ p2 = 1), denoting the probabilities that the input

belongs to the sensitive or non-sensitive class, respectively. The classification results and confusion

matrix of this RNN-based private tweet classifier using only text are shown in Table 5.2 and Table
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5.3 respectively.

Based on this promising result, we further investigated the probability distribution of classifi-

cation result. Since the output of LSTM neural network is a probability distribution vector of each

label for each tweet, we want to see whether our framework can distinguish different labels with

high confidence. The x-axis in Figure 5.17 is drawn by the probability of label sensitive. From

the figure we can see, 75% of data can be classified rightly with a probability larger than 50%

(random-guess accuracy). And more than half of tweets have a right corresponding probability

larger than 80%. This means that our current framework can distinguish different labels with high

accuracy and confidence.

Figure 5.17: Probability Distribution of Classification Result

Table 5.2: Classification performance of RNN-based private tweet classifier using only text

Precision Recall F1-Score Support

Sensitive 0.83 0.84 0.83 1435
Non-sensitive 0.84 0.83 0.83 1435

Average 0.83 0.83 0.83 2870
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Table 5.3: Confusion matrix of RNN-based private tweet classifier using only text

Sensitive Non-sen

Sensitive 1208 227
Non-sensitive 235 1200

Table 5.4: Classification performance of RNN-based private tweet classifier using text and senti-
ment features

Precision Recall F1-Score Support

Sensitive 0.86 0.84 0.85 1435
Non-sensitive 0.84 0.87 0.85 1435

Average 0.85 0.85 0.85 2870

Table 5.5: Confusion matrix of RNN-based private tweet classifier using text and sentiment features

Sensitive Non-sen

Sensitive 1249 186
Non-sensitive 279 1156

Figure 5.18: Comparison of classification performance: SVM, Naive Bayesian (NB), Linear Re-
gression (LR) and LSTM.

We also employ the Stanford sentiment tool [92] to extract sentiment features and combine it

with text features from LSTM layer as the new input to the dense layer. With this strong feature

added, we further test our classifier using 5-fold cross validation. It achieves an average precision
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of 0.85 and an average recall of 0.85. The classification result and the confusion matrix of this

RNN-based private tweet classifier using text and sentiment features are shown in Table 5.4 and

Table 5.5 respectively.

Figure 5.18 shows the performance comparison with other features and other text classifiers.

Clearly, our GloVe+LSTM scheme outperforms all other mechanisms, so that it provides a solid

foundation for the proposed privacy scoring approach. Note that GloVe+Naive Bayesian achieves a

relatively high recall on nonsensitive samples but a very low recall on sensitive samples, by classi-

fying a large amount of samples as nonsensitive. In terms of efficiency, all the heavy computations,

such as training the GloVe model, are performed offline. In testing, all approaches are sufficiently

efficient to support online applications. For instance, the average end-to-end processing time for

each tweet in the fastest (LR+TFIDF) and slowest (GloVe+LSTM) approaches are 65.42ms and

66.39ms, respectively. It also yields a better performance comparing with the baseline conven-

tional text classifier trained by SVM (F1-score: 0.63) and the RNN-classifier trained only with text

features (F1-score: 0.77).

Finally, we also try Brown Clustering (BC) [12] to pre-process tweets in three different ap-

proaches: (i) converting all terms in the same cluster into one token to be used in TFIDF; (ii)

converting each matching term with the most frequent term in the cluster, and feeding the output to

GloVe and LSTM; and (iii) only pre-processing terms that do not exist in the GloVe dataset. In all

cases, the performance difference is insignificant, and none of them outperforms the GloVe+LSTM

approach that we use. We interpret the results as follows: (1) while BC converts slang and infor-

mal writings into regular terms, it also maps words with different meanings into the same token in

some cases. (2) Both BC and GloVe are based on the distributional hypothesis so that they tend to

pose similar effects in content modeling. However, the GloVe dataset that we use is trained with a

significantly large dataset, which leads to advantages in performance.

The Context-free PrivScore The perception of privacy is a complex psychological process, but not

a simple binary decision of sensitive vs. nonsensitive. So, we mimic the aggregate crowd opinion

in (5.19) to generate the context-free privacy score. In particular, our RNN-based classifier returns
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probabilities, which can be interpreted as the votes from RNN for determining to which class the

input belongs. Therefore, the context-free PrivScore for a tweet T is defined as:

Sc f = 1×P(sen|T )+3×P(non-sen|T ) = p1 +3p2 (5.20)

where p1, p2 are the probabilities returned by our classifier. Sc f ∈ [1,3] is the PrivScore for each

tweet, where 1 means most sensitive while 3 denotes least sensitive.

Analysis. We use the most reliable tweets to train the classifier. Now, we compute the context-

free PrivScore for all 9,936 labeled tweets and show the distribution of Sc f for each label set in

Figure 5.19. For example, the top-left sub-figure contains tweets receiving scores [1, 1, 1] from

three Turkers, i.e., they are considered sensitive by all three Turkers. As we can see, the majority

of the tweets in this set gets PrivScores close to 1. Similarly, the bottom-right sub-figure is for

tweets annotated as [3, 3, 3], whose PrivScores lean toward 3. Moreover, PrivScores in sets [1,1,2]

and [2,3,3] also demonstrate clear tendencies towards 1 and 3, respectively. It is worth pointing out

that the PrivScore distribution of set [1,2,3] shows the maximal randomness (i.e., almost uniformly

distributed in [1,3]). This is consistent with our Observation III in Section 5.3. In this case, Turkers

do not agree with each other in the sensitiveness of the content, so that there is no clear clue to

determine if some tweets are more sensitive than others. Similarly, the remaining sets with lower

inter-rater agreements also demonstrate some randomness (e.g., almost equal number of scores

between [1,2] and [2,3]).

5.6.2 Evaluation

We further evaluate the context-free privacy scoring model with the testing dataset collected in

2018 (as described in Section 5.2), which contains 8,079 tweets. These are random tweets with

only a small portion of sensitive content. We run the context-free privacy scoring scheme over this

dataset. The distribution of the context-free PrivScores in this dataset is shown in Figure 5.21 (a).

As expected, the majority of the tweets are non-sensitive.
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Figure 5.19: Distribution of privacy scores of tweets in 10 label sets

Figure 5.20: Distribution of Sc f of tweets in the testing set and Sc f of SecretTweets: X: Sc f ranges,
Y: percentage of tweets in range.

We sample a smaller dataset to be annotated. To include a reasonable number of private tweets

in testing, we select 10% of the tweets with sc f ∈ [1,2.5] and 5% of the tweets with sc f ∈ (2.5,3].

566 sampled tweets are shuffled and randomly assigned to 8 human evaluators (graduate students

who are not working in privacy-related projects) to be labeled as “1 Sensitive”, “2 Maybe” or “3

Nonsensitive”. Each questionnaire is labeled by two annotators, with an average completion time

of 20 minutes.

Pearson Correlation. We first compute the Pearson Correlations for all annotated tweets and show

the results in the first row of Table 5.6: (1) correlation between two human annotators (SR1 & SR2);
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Figure 5.21: Evaluation of context-free privacy scores using new testing data: X-axis: context-free
PrivScore Sc f . Y-axis: (a) distribution of Sc f of all tweets; (b) density of “1 [sensitive]” annotations
in each bin; (c) density of “2 [maybe]”; (d) density of “3 [nonsensitive]”.

Figure 5.22: Context-aware and personalized PrivScores: X-axis: (a) PrivScores Sc f & Sc, (b, c, d):
Personalized PrivScore. Y-axis: (a) distribution of Sc f & Sc; (b) density of “1 [sensitive]” labels in
each bin; (c) density of “2 [maybe]”; (d) density of “3 [nonsensitive]”.

(2) correlation between annotator 1 and the context-free privacy scores (SR1 & Sc f ); (3) correlation

between annotator 2 and Sc f (SR2 & Sc f ); and (4) correlation between the average annotated score

and Sc f (SR & Sc f ). According to the standard interpretation of Pearson correlation, all the k values

fall into the moderate correlation category.

Next, we select tweets that are marked as “highly private” and “clearly nonsensitive” by the

context-free PrivScore model, i.e. tweets with sc f ∈ [1,1.5] and sc f ∈ [2.5,3]. The Pearson Corre-

lations for this subset of tweets are shown in row 2 of Table 5.6. In this case, all the k values fall

into the strong correlation category.

From the results, we can conclude that: (1) Human evaluators achieve the moderate inter-rater

agreement, which is consistent with Table 5.1 and our findings in Section 5.3.3. (2) The context-

free PrivScore model is moderately consistent with human evaluators – it shows slightly lower

correlations but is still in the same category. (3) The PrivScore model shows a stronger correlation

with the average of the human evaluators than with any individual evaluator. This is consistent with
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Table 5.6: Pearson correlation between human labeled scores (SR1 and SR2) and the the context-free
privacy scores (Sc f ).

SR1 & SR2 SR1 & Sc f SR2 & Sc f SR & Sc f

All tweets 0.587 0.458 0.430 0.499
Selected 0.697 0.557 0.564 0.609

our design goal of the context-free PrivScore – to resemble the consensus perception of the average

users. (4) Both human evaluators and the PrivScore model demonstrate a strong correlation in cases

of extremely private tweets and clearly nonsensitive tweets. This is consistent with our Observation

II in Section 5.3.3.

Score Distribution. For a fine-grained analysis of the results of our context-free privacy scor-

ing model, we examine the distribution of human annotations vs. privacy scores generated by the

PrivScore model. First, we separate the tweets into 20 bins based on their context-free privacy

scores, so that bin i contains tweets whose Sc f ∈ [1+ 0.1i,1+ 0.1(i+ 1)) for 0 ≤ i < 20. Figure

5.21 (b) demonstrates the density of “1”s annotated by the human evaluators. That is, the Y-axis is

the percentage of “1”s out of all the scores received in this bin. This figure clearly shows that the

density of “sensitive” annotations decreases, when PrivScore increases. From a statistical perspec-

tive, tweets with lower Sc f scores receive fewer “sensitive” annotations from human evaluators.

Similarly, Figure 5.21 (c) and (d) show the density of “2”s and “3”s in each bin, respectively.

There is no strong pattern in Figure 5.21 (c). This phenomenon is also consistent with our obser-

vation of MTurk annotations: “Maybe” appears to be a difficult area for both human evaluators

and our autonomous model. Looking into the details of tweets annotated with “2”, we find that hu-

man evaluators have different attitudes on the “less sensitive” topics, such as politics and religion.

Lastly, we observe the similar consistency in tweets that are annotated oppositely by annotators.

For instance, the tweet “Hey girls with #thighgaps, how does it feel to walk and not sound like you

have on windbreaker pants?”, which was labeled as 3 (non-sensitive) by a male annotator and 1

(sensitive) by a female annotator, receives a context-free PrivScore of 2.1.
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5.6.3 Applicability in other Domains

Besides alerting users for sensitive content disclosure on Twitter, PrivScore could be utilized for

other purposes, such as facilitating self-censorship of Chatbots. Moreover, PrivScore may work for

any type of text, as long as there exist labeled training samples that are homogeneous to testing

samples. Here, we also demonstrate that our trained model could be adopted in applications with

short text snippets that are similar to Tweets.

Chat Bots. PrivScore could be adopted by Chatbots to evaluate AI-generated messages before

they are posted [Uchendu et al.]. We have crawled 28,883 tweets from 9 active twitter Chatbots,

and collected the tweets from Microsoft Tay, which is still live on the Internet. We first calculate

the context-free PrivScore for all the tweets. According to PrivScore, an overwhelming majority of

them is benign: the mean Sc f of all bot-generated tweets is 2.719. However, we also identify sensi-

tive content from some tweets, such as the three examples shown in Table 5.7. In particular, there

is a bot named @meanbot, which intentionally generates offensive content. With PrivScores, we

are able to identify 80 tweets with Sc f < 1.5, and their average Sc f is 1.296, which is significantly

lower (i.e., more sensitive) than all other bots (S̄c f = 2.5814). They should be deemed as sensitive

or insulting to other users.

Secret Tweets. SecretTweet was a website that facilitates users to tweet anonymously. The website

is offline now. However, previously published tweets could be accessed from Internet Archive3. We

have collected 1,069 secret tweets posted between 8/28/09 and 3/19/11. Two examples of secret

tweets are shown in Table 5.7.

Manual inspection reveals that most of the tweets fall into three categories: (1) tweets with

sensitive content (e.g., cursing or obscenity) that may seriously damage one’s social image; (2)

tweets with personal thoughts or opinions that may be sensitive in its context; and (3) random

tweets. A side-by-side comparison of PrivScore distribution of secret tweets and regular tweets

(from our testing set) is provided in Figure 5.20. The Sc f of secret tweets clearly leans toward the

sensitive end. In particular, 34% of the secret tweets have an Sc f ∈ [1,1.5]. For comparison, only

3E.g., http://web.archive.org/web/20091217183606/http://secrettweet.com/book
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Table 5.7: Experiments with SecretTweets and AI Chat Bots on Twitter.

TweetID
Source Sc f Examples

1 SecretTweet 1.1414 i’m becoming an alcoholic. I rely on booze to numb my pain.

2 SecretTweet 2.7588
i always think the people on youtube can see me when i watch their
videos

3 Tay 1.0477 I f—— hate feminists and they should all die and burn in hell
4 meanbot 1.1995 @meanbot is gonna get medieval on your ass

5 BotlibreBot 1.4611
You guess that’s global warming for me. No one gives a crap about
the government.

6 YouTube 1.3219 Fat disgusting pig!.

8% of regular tweets receive an Sc f ∈ [1,1.5]. This is consistent with the motivation behind the

SecretTweet website and our previous observations.

YouTube Comments. To evaluate PrivScore on short text snippets other than tweets, we also

download the Kaggle YouTube Comments dataset and randomly sample 1000 comments. The

median length of the comments is 233.1 characters (or 40.3 words), which is longer than tweets

(88.2 characters or 16.5 words). We compute the PrivScores for the sampled comments, and find

that 8.2% of them are sensitive (Sc f < 1.5). The ratio of sensitive YouTube comments is similar to

the ratio of sensitive tweets in our Twitter dataset. An example of the sensitive comments is shown

in Table 5.7.

In summary, with experiments on different datasets, we demonstrate the soundness of the

context-free PrivScore model. The consistency is demonstrated with Pearson Correlation and anal-

ysis of the fine-grained distribution of the scores vs. the annotations. We also observed personal dif-

ferences in privacy attitudes and topic-specific attitudes, which are not yet captured in the context-

free model.

5.7 Context-Aware Privacy Score

The level of sensitiveness of a topic changes with the context, therefore, we use the societal context

to adjust the context-free privacy score. A potentially private tweet becomes less sensitive when

it is on a “hot topic”, e.g., political tweets may be private in general, however, during the election
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Figure 5.23: Box plot for the volumes of trending topics.

season when Twitter is dominated by political tweets, they appear less sensitive.

In this work, we model the societal context with trending topics. Through Twitter API, we can

retrieve: (1) current trending topics for the world or a specific location; (2) trends customized for

the user; and (3) volume and duration of the trend. Volume of a trend represents the strength of the

context. The distribution of this value is highly skewed. In our testing dataset collected in 2018,

there are 1,130 trends, among which the maximum volume is 4,362,206 and the minimum volume

is 10,000. The 25%, 50% and 75% percentiles are 16,048, 27,233, and 62,743, respectively. Figure

5.23 shows a box plot of the volumes of the trending topics in logarithmic scale (logv), from which

we see a few outliers, i.e., extremely popular topics (v > 299, 433).

Therefore, we define the logarithmically normalized popularity of a trending topic as:

p =
logv− logvmin

logv′max− logvmin
(5.21)

where v′max is the 95% percentile of v (volume of the trend). We use v′max instead of vmax, to offset

the impacts of the extremely high volume outliers. Our context-aware PrivScore for tweet T is

defined as:

Sc = Sc f +ωc · rc ·∆Sc (5.22)

where Sc f is the context-free PrivScore, ωc is the weight for the societal impact, which is adjusted

by the user. If a user does not want her privacy assessment to be influenced by the context, she

sets ωc to zero. rc is the relevance between T and the topic, which can be calculated as content

similarity or #hashtag matching, as Twitter trends are often represented by hashtags. We use the

Jaccard similarity of hashtags in the trend and in the tweet to compute rc. A threshold rt is im-
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Table 5.8: Examples of context-aware PrivScores (Sc) in comparison with the original context-free
PrivScores (Sc f ).

TweetID Trends Sc f Sc Examples

1 April Fools 1.0627 1.2553
And then Jesus was all like, April Fools b——! I’m
not even dead!

2 Blue Devils 1.0566 1.1607
I don’t wanna come back to Omaha and I don’t wanna
hear a f—– word about the Blue Devils. Still p—–...

3 Villanova 1.1909 1.6116 I’m gonna sip wine and talk s— on Villanova
4 Loyola 1.2620 1.8328 Loyola f—— Chicago in the elite 8 is proof god is real

5
Stephon
Clark

1.4230 2.1873
During the Stephon Clark protests, a woman stood in
front of a police car. The police car sped up and
mowed her down.

posed (rc← 0, when rc < rt) so that low relevance (mostly noise) would not trigger context-based

adjustment. A tweet may be relevant to multiple trending topics. In this case, we choose the topic

with the largest rc. ∆Sc is the actual societal impact. Note that a smaller S indicates “more private”,

therefore, ∆Sc is expected to increase when the degree of sensitiveness decreases.

Intuitively, the impact of the societal context should include the following factors. (F1) The

normalized strength of the context p, as defined in (5.21): ∆Sc is expected to increase with p, i.e.,

when a topic is more popular in the trend, more voices are heard in the community so that opinions

on the topic become less private. (F2) The normalized duration of the trending topic N (t): ∆Sc is

expected to increase with N (t), i.e., when a trend has lasted longer, it becomes less sensitive. The

normalization function is defined as:

N(t) =


t/tmax if t < tmax

1 if t > tmax

(5.23)

That is, when the topic has been popular for longer than a pre-defined window tmax, its normalized

duration is 1; otherwise, the duration is normalized by tmax. (F3) The context-free PrivScore of the

tweet: when the tweet is extremely private (i.e. Sc f → 1), the impact of the societal context should

be minimum. This factor resembles the fact that extremely sensitive tweets should never be posted

regardless of the societal context. Moreover, we expect the impact of Sc f in ∆Sc to soon grow
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into normal and stay relatively flat. This means for less sensitive tweets, ∆Sc should be primarily

determined by p and N (t). Eventually, we define ∆Sc and Sc as:

∆Sc =p ·N (t) · log3 Sc f (5.24)

Sc =Sc f +ωc · r · (p ·N (t) · log3 Sc f ) (5.25)

Since Sc f ∈ [1,3], we use log3 so that log3 Sc f ∈ [0,1]. We evaluate the context-aware PrivScore

with the new (2018) dataset. Sc is calculated for each tweet with the following parameters: weight

of the societal context: ωc = 0.5; maximum window size: tmax = 2 days, as we have observed that

the majority of the trends becomes significantly weaker after two days.

Out of 8,079 tweets in this dataset, 887 are relevant to at least one trending topic, so that they

trigger context-aware adjustment of Sc f . Their Sc f and Sc distributions are shown in Fig. 5.22

(a). Many of them are moderately sensitive tweets about politics, which is a potentially sensitive

topic that often makes into the trend, e.g. #marchforourlives and #neveragain are popular trends

in our data. Meanwhile, the dataset was crawled during the 2018 NCAA Basketball Tournament.

The most popular trend in the data is FinalFour. We have observed many tweets about basketball

games use improper words to demonstrate strong emotions.

As shown in Fig. 5.22 (a), the distribution of Sc is more skewed rightwards (i.e., towards “less

sensitive”) than Sc f . This is because Sc is always greater than Sc f for any tweet, if it triggers

context-based adjustment, since matching with a popular societal context reduces the perceived

sensitiveness. For the set of 887 tweets that triggered context-aware adjustment, the difference

between the average Sc and Sc f is: S̄c− S̄c f = 0.187, while the maximum difference for a single

tweet is: max(Sc− Sc f ) = 0.322. Table 5.8 shows two examples of context-aware PrivScores, in

comparison with the context-free scores. Tweet 1 and 2 are examples that very dirty words are al-

ways very sensitive. Although users often show strong emotions during certain events, e.g., NCAA

tournament, using improper words seriously damages personal image. Therefore, when Sc f is very

low, ∆Sc is still low even when p and N (t) are both close to 1. Meanwhile, Tweet 5 is an example
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that a less sensitive tweet on politics is adjusted to “Maybe” because of its societal context.

5.8 The Personalized Privacy Score

In the previous two sections, our privacy scoring models are based on the consensus opinions of

the majority of the users. However, privacy is a subjective perception, where each user has her own

level of tolerance in private information disclosure. More importantly, the privacy attitude varies

across topics. To capture personal privacy attitudes, we further develop the personalized PrivScore

model.

5.8.1 Privacy Attitude and the Personalized Privacy Scoring Algorithm

We first autonomously assess each user’s privacy attitude. The initial attitudes are discovered from

the users’ tweet history, with the assumptions that: (1) posting a significant amount of semi-private

messages on a certain topic indicates that the user considers the topic less private; and (2) not

deleting a tweet indicates that the user is comfortable with (i.e., not regretting) the tweet. The

assumptions may not hold in a single tweet. For instance, a user may accidentally post a regrettable

tweet under strong emotions (e.g., tweets on NCAA tournament) but forget to delete it later, so the

uncomfortable tweet remains in her data. However, both assumptions are generally valid from an

aggregate perspective.

Personal Privacy Attitude. With the context-free PrivScore Sc f , we can quantitatively assess the

personalized privacy attitude as the average Sc f of all her previous posts. The personal average

is then normalized with the personal PrivScores among her friends, to demonstrate her privacy

attitude in comparison with her societal context. Therefore, the average privacy attitude in this

context is defined as:

µUc =
1
|Uc|
· ∑

u j∈Uc

Sc f , j (5.26)

where Uc is the set denoting the societal context of user ui, |Uc| is the size of this set, and Sc f , j

is the mean context-free PrivScore of u j. The context could also cover a larger scope, such as the
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Figure 5.24: Distribution of potentially sensitive tweets Sc f < 2.3 of users 5447*** and 2214***
in different topics: Health & medical, Work, Drug, Obscenity, Religion, Politics, Racism, Family,
Relationships, Sexual Orientation, Travel, School, Entertainment.

school, city, or the entire social network. The corresponding standard deviation of the personal

privacy attitude is σUc . Therefore, the normalized privacy attitude for user ui is defined as:

PA,i =
Sc f ,i−µUc

σUc

(5.27)

A negative personal privacy attitude (PA,i < 0) indicates that ui has revealed more sensitive

information to the social network than her peers. On the contrary, a positive attitude (PA,i > 0)

indicates that ui has better protected her private information than her peers. For example, the µUc

for all the users in our 2018 testing dataset is 2.3025. If we consider it as the societal context,

the personal privacy attitudes of user 5447***** and user 2214***** are 0.7990 and -0.6721,

respectively. The distributions of their potentially sensitive tweets (Sc f > 2.3) are shown in Figure

5.24. As we can see, user 5447***** sometimes posts moderately sensitive tweets on religion and

family activities, while 2214***** posts a lot of sensitive tweets with obscenity content.

Topic-specific Privacy Attitude. PA,i only indicates the overall privacy attitude on “all” sensitive

topics. However, as we have pointed out in Observation III (Section 5.3.3), privacy attitude highly

depends on topics. Hence, we extend PA,i into a topic-specific personalized privacy attitude: PTk,i,

92



Figure 5.25: Topic-specific privacy attitude of Annotator A1 and A2 on topics C1: health&medical,
C4: Obscene, C8: Family.

where Tk denotes the topic k.

We have developed a private tweet classifier similar to [94, 57, 113], which categorizes tweets

into 13 predefined topics in Chapter 4. Figure 5.25 demonstrates the topic-specific privacy attitude

of two human annotators for our 2018 testing dataset. We classify potentially sensitive tweets

(Sc f < 2.3) into 13 topics, and show the difference between the context-free PrivScore and the

human-annotated score (Sc f − SAi) for each tweet. A positive value indicates that the annotator

rates the tweet as “more sensitive” than Sc f . We can see that Annotator A1 consistently rates “health

& medical” tweets as more sensitive. Meanwhile, her attitude with obscene/cursing content is in

general close to Sc f , while she treats “family” tweets as less sensitive. On the contrary, Annotator

A2 is less concerned about obscene and cursing content. This example demonstrates individual

differences in topic-specific privacy attitudes and the need for topic-specific personalization.

To model the topic-specific privacy attitude for a user, we classify all potentially sensitive

tweets (with Sc f < 2.3) in her tweet history. For user ui, the number of tweets classified into topic

Tk (k ∈N≤13) is denoted as ck,i. The average number of sensitive posts on Tk for all the users in her

societal context is denoted as:

µk,Uc =
1
|Uc|
· ∑

u j∈Uc

ck, j (5.28)

and the standard deviation is σk,Uc . The normalized topic-specific privacy attitude for ui is defined
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as:

PTk,i =
−(ck,i−µk,Uc)

σk,Uc

(5.29)

A negative PTk,i, i.e., ck,i > µk,Uc , indicates that ui cares less about her privacy on topic Tk

(posting more sensitive tweets on this topic than average users); while a positive PTk,i indicates that

ui has better protected her private information on the topic.

Intuitively, when a user cares less about her privacy on topic Tk (i.e., PTk,i < 0), we should in-

crease Sc f for her to indicate “less private” on this topic. Meanwhile, the strength of the adjustment

should increase when a tweet is more relevant to the topic, and it should be configurable by the

user. Hence, the personalized topic-specific PrivScore for user ui and tweet T is defined as:

Sp,i = Sc f −ωp · rp ·PTk,i (5.30)

while the personalized context-aware PrivScore is:

Spc,i = Sc−ωp · rp ·PTk,i (5.31)

where Sc f is the context-free PrivScore defined in (2), and Sc is the context-aware PrivScore defined

in (5.25). ωp is the weight configured by the user (we used 0.5 in the experiments). rp is the

relevance between T and the topic Tk, which is the confidence of the classification.

5.8.2 Evaluation

Evaluation with Annotated Data. Using our 2018 dataset, we further evaluate the personalized

privacy scoring algorithm. As described in Section 5.6.2, 566 tweets were annotated by 8 human

annotators (2 annotations/tweet). We perform 5-fold cross-validation for each annotator. In each

round, the objective is to learn an annotator’s topic-specific privacy attitude from 80% of the an-

notated tweets (training samples), and to generate personalized PrivScores for the remaining 20%

of the tweets. In particular, we assume that all tweets labeled as “3 Nonsensitive” would be posted
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by the annotator, and thus could be utilized to learn PTk,i. Meanwhile, tweets labeled as “2” or “1”

would not be posted by the annotator, so that they would not appear in the annotator’s tweet his-

tory – they cannot be used as negative training samples. Hence, we mimic the annotator’s “tweet

history” as all training samples annotated as “3”, and ignore other training samples. We follow

Eq. (11) to compute PTk,i using “all annotators” as the personal context. We then calculate Sp,i as

defined in Eq. (12). We do not consider the societal context since the annotators were not exposed

to the context during annotation (e.g., did not see excessive tweets on NCAA tournament). We

impose weak personalization (ωp = 0.3) since we only have limited “tweet history” to learn from.

Using the same method in Section 5.6.2, we examine the distribution of the human annotations

vs. the newly generated personalized PrivScores. Figure 5.22 (b) to (d) demonstrate the density of

“1”s, “2”s and “3”s annotated by the human evaluators for each Sp,i range. This figure clearly shows

that the density of “sensitive” annotations is more skewed towards smaller Sp,i. For instance, all

the tweets with Sp,i ∈ [1,1.1) are labeled as “sensitive” by human evaluators. In the same way, the

density of “nonsensitive” annotations is more skewed towards larger Sp,i. That is, the personalized

PrivScores Sp,i are more consistent with human annotations.

We also quantitatively measure the differences between the PrivScores and human annotations.

The Mean Square Error (MSE) between Sc f and annotated scores is 0.55. With personalized topic-

specific PrivScore, the MSE between Sp,i and annotated scores is 0.46. Note that the PrivScores

are real numbers in rage [1,3], while the annotated scores only take integer values {1,2,3}. This

difference will unavoidably impact MSE.

Evaluation with Twitter Users. We compute the personalized PrivScores for Twitter users. Ex-

amples of Sp,i are shown in Table 5.9, while the corresponding personal topic attitudes are shown

in Fig. 5.24. Most of user 5447*****’s tweets are clean and nonsensitive. She sometimes tweets

about religion, family, and travel (moderately private). Her first tweet in the example has an Sc f

of 1.4730. However, this tweet should be adjusted to “more sensitive” due to her clean tweet

history (these words are very unusual to her). Meanwhile, the second tweet, which is generally

non-sensitive (or “maybe”), appears to be very normal to her (Sp,i ' 3). User 22149**** often

95



Table 5.9: Examples of topic-specific personalized privacy scores for users 5447***** (top) and
22149**** (bottom).

Topic PTk,i Sc f Sp,i Examples

Obscene 1.0553 1.4730 1.1564
Caught her looking at my boobs. #nevermind
#roommateproblems

Family -0.8043 2.6227 2.9243
All I want to do is spend quality time with my family.
#changingpriorities

Obscene -1.4720 1.6116
1.85448

I’m gonna sip wine and talk s— on Villanova

School 0.3763 2.1680 2.0551
S/o to @XXX and @XXX for doing my homework
while I serve them beer

uses dirty words in tweets. Therefore, the sensitiveness of his first tweet is reduced, as he does not

care about obscene/cursing words. However, it is still in “maybe” range, which is consistent with

public opinions – most people feel uncomfortable with this content.

5.9 Further improvement of PrivScore using BERT

As described in 5.5.4, BERT is pre-trained by unsupervised learning method on numerous amount

of text data. Tasks with limited training data can reap huge benefits from the transfer learning

based on BERT. That’s why we further experiment on BERT model to improve our PrivScore. The

usage of BERT for a specific task is relatively straightforward. For our PrivScore, a classification

task, we only need to add a small classification layer on top of the Transformer output for the

[CLS] token. This transfer learning structure is shown in Figure 5.26. We utilize the same dataset

in the previous LSTM model to fine-tune this BERT model and 5-fold-cross validation is used

to evaluate the model efficiency. The classification performance of Bert and its corresponding

confusion matrix are shown in Table 5.10 and Table 5.11 respectively. From the results, shown in

Table 5.12, we can see that BERT performs notably better than the LSTM model using only text.

Though BERT is just marginally better than the LSTM model with text and sentiment feature, the

model implementation becomes easier. We do not need to compute sentiment through a third-party

API or another complicated, sentiment specific neural network.
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Figure 5.26: PrivScore using BERT

In addition, BERT shows more potential of further improvement than that of LSTM model.

This is because our relatively small dataset limits the complexity of the model we can use, if we

train the model from scratch. With pre-trained BERT, the basic understanding of words and context

are already learned, and the task specific data is further used for the fine-tuning, which significantly

boost the efficiency of learning. Therefore, BERT is a promising model for our task and worth more

effort to explore.

Table 5.10: Classification performance of BERT

Precision Recall F1-Score Support

Sensitive 0.8715 0.8464 0.8585 1435
Non-sensitive 0.8506 0.8753 0.8625 1435

Average 0.8611 0.8609 0.8604 2870

Table 5.11: Confusion matrix of BERT

Sensitive Non-sen

Sensitive 1214 221
Non-sensitive 179 1256

Table 5.12: Comparison of the performances of different models

Precision Recall F1-Score Support

LSTM 0.83 0.83 0.83 2870
LSTM with senti 0.85 0.85 0.85 2870

BERT 0.86 0.86 0.86 2870
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5.10 Security Analysis & Discussions

5.10.1 Security, Performance, and Usability

The PrivScore model will be employed in social networks for user alerting or self-censorship of

AI chatbots. When an alerting mechanism is properly deployed and the user follows the warnings,

sensitive content will not be disseminated to followers or malicious stalkers. However, the protec-

tion performance will be primarily impacted by two factors: the accuracy of the privacy scores, and

the design/usability of the alerting mechanism. First, the privacy scoring approach may generate

two types of errors: false positives and false negatives.

False negative. When the PrivScore is (significantly) higher than what the users would perceive, a

sensitive tweet will be labeled as nonsensitive, i.e., a false negative. In a user alerting system, false

negatives cause missed alerts, so that messages containing sensitive information may be posted.

While it is impossible to completely eliminate false negatives from any statistical learning ap-

proach, the problem may be mitigated: (1) The performance of privacy scoring will increase with

more training data and advances in NLP (to be elaborated later). (2) We also observed that sensi-

tive tweets often lead to sensitive responses (e.g., cursing tweets get cursing replies), hence, hints

of missed alerts may be learned by monitoring responses. (3) An auditing mechanism could be

developed to periodically re-evaluate past tweets with the updated scoring model, to alert users to

fix any possible damage [91].

False positives. When the PrivScore is (significantly) lower than users’ perceptions, a nonsensitive

tweet will be labeled as sensitive, i.e., a false positive. When the false alarms are sporadic and the

alerting mechanism is not intrusive, they may not cause burdens to the users. However, frequent

false alarms affect the usability of the alerting mechanism, which may prevent users from adopting

it. In practice, false positives may be mitigated: (1) A well-designed configuration interface will

allow user to specify her own topic-specific preferences so that alerts could be adjusted accordingly.

(2) Personalized privacy scoring model observes personal privacy attitudes/behaviors, and tunes

privacy scoring. Online learning could be employed to continuously improve scoring accuracy
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when more personal data becomes available. (3) Better alert and response interfaces could be

designed to minimize the disruption to users.

False positives need to be handled properly, so that we do not overly disturb the users that they

eventually disable/ignore the protection mechanism. All these discussions are beyond the scope of

this project, but are interesting future topics.

The Accuracy of Keyword Spotting. In Section 5.2, we employ a keyword spotting approach

to identify a candidate tweet set to be labeled by Turkers. While similar approaches have been

employed in the literature to identify if a tweet belongs to a pre-defined topic. We aim to increase

recall in this process, i.e., to include a majority of potentially private tweets. However, we ac-

knowledge that there exist both false positives and false negatives in this process. A false positive

is a tweet that contains at least one keyword but is indeed not sensitive. A significant portion of

the candidate tweets belongs to this category and they pose major challenges to our classifier. We

handle them through the labeling, representation and classification processes. On the other hand, a

false negative is a tweet that does not include any keyword but contains sensitive content. We do

not anticipate such false negatives to cause any noticeable impact in scoring performance due to

the following:

(1) False negatives are very rare. We have used a relatively large set of keywords for each category:

more than 100 for each category (as a reference, the privacy dictionary [108], which was used

in Privacy Detective [47], contains 355 terms in eight categories). To estimate the false negative

rate, we randomly selected 500 tweets from the non-candidate set, i.e., tweets do not contain any

keyword, and posted them on MTurk, where each tweet was annotated by two Turkers. We also

added approximately 50% of sensitive tweets in the questionnaires to keep Turkers’ attention. As

a result, only one tweet was labeled as “1 [sensitive]” by both Turkers: “Just got tazed trying to

get into the CBC basketball game....Half hour before the game starts.”, while one tweet received

“1, 2”, 11 tweets received “1, 3”, and all other tweets received “2, 3” or higher. For these “maybe

sensitive” tweets, most of them only imply a very subtle sensitiveness that was hidden behind the

words.
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(2) Missing terms are captured by word embedding. Unlike the conventional bag-of-words model

that treats any two different words as orthogonal in the vector space, word embedding models

capture words’ meanings from their context, and discover the semantic and syntactic similarities

between terms. Therefore, as long as a term is included in the GloVe dataset (pre-trained with 2B

tweets and 27B tokens) and appeared in similar semantic contexts with known sensitive words,

it will be represented close to sensitive words in the model. Meanwhile, LSTM also attempts to

capture the semantic meanings behind word sequences, so that the privacy scoring mechanism

does not solely rely on the occurrences of sensitive terms, and could overcome a small number of

missed sensitive terms. For instance, tweet “wipe that ugly smile off your face” does not contain

any keyword in our list, however, its PrivScore of 1.62 (moderately sensitive) indicates that our

mechanism captured the rude and judgmental tone from the textual content.

Deleted Tweets. Research has shown that users may delete regretted posts to repair the potential

damage [91, 118]. However, study also showed that no substantial differences were observed in

the “distributions of stereotypically regrettable topics” among deleted and undeleted tweets [4].

[6] found that “possible sensitive text” is a weak feature in predicting tweet deletion. Manual

examination in [126] revealed that a regrettable reason was identified for only 18% of the deleted

tweets, while the others cannot be explained by the tweet content. Therefore, we did not use deleted

tweets in our privacy scoring models or experiments. However, we suggest that deleted tweets

could be employed in personalized privacy scoring, as a factor of the topic-specific privacy attitude.

In particular, Eq. (5.29) will be modified to infer privacy attitude from two factors: tweet history

and deleted tweets, where explicitly deleted tweets on a topic may imply that the user is more

conservative on this topic. Further investigation of deleted tweets and employing them in privacy

scoring is in our future plans.

User Alerting and Usability. Research on private tweet modeling attempts to discover the psy-

chological factors and cognitive models behind private tweets (see Chapter 2 for details). They

suggested that tools could be developed to “detect potentially regrettable messages” [91] and “a

content-based reminder could be triggered” [118] to alert the users. To achieve this goal, we first
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need a mechanism that automatically assesses message content to identify sensitive tweets to trig-

ger the alerts. Therefore, PrivScore serves as a fundamental building block for a comprehensive

privacy protection solution. The solution could be implemented as a browser add-on or a mo-

bile app. It first takes users’ baseline preferences through an interactive configuration interface.

When the user starts to type a message, its PrivScore is evaluated on-the-fly. If the user attempts

to post sensitive content (determined by pre-set topic-specific thresholds), a warning message will

be displayed to trigger self-censorship. To demonstrate the effectiveness of employing PrivScore

in triggering self-censorship, we perform a proof-of-concept evaluation for user alerting (an IRB

approval was obtained for this evaluation). The user study is designed as follows:

• a. We recruited college students to evaluate tweets crawled from the Internet. Each participant

received a URL to an anonymous online questionnaire, which includes 15 tweets (sampled with

higher density of sensitive tweets than the original distribution).

• b. Participants were asked to select “1. Yes I feel comfortable posting this to Twitter” or “2. No, I

do NOT feel comfortable posting this” for each tweet, as shown in Figure 5.27 (a). To mimic an

emotional or urgent scenario, we asked students to “follow your first instinct to provide a quick

selection–just act like you are in a hurry.”

• c. If the student chose “Yes” for a low score tweet (i.e., a tweet with Sc f < 1.5), a warning

message was displayed (as shown in Figure 5.27 (b)). The student has the option to adhere to

the advice or stick to her original option.

We record the participant’s selection for each tweet. We also record whether the warning mes-

sage was triggered, and whether the participant adhered to the message. Out of 795 tweets (53

questionnaires) that was answered in 10 days, 94 tweets triggered the warning message, while

users changed opinions on 58 tweets: an adherence rate of 61.7%. Manual inspection also showed

that users stick to their original selection of “Yes” mostly for political and judgemental tweets,

which indicates that our annotators were more conservative on political content than the evalu-

ators. There were also a few false positives. One example was a tweet criticizing racism, which
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received a PrivScore of 1.21 (strong critical tones and racist terms). However, since it was criticiz-

ing racism, it should not receive such a low score.

(a)

(b)

Figure 5.27: User study on the effectiveness of user alerting.
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The usability and user experience aspects of an alerting system is a challenging issue, which

requires intensive further investigation. As references, browsers’ alerts (phishing attacks, HTTPS

certificate errors) and users’ responses have been intensively investigated in the literature [120,

24, 96, 93, 85, 119, 2]. For instance, a recent study [85] examines users’ responses to security

alerts in Chrome and Firefox, analyzes the decision factors, and makes suggestions to designers.

In our application, intuitively, a good alerting mechanism is expected to be less disturbing and

provide the user with sufficient but concise information of the alert rationale. Meanwhile, different

levels of warning may be enforced for different levels of sensitiveness, e.g, alerting the user of

sensitive content and the potential audience [91]. Moreover, [117, 118, 116] suggested a delayed

posting mechanism using a timer nudge for Facebook, to “encourage users to pause and think”

before posting a message. Last, configuration of parameters and personalization of alerting are

also important topics that need to be studied.

5.10.2 Comparison with Instagram’s Comment Filtering Mechanism

On July 8th, 2019, Instagram announced a new feature called “comment warning” to battle against

online bullying. As described by Instagram, this new feature, powered by AI, warns people when

their comments may be considered offensive before they are posted [46]. The production demo

of this new feature is shown in Figure 5.28 [46]. In March 2020, we performed an experiment

on Instagram to evaluate this feature. It is clear that the new function is still in the experimental

stage, so that it is not always available, and it appears to be very inconsistent. We also have some

interesting observations on this new feature through experiments:

• a. This feature is still rolling out and in the experiment stage. We experimented on 7 individual

Instagram accounts in US with cursing/bullying posts. However, none of them triggered the ad-

vertised “comment warning” warning function, when multiple offensive comments were posted,

including the exact one in the advertisement and news reports of the new function. On the other

hand, the comment filtering feature did work, which prevents some bullying comments from be-

ing displayed to the owner of the posts. Therefore, in the rest of our experiments, we focus on

103



Figure 5.28: Instagram Comment Warning.

the comment filtering function.

The availability of the filtering function varies from account to account, regardless of the account

configurations. We observed different behaviors from different users’ accounts. 2 out of 7 ac-

counts in our experiment benefit from the anti-bullying function, i.e., they cannot view some of

the offensive/cursing comments left by others. However, the rest of the accounts could not filter

out offensive comments automatically, i.e., all the comments (left by other users) are visible to

the owner of the post.

• b. The intention of this new feature is to protect Instagram users from cyber bullying. This
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is similar to our mechanism to a certain extend, which is to reduce the chance of impulsive

posting or posting sensitive information. However, we take different angles in this scenario. For

Instagram, it aims to help the owner of the posts to filter out bullying comments written by his/her

followers. It only focus on offensive/cursing/attacking comments, but not other types of sensitive

comment, e.g., personal information. Meanwhile, the objective of our PriScore mechanism is to

protect the user from leaking private/sensitive information before posting. Thus, our mechanism

covers a broader range of private/sensitive information, and we provide fine-grained scores that

provide better measurement than a binary decision of “bullying”/“not bullying”.

• c. According to the official description by Instagram, comments that may be inappropriate, of-

fensive or bullying are automatically filtered out [45]. Users can also extend the default keyword

filter by adding customized keywords to hide comments that contain specific words, phrases, etc.

This description suggests that keyword-spotting is used int the filtering mechanism. Through our

experiments, we also noticed that certain level of natural language processing (NLP) technique

was utilized. For example, the comment – "girls are like garbage plates, best from rochester"

that does not contain any extremely dirty word, is blocked. But comments with subsets of the

blocked comment, such as “arbage plates", are not blocked. Hence, we can conclude that the

comment filtering feature takes the semantic meaning of sentences into consideration.

Next, we perform an experiment to systematically compare Istagram’s comment blocking func-

tion with PrivScore. We posted an image to Instagram, and used another account to post the tweets

we used in the user study in Section 5.10.1 as comments to this image. We record whether each

comment was blocked by Instagram, and compare with: (1) the context-free privacy score; and

(2) users’ annotations collected in the user study. Our experiment results are shown in Figure 5.29.

Through the experiment results we can see that the comment filtering feature of Instagram has large

number of false negatives, i.e., large number of sensitive comments are not blocked. As mentioned

in the user study section, we set the default threshold as 1.4, which means that tweets scoring be-

low 1.4 are all treated as sensitive by our mechanism. However, in Figure 5.29 (b), only a small

portion of tweets are block by Instagram. For example, tweet “i embarrassed honestly spent half
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(a)

(b)

Figure 5.29: Comparison with Instagram Comment Filtering. (a). Results from the user study: the
distribution of tweets: (1) the user agrees with the PrivScore; (2) the user changed labels after
seeing a warning message, and (3) user rejects the warning. (b). The distribution of tweets blocked
and not blocked by Instagram.

hour sitting parking lot crying goose happen smh.. i get big a*s heart" gets a PrivScore at 1.173.

Our mechanism treated it as sensitive content, due to its strong emotion disclosure, and use of inap-

propriate language. But Instagram did not block this tweet. Another example is that tweet “no joke
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day election i went work coworker wearing red hat i ready throw f**king hands turned kentucky

derby hat" with PrivScore 1.26 and an explicit cursing word was not blocked by Instagram either.

This election tweet might not be that sensitive to college students. It triggered a warning during

the user study. The student adhered to our suggestion and decided not to post the message after

reading the warning. Through further investigation on the 58 tweets that students adhered to the

warning message, we found that Instagram only blocked 34 out of 58. Through this experiment, we

confirmed that the blocking feature of Instagram is mostly sensitive to cursing words, like "s**t"

and "b***h".

5.10.3 Limitations and Future Improvements

We make a first attempt to assess the level of sensitiveness of text content. Our mechanism still has

its limitations, for instance: (1) PrivScore is designed as a preventative privacy protection solution.

When a sensitive message is posted, PrivScore does not provide a mechanism to withdraw the

tweet or prevent potential damages. (2) As a statistical learning approach, false positives/negatives

are practically unavoidable, especially due to the subjective nature of privacy perception.

The accuracy of privacy scoring could be further improved from three aspects: (1) More anno-

tated data and higher quality labels (e.g., professional annotators) could improve the performance

of classification and privacy scoring, however, it requires significant costs. (2) Advances in NLP,

such as BERT and the latest derivative of BERT – ALBERT benefit their downstream tasks, includ-

ing PrivScore. Results in section 5.9 show the effectiveness of BERT. More improvement could be

achieved through further domain-data pre-training and better fine-tuning strategies [95]. (3) Once

privacy scoring and alerting mechanisms are deployed to users, we can adopt online learning to

train the PrivScore model. When users reject warning messages of false alarms, new annotated

data is incrementally added to the model to improve privacy scoring performance.

Besides the plan to further improve the accuracy of PrivScore and to address the challenges

in enhancing user experiences in private content alerting, we also identify several future research

directions: the effective integration of privacy scoring and classification will be beneficial, espe-
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cially for personalized privacy protection. Privacy scoring with consideration of the audience, and

the integration of privacy scoring with access control, are both challenging research questions. We

expect to apply the privacy scoring mechanism for other types of text data. In theory, the proposed

framework could work for any type of text, as long as there exist labeled training samples that are

homogeneous to testing samples. However, there are practical challenges that need to be addressed,

such as text modeling, segmentation of long paragraphs, etc.

5.11 Summary

In this Chapter, we make the first attempt to develop a computational model using deep neural

networks to quantitatively assess the level of privacy/sensitiveness for textual content in OSNs.

Our framework consists of four key components: (1) collection and analysis of privacy opinions

on potentially private information; (2) the context-free privacy scoring model, which mimics users’

privacy perceptions to assess the degree of privacy mainly based on text content; (3) the context-

aware privacy scoring model, which considers the influences of the societal context on privacy

perceptions; and (4) the personalized privacy scoring model, which integrates topic-specific per-

sonalized privacy attitude into the privacy scores. With experiments on human annotated data, we

show that the PrivScore model is consistent with human perception of privacy. This work was

published in [115].
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Chapter 6

Conclusion

The increasing popularity of online social networks brings a large amount of private or sensitive

information posted. Studies show that users tend to unintentionally release regretful messages or

reveal too much potentially sensitive information online, especially when they are careless, emo-

tional, or unaware of privacy risks. Therefore, in this dissertation, we propose a mechanism for

protecting users’ content privacy in three phrases: context-free privacy scoring, context-aware pri-

vacy scoring, and personalized privacy scoring. To develop this mechanism, we have done the

following four parts:

First, we explicitly research and study topics that might cause user’s regret or privacy leakage.

Based on this thoroughly research, tweets potentially related to these topics are extracted. We

then make the first attempt to classify these potentially sensitive tweets into a comprehensive set

of likely sensitive categories. To boost the classification accuracy, the classifer is built with both

semantic features and users’ topic-preferences.

Second, to examine if there is a consensuses towards the content sensitivity among online

social network users, we launch a crowd-sourcing survey on Amazon Mechanical Turk to collect

the privacy perceptions from a diverse set of users. The survey shows the feasibility of obtaining

a common perception towards content sensitiveness/privacy for average users in a neutral context.

This provides the foundation of developing our privacy protection mechanism.

Third, we make the first attempt to develop a computational model for quantitative assessment

of content sensitiveness using deep learning networks. This model resembles the “consensus” per-

ception of average users on the purely textual content, which is our context-free privacy score

model.
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Last but not the least, we further adjust the context-free privacy score with social context and

personal preferences to generate the context-aware score and personalized privacy score respec-

tively. Therefore, we implement a mechanism for protecting users’ private content, and to an ex-

tent, the mechanism would not affect user’s normal socializing.

In conclusion, we study what is privacy for online social network users and we argue that

OSN privacy as having the ability to control the dissemination of sensitive information. Based

on this understanding, we propose the first quantitative model for private information assessment,

which generates a context-free privacy score. In addition, we adjust the context-free privacy score

with the societal context to obtain a context-aware privacy score, and extend the model using

personalization by introducing user’s topic-preference and tweet history. This mechanism will both

benefit the OSN users and other applications such as chatbots.
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