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1 Introduction

It is well known that three dimensional Einstein gravity has no propagating degrees o f free­
dom in the bulk. In spite o f that, Topological Massive Gravity (TM G ) [1], New Massive 
Gravity (NM G) [2] and its generalization [3, 4] and Born-Infeld (BI) gravity [5] have pro­
vided a framework to study three dimensional gravity with higher curvature terms which 
allow massive graviton excitations. This setup may eventually helps us to understand the 
quantum gravity in three dimensions. Investigating the quasinormal modes (QNM) o f the 
classical solutions of these theories may teach us about the characteristic features o f the 
corresponding geometries. For reviews on QNMs o f black holes see e.g. [6, 7].

From a holographic point o f view, the AdS3/C F T 2 correspondence has been well stud­
ied in last three decades initiated by Brown and Henneaux [8]. On the other hand, it is 
known that adding higher derivative curvature terms in the classical bulk gravity theory is 
dual to going away from strongly coupled regime of the boundary gauge theory. Therefore, 
the BI-action, which can be considered as an infinite set o f higher derivative terms, is a 
convenient framework to study the effects o f the higher derivatives in the bulk theory, and 
maybe, to investigate the intermediate coupling behaviour, all the way to weakly coupled 
regime in the dual boundary theory.

In this note we focus on three dimensional BI-gravity and its QNMs structure. We 
show that the fourth order linearized equations o f motion can be factorized into two second
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order differential equations, corresponding to massless and massive graviton excitations, 
and has similar form as the QNM equations of the NMG studied in [9]. This motivates 
us to study the QNMs in a more general framework where the results can be extended to 
other parity-even theories.

The massive mode excitation in TM G  satisfies a first order differential equation which 
allows an analytical approach to find the quasinormal frequencies [10] . In [11] it was shown 
that the second order differential equation o f the perturbations in parity-even theories 
could be decomposed into two first order differential equations. Then following the same 
approach as [10] the analytical solutions are computed, which are obviously solutions to 
the original equation. Nevertheless, there is no guarantee that calculated modes are the 
full solutions o f the original second order differential equation. To cover this missing point 
in the literature o f the QNMs in parity-even 3D gravities, we employ a numerical approach 
to compute the quasinormal modes o f the original equation.

Our results show new features of the excitations in three dimensional parity-even mas­
sive gravities. While our numerical QNMs include the analytical ones, we found new modes 
which do not appear in the analytical studies. Due to existence o f the new modes, we show 
that static B TZ black hole solutions o f these theories are unstable for any value of the pa­
rameters o f the theory and the background. On top o f that, the new modes we found are 
unique and there is no tower o f them in the QNM structure which means they do not belong 
to any Christmas tree structure o f the modes. In zero angular momentum we could find 
analytical solution corresponding to the new mode which, confirms our numerical analysis.

The organization o f the paper is as follows. In the next section, 2 we will shortly 
review the BI-gravity and its relation with NM G and its extensions to O (R 3). We show 
a regime of the parameters which admits the B TZ black hole solutions and we study its 
boundary theory. In section 3, we find the linearized equation o f the metric perturbations 
and investigate the mass o f graviton excitations. Section 4 is devoted to analytical attempts 
to find the massive QNMs. The heart o f our work is section 5 in which we use numerical 
tools to compute the QNMs. In this section we start with vanishing angular momentum 
and then we turn it on for the more general situation. For the former case we support our 
result by using analytical investigation. We close the paper by a summary and outlook 
in section 6. For completeness appendices A  and B contain some technical details of the 
computation of boundary stress tensor and the coupled QNM equations at finite angular 
momentum, respectively.

2 3D -B I gravity

In this section we provide a review on BI gravity in three dimension and, its relation with 
NM G theory [2] and its extensions [3, 4]. Although the equations o f motion o f this theory 
have a diversity o f solutions [12- 15], we will focus on the B TZ geometry and investigate 
its physical properties. The BI extension o f NMG introduced in [5] as,

(2.1)
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where G "v — R "v — 1 Rg^,v is the Einstein tensor, m 2 is a positive definite dimension- 
full parameter, a  — ± 1  is a sign coefficient, A is a parameter related to the cosmological 
constant and k3 is related to the three dimensional Newton constant as « 2 =  16nG3. Note 
that A =  0 is excluded from the parameter space since at this point the field redefinition 
g^v ^  g^v — m G ^ v  makes the theory trivial [16]. Expanding this action in terms o f 1 /m 2, 
which is practically a derivative expansion, has the following interesting feature

(2 .2)

The zeroth order expansion gives the Einstein-Hilbert action with a cosmological constant 
A =  2m 1̂-A), and to first order it reproduces the NMG action [2] which is a minimal 
parity preserving massive gravity in three dimension. On top of that, it is straightforward 
to show that expansion of the BI action (2.1) up to second order reproduces the extension 
o f NMG theory proposed in [3] by demanding the existence o f a holographic c-theorem. 
This is a fascinating agreement between two independent approaches of investigating higher 
derivative corrections to Einstein-Hilbert action in three dimensional gravity. While direct 
extensions o f NMG to higher order seems to be an extremely difficult task, one may expand 
the BI action eq. (2.1) to any order o f derivative curvature invariants. One main difference 
between BI theory and any truncated version of that appears in their vacuum solutions. 
Although BI has a single vacuum solution, truncated models may have several vacua.1

We would like to study the quasinormal modes of the B TZ black holes of the BI 
theory by solving the linearized equations o f motion. The following formulas are useful for 
analytical calculation,

(2.3)

where A is a general invertible matrix and A .A -1 =  1. Looking at action (2.1) one may 
identify a matrix as A "v =  5"v +  mG"v, and its variation is given by 5 A "v — m$G" v. 
In order to write the equations o f motion it is convenient to define a tensor,

(2.4)

and an operator,

(2.5)

Using the following relation for variation of Einstein tensor,

SG"v — 2 p"va f Sgaf , (2 .6)

We thank B. Tekin for bringing this point to our attention.
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one may show that the equations o f motion have the following compact form,

0. (2.7)

We are interested in B TZ geometries which are examples o f locally maximally sym­
metric spacetimes defined by

Rafi^v =  ± ^2 (9a^9/3v — gi^gav) (2 .8)

where ±  corresponds to the dS /A dS respectively, I  is the radius o f dS /A dS and for flat 
spacetime the right hand side vanishes. From now on, we focus on Anti-de Sitter solutions 
and we work with minus sign in eq. (2.8) . For AdS geometries one may show that the 
tensor defined in eq. (2.4) simplifies to

Plugging the above results in the equation o f motion (2.7) one may obtain a relation 
between the AdS radius I  and the parameters o f the theory as

This shows that for given parameters o f the theory, there is a unique vacuum solution. 
Expanding this equation to second order in 1 /m 2, one may find,

u 1 „
A =  1 +  2W  -  8^  +  O (1 /m  )

which is the corresponding relation for vacua geometries in N M G theory [2] . Note that in 
order to have locally AdS solution, satisfying eq. (2 .10) , there are two choices for parameters 
o f the theory with m 2 >  0, namely

u =  —1 & 0 < A <  1

Or . (2.11)

u =  1 & A >  1

So far we have reviewed some features o f the 3D-BI theory under conditions of having AdS
solution. According to the holography conjecture, one may expect that there is a boundary
theory dual to an asymptotically AdS background. The gravity side o f the theory is a re­
summation o f infinite number o f higher derivative corrections to the Einstein-Hilbert action. 
Therefore the field theory side might be related to weakly coupled regime o f a dual gauge 
theory. In the following subsection we investigate this boundary theory by computing the 
corresponding central charge and the stress tensor.
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2.1 B o u n d a ry  th e o ry  d a ta

Boundary theory of AdS3 geometries has been investigated in last 3 decades initiated by 
Brown and Henneaux [8] . In this section we make some comments from this perspective 
on the boundary theory o f B TZ black holes in three dimensional BI-gravity. In three 
dimensions the central charge for higher derivative gravities can be obtained by using the 
Wald formula [17, 18]

c =  4  g -  d l ; ,  (212)

where G 3 is three dimensional Newton constant and L is the Lagrangian density. Since the 
BI action (2.1) is introduced as a function o f Einstein tensor we use the following chain rule,

dL  =  dL dG*fi =  dL  _  1  gvvg \ (213)
0 R „V 0G afi d R „v 0G afi {  a f  2 g 9afi)  ( . )

to express the derivative in eq. (2.12) in terms o f derivative with respect to Einstein tensor. 
By employing eq. (2.3) and the tensor defined in eq. (2.4) one may show that

r)C
L  =  2aVaf  =  2aAga f , (2.14)

dGaf

where in the second equality we plug the conditions for maximally symmetric solution
eqs. (2.9) and (2.10) . Using these formulas the corresponding central charge simplifies to

c = ^ A .  (2.15)

This is nothing but the scaling o f Brown-Henneaux central charge [8] computed for Ein­
stein theory. This expression has been found in [19, 20] and it matches the Weyl anomaly 
computation, but here we could rederive it with less difficulty.

From holographic point o f view one may expect that the central charge (2.15) cor­
responds to the zero energy of a dual (conformal) field theory. Unitarity o f the theory 
requires that this central charge should be non-negative which leads to,

a A >  0 . (2.16)

On the other hand, we found a regime o f the parameters o f the BI action (2.1) in which the 
B TZ geometries are solutions to the equations of motion in eq. (2.11) . Now by comparing 
two conditions in eqs. (2 .1 1 ) and (2.16) , one can see that the unitarity o f the boundary 
theory fixes the sign parameter a  and restricts the regime o f A, namely 2

a  =  1, A >  1. (2.17)

In order to find the correct energy o f a solution in a theory one may follow the Hamilton- 
Jacobi analysis [21]. The first step in this approach is calculating the correct boundary 
terms so that the variational principle is well-posed. For general metric backgrounds bound­
ary terms are known for a few number o f models such as Lovelock theories [22]. But for

2 Note that A =  0 leads to a trivial theory as mentioned previously.
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a symmetric background the boundary terms can be computed in a systematic way. In 
appendix A  we show that for a maximally symmetric geometry in BI theory the boundary 
term is given by

^boundary =  2 jAA f  d2X^/\h|K , (2.18)
k3 j

which leads to the Brown-York stress tensor as

T ab =  jA (K ab — habK ) , (2.19)

in which hab is the boundary metric and K ab is the extrinsic curvature. Interestingly 
enough, comparing this stress tensor with the results for Einstein theory one see the same 
scaling factor ( jA ) as found for the central charge in eq. (2.15) . Therefore, the energy 
density computed from the time-time component o f the energy-momentum tensor ( 2.19) 
does not modify the regime of the parameters.

Similar to Einstein theory we can compute the central charge from the energy- 
momentum tensor given eq. (2.19) , which obviously leads to eq. (2.15) , and this could 
be considered as a crosscheck for our analysis. As a side remark we would like to note that, 
similar to our discussion after eq. (2.10) , the central charge and Brown-York stress tensor 
for NM G theory and its nth order extended versions can be found by expanding our results 
for BI action to O (1 /m 2) and O (1 /m 2n) respectively.

3 Linearized equations of motion

In this section we linearize equations o f motion (2.7) , derived in previous section for BI 
gravity, and compare its expansion in 1 /m 2 with the linearization of NMG and extended 
NMG. We consider the metric as g^v =  g^v + h^v, in which is the background spacetime 
and h^v is the perturbation on top of that. Using the rules in eq. (2.3) and giving some 
massage, the equations of motion for perturbation is found to be,

with h^v :=  h^v — g^vh. The pre-factor in this equation plays a crucial role later when we 
want to compare with the results for NMG theories by expanding eq. (3.1) in 1 /m 2 and 
therefore, we keep it to the end. The trace o f above equation has a simple expression,
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On the other hand, the Harmonic gauge V  ̂ h^v =  0 with the aid o f linearized equation of 
motion (3.2) , leads to the so called transverse traceless (T T ) gauge for original metric per­
turbations, V  ̂ h^v =  h =  0. In this gauge, the linearized equation of motion simplifies to,

which, equivalently, can be factorized as

(3.3)

(3.4)

Therefore the equation of motion for linear perturbation splits into two parts. Similar 
structure has been found for TM G  [10] and NMG [9] theories. The second parenthesis in 
eq. (3.4) is related to a massless graviton in B TZ geometry while, the first one corresponds 
to a massive graviton with the mass

(3.5)

Note that for a — - 1 ,  which corresponds to non-unitary boundary theory (2.17) , there is a 
critical point at m i — 1 where the mass o f graviton, the parameter A and the central charge 
o f the boundary theory (2.15) vanish but, at this critical point the BI-model becomes triv­
ial. However, for a  — —1 and m i — 1 the mass o f gravioton satisfies the Breitenlohner 
Freedman bound m 2 >  m |F — —1 / i 2 [23]. On the other hand, a  — 1, which gurantees the 
unitarity o f the boundary theory, leads to BF-bound violation, m 2 <  m |F. This indicates 
the “bulk-boundary clash” [24] of BI-model mentioned in [25] (for a review see [26]).

At this point, we would like to discuss about how one can get the NM G data from our 
results. Expanding eq. (3.4) , including the pre-factor, to the first order in 1 /m 2 leads to

(3.6)

which is the equation for perturbations in NMG theory [9] and apparently the pre-factor 
has an important role in the first parenthesis. One may calculate the graviton mass for 
NM G theory by looking at the first term in eq. (3.6) which is given by

Now the expansion o f (3.4) to second order in 1 /m 2 leads to

(3.7)

(3.8)

Note that in the second line after factoring out the coefficient of box operator, we expand 
the remaining terms in 1 /m 2 up to the second order. Using this linearized equation the 
mass o f graviton is given by

(3.9)
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By following this procedure of expansion to O (1 /m 2n) one can show that expression for 
the mass o f graviton has an interesting structure

m NMG(") =  - a m 2 ( 1 +  - 2 /2  +  (/2— 2 - )  , (3 .10)

where cn ’s are numerical coefficients and their absolute value are less than one, |cn| <  1 . 
Note that, apart from the first two terms in eq. (3.10) , there is only one other term, which 
is proportional to 1 / ( m 2/ 2)n and at the limit n ^  to, this term would disappear if we 
demand m /  >  1. Let us emphasize that, all the potentially intermediate terms in the 
expansion (3.10) disappear due to the similar factoring procedure used in eq. (3.8) . This 
is a fascinating result which shows how the truncation o f the expansion in 1 /m 2 at any 
order, which leads to three terms in right hand side o f eq. (3.10) , would be different than 
keeping all the terms as in BI theory, which corresponds to eq. (3.5) and is in agreement 
with the first two terms in eq. (3.10) .

4 Analytical analysis of Q N M ’s

In this section we are following [10] to investigate the quasinormal frequencies o f the BTZ 
black hole in BI theory. The massive mode equation given in eq. (3.4) fits in a more general 
equation namely,

(□  +  a )h ,v =  0 , (4.1)

where parameter a depends on the details of the theory and the background data.3 In this 
way, we can compare the massive Q N M ’s o f BTZ black holes in different theories. Specially
we want to investigate the effect o f truncation o f BI theory at a given order o f expansion
in 1/m2.

In fact in three dimension one may further decompose eq. (4.1) to two first order 
equations. To this aim, consider the following operator

D M) =  £ ,vpV p +  -  g ,v  (4.2)

with a constant M . Using this operator it is easy to show that

( d (-M )D (M)^ P hpv =  □ V  +  ( ?3—— )  V  -  V , V f  h f  . (4.3)

In TT-gauge this relation is equivalent to eq. (4.1) by setting M  =  a/3 — a /2 . Therefore 
every solution o f the equation

M
V vh, f  ±  -/- ha f =  0 (4 .4)

is a solution o f the second order eq. (4.1) . It is easy to show that the TT-gauge condition 
could be deduced from eq. (4.4) . But one must note that there is a critical point where

3In our analysis we don’t consider the a =  2/I2 which corresponds to the critical point discussed after 
eq. (3.5) .
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M  =  0 at which, logarithmic solutions may appear. We do not consider this case in our 
analysis while it has been studied in various cases [27- 29].

In order to solve eq. (4.4) one may consider the global coordinate system for BTZ 
black hole,

ds2 =  i 2 ( — sinh2 pdt2 +  cosh2 pd<p2 +  dp2) , (4.5)

such that the left/right moving solutions are given by [10]

and

The ingoing boundary condition at the horizon selects the positive signs in hr>l and therefore 
the least damped quasinormal frequencies are,

(4.8)

(4.9)

where periodicity along 0 leads to discrete angular momenta k.
Introducing the operator (L - \L_ i ), where L k are Killing vectors associated with back­

ground B TZ solution, one may find an infinite tower o f quasinormal modes,

hj n  =  (L _ i L _ i )n h, v  , (4.10)

and the corresponding frequencies with overtone number n ,

wn  =  —i(M  — 1 +  2n) ±  k (4.11)

It is easy to see that M  >  1 leads to stable frequencies. There is an important point 
regarding the solutions (4.6) and (4.7) . As mentioned in [9], these two modes are not 
orthogonal, so they can not be interpreted as independent massive modes in the theory 
and they might be some missing solutions to the linearized eq. (4.1) . We will come back 
to this point in next section.

By comparing eq. (4.1) with the massive mode equation in different theories one may 
find the relation between the auxiliary positive parameter M  and the parameters of the 
theory. For NMG, M 2 =  —a m 2 +  ^  while for the generalized NM G it will be given by
M 2 =  —a m 2 — . The general structure for the truncated BI-action (generalized NMG
to higher orders) can be found as

M N M G (n) =  —a m  ^ 1 +  ( / 2 m 2 )n ^  (4 .12)
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On the other hand for the Bi-gravity, by comparing eqs. (3.4) and (4.1) , it is easy to see

(4.13)

which, could be found by taking the limit n ̂  to from the results for extended NMG
theory (4.12) by demanding m i  >  1.

At the end o f this section we would like to point out the main linearized equation
that one has to solve for the BI theory and other parity even massive gravity models is a
second order differential equation given in (4.1) while the analytical investigation is based 
on factorized first order equations (4.4) . Although it is clear that the solutions of to the 
first order equations (4.4) are solutions to the second order one eq. (4.1) , it is not obvious 
whether it works other way around. In other words, the set o f solutions to the later could 
be larger than the former. O f course, the same argument applied when we factorized the 
fourth order differential equations to one massless and one massive excitations in eq. ( 3.4) . 
But, in this work we just focus on the massive mode and not the full linearized equation. In 
next section we use numerical tools to tackle linearized equation (4.1) with given boundary 
conditions corresponding to the quasinormal modes and we will compare the results of 
these two approaches.

5 Numerical analysis of Q N M ’s

In this section, by using a numerical method, we compute the quasinomal frequencies of 
B TZ black holes as solutions o f BI theory or any 3D theory o f gravity which has a massive 
mode corresponding to eq. (4.1) . To this aim, we consider the static B TZ black hole in 
Eddington-Finkelstein coordinate

where i  is the radius of AdS3 spacetime, and the asymptotic region is r ^  0. Linearizing 
equation o f motion on B TZ geometry in this coordinate has a twofold advantages. First, 
the ingoing boundary condition at the event horizon is automatically satisfied. Second, the 
vanishing source boundary condition at the asymptotic boundary (which is the definition 
o f QNM) is easy to impose as we will discuss.

It is common to use the plane wave Ansatz for the fluctuations and work in momentum
_i t+i _k ̂

space, h^v(r,t,<ft) — Z^v (r)e  ro ro . The transverse traceless gauge, not only reduces 
the linearized equations to eq. (3.4) but also imposes four constraints on the components 
o f h^v which are useful to simplify the QNM equations.

5.1 k =  0

We start with zero angular momentum k — 0 which leads to simpler equations. It is easy to 
show that in Eddington-Finkelstein coordinate there are two sets of metric perturbations 
which are coupled among each other and decoupled from the other ones. These two sets are 
(ht$, hr^) and (hrr, htr, htt, h^ )  which are orthogonal to each other and contain all of the
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metric perturbations. But using the constraints of the TT-gauge, one can show that the 
linearized equation (4.1) will reduce to two decoupled equations for metric perturbations 
hr$ and h$. At the practical level, the following redefinitions are natural to have proper 
boundary behaviour,

(5.2)

It is easy to show that using the following redefinitions

M  =  y/3 — a£2 , — =  u , (5.3)
ro

reduce the equations in terms o f new functions as

Note that the same parameter M  defined in eq. (5.3) has been used in the analytical studies 
introduced in eq. (4.2) . Interestingly enough, not only M  is the only parameter in both 
equations but also, there is no temperature dependency since we define the frequency and 
angular momentum in r0 unit. Also, it is easy to see that in both equations the near 
boundary solution to the eqs. (5.4) and (5.5) is

Zi(u)  =  Ai(1  +  O(u))  +  BiU2M(1 +  O ( u ) ) . (5.6)

From this expansion it is obvious that we are interested in the cases in which parameter M  
is positive which means a£2 <  3. In principle, for 3D massive gravity theories the parameter 
M  could be related to the mass of the graviton in B TZ background and the parameters of 
the theory. Note that M  =  0 is not in the domain of our interest since it corresponds to 
the logarithmic cases and M  =  1 is associated with the massless graviton mode.

According to the definition o f quasinormal modes in asymptotically AdS backgrounds, 
the mode should be source free ( A  =  0) and should satisfy the ingoing boundary con­
dition at the horizon. On the other hand, according to the holography dictionary, the 
QNMs correspond to the poles o f the retarded Green's function o f the dual operators [30].
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Therefore, our studies may shed some light on a field theory dual to the BI-gravity which 
might be considered as an infinite summation o f the higher derivative corrections to the 
3D Einstein-Hilbert action.

For our numerical calculation, we use Chebyshev spectral method to discretize the 
radial coordinate between the horizon (u =  1 ) and the asymptotic boundary (u =  0) and 
solve the eigenvalue eqs. (5.4) and (5.5) to find the Q N M ’s. This method has been widely 
used in QNM literature and implementing the method practically has been reviewed in [31]. 
We should emphasize that by using this numerical method we are able to find the lowest 
QNMs such that, the higher the number o f grid points the more number o f lowest QNMs 
one could compute with higher accuracy. Nonetheless, accurate results may help us to 
propose analytical structure for the frequencies.

Here we summarize our numerical results with high precision (in our numerical cal­
culation we use the number o f significant decimal digits between 100 to 1000) and large 
number o f grid points along the radial coordinate (between 100 to 250). The results are so
accurate which shows following analytic forms:

1. The frequencies for the Z 1 are classified in two sets,

^ni ’1) =  —i (M  — 1 +  2 n) , +ni,2) =  —i (M  +  3 +  2 n) , n =  0 ,1 ,2 , •••
(5.7)

2. The frequencies for the Z 2 are classified in three sets,

4 2,i) =  —i (M  — 1 +  2 n) , 4 2’2) =  —i (M  +  3 +  2 n) , n =  0, 1 , 2 , ••• ,

w(2’3) =  —i (1 — M 2) (5.8)

Obviously, the first two sets in Z 2 channel coincide with the two sets of Z i channel and, the 
first set is in perfect agreement with the analytical expressions given in eq. (4.11) for zero 
angular momenta. But here we find the third set in Z 2 channel with a single mode which 
has been missing in the analytical investigations. On top o f that, the degeneracy between 
the first and second sets for some modes was not apparent in our analytical results. Note 
that the dependency o f the modes on the parameter M  is completely different in the third 
set which motivate us to put this unique mode in a separated set. W ith these results some 
comments are in order:

• Since the largest power of w in equation eq. (5.4) / (5.5) is two/three, one may expect 
that there are two/three sets of QN M ’s in Z i/2 channel a priory.

• Except the first two modes in w(i,i) set there is a degeneracy in other modes between 
first and second sets namely, =  Wn’2) for n =  0, 1 , 2, ■ ■ ■.

(i i)• For 0 <  M  <  1, the zeroth mode in the first family, wQ ’ , is unstable and all other 
modes are stable.

• For M  >  1, the single mode in the third family w(2,3) is unstable and all other modes 
are stable.
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Figure 1 . The accuracy of the first three numerical QNM frequencies from the first set in compar­
ison with analytical formula for M  =  0.5 for Z i (left panel) and Z 2 (right panel). The horizontal 
axis shows the number of grid points along the radial coordinate and green, red and blue dots 
correspond to the n =  0,1, 2 QNMs respectively. It is interesing that in this case the first mode in 
the Z\ family has higher accuracy than the zeroth mode.

Therefore, while the Z i  channel is stable for M  >  1, the Z 2 channel is always unstable 
for any value o f the parameter M , in the regime of our interest. Note that this is true for any 
3D gravity theory which leads to the linearized equation in TT-gauge, (4.1) with a massive 
mode. This is a fascinating result which we found by implementing the numerical analysis 
for the first time. In figure 1 we show the accuracy of our numerical results comparing with 
the analytical QNMs given in eqs. (5.7) and (5.8) for the first three modes in the first set.

By looking at the Eigen-vectors o f the QNMs, we can justify our results and show 
that there is no pathology in the new modes that we found. In figure 2 we show the real 
and imaginary parts o f the Z 2 Eigen-vectors for the zeroth mode o f the first set o f QNMs 
(left panels) and the single mode in the third set of QNMs (right panels) at zero angular 
momentum for M  =  0.5 (upper panels) and M  =  1.1 (lower panels). According to our 
results given in eq. (5.16) , for M  =  0.5 the unstable mode is but for M  =  1.1 the 
instability is due to the w(3). The expected behaviour of the Eigen-vectors at the horizon 
(regularity condition) and at the asymptotic region ( Z  ~  u2M) could strongly support our 
claim about instability o f B T Z  solutions in parity-even 3D-gravity models.

It is very interesting that one can check analytically if the third set frequency corre­
sponds to true QNM eigenmode. It is straightforward to see that plugging w =  —i (1 — M 2) 
in eq. (5.5) reduces to4

)  . (5.10)

4We would like to thank our referee for his suggestion to add this analytical analysis which improves the 
manuscript and support our numerical results.
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Z-w'-

Figure 2. The eigenmodes corresponding to the first two QNMs with smallest absolute value of 
the frequencies at zero angular momentum are plotted for M  =  0.5 (upper panels) and M  =  1.1 
lower panels. The left panels are the zeroth mode in the first set and the right panels are the single 
mode in the third set.

As mentioned earlier, QNM Eigen-mode is defined with source free boundary condition at 
the asymptotic boundary which means A  =  0. Also since the eq. (5.9) is a linear equation, 
one may rescale the Eigen-mode and the QNM mode is given by,

Z  (u) =  u2M (u +  1)M2 - V i  (  E l M + f i , (M  2 +2M  —2 ) ; M  +  1; u2)  , u  =  —i ( 1 — M 2) .

(5.11)
We would like to point that one can find the Eigen-modes of other QNM frequencies in 
the first and second channels by plugging eqs. (5.7) and (5.8) into linearized eqs. (5.4) 
and (5.5) . The results for couple o f the lowest modes of the first set in the first branch are

Z  (u) =  u2M (u + 1 )- M ,

Z  (u) =  u2M (u + 1 )- M - 2 ( (u + 1 )2 — M ) ,

2M M 4 1 — M

1,1
^  = —i(M  — 1), (5.12)

1,1
u ^ = —i(M  +  1), (5.13)

1,1 u 21,1 = —i ( M + 3 ), (5.14)

1,1 
^  = —i(M + 5 ) , (5.15)Z  (u) =  u2M ( u + 1)-M  -6  ^ u ------ —  u2 + u 3

which are fascinating results supporting our numerical analysis. While we found these 
expressions one by one, it might be possible to find a general analytical solution for nth 
frequency.
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5.2 k =  0

Now let’s turn to the finite angular momentum, k =  0. In this case, by using the TT-gauge 
constraints, one can show that the linearized equation (4.1) will reduce to two coupled 
equations for the metric perturbations hr  ̂ and h ^ .  Hiring the same redefinitions intro­
duced in eqs. (5.2) and (5.3) one can find the linearized equations in new functions which 
are too lengthy and given in appendix B . Similar to the k =  0 case, the only free parameter 
in the equations is M  and there is no explicit temperature dependency. But at finite an­
gular momentum the equations are coupled. The near boundary analysis shows the same 
expansion o f the Z i , given in eq. (5.6) . Again, our numerical results are as accurate such 
that the following analytical forms o f the frequencies, which are classified in three sets, can 
be proposed

The third set has completely different dependency not only in the parameter M  but also in 
angular momentum k such that they are purely imaginary for any value of the parameters 
in the domain of our interest. Note that there is a degeneracy for any value o f angular 
momentum k and to our knowledge, this is the first example in asymptotically AdS black 
holes that there are unique modes which do not belong to any tower o f the QNMs.

On the other hand, for any value o f parameter M  and finite angular momentum k =  0, 
there are two unstable modes either in the first set or in the third set o f the frequencies given 
in eq. (5.16) . In this case all the metric fluctuations are coupled which means the static BTZ 
black hole for any theory, which has massive mode satisfying the general equation ( 4.1) , is 
dynamically unstable with respect to any non zero angular momentum perturbation.

While the structure of the first two sets is similar to what we found from analytical 
studies in eq. (4.11) , there is an obvious difference in the real part of the modes. Our 
numerical modes can move in both left and right directions since they have both signs in 
their real part. This is the second new results we found using the numerical approach to 
solve the second order linearized equation (4.1) . Unfortunately, in contrast to the previous 
subsection, we could not find the analytical Eigen-modes o f linearized coupled equations at 
non-zero angular momentum. But the numerical results are as accurate as the zero angular 
momentum case.

6 Discussion and outlook

The BI theory o f gravity is interesting for different reasons. It could be considered as a 
re-summation of infinite number of higher derivative corrections to the Einstein-Hilbert 
action while by expanding the BI action in parameter 1 /m 2, one may get NM G theory or 
its extended versions to any order. Therefore, it could provide a proper setup to investigate 
the effects of higher derivative corrections to the physical properties that one would like 
to study.

(5.16)
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In this paper we found regimes o f the parameters o f the BI theory in which static BTZ 
black holes are solutions to the equations o f motion. Then we investigate the quasinormal 
modes o f these solutions to see if there is a range o f parameters which leads to stable 
black holes.

We use the known analytical approach [11] to decompose the second order differential 
equation (4.1) , which specifies the quasinormal modes, to the first order differential equa­
tions (4.4) , and the results for left/right moving modes are given in eq. (4.11) . While the 
solutions to the later equations clearly satisfy the former one, there is no guarantee that 
all the solutions to the original equation could be found in this way. Therefore, we use 
the numerical tools to tackle the equation (4.1) with ingoing boundary condition at the 
horizon and source free boundary condition at the asymptotic region.

Our numerical analysis is based on a general form o f the linearized equation ( 4.1) in 
TT-gauge which let us to make some comments on any 3D parity even massive gravity 
theories including NMG [2], its extensions [3, 4] and ZDG [32, 33]. On the other hand, the 
numerical results are accurate which let us to propose analytic expression for the QNM 
frequencies given in eq. (5.8) , and they are promising to have analytical solutions for the 
second order linearized equation. By plugging the QNM frequencies eqs. ( 5.7) and (5.8) in 
to the eqs. (5.4) and (5.5) we found analytical solutions for some modes in vanishing angular 
momentum which confirms our numerical results. Finding a general form o f the analytical 
eingenmodes could be an interesting open question which needs further investigations. 
We didn’t study the quasinormal frequencies o f the solutions at the critical point at which 
Logarithmic modes are new solutions to the equations. This has been studied from different 
point o f views in various cases in [28, 29, 34, 35].

As we know, B TZ black hole is a solution to the three dimensional Einstein-Hilbert 
and its massive extensions, e.g. TM G, NMG and BI-model. There is a common feature in 
different dimensions that the solutions to the Einstein-Hilbert action are solutions to its ex­
tended massive gravity theories as well. The stability of these solutions in massive gravity 
models have been studied in various cases. For example, in NMG theory it was shown that 
the warped AdS geometry is unstable in all range of parameters [36] while in four dimen­
sional gravity theories instability o f Schwarzschild black holes and Kerr geometries have 
been studied in [37, 38]. Therefore this kind o f instability may have the same origin and in­
vestigating this point could help us to understand the physics o f massive spin-2 excitations.

W hat we found shows two sets o f quasinormal frequencies, with a structure similar 
to the analytical results, and new unique modes which do not belong to any tower of 
the QNMs in asymptotically AdS backgrounds. On top of that, the dependency o f the 
modes on the only parameter o f the linearized equations is such that it leads to unstable 
quasinormal modes in any regime o f the parameters in any 3D massive theory which has a 
linearized equation given in eq. (4.1) .

Although we show instability o f B TZ black holes in parity-even massive theories, we did 
not study what it decays to. The following steps has to be taken to answer this question. It 
is known that solutions to three dimensional gravity theories with higher derivative terms 
are richer than Einstein gravity and have not been completely classified [12- 15]. Therefore 
as the first step, one has to find all the solutions (including time dependent geometries) of
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the equations of motion o f the corresponding model. Then, one may study the full time 
evolution o f the perturbed B TZ within the theory. This is a very interesting open question 
which is beyond the scope o f this paper and needs further studies.

Last but not least, we would like to compare our results with the QNMs o f 5D gravity 
theories with negative cosmological constant and at the presence o f the higher derivative 
curvature terms in the action studied in [39, 40]. It was shown that at large but finite 
coupling, the branches o f the QNMs become more dense and lift up towards the real 
axis, which may lead to forming a branch cut in the limit o f zero coupling. In contrast, 
our analysis reveals a different structure either for the full BI-action or for its truncated 
expansion at any order in 1 /m 2, in which the QNMs have finite distances in the frequency 
complex plane and there is no evidence o f forming any branch cut. Comparing these two 
structures in three and five dimensional theory o f gravity in asymptotically AdS geometries 
needs more investigations.
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A  Stress tensor for BI gravity

In order to find the equation o f motion (2.7) one has to apply integration by part. The
total derivative o f this integration leads to a boundary term which has the following
well-known form

f  / —h naJ a , (A .1 )
JdM

where the expression for J a is given by,

Ja =  * [ —óg V aV 3  3 + % 7 V «V  37 — V 37 V « % 7 + V3  3  V aóg \ + óg \  V 3 Va3 + V  37 V 3 6 gai

— V3a V g óg7  7  +  V37V 7ógaP — V3 33V 7ógaY —ógg7V 7Va3 — ógpYV 7V3a +  ógajV 7V3 33] .
(A .2)

Although the expression seems too  complicated and finding the proper boundary terms for 
general metric background is impossible, for a maximally symmetric spacetime background 
eq. (A .2) reduces to

Ja =  A a(V aóg 3  3  — V 3 óga3 ) (A.3)

The terms in the parenthesis o f this surface integral is nothing but what we get from varia­
tion of the Einstein-Hilbert action and the pre-factor ctA is the fingerprint of the BI theory. 
It is well-known that using these terms one can obtain the Gibbons-Hawking-York bound­
ary term and the Brown-York stress tensor, (see e.g. [43]). Therefore, the boundary terms
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and stress tensor for the three dimensional BI theory o f gravity on maximally symmetric 
backgrounds is a multiplication o f the Einstein-Hilbert ones with aA, namely

^boundary =  2^  /  d2x^|h|K  , =  aA (K ^v -  h^vK ) . (A.4)
k3 J

To compute the free energy o f a solution one should evaluate the full on-shell action 
which is

LT =  L BI +  Lboundary +  Lct j (A -5)

where Lct is the boundary local counterterm [44]. By comparing the total action eq. (A .5) 
with the three dimensional Einstein gravity theory with negative cosmological constant, 
it is easy to show that, for a locally AdS geometry, the free energy has the same pre­
factor structure as we found for the central charge and the boundary stress tensor given in
eqs. (2.15) and (2.19) respectively.

B Non-vanishing angular momenta

The coupled linearized equations with nonzero angular momentum are more involved. In 
this appendix we show the explicit form of these equations for completeness. As we ex­
pected, at finite angular momentum, these are coupled equations given by

ao Z i(u )  +  aq Z1 (u) +  a 2 Z "(u )  +  /o  Z2(u) +  /  Z2(u) =  0 , (B.1)

50 Z i(u ) +  a  Z1 (u) +  /3b Z 2(u) +  3 i Z2(u) +  32 Z '( u )  =  0 , (B.2)

where

ao =  u (k4u2+ k 2( M - 1 )2 (u2 +  1) + ( M - 3 ) ( M - 1 ) 2(M + 1 ))  

x (M 2 ( ( 2k2 - 1 ) u2 - 1 ) +  (k2 +  1 ) u 2 (k2u2 + 1 ) +  M 4)

+ i^ 2k 6( M -  1)u6+ k 4u4 (6M 3-  11M 2 +  ( M - 2 ) ( M  +  1)u2- M + 6)

+ k2 ( 3 (M - 1 ) M  (2 (M -  1 )M 2 +  5) u2- 2  (M 4+ M 3+ 4 M - 3 )  u4 +  ( M - 3 )M u 6)

+ M  (M 2- 1 )  ( M - u ) (M + u) (2 M 2- 3M  (u2 +  1) + 9 u 2 +  1) ^

x u - u ( u 2 (k2 (M  ( - 4 M 2+ M + 4 ) + 2 ) - ( M -  1 ) ( M + 1 ) ( ( M - 1 0 ) M + 6) )

+ k2u4 (2k2(M  +  1 ) + M (3 M - 4 ) + 2 )  + 3 M 2 (M  ( - 2 M 2+ M + 2 ) - 1 )  ^ 

x u 2- i (6k2( M - 1 ) u 4+ M u 2( - 2 M 2+ 3 ( M - 3 ) u 2+ 3 M - 1)) u 3+ 3 (2 M -  1)u3u 4,

a 1 =  (u2 (2 (k2 +  1) M + k2- 2 M 3 +  5 M 2- 5 )  - k2(2 M - 3)u4+ 2 M 3- M 2- 2 M + 1 ) 

x (M 2 ( ( 2k2 - 1 ) u2 - 1 ) +  (k2 +  1 ) u 2 (k2u2 +  1 ) +  M 4)

- 2iu ^k2 (k2 +  1 ) u7 (k2+ M - 2)

+ u3 (k2(M (M (M (3 M + 2 )+ 2 ) - 5 ) - 5 )  - ( M -  1)2(M  +  1 )(M (3 M - 2) +  1))
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+ u5 (k4M (3 M - 1 ) - 2k2 (M 3 - 2 M + 3 )+ 3 (M - 2 )  (M 2- 1 ) )

+ M 2 (M 2- 1 )  (M (M + 3 ) -  1 )u ) + u V  (u2 (k2( 7 - 2 M ( 2 M + 3 ) ) - ( M 2- 1 ) ( 2 M -1 1 ) )

£0 =  - i k ^ ( M - 1 ) u 2 (k2(2 M (M (3 M + 2 ) - 3 )  - 1 ) +  M  (5M  (M 2- 2 ) - 6) - 1 )

+ k2 (k2 +  1 ) u6 (2k2+ M  +  1 ) +  ( M - 1 ) 2M 2 (2M 2+ M - 1 )

+ u4 (k4 (6M 2+ M - 1) + k 2( 2 M ( 3 M ( M + 1 ) - 1 ) - 4 ) + 3 ( M -  1 ) (M +  1)2) )̂

- 2k (M  -  1)uw (M 2 ((2k 2 + 3 ) u2 - 1 )  + u 2 ( (k 2 +  1) k2u2 + k 2 - 3 )  +  M 4)

+ iku2w2 (3u2 (2k2+ M  +  1) + 8 M 3 - 2 M 2 - 5 M - 1 )  + 6 k (M - 1)u3w3,

=  ik u (M 2 (3u2- 1 )  ((2k 2 +  1 )u2- 3 )  +  (k2 +  1 )u2 (u2 (k2 (u2 +  1 ) - 3 ) + 5 ) + M 4 (5u2- 3 ) )  

+ 2k u 2w (M 2 ((2k 2+ 3 ) u2 - 1 )  + u 2 ( (k 2 +  1) k2u2+ k2 - 3 )  +  M 4)

-  iku3w2 (8M 2+ 3 u 2 -  5) -  6ku4w3

a 0 =  4iw2 (2k5u6+ k 3u4 (4 M 2 +  (M + 2 )u 2- M - 6)

+  k M u 2 (2 M 3 - M 2 +  ( ( M - 2 ) M - 2 ) u 2- 2 M + u4 +  1) ) - 8ku3w3 ((k2 +  1) u2+ M 2- 1) , 

+4kuw ( (M 2- 1 ) u 2 (M ( - 2k2 +  ( M - 4 ) M + 2 ) - 2 )

+ k2(k2 +  1 )M u 6- u 4 (k4(M + 2 )+  k2(M ( 3 - 2 (M - 2 ) M ) - 2 )  +  ( M - 2 ) ( M 2 +  1))

-  ( M -  1 )3M ( M + 1 ))

a 1 =  - 4k (u2 - 1 ) u2 w ( ( 2k2 - 1 ) (M 2 - 1 ) u2 +  (k4+ k2) u4+ M 4 - 1 )

- 4ik (u2- 1 )  u3w2 ( (k 2 +  1) u2+ M 2- 1 ) ,

/5Ó =  u (k2 +  (M  +  1)2) (k2u2+ M 2- 1 )  (u2 (k2( 2 ( M - 2 ) M - 1 )  - ( M - 1)2)

+  k2 (k2 +  1) u4 +  (M  -  2 )(M  -  1)2M ) +  i ^ M 2(2M  - 1 )  (M 2 - 1 ) 2

+  ( M -  1)u2 (k 2 (6M 4+ 8 M 3+ M - 3 )  +  ( 1 -3 M )  (M 2 - 1 )2)

+ k2 (k2 +  1) u6 (2k2(M + 4 )  +  (M  +  1)2) + 3 u 4(M 2- 1 ) 2

+ u4 (k4(M (M (6M  +  1 1 ) - 4 ) - 7 ) - 2k2(M (M (M 2 - 4 M - 5 )+ 6 )+ 8 ) )  )

+ k2u4 (2k2+ 6M - 7 )  - 6M 4+ 2 M 3 +  5 M 2- 2 M + 1  

+ 2 iu 3w3 (3u2 (k2+ M - 2 )  - M 2- 3M  +  1) - 6u4w4,

-  (u2- 1 )  u3w2 (3k2u2- M 2 +  1) - 3i (u2- 1 )  u4w3,
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+ w2 (^M (M 2 — 1 )(2 M + 1 )(3 M —2 )u —k2u5 (2k2(M + 8) + M (3 M + 2 )+ 4 )

+ u3 (k2(M (M (4 M  —13) —4 )+ 4 ) +  (M 2 — 1 )((M  — 6)M  — 4 ))^

+ iu2w3 ( (M  — 1)2(2M  — 1) — 3u2 (2k2(M + 2 )+  M 2 — 1)) + 3 (2 M +  1)u3w4,

/3i =  (M 2 — 1)u2 (k2 (6M 3+ M 2+ 2 M + 1 ) —2 M 5+ 3 M 4 — 4 M 2+ 2 M + 1 )

+ k2u6 (k4(2 M + 3 ) + k2 (—6M 3+ M 2+ 2 M + 5 ) — 2 M 2+ 2 )

+ u4 ( V  (6M 3 +  5 M 2 — 2 ) —k2(M  — 1)2 (6M 3 +  7 M 2+ 4 M + 3 )  +  (2M  — 1) (M 2 — 1 )2)

— k4 (k2 +  1) (2 M + 1 )u 8+ M 2(2M  — 1) (M 2 — 1) 2

— iw ^u3 (k2 (6M 4+ 4 M 3 — 10M 2 — 10M  +  1) — 6M 5+ 7M 4 — 8M 2+ 6M  +  1)

+ k2 (k2 +  1) u7 (2k2+ 2 M + 1 ) + M 2 (2 M 4+ 6M 3 — 7M 2 —6M  +  5) u

+ u5 (k4 (6M 2 — 2M  — 3) —2k2 (2 M 3 — 5M 2 —4 M + 8) + 6M 3 —3 M 2 —6M + 3 ) ^

+ u2w2 ^u2 (k2 ( —4 M 2 — 6M + 7 ) —2 M 3 +  7 M 2+ 2 M  — 7)

+ k2u4 (2k2+ 6M  — 1 )—6M 4+ 2 M 3 +  7 M 2 — 2M  — 1^

+ iu3w3 (u2 (6k2+ 6M  — 3) —2 M 2 —6M  — 1) — 6u4w4,

/2  =  u (u2 — 1) (3k4M 2u4 +  (M 2 — 1) u2 (k2 (3 M 2+ 1) — M 2+ 1) +  (k6+ k 4) u6+ M 2 (M 2— 1)2)

+ iu2 (u2 — 1) w (M 2 ((3  —2k2) u2+ 3 ) +  u2 (k4u2 + k 2 (u2 +  5) —3) —3 M 4)

—u3 (u2 — 1) w2 (3k2u2 —M 2 +  1) — 3iu4 (u2 — 1) w3

O p e n  A cce ss . This article is distributed under the terms o f the Creative Commons 
Attribution License (C C -B Y  4.0) , which permits any use, distribution and reproduction in 
any medium, provided the original author(s) and source are credited.
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