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Abstract: Betulin is an important triterpenoid substance isolated from birch bark, which, together
with its sulfates, exhibits important bioactive properties. We report on a newly developed method of
betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst.
It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and
ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate
group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible,
and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain
absorption bands at 1249 and 835-841 cm-1; in the UV spectra, the peak intensity decreases; and,
in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons C3 and C28 are
completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to
betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of
a solution of the betulin disulfate H+ form has been found to be 3.86 x 10-6 + 0.004. It has been
demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable
at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has
been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier
molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the
spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.

Keywords: betulin; sulfation; catalysis; density functional theory (DFT); sulfated betulin

1. Introduction

Plant biomass is an important feedstock for a wide range of valuable chemicals [1-5].
Catalytic processing of plant lignocellulosic biomass is an urgent task [6]. Birch biomass
can serve as a source of various extractive substances. Birch bark is characterized by a
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particularly high content of extractive substances, which include mono- and triterpenoids,
hydrocarbons, alcohols, fatty and resin acids, and phenolic compounds [7-9]

Triterpene compounds represent the most important class of bioactive substances
promising for use as pharmaceutical active ingredients, drugs, and phytopreparations [10- 17].
The betulin derivatives hold a special place in a triterpenoid series. A rich source of betulin
is the Betulaceae family, especially Betula alba, Betula pubescens, Betula platyphylla, and
Betula pendula [12,14,18]. The betulin content in the birch outer bark ranges within 10-35%,
depending on atype of birch, an area and conditions of its growth, an age of the tree, and
other factors [15,18]. In the in vitro and in vivo experiments, betulin and its derivatives
exhibit the anti-inflammatory, anticonvulsant, antibacterial, antiviral, anti-HIV, antitumor,
and other types of biological activity [11- 17,19- 23].

Owing to its availability and bioactivity, betulin is well-known as a valuable natural
substance, both in its native state and in various modifications. Meanwhile, the low sol-
ubility of betulin in water limits its application in medicine, cosmetics, etc. To enhance
the water solubility of triterpenoids, different methods are used, including the salt forma-
tion, the use of special dosage forms, which ensure the vector delivery of poorly soluble
compounds, and nano- and biotechnological techniques [13,16,17,19,20,24,25]. The solu-
bility of triterpenoids can be increased via their chemical modification. In particular, the
solubility and bioavailability of triterpenoids can be improved by the complexation with
y-cyclodextrin and other compounds that can form inclusion complexes via the hydropho-
bic binding [13,17,19,20,24- 27]. Sulfation of betulin improves its water solubility. Sulfuric
esters of betulin and betulinic acid were shown to be bioactive [27,28].

The triterpenoid sulfation methods proposed previously [28,29] are based on the use
of sulfuric acid and complexes resulting from the interaction of sulfuric anhydride with
pyridine or dimethyl sulfoxide. Thus, the synthesis of betulin disulfate and betulinic acid
3-sulfate is carried out via sulfation of betulin and betulinic acid with sulfuric acid in
pyridine in the presence of acetic anhydride [28].

Sulfation of triterpenoids with chlorosulfonic or sulfamic acid in an environment
of weak bases, e.g., dimethylformamide or dioxane, not only can be accompanied by
isomerization of initial betulin [23], but the sulfated triterpenoid can be formed initially in
a slightly stable H-form [30]. As is known, the sulfur trioxide pyridine complex is a milder
sulfating reagent than the SO3- 1,4-dioxane complex; it attacks exclusively alcohol groups
and does not affect the double bond [31]. The use of pyridine in betulin sulfation instead of
1,4-dioxane and N, N-dimethylformamide excludes the formation of sulfated betulin in a
slightly stable H-form [30]; sulfated betulin has a form of a stable salt.

The aim of this work was to develop a new method for sulfation of betulin with
sulfamic acid in the presence of an Amberlyst®15 solid acid catalyst and to examine the
reaction products by Fourier-transform infrared ultraviolet-visible (UV-Vis), and nuclear
magnetic resonance spectroscopy, thermogravimetric analysis, and X-ray diffraction (XRD)
techniques. In addition, the results obtained were theoretically confirmed by the density
functional theory method.

2. Results

Sulfamic acid is often used for sulfation of natural compounds [32- 34]. In the absence
of activators, it exhibits a weak activity in the sulfation reactions [35].

In [33,34,36,37], several activators of the process of sulfation of natural polymers with
sulfamic acid were proposed: 1,4-dioxane, urea, N, N-dimethylformamide, morpholine,
piperidine, and pyridine. In [35,38,39], urea-based activators of sulfation with sulfamic
acid were studied. It was shown that urea has the highest activity. In addition, urea as an
activator of the sulfation of components of natural organic raw materials with sulfamic
acid was investigated [40-47]. It should be noted that the activating ability of urea and its
derivatives in the reactions of sulfation with sulfamic acid can be related to the presence of
hydrogen bonds and their number [48-51].



The main drawback of the above-mentioned sulfation methods is that the activator
cannot be isolated from the reaction mixture for further reuse. In addition, the use of
urea as an activator can cause side carbamation reactions [43,44,52], the role of which
remains unclear.

In this work, we studied the possibility of betulin sulfation with sulfamic acid in
pyridine in the presence of an Amberlyst®15 solid catalyst. The data on the effect of the
time of betulin sulfation with sulfamic acid on the sulfur content in the reaction product
are given in Table 1. It can be seen that the sulfur content in sulfated betulin increases with
the process time.

Table 1. Effect of conditions for the catalytic sulfation of betulin with sulfamic acid in pyridine on the
sulfur content in the product.

No. Number of Catalyst Cycles Time, h Sulfur Content, wt %
1 1 0.5 51
2 1 1.0 7,2
3 1 15 9.7
4 1 2.0 10.1
5 1 25 10.1
6 2 2.0 10.0
7 3 2.0 9.9
8 4 2.0 9.9

In addition, the stability of the catalyst during its repeated use in the process of
sulfation of betulin with sulfamic acid was examined. It is noteworthy that the sulfur
content in betulin sulfate slightly decreases at the catalyst reuse.

Thus, we canjudge about the stability of an Amberlyst-15® catalyst during the catalytic
sulfation of betulin with sulfamic acid.

Based on the experimental data obtained, we proposed a scheme for the catalytic
sulfation of betulin with sulfamic acid:

R-SO3H + SO3-NH3 " R-SO3-NH4+ + SO3- 1)

SO3 + pyridine”™ SO3* pyridine (2)
SO3* pyridine (sulfating complex) + R'-(OH)2 ~ R'-(O-SO3H)2+ pyridine ?3)
R'-(0-SO3H)2 + R-SO3NH4 ~ R'-(O-SO3NH4)2 + R-SO3H, 4)

where R is the catalyst matrix and R' is the betulin molecule.

It was shown in [563] that sulfamic acid can be in the zwitterionic form and, in the
presence of organic bases, can form a donor-acceptor complex, which will be more active
in the sulfation reactions [54,55].

According to the scheme proposed by us, during the catalytic sulfation of betulin, first,
the sorption of the zwitterionic form of sulfamic acid on the catalyst matrix occurs, which
is followed by decomposition of the acid into sulfur trioxide and ammonia, and sulfur
trioxide interacts with 1,4-dioxane with the formation of a sulfating complex. The sulfating
complex sulfates betulin and removes sulfur trioxide. This is followed by the exchange by
ammonium cations between the catalyst matrix and the acidic form of betulin sulfate.

2.1. Fourier-Transform Infrared Spectroscopy Study

The introduction of the sulfate group into the betulin molecule was confirmed by IR
spectroscopy (Figure 1).
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Figure 1. FTIR spectra of (1) betulin and (2) sulfated betulin in the sodium form.

The FTIR spectrum of the betulin disulfate sodium salt contains, along with the
absorption bands characteristic of the initial betulin, a high-intensity band of asymmetric
stretching vibrations uas (O=S=0) at 1249 cm-1 and an absorption band of stretching
vibrations u (C-O-S) [56,57] in the range of 835-841 cm-1.

2.2. Ultraviolet— Visible Spectroscopy Study

The initial and sulfated betulin was examined by UV-Vis spectroscopy (Figure 2).
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Figure 2. UV spectra of (1) betulin and (2) sulfated betulin.



To qualitatively identify the presence of sulfo groups in the betulin sulfation products,
the electronic absorption spectra in the range of 220-400 nm were reproduced in the alcohol
solution. It can be seen in Figure 2 that the UV spectra of the initial and sulfated betulin
have different profiles, which is indicative of the presence of new functional groups in the
sulfated products [58]. A factor indicating the introduction of a sulfo group into the betulin
structure is a decrease in the total intensity of the sulfation products. The introduction of
an additional functional group with an increase in the average molecular weight leads to a
decrease in the intensity in the UV range.

2.3. Nuclear Magnetic Resonance Study

The composition and structure of the betulin disulfate sodium salt was confirmed
by 13C NMR spectroscopy. According to the literature data [59], the chemical shift of the
secondary C3 carbon atom bonded to the hydroxyl group is observed at 78-79 ppm and
the chemical shift of the primary C28 carbon atom, at 59-60 ppm. An analysis of the 13C
NMR spectra of the initial betulin and the betulin disulfate sodium salt showed that the
chemical shift of the C3 carbon atom in the initial betulin is observed at 78.25 ppm and the
chemical shift of the C28 carbon atom, at 58.96 ppm. In the synthesized betulin disulfate,
the chemical shifts of the C3 and C28 carbons in comparison with betulin are completely
shifted to the low-field region (to 88.21 and 67.32 ppm, respectively). This proves the
complete replacement of the betulin hydroxyl groups by the sulfate.

2.4, X-Ray Diffraction Study

The initial betulin and betulin sulfate were analyzed by X-ray diffractometry (Figure 3).
The initial betulin has a crystalline structure with the high-intensity bands [60]. During
sulfation, a decrease in the crystallinity of betulin is observed, as is the case with its chemical
modification by other methods [61].

2000

1500

1000

Intensity

500

0 10 20 30 40 50 60 70

Degree, 20

Figure 3. XRD diffraction patterns of (1) betulin and (2) betulin sulfate.

2.5. Thermal Analysis

Figure 4 shows a thermogram of betulin and the betulin disulfate sodium salt obtained
upon heating in the argon atmosphere.
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Figure 4. Thermogram of (1) betulin and (2) betulin disulfate sodium salt: (a) DTA and (b) TG curves.

The temperature dependence of the weight loss (the TG curve) for betulin has a
plateau; the horizontal section is indicative of the stability of the chemical compound in the
investigated temperature range at the absence of chemical transformations. A vertical step
in the curve is indicative of the chemical decomposition of the material [62].

At a temperature of 134.5 0C, a loss of water contained in betulin is observed. The
weight loss is 5.83%. The TG curve reflects an intense loss in the sample mass above 260 OC.

To determine the transformation temperatures more accurately, a differential notation
was used. A peak in the DTA curve in the range of 240-260 0C is indicative of a phase
transformation in betulin, which is accompanied by the endothermic effect. This is a first-
order phase transition; in this region, betulin melts with the subsequent decomposition.

In contrast to initial betulin, in the betulin disulfate sodium salt the water loss occurs
earlier and the weight loss is 7.76%.

In the DTA curve at temperatures of 220-230 0C, the exothermic effect is reflected,
which corresponds to the decomposition of the betulin disulfate sodium salt, apparently
with the SO2 release. The weight loss is 15.5%, according to the sulfur content in betulin
disulfate. The degree of decomposition of betulin disulfate with the SO2 release in this
region is 79%, which is consistent with the data reported in [43,55,63]. We can state that
betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and
220 0C, respectively.

2.6. Acidity Constants

In this work, the product of acidity constants K1 and K2 of the solution of the be-
tulin disulfate H + form was determined by a potentiometric titration (Figure 5). The
average product of the first and second dissociation constants K1 and K2 was found to be
3.86 X 10-6 +* 0.004. Figure 5 shows the dependence of pH of the solution of the betulin
disulfate H + form on the sodium hydroxide volume.

Since the titration curve contains only one jump, it is obvious that the H + form of
betulin disulfate has similar values of the first and second dissociation constants K1 and K2.
This, most likely, originates from the betulin disulfate structure, in which sulfate groups are
distant from each other.
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Figure 5. Dependence of pH of the solution of the H + form of betulin disulfate on the sodium
hydroxide volume.

This conclusion does not contradict the data on dissociation constants of the known
dicarboxylic acids with carboxyl groups significantly distant from each other [64]; therefore,
for example, in adipic acid, the K1 and K2 values are of the same order of magnitude:
3.7 X 10-5 and 1.93 x 10-5, respectively.

According to the obtained acidity constant, the H + form of betulin disulfate is an acid
stronger than carboxylic acids, but weaker than sulfonic acids. Basing on the determined
constant, the H + form of betulin disulfate was confirmed, which can be obtained by adding
amineral acid salt to the aqueous solution.

2.7. Theoretical Calculations
2.7.1. Optimized Geometry and MEP Analysis of Betulin and Betulin Disulfate

The primary task of the quantum chemical calculations is to determine the optimized
geometry of a molecule [65-67]. The optimized geometry of betulin and betulin disulfate
was calculated using the CAM-B3LYP/6-31 + G(d, p) method. The data obtained are
presented in Figure 6, where BE is betulin and BES is betulin disulfate.

To estimate the positions of electrophilic and nucleophilic actions, as well as interac-
tions of hydrogen bonds, the MEP was calculated, which, in turn, is related to the electron
density and extremely useful [68,69]. For this purpose, MEP maps of betulin and betulin
disulfate were built, which helped us to estimate the regions of nucleophilic and elec-
trophilic attacks and the interaction of hydrogen bonds. The MEP surfaces of betulin and
disulfated betulin were determined by the CAM-B3LYP/6-31+G(d, p) method used for
optimizing molecules. The three-dimensional surface maps are shown in Figure 7.

In the MEP analysis, the reactive regions are marked by different color codes cor-
responding to the electrostatic potential color order, e. g., red <orange <yellow <green
<blue. In the MEP maps, the blue color indicates an electron-deficient area, which has a
positive electrostatic potential, and the red color indicates an electron-rich area, which has a
negative electrostatic potential. The green color in the MEP maps corresponds to a neutral
region with zero electrostatic potential [44,70].
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Figure 6. Geometrical structures of (a) betulin and (b) sulfated betulin optimized by the CAM-
B3LYP/6-31 + G(d, p) level of theory.

As can be seen in Figure 7a, hydrogen atoms attached to oxygen atoms have the lowest
electron density and are colored in blue in the map, while the electron density of oxygen
atoms is higher, which is reflected by the red color. For betulin disulfate, the picture is
different. After the introduction of sulfate groups in the 3 and 28 betulin sites and their
stabilization with sodium cations, the MEP maps change. In Figure 7b, the blue color in
the betulin disulfate MEP maps is observed mainly above the sodium atoms. In addition,
the hydrogen atoms attached to oxygen in the betulin molecule change for the sulfate, the
electron density on the oxygen atoms decreases, and the red color changes for yellow and
greenish-yellow. A similar phenomenon was observed previously in [40,41,44].
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Figure 7. MEP surfaces of (a) betulin and (b) sulfated betulin built using the CAM-B3LYP/6-31 + G
(d, p) level of theory.

2.7.2. HOMO—LUMO Analysis and Calculated Electronic Properties

The highest occupied molecular orbital (HOMO) and the lowest unoccupied molec-
ular orbital (LUMO) and their respective energies EHomo and ELumo are important for
obtaining data on the structure and reactivity of substances. The HOMO and LUMO are
called the frontier molecular orbital (FMOs) because they can determine the interaction of a
molecule with other species.

The HOMO is defined as a nucleophile that donates an electron (donor) and the
LUMO, as an electrophile that receives an electron from a nucleophile (acceptor) [69,71,72].
A molecule with a narrow band gap suggests the high polarization and is related mainly to
the high chemical reactivity and low kinetic stability. The HOMO and LUMO of betulin
and betulin disulfate calculated by the CAM-B3LYP/6-31 + G (d, p) method are plotted in
Figure 8a,b, respectively.
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Figure 8. Molecular orbital diagrams of (a) betulin and (b) sulfated betulin built using the CAM-
B3LYP/6-31 + G (d, p) level of theory.

It can be seen in Figure 8 that, during betulin sulfation, the energy gap narrows by
3.5 eV on average, which may be indicative of a higher reactivity of betulin disulfate in
comparison with the initial botulin

Basing on the HOMO-LUMO energy gap, nucleophilic index (N), optical softness
(a0), electronegativity (x), electron affinity (A), chemical potential (p), ionization energy (I),
hardness (n), softness(g), electrophilicity index (w), and maximum charge transfer index
(ANmax) were calculated (Table 2) [73- 75] using the equations

1= —Ehomo (5)
A= —Fiumo (6)
X=—2(Elumo+Ehomo) (7)
—2 (Etlumo + Ehomo) (8)
12— (Elumo —Ehomo) (9)
z=1 (10)

n

- P2
T o (11)
ANmax = — (12)

n
1

(14)



Table 2. Some electronic properties of betulin (BE) and betulin sulfate (BES) at the CAM-B3LYP and
B3LYP/6-31+G (d, p) level of theory.

Parameter (eV) BE BES
CAM-B3LYP B3LYP CAM-B3LYP B3LYP
EHOMO —8.0636 —6.4970 —7.6140 —6.0592
e lumo 2.0841 0.6027 —1.0534 —1.7704
Energy band gap 1 (AEL = 10.1477 7.0997 6.5607 4.2888
ELUMO —EHOMO)
EHOMO-1 —8.3901 —6.7860 —8.0834 —6.5468
ELUMO+L 2.8428 1.5094 —0.9562 —1.6803
Energy band gap 2 [AE2 = 11.2329 8.2954 7.1272 4.8665
(ELUMO+1) — (EHOMO-1)]
Chemical potential (p) —2.9897 —2.9471 —4.3337 —3.9148
Softness (g) 0.1971 0.2817 0.3048 0.4663
lonization energy (I) 8.0636 6.4970 7.6140 6.0592
Electron affinity (A) —2.0841 —0.6027 1.0534 1.7704
Electronegativity (x) 2.9897 2.9471 4.3337 3.9148
Chemical hardness (n) 5.0738 3.5499 3.2803 2.1444
Electrophilicity index (L) 0.8808 1.2234 2.8626 3.5734
Maximum charge transfer 0.5892 0.8302 1.3211 1.8256
index (ANmax)
Nucleophilic index (N) 1.1353 0.8174 0.3493 0.2798
Optical softness (ao) 0.0985 0.1409 0.1524 0.2332

The low kinetic stability and high biological activity, polarizability, and chemical
reactivity are indicated by the narrow HOMO-LUMO band gap [76].

The negative values of the chemical potential of molecules suggest that these molecules
are stable. The electrophilic index provides information on the ability of a molecule to bind
to biomolecules [77]. According to [78], weak electrophiles have an electrophilicity index of
w < 0.8 eV; moderate electrophiles, 0.8 < w <1.5 eV, and strong electrophiles, w >1.5 eV. In
the betulin sulfation process, the electrophilic effect is enhanced, as indicated by an increase
in the electrophilicity index from 0.8808 to 2.8626 eV in the CAM-B3LYP method and from
1.2234 to 3.5734 eV in the B3LYP method.

It should be noted that, in the CAM-B3LYP and B3LYP calculations, the introduction of
sulfate groups into the betulin molecule leads to a decrease in the chemical potential p from
—2.9897 to —4.3337 eV and from —2.9471 to —3.9148 eV, in the ionization energy | from
8.0636 to 7.6140 eV and from 6.4970 to 6.0592 eV; in the chemical hardness n from 5.0738 to
3.2803 eV and from 3.5499 to 2.1444 eV; in the nucleophilic index N from 1.1353 to 0.3493 eV
and from 0.8174 to 0.2798 eV; as well as to an increase in softness ¢ from 0.1971 to 0.3048 eV
and from 0.2817 to 0.4663 eV, in the electron affinity EA from —2.0841 to 1.0534 eV and
from —0.6027 to 1.7704 eV, in the electronegativity x from 2.9897 to 4.3337 eV and from
2.9471 to 3.9148 eV; in the maximum charge transfer index ANmax from 0.5892 to 1.3211 eV
and from 0.8302 to 1.8256 eV; and in the optical softness uo from 0.0985 to 0.1524 eV and
from 0.1409 to 0.2332 eV, respectively (Table 2).

2.7.3. Mulliken Atomic Charges

The Mulliken atomic charges play an important role in the use of quantum-chemical
calculations as applied to a molecular system for determining its dipole moment, electronic
structure, molecular polarizability, atomic charge effect, and many other characteristics [70,79,80].
These charges are expected to affect the electronic parameters, refraction, dipole moment,
and polarizability. The Mulliken atomic charges of the initial betulin and its sulfate in the
B3LYP/6-31G + (d, p) and CAM-B3LYP/6-31G + (d, p) methods are given in Table 3. The
positive charges are localized on sulfur and hydrogen atoms and the negative ones, on
oxygen; for carbon atoms there are both the positive and negative charges.
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Table 3. Mulliken atomic charges of betulin (BE) and betulin sulfate (BES) at the CAM-B3LYP and

B3LYP/6-31+G (d, p) levels of theory.

BE BES

Label Symbol CAM-B3LYP B3LYP Label Symbol CAM-B3LYP B3LYP
1 C —0.20309 —0.2021 1 C —0.22973 —0.22872
2 C 0.18481 0.18906 2 C 0.18324 0.18934
3 C 0.01401 0.01816 3 C 0.00964 0.01468
4 C —0.05888 —0.0508 4 C —0.07512 —0.06891
5 C 0.05783 0.05865 5 C 0.05565 0.05635
6 C —0.20435 —0.19927 6 C —0.20148 —0.19788
7 C —0.19031 —0.19141 7 C —0.19045 —0.1918
8 C —0.1909 —0.19068 8 C —0.19249 —0.19222
9 C 0.04579 0.04836 9 C 0.04544 0.04774
10 C —0.06271 —0.0556 10 C —0.07765 —0.06991
11 C 0.07032 0.07734 11 C 0.06934 0.07627
12 C —0.06643 —0.06291 12 C —0.0649 —0.06222
13 C —0.18767 —0.18994 13 C —0.18787 —0.19012
14 C —0.19296 —0.19412 14 C —0.19225 —0.19329
15 C —0.21532 —0.2128 15 C —0.21202 —0.20973
16 C —0.17216 —0.17377 16 C —0.18315 —0.18554
17 C 0.01376 0.02268 17 C —6.45E-4 0.00905
18 C —0.07535 —0.07321 18 C —0.07845 —0.07622
19 C —0.19513 —0.19369 19 C —0.1947 —0.1942
20 C —0.18731 —0.18628 20 C —0.19282 —0.1934
21 C —0.11263 —0.11347 21 C —0.11335 —0.11266
22 @) —0.56017 —0.55848 22 @) —0.57467 —0.58
23 C —0.29325 —0.29311 23 C —0.30288 —0.30325
24 C —0.3145 —0.31645 24 C —0.31418 —0.31685
25 C —0.32162 —0.32217 25 C —0.31836 —0.31921
26 C 0.05309 0.05169 26 C 0.03722 0.03911
27 C —0.31074 —0.31217 27 C —0.31306 —0.31459
28 C —0.33367 —0.33536 28 C —0.33572 —0.33768
29 C 0.15887 0.16828 29 C 0.16241 0.16996
30 C —0.36417 —0.36923 30 C —0.36498 —0.36949
31 C —0.2996 —0.29698 31 C —0.29878 —0.29611
32 @) —0.54748 —0.54509 32 @) —0.54583 —0.55022
33 H 0.1048 0.10177 33 H 0.12979 0.12677
34 H 0.09295 0.09169 34 H 0.09161 0.09019
35 H 0.08495 0.08254 35 H 0.09965 0.09586
36 H 0.05337 0.05213 36 H 0.13211 0.13113
37 H 0.10024 0.09727 37 H 0.08427 0.0821
38 H 0.0719 0.07075 38 H 0.13803 0.13532
39 H 0.0885 0.0889 39 H 0.07823 0.07888
40 H 0.09337 0.09139 40 H 0.08748 0.08604
41 H 0.08774 0.08523 41 H 0.07866 0.07653
42 H 0.08704 0.08641 42 H 0.09884 0.09788
43 H 0.06821 0.06817 43 H 0.10117 0.09971
44 H 0.08341 0.08274 44 H 0.07921 0.0789
45 H 0.09383 0.0913 45 H 0.0897 0.08761
46 H 0.08689 0.08867 46 H 0.09033 0.09176
47 H 0.08982 0.08987 47 H 0.08277 0.08326
48 H 0.08967 0.08751 48 H 0.09089 0.08839
49 H 0.09365 0.09198 49 H 0.08868 0.08699
50 H 0.08919 0.08727 50 H 0.09186 0.0901
51 H 0.09946 0.09543 51 H 0.1076 0.10509
52 H 0.08699 0.08781 52 H 0.08374 0.08357
53 H 0.08231 0.0818 53 H 0.08349 0.08281
54 H 0.06581 0.06409 54 H 0.12012 0.11787
55 H 0.09886 0.09787 55 H 0.09005 0.08945




Table 3. Cont.

BE BES

Label Symbol CAM-B3LYP B3LYP Label Symbol CAM-B3LYP B3LYP
56 H 0.1011 0.10052 56 H 0.11287 0.11204
57 H 0.09352 0.09118 57 H 0.08921 0.08717
58 H 0.08797 0.08677 58 H 0.08784 0.08778
59 H 0.30411 0.30184 59 H 0.1285 0.12782
60 H 0.10399 0.10187 60 H 0.09061 0.08926
61 H 0.09188 0.09124 61 H 0.09559 0.09434
62 H 0.09807 0.09677 62 H 0.0856 0.08599
63 H 0.0944 0.09438 63 H 0.09401 0.09461
64 H 0.09969 0.09982 64 H 0.09462 0.09426
65 H 0.09838 0.09805 65 H 0.0911 0.09123
66 H 0.09449 0.0942 66 H 0.09448 0.09386
67 H 0.10248 0.10202 67 H 0.09695 0.09611
68 H 0.09944 0.09872 68 H 0.1333 0.13009
69 H 0.0819 0.08019 69 H 0.11729 0.11281
70 H 0.1016 0.10022 70 H 0.10554 0.10448
71 H 0.10214 0.10139 71 H 0.09637 0.09664
72 H 0.09582 0.0964 72 H 0.09323 0.09188
73 H 0.09797 0.09658 73 H 0.10952 0.1082
74 H 0.09717 0.09619 74 H 0.09666 0.09747
75 H 0.09912 0.09985 75 H 0.10339 0.10164
76 H 0.10177 01 76 H 0.11443 0.11385
7 H 0.11392 0.11365 7 H 0.10407 0.1031
78 H 0.10872 0.10765 78 H 0.11323 0.1131
79 H 0.11357 0.11327 79 H 0.09275 0.09116
80 H 0.09079 0.08897 80 H 0.08375 0.0818
81 H 0.08773 0.08596 81 S 1.40967 1.41359
82 H 0.30721 0.30457 82 (0] —0.62093 —0.6217
- - - - 83 (0] —0.52194 —0.52206
- - - - 84 (0] —0.64718 —0.64532
- - - - 85 Na 0.59859 0.60197
- - - - 86 S 1.44977 1.45217
- - - - 87 (0] —0.53987 —0.53873
- - - - 88 (0] —0.62287 —0.62426
- - - - 89 (0] —0.65891 —0.65632
- - - - 90 Na 0.60311 0.60553

It should be noted that the introduction of a sulfate group into the betulin molecule
affects almost all Mulliken atomic charges of all atoms in the system. Therefore, in the CAM-
B3LYP and B3LYP calculations, the Mulliken atomic charges for C2 and C26 decrease from
0.18481 to 0.18324 e and increase from 0.18906 to 0.18934, respectively, as was confirmed
in [40,41], which, in turn, is related to the electrophilic-nucleophilic effects [81-83].

2.7.4. Spectroscopic Analysis

The physicochemical characteristics of natural compounds can be successfully deter-
mined by the DFT method [84-87]. An important aspect of the theoretical spectroscopic
studies is obtaining FTIR and NMR spectroscopy data [88- 93].

To carry out thorough spectroscopic investigations of the initial and sulfated betulin,
we calculated theoretical FTIR and NMR spectra. The theoretical FTIR spectra of the
initial and sulfated betulin contain several absorption bands with different relative inten-
sities. The spectra were calculated for the DFT method with the 6-31+G (d, p) basis set
(Figure 9, Table 4).
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Figure 9. Theoretical FTIR spectra at B3LYP/6-31 + G (d, p) scaled by 0.9608 cm 1 for (a) betulin and
(b) betulin sulfate.



Hydrogen
Atom
80-H
81-H
69-H

Chemical
Shift (ppm)

5.1189
5.0522
3.8844

Table 4. Some important FTIR data (cm 3) calculated at B3LYP/6-31 + G (d, p) for betulin (BE) and
betulin sulfate (BES) and scaled by a factor of 0.9608.

BE BES
O-H 3671 and 3670 C-H (CH2=) 3107 and 3032
C-H (CH2=) 3107 and 3032 C-H 3033-2901

C-H 3038-2835 C-H (=C-CH3) 2998 and 2905

C-H (=C-CH3) 3002 and 2906 C=C 1658
1227,1209,1074,1068,

C-H (CH2-OH) 2954 and 2870 O-§ 941, 931
CH (CH-OH) 2940 and 2925 CH2 (O9) 2984,1474,1210

C=C 1657 Na-O 307 and 295

2.7.5. O-H Vibration

It is well-known [94,95] that vibrations of the O-H group are most sensitive to the
environment. The presence of a hydrogen bond in such a compound allows one to shift
to the low-frequency regions with an increase in the intensity in the FTIR spectra. In the
theoretical FTIR spectra of the initial betulin, stretching vibrations of OH groups were
observed around 3671 and 3670 cm-1. In sulfated betulin, these fluctuations were not
observed due to the complete replacement of the hydroxyl group by the sulfate group.

2.7.6. C-H Vibration

The heterocyclic CH group gives rise to several fundamental frequencies, including
stretching (symmetric and asymmetric in-plane and out-of-plane bending vibrations). The
stretching modes (asymmetric and symmetric) usually appear at ~3100 and 3000 cm-1 [96,97].
In the theoretical FTIR spectra, vibrations of the C-H group in the betulin samples were
observed at 3107, 3032, and 3038-2835 cm-1. For betulin sulfate, vibrations of C-H groups
are observed at 3107 and 3032, 3033-2901, and 2984 cm-1.

2.7.7. C=C Vibration

In the theoretical FTIR spectra, stretching vibrations of the C=C group for betulin and
betulin sulfate were observed at 1657 and 1658 cm-1, respectively.

2.7.8. O-S Vibration

In the theoretical FTIR spectra, stretching vibrations of the O-S group for sulfated
betulin was observed at 1227, 1209, 1074, 1068, 941, and 931 cm-1. In the experimental
FTIR spectra, vibrations of this group were observed around 1249 cm-1 and 835-841 cm-1,
which is consistent with the results reported in [56,98].

In addition, to estimate the qualitative changes in betulin during sulfation, theoretical
NMR spectra were calculated (Figure 10, Table 5). According to the data given in Table 5, a
strong signal shift from 67.3998 to 80.5108 ppm for the C3 atom (C2 in the table) and from
61.5732 to 63.9693 ppm for the C28 atom (C26 in the table) is observed. The results obtained
agree well with the experimental data presented in Figure 11. The difference in numbering
is explained by the different numbering in the classical nomenclature of the chemistry of
tripertinoid compounds and in software.

Table 5. IHNMR and 13CNMR data for betulin (BE) and sulfated betulin (BES) calculated at
B3LYP/6-31 + G (d, p).

BE BES
Carbon Chemical Hydrogen Chemical Carbon Chemical
Atom Shift (ppm) Atom Shift (ppm) Atom Shift (ppm)
29-C 140.0163 79-H 5.156 29-C 140.1273
31-C 93.0736 80-H 5.0961 31-C 93.0158
2-C 67.3998 68-H 4.2101 2-C 80.5108
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Table 5. Cont.

BE BES

Hydrogen Chemical Carbon Chemical Hydrogen Chemical Carbon Chemical
Atom Shift (ppm) Atom Shift (ppm) Atom Shift (ppm) Atom Shift (ppm)
35-H 3.4006 26-C 61.5732 35-H 4.1063 26-C 63.9693
70-H 3.2142 10-C 44.2637 69-H 3.644 10-C 42,9424
58-H 3.0378 4-C 42.8496 58-H 3.1113 18-C 41.8903
44-H 2.2612 18-C 41.2406 36-H 2.7828 21-C 40.439
34-H 2.2327 17-C 40.3549 33-H 2.6308 4-C 40.0096
57-H 2.2152 21-C 40.2103 57-H 2.311 17-C 38.9887
79-H 2.0347 9-C 38.2528 44-H 2.2933 9-C 38.1393
55-H 2.0335 11-C 36.727 34-H 2.124 11-C 36.4112
77-H 1.9339 3-C 32.7851 38-H 2.1138 3-C 32.9181
49-H 1.9317 5-C 32.6781 78-H 2.0739 5-C 32.3275
51-H 1.8729 12-C 29.4602 55-H 2.0641 12-C 29.5149
39-H 1.8035 20-C 26.4429 76-H 1.9848 20-C 26.7763
53-H 1.796 6-C 25.4542 54-H 1.9815 6-C 25.9807
78-H 1.7151 8-C 24.085 49-H 1.9654 8-C 23.9728
47-H 1.6804 16-C 22.1573 53-H 1.9604 19-C 22.9769
43-H 1.6769 19-C 22.0667 43-H 1.944 16-C 21.3784
42-H 1.6543 15-C 20.998 51-H 1.844 15-C 20.8974
48-H 1.6326 23-C 20.0705 39-H 1.7884 23-C 18.9603
37-H 1.6259 13-C 18.8465 77-H 1.7473 13-C 18.6958
46-H 1.6253 1-C 17.938 42-H 1.7136 30-C 16.8118
40-H 1.582 30-C 16.8562 47-H 1.6841 1-C 14.6996
33-H 1.563 14-C 14.6112 46-H 1.6692 27-C 14.5464
41-H 1.5611 27-C 13.6592 48-H 1.654 14-C 14.3916
74-H 1.5597 28-C 13.0177 40-H 1.6504 28-C 12.8152
54-H 1.5306 7-C 12.1492 73-H 1.6266 7-C 12.3059
45-H 1.5145 25-C 7.8876 45-H 1.5462 24-C 7.7267
68-H 1.494 24-C 7.6367 41-H 1.5179 25-C 7.5684
52-H 1.4371 - - 52-H 1.5156 - -
56-H 1.3537 - - 37-H 1.4956 - -
59-H 1.3506 - - 56-H 1.4865 - -
50-H 1.2945 - - 67-H 1.4568 - -
76-H 1.2901 - - 75-H 1.3469 - -
72-H 1.2891 - - 59-H 1.3319 - -
36-H 1.2623 - - 50-H 1.3168 - -
60-H 1.2384 - - 60-H 1.2996 - -
61-H 1.196 - - 71-H 1.2321 - -
38-H 1.1732 - - 70-H 1.1811 - -
71-H 1.1562 - - 63-H 1.1485 - -
64-H 1.1243 - - 65-H 1.1308 - -
75-H 1.1019 - - 74-H 1.1244 - -
66-H 1.0916 - - 64-H 0.965 - -
63-H 1.0154 - - 62-H 0.9579 - -
65-H 0.9691 - - 61-H 0.9354 - -
67-H 0.8833 - - 66-H 0.8736 - -
82-H 0.8301 - - 72-H 0.5335 - -

62-H 0.7253 - - - - - -
73-H 0.6054 - - - - - -
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Figure 10. Theoretical 1H and 13C NMR spectra of betulin (BE) and sulfated betulin (BES) at

B3LYP/6-31 + G (d, p).
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Figure 11. NMR spectrum of the betulin disulfate sodium salt.



3. Material and Methods
3.1. Sulfation of Betulin

In the sulfation experiment, 50 mL of dehydrated pyridine, 6 g of sulfamic acid, and
2 g of betulin were placed in a 100 mL three-necked flask equipped with a mechanical stirrer
and a thermostat. The reaction mass was heated to 90 °C, 0.3 g of an Amberlyst®15 catalyst
was added, and the mixture was kept at this temperature for 0.5-2.5 h. Then, the reaction
mixture was cooled down to 10-15 °C, diluted with 30 mL of water, and neutralized with
the 10% aqueous sodium hydroxide solution to pH 9; the catalyst solution was separated by
filtration on a paper filter. The solution was evaporated to dryness under a water jet vacuum
pump. The solid residue was added with anhydrous ethanol (70 mL) and the mixture was
refluxed for 30 min. The hot mixture was filtered and the mother liguor was evaporated to
dryness under a water jet vacuum pump. In the physicochemical investigations, betulin
disulfate recrystallized from ethanol with the maximum sulfur content was used.

The betulin disulfate H-form was obtained from the betulin disulfate sodium salt by
the ionic method on a KU-2-8 cation exchanger according with the procedures described
in [56,99,100]. Previously, a commercial KU-2-8 ion exchange resin in the Na+ form was
transferred to the H+ form. To do this, an aqueous 2 M HCI solution was transmitted
through a layer of KU-2-8 resin in the Na+ form homogeneously mixed with distilled water
and placed in a50 mL vertical glass column 15-20 mm in diameter with a tap at the bottom.
The hydrochloric acid solution flew out of the column. Then, the resin was washed with
distilled water until the wash water was neutral in methyl red. The solution of ~1.0 g of
betulin disulfate sodium salt recrystallized from ethanol in 50 mL of distilled water was
transmitted through the prepared cation resin layer. After the passage of the solution of
betulin disulfate sodium salt through the column, the resin in the column was washed
three times with distilled water (20 mL each). The washing liquids were collected and
the solution was evaporated to dryness under a water jet vacuum pump at a distillation
temperature of no higher than 40 °C.

The content of hydrogen ions in the H + form was determined by an acid-base titration.
A sample weight of the H+ form (0.0400-0.0500 g) was dissolved in 25 mL of water. The
5 mL samples were taken and the titration with 0.01 N sodium hydroxide solution in methyl
red until the yellow solution was performed.

The acidity constant of the solution of the betulin disulfate H + form was determined
by a potentiometric titration. A sample weight of the H + form (0.0400-0.0500 g) was
dissolved in a water-alcohol solution consisting of 10 mL of water and 15 mL of ethanol.
Three 20 mL aliquots were taken and the potentiometric titration of each of them with the
0.01 N sodium hydroxide solution was performed. The dependence of the solution pH on
the titrant volume was plotted. The average value of the acidity constant was calculated

using the formula
K = °af (15)

where A is the concentration of hydrogen ions at the equivalent point (mol/L) and B is the
initial solution concentration (mol/L).

3.2. Methodsfor Physicochemical Analysis

The elemental analysis of the sulfated samples was carried out on a Thermo Quest
Flash EA-1112 elemental analyzer (Italy).

The FTIR spectra of the initial and sulfated betulin were recorded on a Shimadzu IR
Tracer-100 spectrometer (Japan) in the wavelength range of 400-4000 cm-1. The spectral
data were analyzed with the OPUS program (version 5.0). Solid samples for the analysis
were prepared in the form of tablets in a KBr matrix (2-mg sample/1000-mg KBr).

The UV-Vis spectra were recorded on a Leki Instruments SS2109-UV scanning spec-
trophotometer (Finland) using 1-cm quartz cells. Cell thermostating (£0.1 K) was per-
formed in a Haake K15 thermostat connected to a Haake DC10 controller. The absorbance



of the process solutions was measured within 220-400 nm. All the measurements were
performed at a temperature of 298 K.

The 13C NMR spectra were recorded on a Bruker Avance 11l 600 MHz spectrometer in
deuteromethanol with a reference to the deuterium resonance of the solvent.

The X-ray diffraction study was carried out on a DRON-3 X-ray diffractometer
(monochromatic CuKa radiation, /1= 0.154 nm) at a voltage of 30 kV and a current of
25 mA. The scanning step was 0.02 deg and the intervals were 1 s per data point. The
measurements were performed at the 20 Bragg angles ranging from 5.00 to 70.00 0.

The thermal analysis was carried out in a corundum crucible using an STA 449 F1
Jupiter instrument (NETZSCH) in the temperature range from 30 to 600 °C at a heating
rate of 10 °C/min in an argon flow; the shielding and purge gas flow rates were 20 and
50 mL/min, respectively. The measured data were processed using the NETZSCH Proteus
Thermal Analysis 5.1.0 software package supplied with the instrument.

3.3. Computational Details

All DFT calculations were performed in the Gaussian 09W [101] and Gaussview
5.0 [102] molecular package programs for the ground state and gas phase. At the first
stage of the DFT study, the geometry of monomers was optimized. The two DFT methods
used were the Becke's three-parameter functional [103,104] and the gradient-corrected
correlational functional proposed by Lee, Yang, and Parr (B3LYP) and its combination with
the Coulomb attenuating method (CAM-B3LYP) [105,106]. For the optimized geometries,
the molecular electrostatic potential (MEP) and the highest occupied molecular orbital
(HOMO)—the lowest unoccupied molecular orbital (LUMO) analysis of betulin and sul-
fated betulin was made using the CAM-B3LYP/6-31 + G (d, p) level of theory. The FTIR
and NMR theoretical analysis was made using the B3LYP/6-31 + G (d, p) level of theory.

4. Conclusions

A method for the sulfation of betulin with sulfamic acid in pyridine in the presence
of a solid catalyst Amberlyst®15 is proposed. It has been shown that this catalyst remains
stable in multicycle tests during sulfation of betulin with sulfamic acid in pyridine.

The resulting betulin sulfate was studied both by physicochemical methods, including
FT-IR, UV-visible and NMR spectroscopy, X-ray diffraction analysis and TGA, and by DFT.
The acidity constant of the acidic form of betulin sulfate has been studied. It is shown that
the introduction of a sulfate group into the betulin molecule leads to the appearance of
absorption bands in the FT-IR spectra characteristic of the S-O group. X-ray diffraction
showed that sulfation leads to amorphization of the original betulin. It has been shown
by UV-visible spectrophotometry that the introduction of a sulfate group into the betulin
molecule leads to a decrease in the intensity of the peaks in the UV spectra. In addition, the
average product of the first and second dissociation constants of the acidic form of betulin
sulfate was determined.

Data on the most stable conformations and molecular electrostatic potential of betulin
and betulin disulfate were obtained by the DFT method. The energy gaps for the original
and sulfated betulin were found. It has been shown that betulin sulfate is more reactive
than the original betulin. The DFT method was used to calculate the spectral characteristics
of the original and sulfated betulin, which turned out to be in good agreement with the
experimental data.

The developed sulfation method has great application potential, as it opens up new
possibilities for separation, catalyst recycling, and reducing the cost of reagents.
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