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Barbara Rychalska1,4 , Tomasz Trzciński1,2,3 and Bartosz Zieliński3,5
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Abstract
Recently introduced self-supervised methods for
image representation learning provide on par or su-
perior results to their fully supervised competitors,
yet the corresponding efforts to explain the self-
supervised approaches lag behind. Motivated by
this observation, we introduce a novel visual prob-
ing framework for explaining the self-supervised
models by leveraging probing tasks employed pre-
viously in natural language processing. The prob-
ing tasks require knowledge about semantic rela-
tionships between image parts. Hence, we pro-
pose a systematic approach to obtain analogs of
natural language in vision, such as visual words,
context, and taxonomy. We show the effective-
ness and applicability of those analogs in the con-
text of explaining self-supervised representations.
Our key findings emphasize that relations between
language and vision can serve as an effective yet
intuitive tool for discovering how machine learn-
ing models work, independently of data modality.
Our work opens a plethora of research pathways to-
wards more explainable and transparent AI.

1 Introduction
Visual representations are cornerstones of a multitude of
contemporary computer vision and machine learning ap-
plications, ranging from visual search [Sivic and Zisser-
man, 2006] to image classification [Krizhevsky et al., 2012]
and visual question answering (VQA) [Antol et al., 2015].
However, learning representations from data typically re-
quires tedious annotation. Therefore, recently introduced
self-supervised representation learning methods concentrate
on decreasing the need for data labeling without reducing
their performance [Chen et al., 2020b; Grill et al., 2020;
Caron et al., 2020]. Because of the fundamental role rep-
resentations play in real-life applications, a lot of research
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Figure 1: Probing tasks, widely used in natural language processing,
validate if a representation implicitly encodes a given property, e.g.,
sentence topic or length. We introduce a visual taxonomy along with
the corresponding probing framework that allow to build analogous
visual probing tasks and explain the self-supervised image represen-
tations. As a result, we e.g. discover that even though all analysed
models build similar semantic knowledge, some of them focus more
on texture and therefore achieve better accuracy on target tasks.

focuses on explaining these embeddings [Vulić et al., 2020;
Eichler et al., 2019; Huang and Li, 2020]. Nevertheless, most
of them concentrate on fully supervised embeddings [Zhang
and Zhu, 2018] and not on their self-supervised counter-
parts. Moreover, the majority of the proposed approaches
rely on pixel-wise image analysis [Simonyan et al., 2014;
Adebayo et al., 2018], while general semantic concepts
present in the images are often ignored.

Here, we attempt to overcome these shortcomings and
draw inspiration from a simple yet often overlooked obser-
vation that humans use language as a natural tool to explain
what they learn about the world through their eyes [Kumar
and Talukdar, 2020]. Therefore, considering that the very
same machine learning algorithms can be successfully ap-
plied to solve both vision and natural language processing
(NLP) tasks [Dosovitskiy et al., 2020; Carion et al., 2020],
we postulate that the methods used to analyze text represen-
tation can also be employed to investigate visual inputs.

Very popular tools for explaining textual embeddings are
probing tasks [Conneau et al., 2018]. As shown in the up-
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per part of Fig. 1, a probing task in NLP is a simple classifier
that asks if a given textual representation encodes a particu-
lar property, such as a sentence length or its semantic con-
sistency, even though this property was not a direct training
objective. For instance, we can create a textual probing task
by substituting a word in a sentence and checking if a simple
classifier that takes the representation of the original and al-
tered sentence can detect this change. By analyzing the accu-
racy of a probing task, one can verify if the investigated repre-
sentation contains certain information and understand the ra-
tionale behind embedding creation. However, while probing
tasks are straightforward, intuitive, and widely used tools in
NLP, their computer vision application is limited [Alain and
Bengio, 2017], mainly due to the lack of appropriate analogs
between textual and visual modalities.

In this paper, we address this limitation by introducing a
mapping between vision and language that enables applying
the NLP probing tools in the computer vision (CV) domain.
For this purpose, in Sec. 3, we propose a taxonomy of visual
units that includes visual sentences, words, and characters.
We then employ these units as building blocks for a more
general visual probing framework that contains a variety of
NLP-inspired probing tasks, such as word content, sentence
length, character bin, and Semantic Odd Man Out [Conneau
et al., 2018; Eichler et al., 2019]. The results we obtain pro-
vide us with unprecedented insights into semantic knowledge,
complexity, and consistency of self-supervised image repre-
sentations, e.g. we discover that semantics of the image only
partially contribute to target task accuracy. Our framework
also allows us to compare the existing self-supervised repre-
sentations from a novel perspective, as we show in Sec. 5.

Our contributions can be therefore summarized as follows:

• We propose a mapping between visual and textual
modalities that constructs a visual taxonomy.

• We introduce novel visual probing tasks for comparing
self-supervised image representations inspired by simi-
lar methods used in NLP.

• We show that leveraging the relationship between lan-
guage and vision serves as an effective yet intuitive tool
for discovering how self-supervised models work.

2 Related Works
The visual probing framework aims to explain image repre-
sentations obtained from self-supervised methods. It is in-
spired by probing tasks used in NLP. Therefore, we consider
related works from three research areas: self-supervised com-
puter vision models, probing tasks in natural language pro-
cessing, and explainability methods in computer vision.

Self-supervised computer vision models. Recently pub-
lished self-supervised methods provide state-of-the-art results
across computer vision tasks. They usually base on con-
trastive loss [Hadsell et al., 2006] that measures the similar-
ities of patches in representation space and aims to discrim-
inate between positive and negative pairs. The positive pair
contains modified versions of the same image, while the nega-
tive pairs correspond to two images in the same dataset. One
of the methods, MoCo v1 [He et al., 2019] trains a slowly

progressing visual representation encoder, driven by a mo-
mentum update. This encoder plays a role of a memory bank
of past representations and delivers negative examples. Sim-
CLR v2 [Chen et al., 2020b], unlike MoCo v1, proposes a
different way of generating negative pairs. Instead of a mem-
ory bank, they propose to use a large batch size of up to 4096
examples. Other improvements proposed by SimCLR v2 are
a projection head and carefully tuned data augmentation. The
projection head maps representations to space where con-
trastive loss is applied, which is important due to the loss of
information. BYOL [Grill et al., 2020] also uses the projec-
tion head, but unlike MoCo v1 and SimCLR v2, it achieves
a state-of-the-art performance without the explicitly defined
contrastive loss function, so it does not need negative exam-
ples. On the other hand, SwAV [Caron et al., 2020] takes
advantage of contrastive methods without pairwise compar-
isons. Instead, it learns the representations by clustering them
and predicting the labels of their clusters. Our paper provides
a framework to analyze the representation generated by those
methods in terms of the semantic knowledge they encode.

Probing tasks in NLP. One of the classic examples of the
NLP probing task aims to probe sentence embeddings for in-
teresting linguistic features such as the depth of the parse tree
or whether the sentence contains a specific word [Conneau
et al., 2018]. Others propose to focus on lexical knowledge
concerning the qualities of individual words more than the
whole sentences [Vulić et al., 2020; Eichler et al., 2019].
We consider both these objectives in our approach, i.e. we
study probing tasks on specific concepts and their composi-
tions. Moreover, while most works on probing tasks focus on
one selected language, the others [Eichler et al., 2019] are de-
signed with multilingual settings in mind. This paper reflects
the latter because it can be applied to various image domains.

Explainability methods in CV representation learning.
The existing methods for explaining image representations
either verify the relevance of hidden layers of supervised clas-
sification networks [Alain and Bengio, 2017] or highlight in-
dividual pixels that are essential for the model [Simonyan
et al., 2014; Adebayo et al., 2018]. Moreover, they usually
generate the important regions as pixel clouds, which are not
understood as concrete semantic concepts. In contrast, ap-
proaches such as [Huang and Li, 2020; Ghorbani et al., 2019]
aim to detect important image segments but are often diffi-
cult to understand in practice, even though they are crucial
for the model objective. In this work, we extend the existing
methods by analyzing the semantic information stored in the
self-supervised representation.

3 Visual Probing

This section introduces a novel visual probing framework that
analyzes the information stored in self-supervised image rep-
resentations. For this purpose, in Sec. 3.1, we propose a map-
ping between visual and textual modalities that constructs a
visual taxonomy. As a result, the image becomes a “visual
sentence” and can be analyzed with visual probing tasks in-
spired by similar methods used in NLP (see Sec. 3.2).
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Figure 2: The process of dividing an image into visual words. First, an image is segmented into multiple superpixels: P0, P1, . . ., P10. Then,
each superpixel is embedded in the latent space previously used to generate the dictionary of visual words: W0, W1, W2, W3. Finally, each
superpixel is assigned to the closest word in the visual word dictionary. This results in mapping between vision and language and enables
using the visual probing framework that includes a variety of NLP-inspired probing tasks.

3.1 Mapping Between Vision and NLP
While an image can be considered a sentence equivalent in a
probing task, the question remains, what is the equivalent to
words and characters? There are multiple possible answers to
this question. One of the intuitive ones is to divide an image
into non-overlapping superpixels that group pixels into per-
ceptually meaningful atomic regions [Achanta et al., 2012].
As a result, we obtain an image built from superpixels as an
analogy of a sentence built from the words. The superpix-
els, similarly like words, have order and meaning. Moreover,
each superpixel contains a specific number of pixels, like the
number of word’s characters. As a consequence, we obtain
an intuitive mapping between visual and textual domains.

However, superpixels treated as visual words would signif-
icantly differ from their linguistic counterparts because they
do not repeat between images, while in text, the words of-
ten repeat between sentences. Therefore, we propose to de-
fine visual words as the clusters of superpixels in represen-
tation space and assign each superpixel to the closest cen-
troid. For this purpose, we could use the original definition
of visual words from [Leung and Malik, 2001]. However,
it does not take into account the importance of those words
for a model’s prediction. Therefore, instead of that, we use
TCAV methodology [Kim et al., 2018; Ghorbani et al., 2019]
that generates high-level concepts, which are important for
prediction and easily understandable by humans. Such an ap-
proach requires a supervisory training network but generates
visual words independent of any compared self-supervised
techniques, which is crucial for a fair comparison. Therefore,
the process of dividing an image into visual words consists
of three steps: segmentation into superpixels, their encoding,
and assignment to visual words (see Fig. 2).

3.2 Visual Probing Tasks
After dividing an image into visual words, it can be analyzed
by the visual probing framework, which can adapt almost any
NLP probing task. Here, we describe the four that are well

known by the NLP community [Conneau et al., 2018; Eichler
et al., 2019]. Moreover, except for defining visual probing
tasks, we provide their original NLP definitions to make the
paper self-contained.

Word Content (WC). The word content probing task aims
to identify which visual words are present in the image. The
input of this probing task is a self-supervised representation
of the image. The target labels represent the presence of a
particular visual word. As we describe in Sec. 4, we se-
lect 100 representative visual words. Hence, there are 100
binary target labels. Fig. 2 illustrates the process of deter-
mining which visual words are present in the image. The
NLP inspiration of the task probes for surface information,
the type of information that does not require any linguistic
knowledge [Conneau et al., 2018]. In contrast, its adaptation
requires semantic knowledge to understand which concept is
represented by a superpixel.

Sentence Length (SL). The aim of the sentence length
probing task is to distinguish between simple and complex
images, as presented in Fig. 3. The input of this probing
task is a self-supervised representation of the image. The
target label is the number of unique visual words in the im-
age, which can be determined based on the WC labels. The
original NLP probing task predicts the number of words (or
tokens) and retains only surface information [Conneau et al.,
2018]. At CV, it serves as a proxy for semantic complexity,
requiring the semantic understanding of the image.

Character Bin (CB). The aim of the character bin prob-
ing task is to check whether the representation stores infor-
mation about the complexity of the image. The input of this
probing task is a self-supervised representation of the image’s
superpixel. The target label is the size of the superpixel de-
fined as the number of non-grey pixels, as presented in Fig. 4.
The original NLP probing task is defined as a classifier of the
number of characters in a single word [Eichler et al., 2019].
From this perspective, the character bin retains only surface
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Figure 3: The SL probing task measures how well the representation
encodes the information about the number of unique visual words in
the image. Top row: a low number of unique visual words (<13).
Bottom row: a high number of unique visual words (>42).

Figure 4: The CB probing task measures if the representation retains
information about the superpixel’s size. Top row: examples of large
superpixels. Bottom row: example of small superpixels.

information in both domains.

Semantic Odd Man Out (SOMO). The objective of the
SOMO probing task is to predict whether the image was mod-
ified by replacing a random superpixel in the image with a
similarly shaped superpixel from another image, and corre-
sponding to a different visual word, as presented in Fig. 5.
The input of this probing task is a self-supervised represen-
tation of the image. The target label is binary, i.e. the im-
age was modified or not. The original NLP task predicts
if the sentence was altered by replacing a random noun or
verb [Conneau et al., 2018]. In both domains, it requires the
ability to detect alterations in semantic consistency.

4 Experimental Setup
In this section, we describe the procedure of generating visual
words and training probing tasks.

Generating visual words. We use the original settings of
the ACE algorithm described in [Ghorbani et al., 2019]
that first divides images into superpixels using SLIC algo-
rithm [Achanta et al., 2012] with three resolutions of 15,
50, and 80 segments for each image. It then computes rep-
resentations of these superpixels as an output of a mixed4c
layer of GoogLeNet [Szegedy et al., 2015] trained on the Im-
ageNet dataset. Finally, representations are clustered using
the k-means algorithm, resulting in clusters that correspond
to the visual words (see Fig. 6). As there are over a dozen vi-
sual words generated for each of the classes, the dictionary’s
size grows significantly with the size of the analyzed dataset.
Therefore, in this paper, we decided to analyze its subset con-
taining 55 classes grouped into 5 categories: animals, vehi-
cles, musical instruments, buildings, fruits. Moreover, to fur-

Figure 5: The SOMO probing task predicts if the image was al-
tered by replacing a random superpixel. Top row: examples of im-
ages for which SimCLR v2 correctly recognizes the modification,
while SwAV fails. Bottom row: examples of images where both
SimCLR v2 and SwAV do not recognize superpixel modification.

ther limit the dictionary size, we only keep 100 of the most
relevant visual words (according to TCAV score [Kim et al.,
2018]), while ensuring that each class is represented by at
least one of them. These 100 visual words form our visual
language.

Generating a self-supervised representation. We exam-
ine four self-supervised methods: MoCo v1 [He et al., 2019],
SimCLR v2 [Chen et al., 2020b], BYOL [Grill et al., 2020],
and SwAV [Caron et al., 2020]. For all of them, we use pub-
licly available models trained with ImageNet. Although they
all use the penultimate layer of ResNet-50 to generate repre-
sentations, their training hyperparameters differ, which is de-
scribed in Supplementary Materials (SM in the following)1.

Assigning visual words. To assign a superpixel to a visual
word, we pass it through the GoogLeNet to generate a rep-
resentation from the mixed4c layer (similarly to generating
visual words). We can then determine the visual word closest
to a superpixel, as both are embedded in the same space.

Training probing tasks. We use a logistic regression clas-
sifier with a maximum of 1000 iterations and the LBFGS
solver to train all diagnostic classifiers. As an input, we
use representations generated by the self-supervised meth-
ods. The output depends on the probing task. In the case
of the WC, we train 100 classifiers corresponding to 100 vi-
sual words. We expect an image to be assigned to a particular
visual word if at least one of its superpixels is assigned to
it. Finally, we report the average AUC scores over 100 clas-
sifiers (see Tab. 1). To obtain classification setup in the sen-
tence length probing task, we group the possible output into 5
equally-wide bins, resulting in one-vs-rest OVR AUC, which
is resistant to class imbalance. A similar procedure is applied
to the character bin probing task, except that we use 6 bins in
this case. SOMO is formulated as a binary classification task,
in which we predict whether the image was modified or not.
The training and validation datasets are balanced. We con-
duct all of our experiments on the ImageNet dataset [Deng et
al., 2009], keeping its standard train/validation split. More-

1Supplementary materials: http://www.ii.uj.edu.pl/∼zielinsb/
papers/visual probing ijcai supplement.pdf
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Probing tasks (ours)
Target WC SL CB SOMO

MoCo v1 0.606 0.790 0.868 0.937 0.559
SimCLR v2 0.717 0.800 0.877 0.964 0.625
BYOL 0.723 0.795 0.876 0.961 0.615
SwAV 0.753 0.761 0.838 0.956 0.530

Table 1: AUC score for our probing tasks and accuracy on the linear
evaluation (Target). Like the linear evaluation, our probing tasks are
also trained on top of the frozen base network, and test accuracy
is used as a proxy for representation quality. Hence, they provide
complementary knowledge about the representation.

over, we apply the random over-sampling if needed to deal
with the imbalanced classes. The details on the experimental
setup are presented in SM.

5 Results and Discussion
Tab. 1 summarizes the results obtained in our experiments. It
presents the performance of our probing tasks and the tar-
get task accuracy for reference. The reported target task
performance is the classification accuracy calculated for the
whole ImageNet validation set. The first conclusion is that
self-supervised representations retain information about se-
mantic knowledge and semantic complexity, but they do not
code much information about image consistency. Secondly,
the performance on probing tasks do not correlate with accu-
racy on the target task. Finally, SimCLR v2 overpasses other
methods in all probing tasks. In the following, we analyze
those aspects in greater detail.
Self-supervised representations contain strong semantic
knowledge. As outlined in 3.2, we treat the results of
the word content probing as an approximation of semantic
knowledge present in a representation. The AUC scores for
this probing task reported in Tab. 1 vary from 0.76 for SwAV
to 0.8 for SimCLR v2. This shows ability to predict which
visual words are present in the image. Based on this we can
say that semantic knowledge is encoded in the examined self-
supervised representations.
The level of semantic knowledge does not correlate with
target task accuracy. It is surprising that although exam-
ined self-supervised methods have diverse target task accu-
racy, they all have a similar level of semantic knowledge. E.g.
MoCo v1 obtains the worst target task accuracy (61%), but
the results of the WC probing task is on par with stronger
self-supervised methods. Even more surprising is that SwAV,
despite its highest accuracy on the target task, is below the
scores of other tested methods in terms of semantic knowl-
edge measured by the WC probing task. This finding supports
the view that semantic knowledge only partially contributes
to the target task accuracy [Geirhos et al., 2020].
Certain types of semantic knowledge are represented bet-
ter than others. The probing task’s ability to predict which
visual words are present in the image varies, as some words
are better predicted than others. We conducted a user study to
understand the difference between best and worst predicted
visual words presented in Fig. 6. According to the results,

Best visual words Worst visual words

Figure 6: Visualization of the best and the worst predicted visual
words, according to the results of the WC probing task (on aver-
age by all self-supervised methods). Our user study shows that the
best recognizable visual words are perceived to have distinct non-
uniform textures contrary to the worst recognizable ones which have
more uniform textures. This may indicate that self-supervised rep-
resentations better encode information about patterns.

the five best recognizable visual words are perceived to have
distinct, non-uniform textures. In contrast, the five worst rec-
ognizable visual words have more uniform textures. This
may indicate that self-supervised representations are pattern-
biased. This sheds new light on this problem, as previous
results [Geirhos et al., 2020] suggest the opposite. See SM
for details on the user study.

There are visible differences in semantic knowledge re-
tained by different self-supervised methods. Our user
study shows variability by comparing the semantic content of
representations on individual visual words. We take a closer
look at the visual words that some self-supervised methods
encode better or worse than others. The examples of these
visual words are in SM. Looking at the top five visual words
that MoCo v1 encodes better than the other representations,
we can see that these words have distinct patterns. Moreover,
the user study shows that MoCo v1 is better than the others
at recognizing non-uniform textures. On the other hand, Sim-
CLR v2, BYOL, and SwAV are above average in recognizing
uniform textures.

Self-supervised representations contain information
about semantic complexity. We design two probing tasks
- sentence length and character bin - which validate the
complexity of an image. Based on the results in Tab. 1,
we observe that representations reflect the level of semantic
complexity to a high degree. Information about the number
of unique visual words (SL) is equally well predicted by
probing classifiers for all self-supervised representations.
These results are consistent with the results for semantic
knowledge. For both probing tasks, SwAV’s performance
is slightly below the scores of other tested methods. This
demonstrates the link between semantic complexity and
semantic knowledge. AUCs are even higher for predicting
the size of a visual word, which indicates that representation
encodes the approximation of its shape (although technically,
we predict the number of pixels).
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(a) Sentence length (SL).

(b) Character bin (CB).

Figure 7: Confusion matrices for SL and CB (results in %). The
results indicate that the ability of self-supervised representations to
retain information about complexity differs depending on the level
of image complexity. Moreover, even though the final AUCs are
similar, their confusion matrices vary.

The ability of self-supervised representations to retain in-
formation about semantic complexity differs. There are
no substantial differences in the ability to encode the com-
plexity of the images between self-supervised methods. How-
ever, some preferences can be observed once we do not aggre-
gate predictions into one AUC number. A closer look at the
confusion matrices for the SL probing task in Fig. 7 shows
that BYOL does worse when it comes to recognizing less
complex images, but it performs well in comparison to other
self-supervised methods. That is in contrast to SwAV, which
overall has the lowest AUC metric, but it stands out when it
comes to passing on information about simple images.

Self-supervised representations struggle to retain infor-
mation about semantic consistency. Contrary to what
we observe for semantic knowledge and complexity, self-
supervised representations do not encode well the informa-
tion about semantic consistency. The ability to distinguish al-
tered images differs between methods, with the smallest AUC
metric (53%) for representations extracted by SwAV and the
highest for SimCLR v2 (63%). Manual inspection of exam-
ples from the top and bottom performers classified as true
positive and false negative with high (>80%) certainty indi-
cates differences in decision making of probing classifiers.
Firstly, we observe that SimCLR v2 does relatively well with
examples that people easily recognize as modified. However,
it performs worse on more blended alterations (Fig. 5), which
do not disturb the huge chunks of textures or colors. At the
same time, in most cases, information encoded in SwAV’s
representation does not reflect well enough even such visible
alterations. Fig. 5 shows correct predictions for SimCLR v2
which SwAV predicted as not changed. Analysis of visual
words for which we replaced the original ones across true
positive and false negative for both SimCLR v2 and SwAV
does not indicate any substantial differences between them.
Hence, we conclude that the performance of the SOMO does
not depend on the visual word we use as a replacement, but

rather to what extent the semantic sentence is altered.

Self-supervised representations are resistant to modifica-
tions. Even though the replacements of visual words do not
disturb the substantial part of the image, this lack of ability to
distinguish alterations is interesting in the light of [Hendrycks
et al., 2019], which claims that self-supervised methods im-
prove out-of-distribution detection. We do not contradict this
conclusion, but our results show that in particular setups,
self-supervised representations do not exhibit enough ability
to distinguish between corrupted and not corrupted images.
Considering that various, even minor and not visible, alter-
ations might lead to a change in the outcome of the predic-
tion, we postulate that the tendency of self-supervised repre-
sentations not to retain information about consistency might
pose a risk. When it comes to the differences in the AUC
for the examined representations, they might be partially ex-
plained by differences in the architecture. E.g. SimCLR v2
and BYOL are trained with projection head, whereas SwAV
and MoCo v1 are not. The projection allows retaining infor-
mation about the transformation of the input image [Chen et
al., 2020a]. Therefore, we hypothesize that this information
may cause differences in the AUC score.

6 Conclusions
In this work, we introduce a novel visual probing framework
that analyzes the information stored in self-supervised image
representations. It is inspired by probing tasks employed in
NLP and requires similar taxonomy. Hence, we propose a set
of mappings between visual and textual modalities to con-
struct visual sentences, words, and characters. The results of
the experiments confirm the effectiveness and applicability of
this framework in understanding self-supervised representa-
tions. We verify that the representations contain information
about semantic knowledge and complexity of the images, al-
though they struggle to retain information about image con-
sistency. Moreover, a detailed analysis of each probing task
reveals differences in the representations encoded by various
methods. This provides knowledge about representation com-
plementary to the accuracy of linear evaluation.

Finally, we show that the relations between language and
vision can serve as an effective yet intuitive tool for explain-
able AI. Hence, we believe that our work will open new re-
search directions in this domain.
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