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ABSTRACT 
 
 

Many studies are performed on units that cannot be replicated due to cost or other restrictions.  

There often is an abundance of subsampling to estimate the within unit component of 

variance, but what is needed for statistical tests is an estimate of the between unit component 

of variance.  There is evidence to suggest that the ratio of the between component of variance 

to the total variance will remain relatively constant over a range of studies of similar types.  

Moreover, in many cases this intraclass correlation, which is the ratio of the between unit 

variance to the total variance, will be relatively small, often 0.1 or less.  Such situations exist in 

education, agriculture, and medicine to name a few. 

The present study discusses how to use such prior information on the intraclass correlation 

coefficient (ICC) to obtain inferences about differences among treatments in the face of no 

replication.  Several strategies that use the ICC are recommended for different situations and 

various designs.  Their properties are investigated.  Work is extended to under-replicated 

experiments.  The work has a Bayesian flavor but avoids the full Bayesian analysis, which has 

computational complexities and the potential for lack of acceptance among many applied 

researchers.  This study compares the prior information ICC methods with traditional 

methods. Situations are suggested in which prior information ICC methods are preferable to 

traditional methods and those in which the traditional methods are preferable.    
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1 

CHAPTER 1: INTRODUCTION 

1.1: OVERVIEW 

Example 1 

A researcher, wishing to compare two different teaching methods, teaches two classes: one 

with method 1 and the second with method 2.  The grade of each student in the two classes is 

recorded with the purpose of comparing the average grade for the students taught by method 

1 with the average grade for the students taught by method 2.  The within class variation is the 

variability from student to student.  The between class variation is due to such factors as time 

of day, difference in classroom setting, etc.  We would expect the variation from class to class 

to be small relative to the within class variation, regardless of whether the students are being 

taught mathematics, creative writing, etc.  The majority of the total variability will be explained 

by the difference in performance of the students within a class, and that variability should be 

similar from one academic subject to another.  Thus, the ICC should be consistent in studies 

of similar types, and it will tend to be small (In an education example such as this, it would not 

be unusual for the ICC to be less than 0.1). 

Example 2 

A researcher would like to compare the effect of two different soil preparation methods on the 

yield of corn.  The researcher has two different plots of land available for the study.  Because 

the methods involve burning the fields, replication is prohibitive.  The researcher can take 

multiple measurements on each plot, but there is no replication.  However, we might assume 

the observations within subplots are taken far enough apart so that subsample errors are 

spatially independent.  It is possible that previous research has been conducted on these same 

fields.  Thus, the researcher could possibly have an idea of the ICC for the current study. 
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Example 3 

A researcher would like to compare the effect of three different fertilizers and four irrigation 

systems on the yield of corn.  The researcher has four different plots of land available for the 

study.  Each plot of land has a different irrigation system.  Each plot of land is divided into 

several subplots, and to each subplot, one of three types of fertilizer is randomly applied.  

There is no replication on the whole plot.  From similar previous studies on similar fields, the 

researcher should have an idea of the ratio of the whole plot to the subplot variances. 

In many cases a researcher may have a good idea of the value of the ICC from past studies.  In 

this study, we propose methods that utilize information on the ICC of past studies to conduct 

hypothesis tests for current studies.  Our methods are confined to situations in which reliable 

information is known on the value of the ICC, and in which that value is small, generally less 

than 0.5.  The nature of the ICC in hypothesis testing allows for an increased power when the 

ICC is small.  However, this does not hold in cases where the ICC is large. 

Unreplicated Experiments 

An unreplicated experiment is an experiment in which a treatment of interest is applied to only 

one unit.  An under-replicated experiment is an experiment in which a treatment of interest is 

applied to a limited number of units (generally less than five units per treatment).  Some 

experiments logistically cannot be replicated.  Circumstances that might prevent replication are 

cost in time or money or both, scarcity of experimental units, destructive experimentation, 

among other things.  Some researchers just don’t have an extra plot of land they can 

experiment on.  We consider what can be done in such cases. 

We use the context of Example 1 to define the terms (using words like class and student) to 

simplify the explanation, with the understanding that these procedures can be applied to a 

variety of situations and disciplines.   

Let ijky  be the measurement taken on the kth student in the jth class given the ith treatment, iµ  
is the fixed effect of treatment i, ijδ  is the random effect of the class j given treatment i, and 

ijkε  is the random effect of student k in class j given treatment i, i = 1, 2, …,t; j = 1, 2, …, bi; k 
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= 1, 2, …, nij.  The total number of treatment levels is t.  The total number of classes in 
treatment level i is bi.  The total number of students in class j of treatment level i is nij.  Let 

( )2,0~ δσδ nij , where 2
δσ  represents the between class variability; let ( )2,0~ εσε nijk , where 

2
εσ  represents the between student within class variability.  It is assumed that ijδ  and ijkε  are 

independent.  We write out a model for the experiment as follows: 
                                                    ijkijiijky εδµ ++=  (1.1.1) 

 
This type of model is a single factor completely randomized design (CRD) with subsampling, 

where classes are the experimental units for each treatment level, and the students within each 

class are the subsamples, or observational units.  A researcher who uses the students as the 

experimental units ignores the variability that can exist between different classes receiving the 

same treatment.  Such an assumption is to claim that 2
δσ =0.  If the researcher correctly uses 

classes as the experimental unit, there is only one unit per treatment level and zero error 

degrees of freedom available for testing the difference between these treatment means 

(Barcikowski, 1981 and Blair, 1986). 

The Intraclass Correlation Coefficient and the Independence Assumption 

The intraclass correlation coefficient (ICC) is defined as the correlation between ijky  and kijy ′  

(two subsample units within one experimental unit).  In this study, ρ  refers to the true value 

of the ICC and 0ρ  refers to a best guess value, chosen by the researcher, to substitute into 

formulas in place of the ICC in the analysis.  The ICC for model (1.1.1) can be obtained using 

the following formula: 

( )
( ) ( ) ( )( ) 22

2

2222
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Thus, if 2
δσ =0, the ICC is also zero.  The result is independent subsamples assuming 

normality of error terms. 
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To test the difference between two treatment means we test 210 : µµ =H  versus 

210 : µµ ≠H , the following formulas apply:  Let ∑
=
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where Z has a standard normal distribution. 

If ρ  is incorrectly assumed to be zero, we have  
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A test statistic for a hypothesis based on the incorrect assumption that observations are 

independent will be too large, consequently inflating the associated Type 1 error. 
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A Plug-in Value of ρ  

In practice, 2
εσ  may be estimated from the pooled variance of observational units within the 

experimental unit.  With a lot of subsamples, 2
εσ  can be estimated quite accurately.  However, 

in an unreplicated experiment there is no way to estimate 2
δσ  and consequently ρ .  We assert 

that it is possible to learn something about ρ  from a prior experiment.  In an education 

context, for instance, ρ  is typically found in the range of 0.1 or less (see College Course Grades, 

pg. 25 of this study).  This information enables us to do tests in the unreplicated case by 

“plugging in” a reasonable value 0ρ  in place of ρ .  By having an accurate estimate of 2
εσ  and 

a reasonable value of 0ρ , 2
δσ  can be approximated.  In the under-replicated case, there may be 

two or three replications of the experiment yielding two or three experimental units per 

treatment.  In the case of under-replicated experiments, using a plug-in value may yield more 

powerful tests than can be obtained by standard mixed model analysis.  However, as the 

number of replications increase, the potential gain in using a plug-in value for ρ  may 

diminish, and if the plug-in value 0ρ  is substantially in error, the plug-in method may yield a 

worse (less powerful and biased) test.  The following chapters discuss the effects of different 

values of 0ρ , how accurate the choice of 0ρ  needs to be to maintain acceptable probabilities 

of Type 1 and 2 errors, and different strategies used to obtain useful values of 0ρ .   

In Chapter 2 we study tests for differences among means in the case of no replication.  First 

we look at the two-treatment completely randomized designs in which we study the effect that 

a plug-in value for the ICC has on the significance level and power of the test.  We then 

propose several strategies that implement the plug-in method and a weighted p-value method 

for hypothesis testing.  We give a description, demonstrate implementation, and examine 

properties of each proposed strategy.  Then we look at the t-treatment completely randomized 

designs and demonstrate how multiple comparison procedures can be implemented. 

In Chapter 3 we study the case of under-replication.  First we look at the two-treatment 

completely randomized designs in which we study the effect of replication on significance 

levels and power for hypothesis tests.  Then we look at t-treatment completely randomized 
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design case.  Of special interest is the diminishing advantage of using a hypothesized ICC as 

the number of replications increases. 

In Chapter 4 we look at the case of the split-plot with CRD whole plot design structure and a 

completely random assignment of subplot treatments to multiple subplot units.  We give a 

description of the methods, examine the properties, and give an example of implementation. 

In Chapter 5 we incorporate the strategies presented in this study into an analysis of a set of 

real data, demonstrating all the steps for a proper analysis. 

In Chapter 6 we summarize the results, discuss future extensions to the case of randomized 

complete block design structure and suggest a Bayesian approach to choosing a plug-in value 

for the ICC.  We discuss how this approach compares with the strategies mentioned in 

previous chapters, and then discuss how the plug-in method will be introduced to scientific 

literature. 
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1.2: LITERATURE REVIEW 

A traditional method of comparing treatment means in an educational context is to first 

compute classroom means then perform t-tests using the classroom means as the response 

variables on the experimental units (the classroom).  Such an analysis has zero error degrees of 

freedom in the no replication case and few error degrees of freedom in the under-replication 

case.  In this context, Barcikowski (1981) studied the level of power for tests for means that 

use the class average as the unit of analysis.  He analyzed sample size requirements for 

different levels of power.  Blair, Higgins, Topping, and Mortimer (1983) show that the Type 1 

error rate is grossly inflated when treatments are assigned to class but analysis is performed on 

students.  One example demonstrated a Type 1 error rate of approximately 0.50 when treating 

observational units as the unit of analysis as opposed to a Type 1 error rate of approximately 

0.05 when treating experimental units as the unit of analysis (inflation is 10-fold!). 

Blair and Higgins (1986) showed that analysis of treatment means when the population 

intraclass correlation coefficient is known enhances the power of the test by allowing 

observational unit degrees of freedom to be used in place of experimental unit degrees of 

freedom.  The power is always greater when the intraclass correlation coefficient is known – 

appreciably higher when the sample size is small. 

Most of the recent literature regarding the intraclass correlation coefficient focuses on 

constructing confidence intervals of the ICC, and ways of using the ICC as a measure of 

reliability. 

Groggel, Wackerly, and Rao (1988) looked at a rank-based method for obtaining point and 

interval estimates of a scale version of the intraclass correlation coefficient in a one-way 

random effects model.  This rank-based method is applicable to a broad class of situations, 

easy to implement, and fairly accurate.  It performs well when compared with other 

procedures.  However, this method does not perform well for minimal replication. 
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Burch and Harris (1999) compared an estimator associated with the likelihood function 

derived from a pivotal quantity to estimators using both subjective and objective priors.  The 

estimators all performed well with respect to Bayes risk.  However, the authors recommend 

the estimator obtained from the pivotal approach for several reasons.  Among these are that 

none of the other methods performs uniformly better and that the pivotal method has a 

simple closed form, is widely applicable, and is easy to incorporate prior information.  

However, this method does not perform well for minimal replication. 

Bansal (2000) derived Bayesian estimators of the intraclass correlation coefficient for improper 

priors.  His paper consists mainly of derivations of estimators and their asymptotic 

distributions.  Bond and Higgins (2001) compared method of moments with Bayes estimators 

of the intraclass correlation coefficient for different priors.  They found the Bayes estimate 

performed better than the method of moments estimators (smaller MSE).  In addition, 

favorable results were found even for minimal replication (m=2). 
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CHAPTER 2: USING A KNOWN INTRACLASS CORRELATION 

COEFFICIENT TO TEST THE DIFFERENCE BETWEEN TREATMENT 

MEANS (NO REPLICATION) 

2.1: THE TWO-TREATMENT CASE 

In the two-treatment case we obtain a test statistic as if ρ  is known.  Then we substitute, or 

“plug-in,” a presumed value 0ρ  for the unknown ρ , where the value 0ρ  is based on prior 

information.  Strategies for choosing 0ρ  are discussed later.  For now we consider properties 

of the test statistic using the plug-in value.  This section examines the two-treatment case with 

no replication.  The model for this case is represented by model 1.1.1 with the subscript j 

suppressed. 

Test Statistic: T-Test 

A test statistic for testing H0: 21 µµ = vs. HA: 21 µµ ≠  can be computed from our data as 

follows:  Let ρ  denote the true ICC.  Let 0ρ  denote the value the researcher chooses for the 

ICC.  Let 0201 µµ −  represent the hypothesized difference of the mean for treatment 1 and the 

mean for treatment 2 respectively.  The test statistic is 
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where 2ˆ εσ  represents a pooled estimate of the within class variance.  Let  
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be the variance of the measurements under treatment i.  Then  
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We will denote the nominal level of the test 0α  and the true level of significance α .  

Depending on assumptions, 0α  may or may not equal α . 

Properties of the test statistic 

For simplicity, we will assume the number of subsamples per class is the same for all classes, 

i.e. 21 nnn == .  For a more general formula, see Appendix B.  The sample size is one class 

per treatment.  Let 21 µµ −  be the true value of the difference between the treatment means to 

be compared in our hypothesis.  Let υ =2(n-1), the degrees of freedom for our test.  Let υ,05.0t  

denote the upper tail 0.05 value of the t-distribution with υ  degrees of freedom. 

The probability of rejecting H0 for an upper-tail test at 05.00 =α  can be determined using the 

following steps: 
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Equation 2.1.4 can be expressed as  
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where Z~n(0,1), λ  is a constant (our non-centrality parameter), and U~ 2
υχ .  To the left of the 

inequality is a random variable with a non-central t-distribution with non-centrality parameter 

λ  and degrees of freedom υ . 

Evaluation of Proposed Methods 

There are two methods of evaluating the strategies discussed in this paper. 
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Method 1: Fixed ρ  

The different plug-in methods involve choosing a value 0ρ .  We evaluate each method by 

determining significance levels and power curves for tests using each method, for different 

values of 0ρ  and ρ .  In particular, a method will be determined useful if it can maintain a 

Type-1 error level close to the nominal level ( 0α ) while providing power to detect differences 

in treatment means for a “reasonable” range of 0ρ  near ρ . 

Method 2: Random ρ  

If we do not assume there is a fixed value ρ , but rather that ρ  is a random variable, we might 

choose as a plug-in value 0ρ  the expected value of ρ  given its distribution.  Under this 

assumption, we look at the significance level as being the proportion of times an experiment 

incorrectly rejects the null hypothesis as test data are generated using randomly selected values 

of ρ  from its distribution.  We denote this as the average significance level given the prior 

distribution of ρ .  The average power can be computed similarly. 

The Effect of Different Values of the ICC on Significance Level and Power of the Test 

(Evaluation Method 1) 

We can use Equation 2.1.5 to evaluate the probability of rejection for tests of the hypothesis 

that the two means are equal.  These probabilities depend on the values for ρ , 0ρ , n, and the 

non-centrality parameter, λ .  In order to measure the deviation between the two means, we 

define a standardized difference as StDiff = 
εσ
µµ 21 − .  Probabilities will depend on StDiff 

throughλ .  Using Equation 2.1.5 probabilities were generated using the following values as 

indices: 

StDiff = 0.5 through 2.5 in increments of 0.5 
n = {10, 30, 50, 100, ∞} 
ρ  = 0 through 0.99 in increments of 0.01 

0ρ  = 0 through 0.99 in increments of 0.01 
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05.00 =α  

Table 1 in Appendix A includes a subset of the probabilities, in particular probabilities for ρ  

= 0 through 0.5 in increments of 0.05, and 0ρ  = 0 through 0.5 in increments of 0.05.  Figures 

2.1.1 through 2.1.4 include n = 10 and ∞.  This range of ρ  is for the situation in which the 

between class variability is less than or equal to the within class variability.  Values of ρ  larger 

than this will result in tests generally having low power. 

The table of probabilities in Appendix A gives an idea of the effect of changes in StDiff, n, ρ , 

and 0ρ  on the significance level and power of a test of hypothesis comparing two treatment 

means.  The following four plots also show the effect. The data used for these plots were 

created by evaluating Equation 2.1.5.  In the first two plots 0=StDiff .  In the next two plots 

0.1=StDiff .  For the plots in Figures 2.1.1 and 2.1.3 n=10.  For the plots in Figures 2.1.2 

and 2.1.4 we let ∞→n  resulting in 01lim =
∞→ nn

 being used in Equation 2.1.5.  The nominal 

significance level 05.00 =α is used for all four graphs.  Also for all four graphs, neither the 

power nor the significance level is defined at ρ =1 or 0ρ =1. 

Figure 2.1.1 shows the two-tail significance levels for the test with only 10 students per class.  

The lines represent the two-tail probabilities of rejecting our null hypothesis.  If ρ = 0ρ , then 

α=0.05.  If the plug-in value 0ρ  is less than the true value ρ  ( ρ ≥ 0ρ ), the level of 

significance is inflated (α≥0.05).  If the plug-in value 0ρ  is greater than the true value ρ  

( ρ ≤ 0ρ ), the level of significance is smaller than α=0.05.  So, for the test to have an actual 

level of significance no more than the nominal level, the researcher must select 0ρ  such that it 

is greater than or equal to ρ . 
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Figure 2.1.2. Large sample significance levels for infinite number of students 
per class. 
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Figure 2.1.2 shows significance levels for the test with a theoretically infinite number of 

students per class.  This second situation is less forgiving of ρ  being misspecified, but not by 

much.  For example, if a value of 0ρ =0.2 is used when ρ =0.4, alpha will be 0.2253; whereas, 

in the n=10 case, alpha would be 0.1728.  Figures 2.1.1 and 2.1.2 are very similar indicating 

little difference between significance values based on 10 subsamples per unit and those based 

on a theoretically infinite number of subsamples per unit. 

Figure 2.1.3 illustrates the probability of correctly detecting a difference of size StDiff=1.0 

between treatment means for various values of ρ  and 0ρ .  The smaller the value of 0ρ  is in 

relation to ρ , the greater is the power of the test, but this is at the price of potentially inflating 

the probability of a type 1 error.  Figure 2.1.3 depicts the situation with 10 subsamples per 

class.  The three lines indicate ρ  and 0ρ  combinations that produce a power of 0.20, 0.50, 

and 0.90.     

Figure 2.1.3. Small sample power curves for 10 students per class. 
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The next figure, Figure 2.1.4 depicts the case with a theoretically infinite number of students 

per class.  This power plot is overlayed with the corresponding plot of significance levels, 

Figure 2.1.2.  The red, green, and blue areas denote power in the ranges ≤0.2, 0.2 to 0.5, and 

0.5 to 0.9 respectively.  Similar to the plots of significance levels, there is not a large difference 

in the plots of the power levels when going from 10 students per class to an infinite number of 

students per class. 

To summarize, if ρρ ≤0  power increases, but the significance level will be larger than 0α .  If 

ρρ ≥0  the significance level will be lower than 0α , but the power of the test will be deflated.  

The effect that ρ  and  0ρ  have on the level of significance and power shown in the tables 

and figures will provide a basis for developing strategies for testing for differences of means in 

unreplicated and under-replicated experiments. 

Figure 2.1.4. Overlay of large sample power and significance levels for 
infinite students per class. 
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It is also useful to examine the maximum power attainable using a plug-in value for ρ  in 

hypothesis testing.  The following figure demonstrates the maximum attainable power under 

the most ideal conditions: namely ρρ =0 and ∞=n . 

As seen in Figure 2.1.5, if the true value ρ  is 0.5, the power is low.  For smaller values of ρ  

the power increases considerably.  For instance, for a standardized difference of 1.0 and 

ρ =0.1, the power is 0.564.  Thus, using a known ICC is only going to be effective for smaller 

values of ρ . 

Figure 2.1.5. Maximum attainable power for infinite number of students per 
class. 
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2.2: STRATEGIES FOR CHOOSING 0ρ  

What the Researcher May Know About ρ  

It is possible for the researcher to obtain information about ρ  based on prior experiments of 

a similar nature, or from knowledge about the behavior of ρ  for a current experiment. 

Distributional Information 

If much distributional information is available from prior studies of a nature similar to that of 

the current study, the researcher may be able to put a prior distribution or empirical 

distribution on ρ . 

Point or Interval Information 

The researcher may not have extensive distributional information about ρ , but may have an 

indication of the mean, or maximum value of ρ . 

The Plug-in Value 

In the case of no replication, zero error degrees of freedom exist for conducting a hypothesis 

test comparing means.  So, the test cannot be performed using traditional methods.  With this 

procedure a value, chosen by the researcher, is used as if it were the true value, ρ .  This value, 

0ρ , called a plug-in value, can be used in hypothesis testing and in producing confidence 

intervals of differences of treatment means.  The strategies for choosing a value for 0ρ  given 

in this chapter are proposed to researchers who have an unreplicated experiment and have a 

reasonable idea of the actual value, ρ . 

Weighted P-value 

A second proposal for dealing with unreplicated experiments is to find several p-values based 

on a range of likely values of ρ  and then find an average p-value, weighted by research-

supplied weights for the values of ρ . 
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Plot of the Conditional P-value given 0ρ  

For a given set of data, the p-value may be obtained for various assumed values of 0ρ .  It is 

computed as the probability that the t-distribution with 221 −+ nn  degrees of freedom is 

more extreme than the observed value of the statistic defined by equation 2.1.1. 

The following plots (2.2.1-2.2.3) of the p-value as a function of 0ρ  illustrate three possible 

situations a researcher may encounter when using a plug-in method.  Depending on which of 

these situations the researcher encounters, the researcher may choose to reject the null 

hypothesis, fail to reject the null hypothesis, or simply report the p-values without making a 

decision to reject or fail to reject the null hypothesis. 

The class data (C.1) consists of final course grades for five classes of introductory statistics 

taught by five different instructors.  See Appendix C for more information about the data.  We 

Figure 2.2.1. Conditional p-value plot for class data.
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will use the data from classes one and two.  We test 210 : µµ =H  versus 21: µµ ≠AH  at the 

05.00 =α  level of significance. 

Figure 2.2.1 is the conditional p-value plot of the class data (C.1). 

It can be seen that p-values are only significant (<0.05) if 0ρ  is less than 0.013.  If the likely 

value of ρ  is greater than 0.013, then the result of the test is to fail to reject H0 at 05.00 =α . 

Figure 2.2.2 is the p-value plot of the class data (C.1) with a value of one added to treatment 2 

scores. 

Figure 2.2.2. Conditional p-value plot for class data with a value of one 
added to treatment 2 scores. 
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If the researcher is certain ρ  is less than 0.23, the result of the test is to reject H0 at 

05.00 =α . 

The next figure, Figure 2.2.3, demonstrates the situation in which some p-values are <0.05 for 

likely values of ρ  and some are <0.05 for likely values of ρ .  In this case a value of 0.5 was 

added to treatment 2 scores of the class data (C.1). 

There are some likely values of ρ  for which the p-value is <0.05 and other likely values of ρ  

for which the p-value is >0.05.  When this situation occurs, it is less obvious what the results 

of a test of hypothesis should be.  

We introduce formal strategies that make use of prior information about ρ  to test hypotheses 

about treatment means in a no-replication, two-treatment case. 

Figure 2.2.3. Conditional p-value plot for class data with a value of 0.5 
added to treatment 2 scores.
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Strategy 1: Maximum Rho 

Description 

The first strategy is called the Maximum Rho procedure.  This procedure simply involves 

choosing 0ρ  to have the maximum value the researcher believes reasonable for ρ .  That 

value, 0ρ , is then incorporated into the test statistic.  The test rejects the null hypothesis if the 

p-value is less than 0α . 

Properties 

The Maximum Rho procedure assures the true significance level, α , is less than or equal to 

the nominal value 0α , with equality when ρρ =0 .  The closer 0ρ  is to ρ , the greater the 

power of the test. 

Implementation 

To implement the Maximum Rho procedure, the researcher simply uses the maximum value 

of ρ  in place of 0ρ  in the plug in method. 

College Course Grades 

The value ρ  was estimated from a variety of courses offered at Kansas State University using 

the SAS®* MIXED procedure.  The components of variance consist of variability of scores 

due to section 2
δσ  and the variability of scores due to students within sections 2

εσ .  Fourteen 

different courses were selected (CHM 111, 210, 230; CIS 101; ENGL 100, 125; MATH 010, 

100; MUSIC 250, 255; PSYCH 110, 202, 350; SPAN 161) each with multiple sections, 

covering both Fall and Spring semesters over the years 2001-2003, for a total of 43 course-

semester combinations.  These values are listed as C.2 of Appendix C. 

                                                 
* SAS® is the registered trademark of SAS Institute Inc., Cary, NC. 
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All 43 estimated ICC values were at or below 0.33.  The majority, 95%, were at or below 0.2 – 

90% were below 0.15.  Only one value was at 0.33.  That value is for an honors English course 

(ENGL 125).  Other courses include undergraduate courses in chemistry, English, music, CIS, 

math, psychology, and Spanish.  Based on these values, it would be reasonable to use 0ρ =0.15 

for the Maximum Rho strategy in an education-type study. 

The class data (C.1) consists of final course grades for five classes of introductory statistics 

taught by five different instructors.  See Appendix C for more information about the data.  We 

will use the data from classes one and two to demonstrate the implementation of the plug-in 

method using the Maximum Rho strategy. 

Let 210 : µµ =H  and 21: µµ ≠AH .  Let 05.00 =α .  Let 0ρ =0.15. 

The following SAS®code can be used to implement the plug-in method. 

/** STEP 1 **/ 
%let p0=.15;  /** p0 = Plug-in ICC **/ 
%let gi=1;  /** gi = # of classes per treatment **/ 
%let ti=2;  /** ti = # of treatments **/ 

Figure 2.2.4. Estimated ICC values for KSU grades data.
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/** STEP 2 **/ 
proc iml; 
RATIO=((&p0/(1-&p0))*I(&gi*&ti)); 
create gratio from RATIO; 
append from ratio; 
quit; 
data gratio;set gratio;row=(_N_);run; 
 
/** STEP 3 **/ 
proc mixed data=classdata ratio; 
class class trt; 
model y=trt/ddfm=kr; 
random class(trt)/ gdata=gratio Ratios; 
run;quit; 

 

The first step (STEP 1) creates global variables and sets their values so that these values can be 

used in procedures and data steps throughout the program.  The MIXED procedure allows 

known ratios of variance components to be put in the model.  The second step (STEP 2) 

creates a matrix and subsequently a data set containing the ratios that will be used for the 

matrix that represents the variance of the random effects.  The third step (STEP 3) analyzes 

the data using the appropriate model.  The GDATA= and RATIOS options indicate the data 

set GRATIO will be used in place of the traditional estimates of the matrix representing the 

variance of the random effects, known as the G matrix.  The DDFM=KR option ensures the 

test is using the appropriate degrees of freedom, adjusting for the known ratios. 

The following are the results: 

                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         trt             1      68       0.80    0.3745 
 

The p-value, 0.3745, is larger than 05.00 =α .  So the result of the test is to fail to reject the 

null hypothesis in favor of the alternative (at 05.00 =α ).  The conclusion is that the 

difference between the mean grades for the two classes is not significant.  The probability of a 

Type 1 error in this case is at most 0.05.  If, in fact, ρ  is 0.15, the power for detecting a 
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difference of one grade point is approx. 0.3373.  However, if ρ  is less than 0.15, the power 

will be less. 

Strategy 2: Acceptable Interval (Best- Worst-Case Scenario) 

Description 

The Acceptable Interval strategy involves setting 0ρ  equal to the maximum and minimum 

value ρ  is likely to have.  Next, the researcher analyzes the data at each of those 0ρ  values.  

Finally, the researcher reports both p-values.  If both p-values are less than 0α , the result is to 

reject the null hypothesis in favor of the alternative.  If both the p-values are greater than or 

equal to 0α , the result is to fail to reject the null hypothesis.  If one p-value is less than 0α  and 

the other is greater than 0α , the researcher will simply report both p-values, without rejecting 

or failing to reject the null hypothesis. 

To understand this strategy, it is helpful to recall plots 2.2.1-2.2.3.  With both plots 2.2.1 and 

2.2.2, it is clear the researcher should reject or fail to reject the null hypothesis.  However, in 

plot 2.2.3 it is not clear what the result should be, and so the researcher simply reports the p-

values and lets the reader decide what conclusions, if any, are appropriate. 

Properties 

If the results of the test agree for both analyses, the researcher can choose to reject or fail to 

reject the null hypothesis.  In either case, 0αα ≤  as long as ρ  is not greater than the greater 

of the two 0ρ ’s. 

Implementation 

Again we use the class data (C.1), consisting of final course grades for five classes of 

introductory statistics taught by five different instructors.  We will use the data from classes 

one and two to demonstrate the implementation of this strategy.  The researcher believes ρ is 

at most 0.15 and at least 0.05.  The SAS® code for this strategy will be analogous to the SAS® 

code presented for the first strategy, because both use plug-in estimators of the ICC. 
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Let 210 : µµ =H  and 21: µµ ≠AH .  Let 05.00 =α .  Let 0ρ =0.15. 

The following are the results: 

                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         trt             1      68       0.80    0.3745 
 

Next, let 0ρ =0.05. 

The following are the results: 

                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         trt             1      68       2.02    0.1600 
 

Because both p-values 0.3745 and 0.1600 fail to reject the null hypothesis at 05.00 =α , the 

researcher concludes the difference in the treatment means is not significant. 

Strategy 3: Adjusted Degrees of Freedom Using Mean Rho (ADFMR) 

Description 

This procedure involves choosing 0ρ  to be the expected value of ρ  assuming that ρ  is a 

random variable.  The researcher puts a prior distribution on ρ  and uses the expected value of 

that prior distribution as the plug-in value 0ρ . 

Computing the Error Degrees of Freedom 

We consider two ways of computing error degrees of freedom when treating ρ  as a random 

variable. 

Full d.f.: The first method uses the equation ( )12.. −= nfd .  This is the full error degrees of 

freedom for the test assuming ρ  is known. 
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Reduced d.f.:  The other method uses fewer error degrees of freedom than the full ( )12 −n .  

One way to reduce the error degrees of freedom is to use a Satterthwaite-type adjustment.  

The Satterthwaite-type adjustment is of the form 

( )[ ]
( )[ ]21

2
21

ˆ
2..

yyraVVar
yyVarfd
−

−
= . (2.2.1) 

Let  

n
W 1

1
+

−
=

ρ
ρ . 

Then 

( ) WyyVar 2
21 2 εσ=−  

and 

( )[ ] [ ]ρσ ε |2ˆˆ 2
21 WraVyyVarraV =− = ( )[ ] ( )[ ]ρσρσ εε |2|2 22 WVarEWEVar +  

= ( ) ( ) ( )2
4

4

1
44 WE
n

WVar
−

+ ε
ε

σ
σ = ( ) ( ) ( )[ ]{ }2

4

1
4 WEWVarn
n

+⋅
−
εσ . 

So, Equation 2.2.1 becomes 

( ) ( )[ ]
( ) ( )[ ]2

212..
WEWVarn

WEnfd
+⋅

−
= . (2.2.2) 

As ( ) 0→WVar , the error degrees of freedom using the Satterthwaite-type adjustment 

approaches ( )12 −n , the full d.f., indicating that the more sure and accurate the choice of 0ρ , 

the more appropriate the ( )12 −n  error degrees of freedom.  Also, as ∞→n , the error 

degrees of freedom using the Satterthwaite-type adjustment approaches  
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Note: Because the computation of the Satterthwaite-type d.f. involves the variance of W, the 

researcher must have a nonsingular distribution for ρ  in order to compute the Satterthwaite-

type degrees of freedom. 

Properties 

The significance level and power for tests using the ADFMR strategy will differ according to 

the value of the error degrees of freedom.  On average, tests using the full ( )12 −n  error d.f. 

appear to have a significance level slightly above the nominal level, but will have much greater 

power to detect significant differences.  This is investigated in more detail later (pages 44-50).  

In the unreplicated case, the Satterthwaite adjustment drastically reduces the error degrees of 

freedom, almost guaranteeing the significance level will stay below its nominal level.  However, 

the test using a Satterthwaite adjustment will have very little power to detect significant 

differences.  Other methods of reducing the error degrees of freedom may more appropriately 

reduce the error degrees of freedom to a point in which the significance level is below the 

nominal level, while maintaining an acceptable level of power.  Many proposed methods exist 

for adjusting error degrees of freedom in addition to a Satterthwaite-type adjustment.  This 

study does not consider other methods.  Further, it is the author’s view that finding more 

accurate methods of choosing 0ρ  has a more positive effect than adjusting degrees of freedom 

because resulting tests maintain a greater level of power than do tests using adjusting degrees 

of freedom while closely maintaining a specified level of significance, especially in the no 

replication case. 

Implementation 

To implement the ADFMR procedure using a prior distribution, either empirical or 

theoretical, for ρ , the researcher first finds ( )ρρ E=0 .  This value is then used in the plug-n 
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method shown previously.  If the researcher chooses to use the Satterthwaite adjustment for 

the error degrees of freedom, such an adjustment must also be computed before computing 

the p-value of the test.  Note: the SAS® MIXED procedure uses 2(n-1) denominator degrees 

of freedom in this situation using the DDFM=KR or DDFM=SATT option. 

Example 1 

Suppose the researcher wishes to test the equality of two treatment means from the class data.  

Further, suppose the researcher wishes to use the distribution of the KSU Grades data 

(Appendix C.2) estimated ICC values as the prior empirical distribution of ρ .  The 

distribution has a mean of 0.077710.  So, 077710.00 =ρ .  Next, the researcher computes 

n
W 1

1
+

−
=

ρ
ρ  for each value of ρ  in the prior empirical distribution of ρ  and then 

computes the mean and variance of that distribution.  In this case, ( ) 119641.0=WE  and 

( ) 00894563.0=WVar .  Consequently, d.f.=2.97282. 

Let 210 : µµ =H  and 21: µµ ≠AH .  Let 05.00 =α .  Let 0ρ =0.077710.  The following 

SAS® code can be used to implement the plug-in method. 

/** STEP 1 **/ 
%let p0=0.077710;  /** p0 = Plug-in ICC **/ 
%let gi=1;  /** gi = # of classes per treatment **/ 
%let ti=2;  /** ti = # of treatments **/ 
 
/** STEP 2 **/ 
proc iml; 
RATIO=((&p0/(1-&p0))*I(&gi*&ti)); 
create gratio from RATIO; 
append from ratio; 
quit; 
data gratio;set gratio;row=(_N_);run; 
 
/** STEP 3 **/ 
proc mixed data=classdata ratio; 
class class trt; 
model y=trt/ddf=2.97287; 
random class(trt)/ gdata=gratio Ratios; 
run;quit; 
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The following are the results: 

                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         trt             1    2.97       1.45    0.3152 

 

The result is to fail to reject the null hypothesis.  On average the significance level will be close 

to 05.00 =α  and, using Equation 2.1.5, the probability of detecting a difference of 

1=StDiff  will be close to 0.3108.  Using ( )12.. −= nfd , the result would be: Error d.f. = 68    

P-value = 0.2323.  On average the significance level will be close to 05.00 =α  and, using 

Equation 2.1.5, the probability of detecting a difference of 1=StDiff  will be close to 0.5459. 

Example 2 

Now suppose the researcher wishes to use Beta(5,30) as the prior distribution of ρ .  The 

following graph depicts the Beta(5,30) distribution. 

Figure 2.2.5 is similar in appearance to the empirical distribution of the KSU Grades data 

(Appendix C.2).  The probability is mostly between 0.05 and 0.3 with a peak around 0.13.  

( ) 14286.00 == ρρ E . 

 Using the prior distribution, ( ) 2007924.0≈WE  and ( ) 0071633.0≈WVar  making 

Satterthwaite-type error degrees of freedom 9.4202781.  The results of the analysis are  

                                 Type 3 Tests of Fixed Effects 
 
                                       Num     Den 
                         Effect         DF      DF    F Value    Pr > F 
 
                         trt             1    9.42       0.84    0.3824 
 

The result is to fail to reject the null hypothesis.  On average the significance level will be close 

to 05.00 =α  and, using Equation 2.1.5, the probability of detecting a difference of 

1=StDiff  will be close to 0.3016. 
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Strategy 4: Weighted P-Value 

Description 

The weighted p-value strategy is to take a weighted average of the p-values for different values 

of 0ρ  according to prior knowledge of the behavior of the possible values of ρ .  The 

researcher then rejects the null hypothesis at level alpha if the resulting average weighted p-

value is smaller than 0α .  For simplicity of computation we take the weighted average of no 

more than five p-values, where weights are based on prior belief as to where ρ  will fall. 

Let i0ρ  be one of three to five plug-in values of the ICC (i=1 to 3 or 5) used in testing a 

hypothesis.  Let iw  be an individual weight such that 0≥iw  and 1=∑
i

iw .  Let ip  be the p-

value of a hypothesis test using i0ρ  as the plug-in value.  Then ∑
i

ii pw  is the weighted p-value. 

Figure 2.2.5. Prior distribution of ρ , Beta(5,30).
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To compare the possible effects of weights on the p-values we propose the candidate weight 

functions T1, T2, T3, T4, T5 shown in Figures 2.2.6 through 2.2.10.  For instance, with T1, p-

values are calculated at 01ρ =0.10, 02ρ =0.15, and 03ρ =0.20.  The resulting p-values are then 

multiplied by weights 1w =0.25, 2w =0.50, and 3w =0.25 respectively.  The resulting three 

values were then summed to give the weighted p-value.  Average weighted p-values based on 

T2 through T5 are found similarly. 

Properties 

Now we look at how this weighted p-value method performs.  A simulation study was 

performed using the five weight functions T1-T5.  One thousand data sets were generated for 

each of the following combinations: 

 n=100 students per class 
 t=2 treatment levels 
 b=1 class per treatment 
 Standardized difference (StDiff) =0, 1.0. 
 ρ =0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 

 
Two-sided t-tests were conducted on each of the 1,000 data sets, using the plug-in values of 

i0ρ  associated with the weight functions T1-T5, and p-values were recorded.  Weighted p-

values were then computed according to the weight functions T1-T5 represented in Figures 

2.2.6-2.2.10.  The proportion of the tests that rejected the null hypothesis at 0α =0.05, based 

on the weighted p-values was recorded for each combination of ρ  and StDiff, which is the 

simulated p-value of the test. 

The Figures 2.2.11-2.2.14 illustrate these proportions for each weighted scheme across each 

value of ρ .  These graphs illustrate the comparison of weighting p-values for the five chosen 

weight functions.  Figures 2.2.13 and 2.2.14 also contain proportions for tests using the plug-in 

method with all the weight at a single point to show how the weighted p-values compare with 

the plug-in method.   
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Figure 2.2.6. Weight function T1. Figure 2.2.7. Weight function T2.

Figure 2.2.8. Weight function T3. Figure 2.2.9. Weight function T4.

Figure 2.2.10. Weight function T5.



 

 34

 

The first graph, Figure 2.2.11, gives simulated Type 1 error rates for the different weight 

functions for this procedure.  We see that T4 is the most conservative weight function.  It is 

able to maintain the level of alpha <0.05 for values of ρ  up to 0.17.  The least conservative, 

T5, maintains the level of alpha <0.05 only for values of ρ  up to 0.12. 

Figure 2.2.11. Significance levels for various weight functions. 
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The second graph, Figure 2.2.12, shows the power curves for the different weight functions.  

At ρ =0.17, the most conservative weight function, T4, has a power of about 0.33.  At 

ρ =0.12, the least conservative weight function, T5, has a power of about 0.43.  It can be seen 

that T1 and T3 result in virtually identical p-values, as do T2 and T4. 

The next graph, Figure 2.2.13, allows comparison of the weighted p-value method and the 

plug-in method.  Weighted p-values are graphed as well as p-values obtained using the plug-in 

method. 

According to Figure 2.2.13, the most conservative approach is the plug-in method and using a 

very large value as 0ρ .  Choosing 0ρ =0.25, using the plug-in method, maintains a significance 

level below 0.05 for values of ρ  less than 0.25.  The least conservative approach is the plug-in 

method, using a very small value for 0ρ .  Choosing 0ρ =0.10, using the plug-in method, 

maintains a significance level below 0.05 for values of ρ  less than 0.10.  It can be noted that 

T1, T3, and 0ρ =0.15 all result in virtually the same p-values.  That is due to the fact that the 

distribution of p-values as a function of 0ρ  is fairly linear over the small interval covered by 

Figure 2.2.12. Power levels for various weight functions.
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the weight function, so it is similar to using 0ρ  at the average weight.  In T1 and T3, the 

average weight is 0.15. 

Figure 2.2.14 shows the greater power levels are found using small plug-in values and weight 

functions whose average weight is small.  The level of power consistently decreases as the 

plug-in value or weight function average increases. 

Figure 2.2.13. Significance levels for various weight functions and plug-in 
values. 
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Implementation 

To perform the analysis using the weighted p-value method, first determine at which values of 

ρ  ( 0501 ρρ K , say) the p-values will be evaluated.  Use the SAS® code presented for analyzing 

data using the plug-in method shown earlier to obtain a p-value using each of the chosen 

values i0ρ .  Multiply each of the p-values ( 51...pp , say) by an associated weight ( 51 ww K , 

say).  Sum the weighted p-values (∑
=

5

1i
ii pw , say). 

Random ρ  

We now look at average significance level and power for the various strategies by randomly 

selecting ρ  from among its probable values and determine the proportion of times our test 

correctly rejects or fails to reject the null hypothesis. 

A simulation was conducted with the following specifications: 

Figure 2.2.14. Power levels for various weight functions and plug-in values.
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Iterations = 100,000 
n = 5, 10, 100 
Error d.f. = Satterthwaite-type and 2(n-1) 

ρρ =0  and 75th quantile 

ρ ~Beta(1,10), Beta(5,30), Uniform(0, 0.5), Beta(10,4) 

The following distributions show plausible prior information about ρ  and the consequences 

on the average significance and power levels. 

The first example represents the belief of the researcher that the smaller possible values of ρ  

are the most likely.  This would be a situation of near independence among students in a class.  

With the Satterthwaite-type error degrees of freedom, the significance levels are kept well 

below the nominal level.  Power values are also very low.  The Satterthwaite-type analysis tends 

to be very conservative.  With ρρ =0  and 2(n-1) error degrees of freedom, the average 

significance level is very close to the nominal level, and power is much greater than in the 

Satterthwaite-type analysis.  Equating 0ρ  to the 75th quantile simulates the situation of the Max 

Rho method where the value used for 0ρ  is reasonably close to the maximum.  This choice of 

0ρ  was able to maintain a significance level below the nominal level, but had greater power 

than the Satterthwaite-type approach. 

The second example represents the belief of the researcher that the values of ρ  are most likely 

between 0.05 and 0.25, with more weight on the lesser values.  The results are similar to those 

of the first example. 

The third example demonstrates why the researcher must have strong prior information about 

ρ  in order to produce a useful analysis.  With this non-informative prior distribution, the 

impression is that the researcher knows nothing about possible values of ρ , except that it is 

less than 0.5, and so gives equal probability to all possible values of ρ .  The power of the tests 

is unacceptably low and thus may put any subsequent analysis into question. 
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Example 1: ρ ~Beta(1,10) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.2.1. Simulated significance levels and power levels using ρ ~Beta(1,10) prior 
distribution; n = 5, 10, 100; error d.f. = Satterthwaite-type and 2(n-1); ρρ =0  and 75th 
quantile. 

ρρ =0  n=5 n=10 n=100
Satterthwaite d.f. = 4.451 4.034 1.864
Simulated Alpha = 0.029 0.018 0.002
Simulated Power(diff=1) =  0.134 0.134 0.012
2(n-1) d.f. = 8 18 198
Simulated Alpha = 0.050 0.053 0.061
Simulated Power(diff=1) =  0.200 0.299 0.533

Quantileth750 =ρ  n=5 n=10 n=100
2(n-1) d.f. = 8 18 198
Simulated Alpha = 0.040 0.039 0.041
Simulated Power(diff=1) =  0.172 0.243 0.383

Figure 2.2.15. Prior distribution of ρ , Beta(1,10).
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Example 2: ρ ~Beta(5,30) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.2.2. Simulated significance levels and power levels using ρ ~Beta(5,30) prior 
distribution; n = 5, 10, 100; error d.f. = Satterthwaite-type and 2(n-1); ρρ =0  and 75th 
quantile. 

ρρ =0  n=5 n=10 n=100
Satterthwaite d.f. = 6.348 9.124 8.724
Simulated Alpha = 0.043 0.039 0.030
Simulated Power(diff=1) =  0.155 0.205 0.255
2(n-1) d.f. = 8 18 198
Simulated Alpha = 0.050 0.051 0.054
Simulated Power(diff=1) =  0.175 0.246 0.367

Quantileth750 =ρ  n=5 n=10 n=100
2(n-1) d.f. = 8 18 198
Simulated Alpha = 0.041 0.038 0.034
Simulated Power(diff=1) =  0.151 0.202 0.280

Figure 2.2.16. Prior distribution of ρ , Beta(5,30). 
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Example 3: ρ ~Uniform(0,0.5) – non-informative 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2.2.3. Simulated significance levels and power levels using ρ ~Uniform(0,0.5) prior 
distribution; n = 5, 10, 100; error d.f. = Satterthwaite-type and 2(n-1); ρρ =0  and 75th 
quantile. 

ρρ =0  n=5 n=10 n=100
Satterthwaite d.f. = 3.744 4.186 3.888
Simulated Alpha = 0.026 0.021 0.015
Simulated Power(diff=1) =  0.063 0.063 0.051
2(n-1) d.f. = 8 18 198
Simulated Alpha = 0.053 0.056 0.062
Simulated Power(diff=1) =  0.123 0.149 0.171

Quantileth750 =ρ  n=5 n=10 n=100
2(n-1) d.f. = 8 18 198
Simulated Alpha = 0.032 0.029 0.028
Simulated Power(diff=1) =  0.077 0.084 0.087

Figure 2.2.17. Prior distribution of ρ , Uniform(0,0.5).
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Example 4: ρ ~Beta(10,4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.2.4. Simulated significance levels and power levels using ρ ~Beta(10,4) prior 
distribution; n = 5, 10, 100; error d.f. = Satterthwaite-type and 2(n-1); ρρ =0  and 75th 
quantile. 

ρρ =0  n=5 n=10 n=100
Satterthwaite d.f. = 2.055 2.526 3.018
Simulated Alpha = 0.005 0.006 0.008
Simulated Power(diff=1) =  0.006 0.009 0.009
2(n-1) d.f. = 8 18 198
Simulated Alpha = 0.052 0.053 0.054
Simulated Power(diff=1) =  0.062 0.065 0.068

Quantileth750 =ρ  n=5 n=10 n=100
2(n-1) d.f. = 8 18 198
Simulated Alpha = 0.040 0.040 0.039
Simulated Power(diff=1) =  0.047 0.049 0.049

Figure 2.2.18. Prior distribution of ρ , Beta(10,4).
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The fourth example demonstrates why the methods explained in this research only apply when 

the value of ρ  is small, usually less than 0.5.  As the values of ρ  approach 1.0, the 

denominator of the test statistic in Equation 2.1.1 approaches ∞ , which causes the test 

statistic to approach zero.  The power of the tests is again unacceptably low and again puts 

into question any subsequent analysis. 

From this second method of evaluation we arrive at the following recommendations for the 

researcher when distributional information is known about ρ : 

1. Only use the plug-in method if strong information is known about possible values of 

ρ  and those values are below 0.5. 

2. If the researcher must maintain a significance level below the nominal level, using 

ρρ =0  with a Satterthwaite-type adjustment would be a conservative safe choice. 

3. If the researcher desires to maintain a significance level close to the nominal level and 

wishes to maximize power, using ρρ =0  with 2(n-1) degrees of freedom is a good 

choice. 

The Distribution of T with Random ρ  

The test statistic for testing the difference between two treatment means in a two-treatment 

no-replication case, 210 : µµ =H  vs. 21: µµ ≠AH , was previously given (2.1.4) as  
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Knowing the distribution of the test statistic T is important because it allows us compute, 

mathematically, the significance level and power of tests. 

The test statistic T can be rewritten as  
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 (2.2.3) 

Under the null hypothesis with ρ  random, we can define this as a random variable 

 QTT 0=  (2.2.4) 

where 
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  (2.2.6) 

Note that the distribution of T0 is independent of ρ  and hence independent of Q.  Although 

the density function of T may be messy and difficult to compute, the first two moments are 

found quite easily. 

( ) ( ) ( )[ ] ( )[ ] ( )[ ] 00|| 000 ===== QETQEEQTEEQTETE ρρ  (2.2.7) 

( ) ( ) ( )[ ] ( )[ ]ρρ || 000 QTVarEQTEVarQTVarTVar +==  

 [ ] ( )[ ]ρ|0 0QTVarEVar +=  
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If 0ρ  is chosen such that ⎟⎟
⎠
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2
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−

n
n =Var(T0), consequently T 

has the first two moments of T0~ )1(2,05.0 −nt .  This fact lends credence to the use of the full 2(n-

1) error degrees of freedom when testing hypotheses using the plug-in method.  It also allows 

us to use T0~ )1(2,05.0 −nt  to approximate the behavior (significance level and power of tests) of 

T.   

Another way we can look at probabilities associated with the random variable T is to compare 

them with those of an F-distributed random variable indexed by 1 and ( )12 −n  degrees of 

freedom.  Let T0~ )1(2,05.0 −nt .  Then ( ) ( )12,1,05.0
2

00 ~ −= nfTF .  We consider the distribution of 

22
0

2 QTTF ==  where ρ  has a Beta distribution. 

If ρ ~ ( )βα ,Beta , the distribution function of Y=Q2 is  
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where 
n

c 1
1 0

0 +
−

=
ρ

ρ
. 

We then expect ( )2
0

2 QTT = = 2
0QF  to have a distribution close to ( )12,1,05.0 −nf .  The mean 

and variance may be computed as follows: 
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If ρ ~ ( )βα ,Beta , the distribution function of 
ρ

ρ
−

=
1

X  is  
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which is the equivalent to F
β
α , a constant times an F-distributed random variable with 

αυ 21 =  and βυ 22 = .  The mean and variance are 
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Also, if 0ρ  is chosen such that ⎟⎟
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Consequently 2T  has approximately the first two moments of ( )12,10 ~ −nfF .  This also 

supports the use of the full 2(n-1) error degrees of freedom when testing hypotheses using the 

plug-in method and allows us to use ( )12,10 ~ −nfF  to approximate the behavior (significance 

level and power of tests) of 2T . 

The following table (2.2.5) shows the results of simulation of certain percentiles of the 

( )12,10 ~ −nfF  distribution and ( )2
0

2 QTT = = 2
0QF .  Exact percentiles from the F-distribution 
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were computed using Minitab (version 11), and 2T  percentiles were computed from a 

generation of 1,000,000 random variates of the 2T  distribution. 

Table 2.2.5. Simulated percentiles of the 2T  distribution and actual percentiles of the 
( )12,1 −nf  distribution. 

   Percentiles

Dist. of ρ  n 
Random 
Variable 50th 75th 90th 95th 99th P(T2>95th)

F 0.474 1.413 3.007 4.414 8.285 0.0717 10 
T2 0.432 1.347 3.076 4.798 10.470 0.0500 

F 0.455 1.323 2.706 3.842 6.635 0.0713 
Beta(1,10)  

1,000,000 
T2 0.252 1.028 2.896 4.890 12.316 0.0500 

F 0.474 1.413 3.007 4.414 8.285 0.0536 10 
T2 0.457 1.389 3.051 4.578 9.008 0.0500 

F 0.455 1.323 2.706 3.842 6.635 0.0576 
Beta(5,30) 

1,000,000 
T2 0.404 1.249 2.775 4.175 8.210 0.0500 

F 0.474 1.413 3.007 4.414 8.285 0.0980 10 
T2 0.493 1.586 3.784 6.049 13.844 0.0500 

F 0.455 1.323 2.706 3.842 6.635 0.0859 
Beta(10,4) 

1,000,000 
T2 0.468 1.481 3.441 5.405 11.855 0.0500 

 

Three prior distributions are represented in Table 2.2.5.  The first gives most probability to 

values of ρ  close to zero.  The second gives most probability to values between 0.1 and 0.3.  

The third gives most probability to values of ρ  above 0.5.  For Beta(1,10) and Beta(5,30) each 

prior distribution, the percentiles of 2T  closely match those of ( )12,1~ −nfF  up to the 95th 

percentile.  The percentiles don’t match as well with Beta(10,4).  The last column in the table 

contains the probability of the random variable 2T  is greater than the 95th percentile, 

indicating the probability of rejecting the null hypothesis using a critical value from the F-

distribution and a 2T  test statistic.  So, using the F-distribution to compute critical values will 
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slightly inflate the probability of a Type 1 error when using one of the suggested priors and a 

0.05 nominal significance level. 

2.3: THE T-TREATMENT CASE 

It is reasonable to assume the researcher may want to work with more than two treatments.  

Again, we look at the Completely Randomized design with subsampling and no replication. 

Description 

Consider the model (1.1.1) defined in section 1: 

ijkijiijky εδµ ++=  

This model reduces to ikiiiky εδµ ++=  in the no replication case with subscript j supressed.  

This model can be written in matrix form.  Let ∑
=

=
t

i
inN

1

.  Let Y be an 1×N  observable 

vector of random variables; X be a tN ×  design matrix, that is a matrix of 0’s and 1’s denoting 

the design’s treatment structure; β  be a 1×t  vector consisting of the treatment means µ1, µ2, 

…, µt; E be a 1×N vector of unknown random errors.  Then we can write the generalized 

linear model as  

EXY += β  (2.3.1) 

Let H be a tq×  matrix and h be a 1×q  vector, as defined in Graybill (1976) p. 184.  The 

researcher is interested in testing hypotheses of the form  

H0: hH =β vs. HA: hH ≠β . (2.3.2) 

Let V be an NN ×  known positive definite matrix such that ( ) VYVar 2
εσ= .   
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iA  is an ii nn ×  matrix. 

Let ( ) YVXXVX 111ˆ −−− ′′=β  be the best linear unbiased estimate of β .  This is equal to 

[ ]⋅⋅⋅= tyyy ,...,,ˆ
21β  in the no replication case.  The estimate of 2

εσ  is  

( )[ ]YVXXVXXVVY
tN

111112 1ˆ −−−−− ′′−′⎟
⎠
⎞

⎜
⎝
⎛

−
=εσ   (2.3.4) 

which in the no replication case reduces to  
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∑
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yy
s

i

.   (2.3.6) 

Let 0V  denote the matrix V with 0ρρ = .  The test statistic for testing H0: hH =β vs. HA: 

hH ≠β  is of the form 

( ) ( )[ ] ( )
2

111
0

ˆ

ˆˆ

εσ
ββ

q
hHHXVXHhH

W
−′′

′
−

=
−−−

 (2.3.7) 
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Reject H0 at level 0α  when ( )1,,0 −> ntqfW α , where ( )1,,0 −ntqfα  is the 01 α−  quantile of the F 

distribution with q and t(n-1) degrees of freedom. 

In an analysis of variance situation, the researcher may be interested in performing F-tests to 

compare different combinations of treatments.  The researcher may also wish to perform 

multiple comparison tests on different treatments.  The methodology for using a plug-in value 

0ρ  is similar in the t-treatment case to the methodology in the two-treatment case. 

Properties 

For simplicity, we consider the case where inn =  for all values of i.  It can be shown that 

( ) ( )
( ) tt I

n
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                   = ( ) 1
0

−′XXd  

where 

( )
( )0

0
0 1

11
ρ

ρ
−
−+

=
nd . (2.3.9) 

Let ( )1−= ntυ .  The probability of rejection of the null hypothesis can be computed as 

follows: 

( )υ,,05.0 qfWP >  = ⎟⎟
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where W* has a non-central F distribution with q and υ  degrees of freedom with non-

centrality parameter  
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( ) ( )[ ] ( )hHHXVXHhH −′′′−=
−−− ββ

σ
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ε

111
2

1 . (2.3.11) 

Increasing 0ρ  decreases (2.3.10) for fixed ρ .  

We now look at the effect of the number of treatments on the significance level.  The 

following graphs (2.3.1 and 2.3.2) display significance levels and power curves for testing the 

equality of multiple treatment means in no replication settings.  The error degrees of freedom 

are held constant.  The number of students per class is determined such that the total error 

degrees of freedom (t(n-1)) is equal to 96.  The true value ρ  is set at 0.1, a likely value for 

many applications, and the values of 0ρ  range from 0.025 to 0.20 to demonstrate the 

consequence of discrepancy between the researchers choice, 0ρ , and the actual value, ρ . 

As can be seen in Figure 2.3.1, in the no replication case, as the number of treatment levels 

increases, so does the significance level for underestimates of ρ  ( 0ρ =0.025, 0.05).  Also, the 

choice of 0ρ  becomes more critical for a large number of treatment levels.  However, it can 

also be seen that when overestimating ρ , the significance level remains nearly constant across 

all numbers of treatment levels. 

Figure 2.3.2 indicates the power levels are fairly constant, but drop slightly as the number of 

treatments increases in the no replication case. 
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Figure 2.3.2. Power curves for tests with t treatment levels and 96 error 
degrees of freedom. 

Figure 2.3.1. Significance levels for tests with t treatment levels and 96 error 
degrees of freedom. 
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The Distribution of F when ρ  is Random 

The test statistic for testing H0: hH =β vs. HA: hH ≠β  was previously given in Equation 

2.3.7 as  
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ˆ
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−−−

 

Knowing the distribution of the test statistic W is important because it allows us compute, 

mathematically, the significance level and power of tests.  Under the null hypothesis we can 

define a random variable  

2
0QWW =  (2.3.12) 

where  
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ˆˆ ββ ~ ( )1,,05.0 −ntqf  (2.3.13) 

and Q is defined by Equation 2.2.6, where ρ  is a random variable.  The distribution of Q is 

defined by Equation 2.2.9.  The distribution of W0 is independent of ρ  and hence 

independent of Q.  We then expect 2
0QWW =  to have a distribution close to ( )1,,05.0 −ntqf .  The 

mean and variance are computed as follows: 
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If ρ ~ ( )βα ,Beta , the distribution function of 
ρ
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Consequently W  has approximately the first two moments of ( )1,0 ~ −ntqfW .   

Table 2.3.1 lists the percentiles of W and W0, where ( )30,5~ Betaρ , for different values of t 

(number of treatments) and n (number of students per treatment). 

Table 12.3.1. Simulated percentiles of the W distribution and actual percentiles of the 
( )1, −ntqf  distribution. 

   Percentiles

t n 
Random 
Variable 50th 75th 90th 95th 99th P(W>95th)

W0 0.474 1.413 3.007 4.414 8.285 0.053 10 
W 0.458 1.392 3.043 4.571 9.016 0.050 
W0 0.457 1.331 2.731 3.889 6.765 0.058 

2 
1,000,000 

W 0.404 1.251 2.766 4.161 8.142 0.050 
W0 0.819 1.494 2.416 3.160 5.092 0.061 10 
W 0.776 1.433 2.347 3.081 5.023 0.050 
W0 0.791 1.380 2.112 2.650 3.882 0.076 

4 
1,000,000 

W 0.708 1.361 2.308 3.088 5.130 0.050 
W0 0.904 1.464 2.196 2.773 4.248 0.067 10 
W 0.851 1.383 2.077 2.617 3.984 0.050 
W0 0.871 1.329 1.857 2.229 3.048 0.090 

6 
1,000,000 

W 0.788 1.354 2.123 2.738 4.300 0.050 
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The percentiles for W in Table 2.3.1 closely match those of ( )1,0 ~ −ntqfW  up to the 95th 

percentile.  It would not be unreasonable to use percentiles of the ( )1,,05.0 −ntqf  distribution to 

find critical values for test statistics based on W.  

T-Treatment Strategies for Choosing 0ρ  

The same strategies (Maximum Rho, Weighted P-vlaue, etc.) used in the two-treatment case 

extend to the t-treatment case.  One difference worthy of note is the formula for the 

Satterthwaite-type error degrees of freedom calculation in the t-treatment case. 

In testing hypotheses of the form H0: hH =β vs. HA: hH ≠β , the Satterthwaite-type 

adjustment is of the form 
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So,  
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and is estimated by  
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As ( ) 0→WVar , the error degrees of freedom using the Satterthwaite-type adjustment 

approaches ( )1−nt , the full d.f.  As ∞→n , the error degrees of freedom using the 

Satterthwaite-type adjustment approaches  
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Multiple Comparison Tests 

Let α be the probability of a type 1 error for testing the difference between treatment means.  

Suppose some number g is the number of comparisons to be made.  If no adjustment is made, 

the error rate for all comparisons as a whole, known as the family-wise error rate (FWE) for a 

certain family (group) of comparisons, is at least α, and at most α×g .  If the researcher is 

interested in maintaining an FWE of α, this can be done by making a multiple 

comparisons/multiple testing adjustment.  See Westfall, Tobias, Rom, Wolfinger, & Hochberg, 

(1999) for more information on the FWE.  We illustrate the use of the plug-in method in the 



 

 59

following multiple comparison procedures: Bonferroni, Fisher’s Protected LSD, Tukey’s, and 

SAS®’s Simulate Procedures.  We describe the methods, examine properties, and demonstrate 

implementation, using examples in the case of no replication.  These procedures apply to the 

under-replication case as well. 

Bonferroni 

The Bonferroni method of adjusting for multiple comparisons is a method of strictly 

controlling the FWE by keeping it ≤ 0α .  This is done by concluding a pairwise difference is 

significant if its corresponding p-value, multiplied by the number of pairwise comparisons to 

be made, g, is ≤ 0α .  No adjustment is made to the computation of the test statistic(s) when 

using the Bonferroni method. 

Fisher’s Protected LSD 

Fisher’s method is a two-step method.  The first step is a composite hypothesis testing H0: All 

of the treatment means are equal vs. HA: At least one of the treatment means differs from at 

least one of the other treatment means.  If that composite H0 is not rejected, the test is finished 

and the difference between all treatment means is considered insignificant.  If H0 is rejected, it 

is followed up by a second step, which makes pairwise comparisons of each of the treatment 

means.  Although criticized for not controlling the FWE in many cases (Westfall, Tobias, 

Rom, Wolfinger, & Hochberg, 1999, p. 20), Fisher’s method is still widely used.   

To conduct a test using Fisher’s method, the composite null hypothesis is tested using an F-

test as described at the beginning of this section.  A plug-in value, 0ρ , is used in the V matrix 

in Equation 2.3.7.  For the second step, a statistic, LSD, is computed from the variance of the 

difference in means as follows: ( )⋅⋅′⋅⋅−
−= iint

yytLSD râv
)1(,2

0α
.  If the absolute value of any 

of the pairwise differences exceeds LSD, the treatments are considered significantly different 

(Ostle & Malone, 1988, p. 317).  
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Tukey’s Procedure 

Tukey’s method makes an FWE adjustment for all possible pairwise comparisons, whether or 

not the researcher is interested in making that many comparisons. 

Tukey’s method seeks to find the value of αc  such that  
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If Z1, …, Zt are independent standard normal random variables, and V is a Chi-Square random 

variable with df degrees of freedom, then 

df
V
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Q ii

ii
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dft

||
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′
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−
=  has the studentized range 

distribution indexed by t and df (Westfall et al., 1999, pp. 45-46), and 2)1(,,1
R

nttqc −−= αα , 

where R
nttq )1(,,1 −−α  is the 1-α quantile of the studentized range distribution.  Using the plug-in 

method, the test statistic for Tukey’s method is 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

−
= ′

′

n

yyc ii
ii

1
1

ˆ2

||max

0

02

,

ρ
ρ

σε

α . (2.3.23)  

The difference between the two treatment means is considered significant at the nominal level 

0α if the test statistic, αc2 , exceeds R
nttq )1(,,1 0 −−α , or equivalently if the p-vlaue, p, is smaller 

than 0α , where ( )( )R
nttqcPp 1,,1 0

2 −−>= αα .   

Simulate Procedure 

The Simulate procedure uses simulation-based methods to adjust the p-values such that a 

FWE error rate is maintained.  Certain multiple comparison procedures, including Tukey’s, are 
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based on a multivariate-t distribution with a correlation matrix R.  In general, calculation of the 

multivariate-t quantile is intractable.  However, in certain cases it is feasible to obtain 

approximations.  In the case of Tukey’s procedure, R has a certain symmetry that makes it 

tractable.  In cases of comparing all pairwise differences with unequal sample sizes or 

differences between least squares means in many unbalanced designs there is not a structure of 

R that allows for the exact computations necessary for approximations.  The Simulate 

procedure samples multivariate-t vectors from a distribution with the appropriate R and 

degrees of freedom parameters, and then obtains percentiles from the results.  Sufficient 

samples are generated such that the exact multivariate-t percentile is accurate to within a 

specified degree of accuracy with a certain level of confidence.  The Simulate procedure is 

performed in the SAS® MIXED procedure with the option ADJUST=SIMULATE in the 

LSMEANS statement (SAS Institute Inc., 1999, pp. 1546-1548).   

Properties 

The Bonferroni, Tukey, and Simulate procedures all maintain a maximum experiment-wise 

error rate under any complete or partial null hypothesis.  The Fisher’s Protected LSD does as 

well when there are three or fewer treatments.  Otherwise, it simply maintains a comparison-

wise error rate and not an experiment-wise error rate. 

Implementation 

The following code uses the class data (Appendix C.1) and implements multiple testing using 

the Bonferroni, Fisher’s LSD, Tukey’s, and Simulate methods in the SAS® MIXED 

procedure. 

/** STEP 1 **/ 
%let p0=.1;  /** p0 = Plug-in ICC **/ 
%let gi=1;  /** gi = # of classes per treatment **/ 
%let ti=3;  /** ti = # of treatments **/ 
 
/** STEP 2 **/ 
proc iml; 
RATIO=((&p0/(1-&p0))*I(&gi*&ti)); 
create gratio from RATIO; 
append from ratio; 
quit; 
data gratio;set gratio;row=(_N_);run; 
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/** STEP 3 **/ 
proc mixed data=classdata ratio; 
class class trt; 
model y=trt/ddfm=kr; 
random class(trt)/ gdata=gratio Ratios; 
lsmeans trt/pdiff adjust=bon; 
lsmeans trt/pdiff adjust=tukey; 
lsmeans trt/pdiff adjust=simulate(cvadjust report); 
run;quit; 

 

The first step (STEP 1) creates global variables and sets their values so that these values can be 

used in procedures and data steps throughout the program.  The MIXED procedure allows 

known ratios of variance components to be put in the model.  The second step (STEP 2) 

creates a matrix and subsequently a data set containing the ratios that will be used for the 

matrix that represents the variance of the random effects.  The third step (STEP 3) analyzes 

the data using the appropriate model.  The GDATA= and RATIOS options indicate the data 

set GRATIO will be used in place of the traditional estimates of the matrix representing the 

variance of the random effects, known as the G matrix.  The DDFM=KR option makes 

certain the test is using the correct degrees of freedom, adjusting them for the known ratios.  

The LSMEANS statements call for estimates of the least squares means, and tests of the 

pairwise differences.  ADJUST=BON, ADJUST=TUKEY, and ADJUST=SIMULATE 

request the Bonferroni, Tukey, and Simulate multiple comparison adjustments, respectively.  

The CVADJUST option performs a more accurate simulation than without that option; 

however, it also takes more time to run the simulation.  The REPORT option gives a report of 

the simulation results. 

The following SAS® output results: 

                           Type 3 Tests of Fixed Effects 
 
                                 Num     Den 
                   Effect         DF      DF    F Value    Pr > F 
 
                   trt             2     102       0.58    0.5592 
 
 
 
 

Figure 2.3.3. Results of type 3 test of fixed 
effects. 
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                                Least Squares Means 
 
                                     Standard 
        Effect    trt    Estimate       Error      DF    t Value    Pr > |t| 
 
        trt       1        2.8286      0.3586     102       7.89      <.0001 
        trt       2        3.3714      0.3586     102       9.40      <.0001 
        trt       3        3.0857      0.3586     102       8.61      <.0001 
 
 
 
 
                            Differences of Least Squares Means 
 
                                Standard 
   Effect  trt  _trt  Estimate     Error    DF  t Value  Pr > |t|  Adjustment     Adj P 
   trt     1    2      -0.5429    0.5071   102    -1.07    0.2869  Bonferroni    0.8607 
   trt     1    3      -0.2571    0.5071   102    -0.51    0.6132  Bonferroni    1.0000 
   trt     2    3       0.2857    0.5071   102     0.56    0.5744  Bonferroni    1.0000 
   trt     1    2      -0.5429    0.5071   102    -1.07    0.2869  Tukey         0.5345 
   trt     1    3      -0.2571    0.5071   102    -0.51    0.6132  Tukey         0.8681 
   trt     2    3       0.2857    0.5071   102     0.56    0.5744  Tukey         0.8398 
   trt     1    2      -0.5429    0.5071   102    -1.07    0.2869  Simulate      0.5345 
   trt     1    3      -0.2571    0.5071   102    -0.51    0.6132  Simulate      0.8681 
   trt     2    3       0.2857    0.5071   102     0.56    0.5744  Simulate      0.8398 
 
 
 
 
                                 Simulation Results 
 
                                                       Exact 
                        Method        95% Quantile     Alpha 
 
                        Simulated         2.377872    0.0501 
                        Tukey             2.378431    0.0500 
                        Bonferroni        2.434104    0.0436 
                        Sidak             2.427577    0.0443 
                        GT-2              2.426150    0.0445 
                        Scheffe           2.484136    0.0385 
                        T                 1.983495    0.1215 
 
 

 

Bonferroni 

In the third section of the output (2.3.5) entitled “Differences of Least Squares Means,” the 

adjusted p-values next to the Bonferroni adjustments are compared with the nominal level of 

alpha.  If smaller than 0α , the comparison is deemed significant.  So, using the Bonferroni 

Figure 2.3.4. Least squares means.

Figure 2.3.5. Differences of least squares means.

Figure 2.3.6. Simulation results.
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adjustment, the comparison between treatment 1 and treatment 2 is not significant with a p-

value of 0.8607 at a 0α =0.05 level. 

Fisher’s Protected LSD 

In the first section of the output (2.3.3) entitled “Type-3 Tests of Fixed Effects,” the F-test is 

considered as the first step in the Fisher’s Protected LSD procedure.  The p-value is 0.5592 

that is compared with 0α .  Because it exceeds 0.05, the test is not significant at a 0α =0.05 

level.  Had it been significant, the researcher would then use the unadjusted p-values in the 

third section of the output (2.3.5) to conduct the individual comparisons.  The p-value used 

for comparing treatment 1 and treatment 2 would be 0.2869. 

Tukey 

In the third section of the output (2.3.5) entitled “Differences of Least Squares Means,” the 

adjusted p-values next to the Tukey adjustments are compared with the nominal level of alpha.  

If smaller than 0α , the comparison is deemed significant.  So, using the Tukey adjustment, the 

comparison between treatment 1 and treatment 2 is not significant with a p-value of 0.5345 at 

a 0α =0.05 level.  

Simulate 

In the third section of the output (2.3.5) entitled “Differences of Least Squares Means,” the 

adjusted p-values next to the Simulate adjustments are compared with the nominal level of 

alpha.  If smaller than 0α , the comparison is deemed significant.  So, using the Simulate 

adjustment, the comparison between treatment 1 and treatment 2 is not significant with a p-

value of 0.5345 at a 0α =0.05 level. 

The fourth section of the output (2.3.6) entitled “Simulation Results” allows the researcher to 

see the actual level of alpha obtained by the test.  It can be seen that alpha is clearly inflated 

when no multiple comparison adjustment is made (Method=T).  The simulate method and 

Tukey’s method yield identical p-values.  This is not surprising because they both involve 

quantiles of a multivariate-t distribution.  However, in this example there were equal sample 
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sizes and the design was balanced.  When such is not the case, Simulate will be more accurate 

than Tukey’s method. 

Evaluation (Fixed ρ ) 

The value ρ =0.1 is chosen.  This value is then used to generate a data set with equal 

population means and t=4, 6, or 8 treatments and n=10 or 100 students per class.  The 

MIXED procedure is then used to analyze the data using the Simulate multiple comparison 

procedure to test the significance of pairwise differences.  The values 0ρ =0.05, 0.10, 0.15, and 

0.20 are used in the analysis.  There are 1,000 iterations of the experiment at each level of 0ρ , 

t, and n.  The following graphs display the results of the simulation. 

 

 

 

 

 

 

 

 

 

 

As the plots show in general, the greater the value of 0ρ  that is used in the analysis, the lower 

the significance level.  However, there is some overlap.  This is likely due to the relatively small 

Figure 2.3.7. Significance levels using the SIMULATE option in the 
MIXED procedure with 10 students per class; ρ =0.10. 
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number of simulations (1000) used to create each point on the graph.  For the values 

0ρ =0.10, 0.15, and 0.20, the significance level remains near or below the nominal level (0.05), 

increasing slightly for more treatments. 
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Evaluation (Random ρ ) 

The value ρ  is chosen at random from a Beta(5,30) distribution.  This value is then used to 

generate a data set with equal population means and t=4, 6, or 8 treatments and n=10 or 100 

students per class.  The MIXED procedure is then used to analyze the data using the Simulate 

multiple comparison procedure to test the significance of pairwise differences.  The values 

0ρ =0.05, 0.10, 0.15, and 0.20 are used in the analysis.  There are 1,000 iterations of the 

experiment at each level of 0ρ , t, and n.  The following figures display the results of the 

simulation. 

Figure 2.3.8 Significance levels using the SIMULATE option in the 
MIXED procedure with 100 students per class; ρ =0.10. 
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Figure 2.3.9. Significance levels using the SIMULATE option in the 
MIXED procedure with 10 students per class; ρ ~Beta(5,30). 

Figure 2.3.10. Significance levels using the SIMULATE option in the 
MIXED procedure with 100 students per class; ρ ~Beta(5,30). 
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As the figures show, the greater the value of 0ρ  that is used in the analysis, the lesser the 

significance level.  The average of the Beta(5,30) distribution is 0.14286.  For the values 

0ρ =0.10, 0.15, and 0.20, the significance level remains near or below the nominal level (0.05).  

Only when 0ρ =0.05 is the significance level inflated. 
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CHAPTER 3: USING A KNOWN INTRACLASS CORRELATION 

COEFFICIENT TO TEST THE DIFFERENCES AMONG TREATMENT 

MEANS (UNDER-REPLICATION) 

3.1: THE TWO-TREATMENT CASE 

THE EFFECT OF REPLICATION ON THE ANALYSIS 

This section looks at methods for dealing with under-replication.  It is important to determine 

when (how often) it is better to use standard mixed model methods than to use a chosen value 

for ρ .  That is the object of inquiry for this section. 

Description 

Recall the model (1.1.1) from section 1: 

ijkijiijky εδµ ++=

 
Likewise, recall (1.1.3) 
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For the two-treatment case, this reduces to 
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Next, we look at the effect replication (the number of classes per treatment) has on the 

significance level. 

Let an estimate of 2
εσ  be defined as  
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The estimator in Equation 3.1.2 is not equivalent to the one in Equation 2.3.4.  In the case of 

replication, Equation 2.3.4 depends on the unknown value ρ .  Equation 3.1.2 will be used as 

an estimate for 2
εσ .  It is still an unbiased estimator, but does not depend on ρ .  Another 

difference is that tests involving Equation 3.1.2 will have tb(n-1) error degrees of freedom 

instead of t(bn-1) error degrees of freedom from using Equation 2.3.4.  In the two-treatment 

case, t=2. 

If we consider the case when ijnn = , ibb = , the probability of rejection can be written as 
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where T is a random variable with a non-central t-distribution with non-centrality parameter 
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 which depends on the values of ρ , 0ρ , b, and n.  As ∞→n  and 

under the null hypothesis, (3.1.4) becomes  
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which only depends on ρ and 0ρ .  As the error degrees of freedom increases, either by 

increasing n or b, the effect of b (the number of classes per treatment) on the probability of 

rejection using the plug-in method decreases.  The following figures will illustrate this. 

The following figures display significance levels for testing the equality of two treatment means 

in a replication setting.  Ten and a theoretically infinite number of students per class are 

considered.  The true value ρ  is set at 0.1, a likely value for many applications, and the values 

of 0ρ  range from 0.025 to 0.20 to demonstrate the consequence of discrepancy between the 

researchers choice, 0ρ , and the actual value, ρ .  Figure 3.1.1 is generated using Equation 3.1.4 

and Figure 3.1.2 is generated using Equation 3.1.5. 
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Figure 3.1.1. Small sample significance levels for different numbers of 
classes per treatment. 

Figure 3.1.2. Large sample significance levels for different numbers of 
classes per treatment. 
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In the first graph (3.1.1), n=10 students per class.  There is virtually no change in significance 

level as the number of classes per treatment changes from one to ten.  This holds true for 

larger numbers of classes per treatment as well. 

In the second graph (3.1.2), we let ∞→n  resulting in 01lim =
∞→ nn

 being used in Equation 3.1.4 

to obtain Equation 3.1.5.  There is no change in significance level as the number of classes per 

treatment changes from one to ten.  Thus, the strategies for choosing 0ρ  developed in the no-

replication case have essentially the same effect on type 1 error whether there is replication or 

not. 

The associated graphs of the power curves in the n=10 and theoretically infinite students per 

class appear next (3.1.3 and 3.1.4).  Appropriately, the power curves increase as the number of 

classes per treatment increases. 

Figure 3.1.3. Small sample power curves for different numbers of classes 
per treatment. 
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Next, we compare two tests, again in the case when ijnn = , ibb = .  The first is a traditional t-

test of the difference between treatment means using class means as the response variable for 

the design.  The second test is a t-test of the difference between treatment means using the 

plug-in method.   

Traditional T-test on Class Means 

Let ⋅= ijij yw , the mean of the students in class j receiving treatment i, iµ  is the fixed effect of 

treatment i, ⋅+= ijijij εδε *  is the random effect of class j average given treatment i; i = 1, 2, j = 

1, 2, …, b, k = 1, 2, …, n.  We have ( )2*
*,0~

ε
σε nij  where 

n

2
22

*
ε

δε

σ
σσ += .  We may write a 

model for the experiment as follows: 

                                                             *
ijiijw εµ +=  (3.1.6) 

Figure 3.1.4. Large sample power curves for different numbers of 
classes per treatment. 
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Properties 

The variance of the difference is 
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λ , and let T be a random variable having a noncentral t-

distribution with degrees of freedom υ  and noncentrality parameter λ .  The power of the 

traditional t-test can be found using the following formula: 

( )[ ] ( )[ ]λυλυ ,,025.0,,975.0 tTPtTPPower >+−<= −  (3.1.8) 

T-test Using Plug-in Method 

Using model (1.1.1) we can define our test statistic as  
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where 2ˆ εσ  represents a pooled estimate of the within class variance computed using Equation 

3.1.2.  The null hypothesis is rejected in favor of the alternative if *,20
* υαtt > , where *,20 υαt  is 

the upper 20α  quantile of the Student’s t distribution with ( )12* −= nbυ  degrees of 

freedom. 

Properties 

The variance of the difference is 
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, the same as for the traditional t-test, and let 

T* be a random variable having a noncentral t-distribution with degrees of freedom *υ  and 

noncentrality parameter λ .  The power of the test can be found using the following 

formula: ( ) ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

+
−

>+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

+
−

−<= −

n

n
tTP

n

n
tTPPower

1
1

1
1

*
1

1

1
1

* 0

0

*,,025.0
0

0

*,,975.0

ρ
ρ
ρ

ρ

ρ
ρ
ρ

ρ

λυλυ (3.1.11) 

In the optimal case, ρρ =0 , the power of the test (3.1.11) differs from that in (3.1.8) only by 

the degrees of freedom: υ  for the traditional t-test on the class means and υυ >*  for the t-

test using the plug-in method.  As the sample size b increases, eventually a point will be 

reached in which the power based on analyzing the test using the plug-in method is not 

appreciably greater than the power based on analyzing the test using the traditional t-test.   

The following figures demonstrate the difference between the power using equation 3.1.11 

versus using equation 3.1.8 in the optimal case of ρρ =0 . 



 

 78

 

Figure 3.1.5. Power curves; plug-in vs. traditional method; 100 students 
per class; 2 classes per treatment. 

Figure 3.1.6. Power curves; plug-in vs. traditional method; 10 students 
per class; 2 classes per treatment. 



 

 79

Figure 3.1.5 represents the different power curves for b=2, two experimental units per 

treatment, 100 subsamples, and a standardized difference of 0.5.  The black line represents the 

t-test using the plug-in method, and the red line represents a traditional t-test.  If ρ  is around 

0.1 or less, there is a significant loss in power if the information about ρ  is not used.  In fact, 

at ρ =0.05, the difference in power is 0.295.  For values of ρ >0.3 no appreciable difference 

exists.  

Figure 3.1.6 uses 10 subsamples instead of 100.  The decrease in the number of subsamples 

leads to a decrease in power in both cases and narrows the difference between the known ρ  

model and the traditional t-test.  At ρ =0.05, the difference in power is 0.116.  For values of 

ρ >0.1, no appreciable difference exists. 

Figure 3.1.7. Power curves; plug-in vs. traditional method; 100 students per 
class; 5 classes per treatment.
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Figure 3.1.7 uses 100 subsamples and now uses b=5, five experimental units per treatment.  

Although a difference in the power exists, it is at most about 0.1, so one might override the 

complexity of the plug-in method for the simplicity of the traditional t-test. 

Another interesting comparison is that of the plug-in versus the traditional t-test if the choice 

of 0ρ  is off by ±0.05.  Figure 3.1.8 shows that with the choice of 0ρ  differing from ρ  by 

+0.05, the plug-in method may even perform worse (less power) than a traditional t-test—with 

as few as two experimental units per treatment.  So, the choice of 0ρ  is critical if power is to 

be improved using the plug-in method over the traditional method. 

Figure 3.1.8. Power curves; plug-in vs. traditional method; 100 students per 
class; 2 classes per treatment; 50.00 =− ρρ . 
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It appears then that using the plug-in method in the two-treatment case, with 0ρ  close to ρ , 

is preferable with up to five experimental units per treatment, but beyond that would not yield 

significant improvements over the traditional t-test. 

3.2:  STRATEGIES FOR CHOOSING 0ρ  

The strategies recommended for choosing 0ρ  in an unreplicated experiment extend to the 

case of the under-replicated experiment.  The main difference between the unreplicated case 

and the under-replicated case is the computation of the error degrees of freedom.  Whereas in 

the unreplicated case, the full error degrees of freedom used in testing hypotheses were 2(n-1), 

in the under-replicated case, the full error degrees of freedom are 2b(n-1), where b represents 

the number of classes per treatment. 

As shown in Figures 3.1.1, the effect of the number of classes per treatment (b) on the 

significance level is minimal.  No changes need be made to the Acceptable Interval procedure 

nor to the Weighted P-Value method for them to work in the under-replicated experiment 

case, other than the change in error degrees of freedom naturally associated with replication.  

The ADFMR strategy (Strategy 3) will change with respect to the Satterthwaite-type 

adjustment to the degrees of freedom.  Recall, the Satterthwaite-type adjustment (2.2.1) is of 

the form 
( )[ ]
( )[ ]21

2
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ˆ
2..

yyraVVar
yyVarfd
−

−
= . 

In the two-treatment under-replication case, this becomes 

( ) ( )[ ]
( ) ( ) ( )[ ]2
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1
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WEWVarbbn
WEnbfd
++−

−
=  (3.2.1) 

where  
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n
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As ( ) 0→WVar , the error degrees of freedom using the Satterthwaite-type adjustment 

approach ( )12 −nb , the full d.f, indicating that the more precise the choice of 0ρ , the more 

appropriate the ( )12 −nb  error degrees of freedom.  Also, as ∞→n , the error degrees of 

freedom using the Satterthwaite-type adjustment approach  
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Random ρ  

We now look at average significance level and power for the various strategies by randomly 

selecting ρ  from a population of ρ ’s and determine the proportion of times our test 

correctly rejects or fails to reject the null hypothesis. 

A simulation was conducted with the following specifications: 

Iterations = 100,000 
n = 10, 100 
b = 2, 4, 6 
Error d.f. = Satterthwaite-type and 2b(n-1) 

ρρ =0  and 75th quantile 

ρ ~Beta(1,10) and Beta(5,30) 

The following distributions show plausible prior information about ρ  and the consequences 

on the average significance and power levels. 
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Example 1: ρ ~Beta(1,10) 

 

 
Table 3.2.1. Simulated significance levels and power levels using ρ ~Beta(1,10) prior 
distribution; n = 10, 100; b=2, 4, 6; error d.f. = Satterthwaite-type and 2(n-1); ρρ =0  and 75th 
quantile. 

 b=2 b=4 b=6 

ρρ =0  n=10 n=100 n=10 n=100 n=10 n=100
Satterthwaite d.f. = 4.750 1.882 5.213 1.892 5.388 1.895
Simulated Alpha = 0.019 0.002 0.020 0.002 0.021 0.002
Simulated Power(diff=1) = 0.335 0.045 0.715 0.265 0.900 0.717
2b(n-1) d.f. = 36 396 72 792 108 1188
Simulated Alpha = 0.052 0.060 0.053 0.061 0.053 0.060
Simulated Power(diff=1) = 0.568 0.860 0.872 0.975 0.962 0.993

Quantileth750 =ρ  n=10 n=100 n=10 n=100 n=10 n=100
2b(n-1) d.f. = 36 396 72 792 108 1188
Simulated Alpha = 0.039 0.040 0.039 0.041 0.040 0.039
Simulated Power(diff=1) = 0.498 0.786 0.832 0.963 0.948 0.990

Figure 3.2.1. Prior distribution for ρ , Beta(1,10). 



 

 84

Example 2: ρ ~Beta(5,30) 

Table 3.2.2. Simulated significance levels and power levels using ρ ~Beta(5,30) prior 
distribution; n = 10, 100; b=2, 4, 6; error d.f. = Satterthwaite-type and 2(n-1); ρρ =0  and 75th 
quantile. 

 b=2 b=4 b=6 

ρρ =0  n=10 n=100 n=10 n=100 n=10 n=100
Satterthwaite d.f. = 12.639 8.964 15.654 9.090 17.006 9.132
Simulated Alpha = 0.039 0.030 0.040 0.030 0.039 0.031
Simulated Power(diff=1) = 0.408 0.533 0.725 0.864 0.888 0.964
2b(n-1) d.f. = 36 396 72 792 108 1188
Simulated Alpha = 0.052 0.055 0.052 0.053 0.050 0.055
Simulated Power(diff=1) = 0.462 0.657 0.767 0.916 0.910 0.979

Quantileth750 =ρ  n=10 n=100 n=10 n=100 n=10 n=100
2b(n-1) d.f. = 36 396 72 792 108 1188
Simulated Alpha = 0.038 0.034 0.037 0.035 0.037 0.035
Simulated Power(diff=1) = 0.400 0.564 0.717 0.878 0.883 0.968

Figure 3.2.2. Prior distribution for ρ , Beta(5,30). 



 

 85

Looking at Tables 3.2.1 and 3.2.2, it is apparent that replication increases the power of the test.  

Tests using the Satterthwaite-type adjusted error degrees of freedom seem to be much more 

appropriate than in the case of no replication.  Whereas it was recommended not to use the 

Satterthwaite-type adjusted error degrees of freedom in the case of no replication, except when 

needing to assure adherence to 0α , in the case of under-replication, the Satterthwaite-type 

method or using 0ρ =75th quantile both seem to be recommendable options. 

3.3: THE T-TREATMENT CASE 

It is reasonable to assume the researcher will want to work with more than two treatments.  

Refer to the model (1.1.1) in section 1.1 for notation.  Let ∑∑
= =

=
t

i

b

j
ij

i

nN
1 1

; Y be an 1×N  

observable vector of random variables; X be a tN ×  design matrix, that is, a matrix of 0’s and 

1’s denoting the design’s treatment structure; β  be a 1×t  vector consisting of the treatment 

means tβββ ,...,, 21 ; E be a 1×N vector of unknown random variables.  Then we can write 

the Generalized Linear Model can be written as  

                                                               EXY += β  (3.3.1) 

Let H be a tq×  matrix and h be a 1×q  vector, as defined in Graybill (1976, p. 184).  Let V 

be an NN ×  known positive definite matrix such that ( ) VYVar 2
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ijA  is an ijij nn ×  matrix.  The best linear unbiased estimate of β  is ( ) YVXXVX 111ˆ −−− ′′=β .  

This is [ ]⋅⋅⋅⋅⋅⋅= tyyy ,...,,ˆ
21β  in the case where ijnn =  and ibb = .  An estimate of 2

εσ  is  
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Equation 3.3.3 is not equivalent to Equation 2.3.4, except in the case of no replication.  As 

explained previously, Equation 2.3.4 depends on the unknown value ρ .  So, Equation 3.3.3 

will be used instead.  The test statistic for testing H0: hH =β vs. HA: hH ≠β  is of the form 
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Reject H0 at level 0α  when υα ,,0 qfW > , where υα ,,0 qf  is the 01 α−  quantile of the F 

distribution with q and ( )∑∑
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1υ  degrees of freedom. 
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Properties 

For simplicity, we consider the case where ijnn =  and ibb =  for all values of i and j.  We 

denote 0V  as the matrix V with 0ρρ = .  It can be shown that 
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Let ( )1−= ntbυ .  The probability of rejection of the null hypothesis can be computed as 

follows: 
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where W* has a non-central F distribution with q and υ  degrees of freedom with non-

centrality parameter ( ) ( )[ ] ( )hHHXVXHhH −′′′−=
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Since 0d  is an increasing function of 0ρ , increasing 0ρ  decreases (3.3.7) for fixed ρ .  

Next, we look at the effect of the number of treatments on the significance level.  The 

following two figures display significance levels for testing the equality of multiple treatment 
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means in minimal replication settings.  In both cases, the number of students per class is 

determined such that the total error degrees of freedom, ( )1−ntb , is equal to 96.  The true 

value ρ  is set at 0.1, a likely value for many applications, and the values of 0ρ  range from 

0.025 to 0.20 to demonstrate the consequence of discrepancy between the researchers choice, 

0ρ , and the actual value, ρ . 

In both figures it can be seen that the number of treatments involved does little to affect the 

significance level of the test. 

Figure 3.3.1. Significance levels with 2 classes per treatment and 96 error 
degrees of freedom. 
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We now compare two tests in the case when ijnn =  and ibb = .  The first is a traditional F-

test of the difference among treatment means using class means as the response variable for 

the design.  The second test is an F-test of the difference between treatment means using the 

plug-in method.  

Traditional F-test on Class Means 

Recall the model defined previously (3.1.3). 

                                                   *
ijiijw εµ +=   

This can be rewritten in matrix form as follows: 

                                                   Ww EXW += β  (3.3.8) 

where W is a 1×tb  observation vector, wX  is a ttb×  design matrix, β  is a 1×t  vector of 

treatment means, and wE  is a 1×tb  error vector distributed as ⎟
⎟
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Figure 3.3.2. Significance levels with 4 classes per treatment and 96 error 
degrees of freedom. 
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The test statistic to test hHH =β:0  vs. hHH A ≠β:  has the form  
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1* , and let 

F be a random variable having a noncentral F-distribution with degrees of freedom q and *υ , 

and non-centrality parameter *λ .  The power of the traditional F-test can be found using the 

following formula: 

( )[ ]**,,,05.0 λυqFFPPower >=  (3.3.10) 

F-test Using Plug-in Method 

Recall that in the case of the plug-in method, 
( )
( )0

0
0 1

11
ρ

ρ
−
−+

=
nd .  Also, let ( )1−= ntbυ .  The 
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where W0 has a non-central F distribution with q and υ  degrees of freedom with non-

centrality parameter ( ) ( )[ ] ( )hHHXVXHhH −′′′−=
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1 .  Note that *λλ = . 

In the optimal case, ρρ =0 , the power of the test (3.3.11) differs from that in (3.3.10) only by 

the degrees of freedom where we have *υ  for the traditional F-test on the class means and 

*υυ >  for the F-test using the plug-in method.  As the sample size increases, eventually a 

point will be reached at which the power based on analyzing the test using the plug-in method 
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is not appreciably greater than the power based on analyzing the test using the traditional F-

test. 

The following four figures demonstrate the difference between the power using Equation 

3.3.10 versus using Equation 3.3.11.  In the figures depicting power, the “standardized 

difference of 1.0” in the t-treatment case means that all treatment means are equal to Tµ  say, 

except for one treatment mean, 1µ  which equals ( )StDiffT σµµ +=1 , where σ  is the 

standard deviation of the measurements on students in each of the classes. Thus, 

σ
µµ TStDiff −

= 1 . 

Figure 3.3.3 illustrates the difference the number of classes (b) per treatment makes for 5 

students per class.  When there are five or six classes per treatment, there is not much of a 

difference between the power using the traditional method compared with the plug-in method.  

For ρ =0.2, the difference in power is 0.071. 

Figure 3.3.3. Power curves; 2 treatments; 5 students per class; multiple 
levels of classes per treatment. 



 

 92

Figure 3.3.4 illustrates the difference the number of classes (b) per treatment makes with 30 

students per class.  When looking at values of ρ  between 0.05 and 0.20, again not much 

difference exists between the power using the traditional method and the power using the 

plug-in method.   

The number of treatment levels also affects the difference in power, but not much.  To 

illustrate this, the following two figures show the power of detecting a standardized difference 

of 1.0 with 20 treatment levels.  Figure 3.3.5 has five students per class and the second figure 

(3.3.6) has 30 students per class.   

Figure 3.3.4. Power curves; 2 treatments; 30 students per class; multiple 
levels of classes per treatment. 
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Figure 3.3.5. Power curves; 20 treatments; 5 students per class; multiple 
levels of classes per treatment. 

Figure 3.3.6. Power curves; 20 treatments; 30 students per class; 
multiple levels of classes per treatment.
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In both cases (Figures 3.3.5 and 3.3.6), the traditional method will have ( )120 −b  error degrees 

of freedom.  The following table indicates the error degrees of freedom for each of the lines in 

each of the graphs: 

                               Table 3.3.1. Error degrees of freedom totals. 

Table b t n 
Traditional
Error d.f. 

Plug-in 
Error d.f. 

3.3.3 2 2 5 2 16
3.3.3 4 2 5 6 32
3.3.3 6 2 5 10 48
3.3.4 2 2 30 2 116
3.3.4 4 2 30 6 232
3.3.4 6 2 30 10 348
3.3.5 2 20 5 20 160
3.3.5 4 20 5 60 320
3.3.5 6 20 5 100 480
3.3.6 2 20 30 20 1160
3.3.6 4 20 30 60 2320
3.3.6 6 20 30 100 3480

 

It can be seen in Figure 3.3.6 that although there are at least 20 error degrees of freedom, a 

noticeable difference in power exists between the traditional and plug-in methods of analyzing 

data when only two classes per treatment are considered.  In fact, little difference is detectable 

among the two graphs of power curves with two treatment levels and those with 20 treatment 

levels.  This can also be seen in the following two graphs (3.3.7 and 3.3.8).  With b=2 classes 

per treatment and n=30 students the difference in power for a comparison of 20 treatments is 

0.31 when rho=0.05. For the same comparison with b=6 classes per treatment, the difference 

in power is less than 0.001. So, in this case, it is not the error degrees of freedom, but number 

of classrooms (replication) that are important.  It is recommended, if the researcher has more 

than four classes per treatment, the traditional method of analysis should be used over the 

plug-in method. 
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Figure 3.3.8. Power curves; 2 and 20 treatments; 6 classes per treatment; 
30 students per class. 

Figure 3.3.7. Power curves; 2 and 20 treatments; 2 classes per treatment; 
30 students per class. 
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T-Treatment Strategies for Choosing 0ρ  

The same strategies (Maximum Rho, Weighted P-value, etc.) used in the t-treatment un-

replicated case and the two-treatment under-replicated case extend to the t-treatment case.  

Again we make note of the change in the formula for the Satterthwaite-type error degrees of 

freedom calculation. 

In testing hypotheses of the form H0: hH =β vs. HA: hH ≠β , the Satterthwaite-type 

adjustment is given in Equation 2.3.18 as 
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σσ = ( ) ( ) ( ) ( )[ ]{ }2
4

21
1

wEwVarnbt
nbt

+⋅−
−
εσ  

= ( ) ( ) ( ) ( ) ( )[ ]{ }2
4

21
1

wEwVarwVarnbt
nbt

++⋅−
−
εσ  

So,  
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( ) ( ) ( ) ( ) ( )[ ]{ }2
4
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−

=
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+⋅+−
−

=  (3.3.12) 

and is estimated by ( )[ ] ( )
( ) ( ) ( )[ ]2

2

22
12..

wEwVarbtbtn
nbtwEfd
+⋅+−
−

= . (3.3.13) 

As ( ) 0→WVar , the error degrees of freedom using the Satterthwaite-type adjustment 

approaches ( )1−nbt , the full d.f.  As ∞→n , the error degrees of freedom using the 

Satterthwaite-type adjustment approaches  
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CHAPTER 4: USING THE PLUG-IN METHOD ON MODELS WITH A SPLIT-

PLOT DESIGN STRUCTURES 

The discussion up to this point has focused on models with Completely Random design 

(CRD) structures.  The focus of this section is on models with a split-plot design structure.   

Description 

The model for a split-plot design with a CRD whole plot is 

                                              ijkijjikiijk ABBwAy εµ +++++=  (4.1.1) 

where ijky  is the measurement taken on the kth subplot in the jth whole plot given the ith 

treatment, Ai is the ith whole plot treatment main effect, ikw  is the whole plot error effect, Bj 

is the jth subplot treatment main effect, ABij is the interaction effect of the ith whole plot and 

the jth subplot, ijkε  is the subplot error effect; i = 1, 2, …,t, j = 1, 2, …, bi, k = 1, 2, …, nij.  

Assume  ( )2,0~ wik nw σ , where 2
wσ  represents the whole-plot variability and assume 

( )2,0~ εσε nijk , where 2
εσ  represents the sub-plot variability.  It is assumed that ikw  and ijkε  

are independent.  Model 4.1.1 can also be written as  

                                                        ijkikijijk wy εµ ++=  (4.1.2) 

 
where ijjiij ABBA ++=µ  is the mean of the ijth treatment.  The variance of an observation is 

( ) 22var εσσ += wijky .  We believe that researchers who have done similar experiments may 

have a good idea about the value of the error variance.  Similar to the case of the completely 

randomized design we let 22

2

εσσ
σ

ρ
+

=
w

w .   
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Example: 

A researcher would like to compare the effect of three different fertilizers on the yield of corn.  

The researcher has four different plots of land available for the study.  Each plot of land has a 

different irrigation system.  The plot of land is divided into thirty subplots, and to each 

subplot, one of the three types of fertilizer is chosen at random and applied to the subplot.  

There is no replication on the whole plot, but subplots are replicated in a completely random 

fashion within each whole plot.  From similar previous studies on similar fields, the researcher 

should have an idea of the ratio of the whole plot to the subplot variances. 

Consider the equation of a split-plot model in matrix form.   

                                                       EXY += β  

It is the same as the completely randomized design model 3.3.1.  Let V be an NN ×  known 

positive definite matrix such that ( ) VYVar 2
εσ= .   

⎥
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⎥
⎥
⎥
⎥
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iA  is a ∑∑
==

×
ii b

j
ij

b

j
ij nn

11

 matrix, ijB is a ijij nn ×  matrix. 
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Let ( ) YVXXVX 111ˆ −−− ′′=β  be the best linear unbiased estimate of β .  This is equal to 

[ ]⋅⋅⋅⋅⋅⋅= tyyy ,...,,ˆ
21β  in the no replication case.  Again, we use Equation 3.3.3 to compute the 

estimate of 2
εσ . 

( )

( )∑∑

∑∑

= =

= =

−

−
=

t

i

b

j
ij

t

i

b

j
ijij

i

i

n

sn

1 1

1 1

2

2

1

1
ˆεσ  (4.1.5) 

where  

( )
1

1

2

2

−

−
=
∑
=

⋅

ij

n

k
ijijk

ij n

yy
s

ij

.   (4.16) 

The test statistic for testing H0: hH =β vs. HA: hH ≠β  is of the form 

( ) ( )[ ] ( )
2

111
0

ˆ

ˆˆ

εσ
ββ

q
hHHXVXHhHW −′′

′
−

=
−−−

 (4.1.7)  

where 0V  is equal to the matrix V with 0ρρ = .  Let H0 be rejected at level 0α  when 

υα ,,0 qfW > , where υα ,,0 qf  is the 01 α−  quantile of the F distribution with q and 

( )∑∑
= =

−=
t

i

b

j
ij

i

n
1 1

1υ  degrees of freedom. 

Properties 

Two-Treatment Case 

We now look at the split-plot situation where there is under-replication of the whole plot.  The 

no-replication case is the same as the replication case with b=1.  Therefore, specific discussion 

of the no-replication two-treatment case will be omitted.  For simplicity, we consider the case 
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where ijnn =  for all values of i and j.  Consider model (4.1.2).  With a split-plot analysis, there 

are four different types of tests that are of interest. 

The first, which we will call “Test1,” tests ⋅⋅ = 210 : µµH  vs. ⋅⋅ ≠ 21: µµAH .  This test 

compares the effect of whole plot treatment level one with whole plot treatment level two, 

averaged across all levels of the subplot.  The variance of the difference of the means is  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=− ⋅⋅⋅⋅ nb

yyVar w

2
2

21
2 εσσ ,  (4.1.8) 

which can be rewritten as  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=− ⋅⋅⋅⋅ nb

yyVar 1
1

2 2

21 ρ
ρσε  (4.1.9) 

which is exactly the same as in the CRD two-treatment under-replication case.   The test 

statistic for this test using the plug-in method is 

( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−−
= ⋅⋅⋅⋅⋅⋅⋅⋅

0

0
2

020121

1
ˆ2

1

ρ
ρσ

µµ

ε

b

yyT    (4.1.10) 

and the probability of rejecting the null hypothesis is the same as in Equation 3.1.4. 

The second test we define as “Test2” and write as jjH ′⋅⋅ = µµ:0  vs. jjAH ′⋅⋅ ≠ µµ: .  This test 

compares the effect of subplot treatment level j  with subplot treatment level j′ , averaged 

across all levels of the whole plot.  The variance of the difference of the means is  

( )
bn

yyVar jj

2
εσ=− ⋅′⋅⋅⋅ ,  (4.1.11) 
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which does not depend on ρ at all, and therefore is not affected by use of the plug-in method.  

The test statistic for this test is 

( ) ( )

bn

yyT
2

201021

ˆ
2

εσ

µµ ⋅⋅⋅⋅⋅⋅⋅⋅ −−−
=    (4.1.12) 

and the probability of rejecting the null hypothesis is  

( )( ) ( )( )12,12,2 −− >=> nbnb tTPtTP αα  where ( )12,~ −nbtT α . (4.1.13) 

The third test we refer to as “Test3” and write as jjH 210 : µµ =  vs. jjAH 21: µµ ≠ .  This test 

compares the effect of the whole plot treatment levels, at the jth subplot level.  The variance of 

the difference of the means is  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=− ⋅⋅ ρ
σ ε

1
12 2

21 bn
yyVar jj ,  (4.1.14) 

The test statistic for this test using the plug-in method is: 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−−
= ⋅⋅⋅⋅

0

2

020121

1
1ˆ2

3

ρ
σ

µµ

ε

bn

yy
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and the probability of rejecting the null hypothesis is  

( )( ) ( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
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−
−

>′=> −−
0
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13

ρ
ρ

nbnb tTPtTP  (4.1.16) 
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where T ′  has a non-central t-distribution with non-centrality parameter 

( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−−
=

ρ
σ

µµµµ
λ

ε

1
12 2

020121

bn

jjjj   

and degrees of freedom ( )12 −= nbυ . 

The fourth test we define as “Test4” and write as jiijH ′= µµ:0  vs. jiijAH ′≠ µµ: .  This test 

compares the effect of subplot treatment levels j  and j′  at the ith whole plot level.  The 

variance of the difference of the means is  

( )
bn

yyVar jiij

22 εσ=− ⋅′⋅ ,  (4.1.17) 

which does not depend on ρ at all, and therefore is not affected by use of the plug-in method.  

The test statistic for this test is: 

( ) ( )

bn

yy
T jiijjiij

2

00

ˆ2
4

εσ

µµ ⋅′⋅⋅′⋅ −−−
=    (4.1.18) 

and the probability of rejecting the null hypothesis is  

( )( ) ( )( )12,05.012,05.04 −− >=> nbnb tTPtTP  where ( )12,05.0~ −nbtT . (4.1.19) 

No-replication T-treatment Case 

Consider the matrix form of the model (4.1.2) and the test statistic W that follows it (4.1.7).  It 

can be shown that ( ) ( ) tI
n

XVX ⎟
⎠
⎞

⎜
⎝
⎛×⎥

⎦

⎤
⎢
⎣

⎡
−

=′ −− 1
1

111

ρ
.  Also, ( ) tI

n
XX ⎟

⎠
⎞

⎜
⎝
⎛=′ − 11 .  So, the 

contribution of the V matrix is  
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( )ρ−=
1

1d . (4.2.20) 

Let ( )0
0 1

1
ρ−

=d .  The probability of rejection of the null hypothesis can be computed as 

follows: 

( )tNqFWP −> ,,05.0  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛> −tNqF

d
dWP ,,05.0

0*  (4.1.21) 

where W* has a non-central F distribution with q and N-t degrees of freedom with non-

centrality parameter ( ) ( )[ ] ( )hHHXVXHhH −′′′−=
−−− ββ

σ
λ

ε

111
2

1 . 

Since 0d  is an increasing function of 0ρ , increasing 0ρ  decreases (4.1.21) for fixed ρ .  

Replication T-treatment Case 

Consider the general test of hypothesis H0: hH =β vs. HA: hH ≠β .  In the CRD case, it was 

possible to find a constant 0d  (see Equation 3.3.5) such that ( ) ( ) 1
0

11
0

−−− ′=′ XXdXVX .  This 

allowed for the probability of rejection to be computed analytically using a constant multiple of 

a standard F-distribution (3.3.7).  This is not true in the split-plot case.  In the split-plot case, 

the probability of rejection must be found using simulation.  
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CHAPTER 5: AN EXAMPLE 

5.1: DESCRIPTION 

A researcher would like to test the effectiveness of four different treatments on the control of 

two-spotted spider mites (TSM) in commercial greenhouses.  Four greenhouses were used for 

the study.  Within each greenhouse, eight potted plants were inoculated with TSM.  One of the 

four treatments was applied to all the pots in each of the four greenhouses.  At the end of the 

treatment period, the number of TSM was counted on each of the potted plants in each of the 

greenhouses.  The data are listed in Appendix C as data set C.3.  

Treatment 1 was a control.  No methods of pest control were performed.  Treatment 2 was a 

biological control agent (PP).  Two weeks after the plants were inoculated with TSM, sampling 

was done on ivy geranium plants according to an existing sampling plan.  Using the sampling 

plan, the number of TSM per leaf was determined.  The ratio of PP:TSM known to effectively 

control TSM is 1:4. To determine how many PP to release, the total number of TSM in the 

area occupied by plants was divided by four—PP was released only once, two weeks after 

plants were inoculated using TSM.  Treatment 3 was also a biological control agent.  Two 

weeks after plants were inoculated with TSM, PP was released at a rate of 50/m2 - a rate 

recommended by insectaries that sell natural enemies.  Release of PP was done on a weekly 

basis for four weeks.  Treatment 4 involves application of a chemical insecticide. Two weeks 

after plants were inoculated with TSM, a single chemical application was done. 

The response variable was the number of spider mites recorded on a given potted plant in a 

given greenhouse with a given treatment.  The following box plots represent the data for the 

different treatments: 
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As can be seen in the Figure 5.1.1, a convincing difference seems to exist between the count of 

TSM in the greenhouse treated with treatment 1 and those treated with treatments 2 and 4.  

However, there is question about the difference between the TSM counts under treatment 3 

versus the others.  Specifically, treatments 2 and 4 appear to reduce significantly the count of 

TSM.  Treatment 3 is questionable.  Both Bartlett’s and Levene’s tests of homogeneity of 

variance indicate unequal variances with p-values < .001 and = .012, respectively.  This leads to 

a square-root transformation on the response variable TSM count.  Once a square-root 

transformation was performed neither Bartlett’s or Levene’s tests of homogeneity of variance 

indicated significant heterogeneity of variances with p-values = .081 and .205, respectively.  

The following analyses use the transformed data rather than the original counts. 

5.2: CONDITIONAL P-VALUE PLOTS 

The first step in an analysis using plug-in methods is to look at the conditional p-value plots.  

If the p-value plots are very conclusive, it may eliminate the need for certain hypothesis tests. 
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Figure 5.1.1. Count of TSM after treatment.
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The first plot (5.2.1) shows the p-value of the test 43210 : µµµµ ===H  vs. :AH At least two 

means differ.  The p-values are plotted as a function of the plug-in value 0ρ . 

The p-value is less than 0α =0.05 for every value of 0ρ <0.5.  So, using any of the plug-in 

methods described in this paper with any value of 0ρ <0.5 will lead to rejection of the null 

hypothesis.  However, for the purpose of illustration, we will give an example of each strategy 

proposed in this paper as it applies to this overall F-test. 

5.3: WHAT DOES THE RESEARCHER KNOW ABOUT ρ  

Before treatments were applied to the greenhouses (week two), the count of TSM for each 

potted plant in each greenhouse was determined on several different varieties of plants.  That 

Figure 5.2.1. P-value plot for testing equality of treatment means. 
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data (C.4) was used to compute estimated values of ρ  for each variety.  The following values 

were obtained: 

                                       Table 5.3.1. Estimated ICC for different  
                                       plant varieties. 

Variety Estimated ρ
Cajun Cranberry 0.07275
Cajun White 0.21830
Impulse Orange 0.15886
Impulse Orange White 0.16666
Ivy Geranium 0.05467
Summer Rose Lilac 0.06480
Summer Rose Red 0.30069

 

The values in the table have a maximum value just over 0.30 and a minimum value just over 

0.05.  Next we look at applying each of the plug-in strategies to the overall F-test. 

5.4: OVERALL F-TEST 

Strategy 1: Maximum Rho 

The estimates of ρ  lead us to select 0ρ =0.30.  Using this value leads to a p-value less than 

0.0001.  The result is to reject the null hypothesis at 0α =0.05.  The following is the SAS® 

output for this test. 

                           Type 3 Tests of Fixed Effects 
 
                                 Num     Den 
                   Effect         DF      DF    F Value    Pr > F 
 
                   trt             3      28      11.95    <.0001 

 



 

 109

Strategy 2: Acceptable Interval (Best-Worst-Case Scenario) 

Using 0ρ =0.05 and 0ρ =0.30 leads to p-values less than 0.0001.  The result is to reject the null 

hypothesis at 0α =0.05.  The following is the SAS® output for this test. 

                           Type 3 Tests of Fixed Effects 
 
                                 Num     Den 
                   Effect         DF      DF    F Value    Pr > F 
 
                   trt             3      28      36.05    <.0001 
 
                           Type 3 Tests of Fixed Effects 
 
                                 Num     Den 
                   Effect         DF      DF    F Value    Pr > F 
 
                   trt             3      28      11.95    <.0001 

 

Strategy 3: ADFMR 

We probably do not have sufficient distributional data to compute Satterthwaite-type adjusted 

error degrees of freedom.  However, strictly for illustration purposes, we will use the seven 

estimates of ρ  to compute the adjusted error degrees of freedom, 7.292.  The full error 

degrees of freedom are 4(8-1)=28.  

Once the error degrees of freedom have been determined, the choice of 0ρ  must be 

determined.  Using the mean of the seven estimates of ρ  we get 0ρ =0.148104.  Using this 

value and the full 28 error degrees of freedom leads to a p-value less than 0.0001.  The result is 

to reject the null hypothesis at 0α =0.05.  The following is the SAS® output for the test using 

28 error degrees of freedom. 

                           Type 3 Tests of Fixed Effects 
 
                                 Num     Den 
                   Effect         DF      DF    F Value    Pr > F 
 
                   trt             3      28      21.93    <.0001 
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Using the reduced 7.292 error degrees of freedom leads to a p-value of 0.0006.  The result is to 

reject the null hypothesis at 0α =0.05.  The following is the output for the test using 7.292 

error degrees of freedom. 

                           Type 3 Tests of Fixed Effects 
 
                                 Num     Den 
                   Effect         DF      DF    F Value    Pr > F 
 
                   trt             3    7.29      20.62    0.0006 

 

Strategy 4: Weighted P-value 

Using the seven estimates of ρ  and weights equal to 1/7, the weighted p-value strategy yields 

a weighted p-value of <0.0002.  The result is to reject the null hypothesis at 0α =0.05. 

5.5: MULTIPLE COMPARISONS 

Next, it is determined that each of the treatment means be compared.  Again, each of the 

strategies will be implemented for the pairwise comparisons. 

Strategy 1: Maximum Rho 

Again using 0ρ =0.30, the following SAS® output results: 

                        Differences of Least Squares Means 
 
                            Standard 
Effect  trt  trt  Estimate     Error    DF  t Value  Pr > |t|  Adjustment     Adj P 
 
trt     1    2      5.8571    1.1852    28     4.94    <.0001  Bonferroni    0.0002 
trt     1    3      2.5904    1.1852    28     2.19    0.0374  Bonferroni    0.2242 
trt     1    4      5.6986    1.1852    28     4.81    <.0001  Bonferroni    0.0003 
trt     2    3     -3.2668    1.1852    28    -2.76    0.0102  Bonferroni    0.0610 
trt     2    4     -0.1585    1.1852    28    -0.13    0.8946  Bonferroni    1.0000 
trt     3    4      3.1083    1.1852    28     2.62    0.0140  Bonferroni    0.0838 
trt     1    2      5.8571    1.1852    28     4.94    <.0001  Tukey         0.0002 
trt     1    3      2.5904    1.1852    28     2.19    0.0374  Tukey         0.1520 
trt     1    4      5.6986    1.1852    28     4.81    <.0001  Tukey         0.0003 
trt     2    3     -3.2668    1.1852    28    -2.76    0.0102  Tukey         0.0472 
trt     2    4     -0.1585    1.1852    28    -0.13    0.8946  Tukey         0.9991 
trt     3    4      3.1083    1.1852    28     2.62    0.0140  Tukey         0.0632 
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The following differences are considered significant for the following methods at 0α =0.05 

using 0ρ =0.30: 

Table 5.5.1. Significant differences in treatment level means for different multiple 
comparison methods using the Maximum Rho method. 

Method Significant Treatment Level Means 
Fisher’s Protected LSD 1 vs. 2, 1 vs. 3, 1 vs. 4, 2 vs. 3, 3 vs. 4 
Bonferroni 1 vs. 2, 1 vs. 4
Tukey 1 vs. 2, 1 vs. 4, 2 vs. 3
Simulate 1 vs. 2, 1 vs. 4, 2 vs. 3

 

Strategy 2: Acceptable Interval (Best-Worst-Case Scenario) 

Using 0ρ =0.05, the following SAS® output results: 

                        Differences of Least Squares Means 
 
                            Standard 
Effect  trt  trt  Estimate     Error    DF  t Value  Pr > |t|  Adjustment     Adj P 
 
trt     1    2      5.8571    0.6714    28     8.72    <.0001  Bonferroni    <.0001 
trt     1    3      2.5904    0.6714    28     3.86    0.0006  Bonferroni    0.0037 
trt     1    4      5.6986    0.6714    28     8.49    <.0001  Bonferroni    <.0001 
trt     2    3     -3.2668    0.6714    28    -4.87    <.0001  Bonferroni    0.0002 
trt     2    4     -0.1585    0.6714    28    -0.24    0.8151  Bonferroni    1.0000 
trt     3    4      3.1083    0.6714    28     4.63    <.0001  Bonferroni    0.0005 
trt     1    2      5.8571    0.6714    28     8.72    <.0001  Tukey         <.0001 
trt     1    3      2.5904    0.6714    28     3.86    0.0006  Tukey         0.0032 
trt     1    4      5.6986    0.6714    28     8.49    <.0001  Tukey         <.0001 
trt     2    3     -3.2668    0.6714    28    -4.87    <.0001  Tukey         0.0002 
trt     2    4     -0.1585    0.6714    28    -0.24    0.8151  Tukey         0.9953 
trt     3    4      3.1083    0.6714    28     4.63    <.0001  Tukey         0.0004 
trt     1    2      5.8571    0.6714    28     8.72    <.0001  Simulate      <.0001 
trt     1    3      2.5904    0.6714    28     3.86    0.0006  Simulate      0.0032 
trt     1    4      5.6986    0.6714    28     8.49    <.0001  Simulate      <.0001 
trt     2    3     -3.2668    0.6714    28    -4.87    <.0001  Simulate      0.0002 
trt     2    4     -0.1585    0.6714    28    -0.24    0.8151  Simulate      0.9953 
trt     3    4      3.1083    0.6714    28     4.63    <.0001  Simulate      0.0004 

trt     1    2      5.8571    1.1852    28     4.94    <.0001  Simulate      0.0002 
trt     1    3      2.5904    1.1852    28     2.19    0.0374  Simulate      0.1520 
trt     1    4      5.6986    1.1852    28     4.81    <.0001  Simulate      0.0003 
trt     2    3     -3.2668    1.1852    28    -2.76    0.0102  Simulate      0.0472 
trt     2    4     -0.1585    1.1852    28    -0.13    0.8946  Simulate      0.9991 
trt     3    4      3.1083    1.1852    28     2.62    0.0140  Simulate      0.0632 
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Using 0ρ =0.30, the following SAS® output results: 

Under 0ρ =0.05 for all methods, all treatment level means differ significantly except for 2 vs. 

4.  So, we conclude those means considered different under 0ρ =0.30 are different, mean 2 vs. 

mean 4 is not different, and the other differences are questionable. 

Strategy 3: ADFMR 

The Satterthwaite-type adjusted error degrees of freedom are 7.292.  The full error degrees of 

freedom are 4(8-1)=28.  Using the mean of the seven estimates of ρ  we get 0ρ =0.148104.  

Using 0ρ =0.148104 and full error degrees of freedom=28 leads to the following SAS® 

output: 

                        Differences of Least Squares Means 
 
                            Standard 
Effect  trt  trt  Estimate     Error    DF  t Value  Pr > |t|  Adjustment     Adj P 
 
trt     1    2      5.8571    0.8708    28     6.73    <.0001  Bonferroni    <.0001 
trt     1    3      2.5904    0.8708    28     2.97    0.0060  Bonferroni    0.0359 
trt     1    4      5.6986    0.8708    28     6.54    <.0001  Bonferroni    <.0001 
trt     2    3     -3.2668    0.8708    28    -3.75    0.0008  Bonferroni    0.0049 
trt     2    4     -0.1585    0.8708    28    -0.18    0.8569  Bonferroni    1.0000 
trt     3    4      3.1083    0.8708    28     3.57    0.0013  Bonferroni    0.0079 
trt     1    2      5.8571    0.8708    28     6.73    <.0001  Tukey         <.0001 
trt     1    3      2.5904    0.8708    28     2.97    0.0060  Tukey         0.0288 
trt     1    4      5.6986    0.8708    28     6.54    <.0001  Tukey         <.0001 

                        Differences of Least Squares Means 
 
                            Standard 
Effect  trt  trt  Estimate     Error    DF  t Value  Pr > |t|  Adjustment     Adj P 
 
trt     1    2      5.8571    1.1852    28     4.94    <.0001  Bonferroni    0.0002 
trt     1    3      2.5904    1.1852    28     2.19    0.0374  Bonferroni    0.2242 
trt     1    4      5.6986    1.1852    28     4.81    <.0001  Bonferroni    0.0003 
trt     2    3     -3.2668    1.1852    28    -2.76    0.0102  Bonferroni    0.0610 
trt     2    4     -0.1585    1.1852    28    -0.13    0.8946  Bonferroni    1.0000 
trt     3    4      3.1083    1.1852    28     2.62    0.0140  Bonferroni    0.0838 
trt     1    2      5.8571    1.1852    28     4.94    <.0001  Tukey         0.0002 
trt     1    3      2.5904    1.1852    28     2.19    0.0374  Tukey         0.1520 
trt     1    4      5.6986    1.1852    28     4.81    <.0001  Tukey         0.0003 
trt     2    3     -3.2668    1.1852    28    -2.76    0.0102  Tukey         0.0472 
trt     2    4     -0.1585    1.1852    28    -0.13    0.8946  Tukey         0.9991 
trt     3    4      3.1083    1.1852    28     2.62    0.0140  Tukey         0.0632 
trt     1    2      5.8571    1.1852    28     4.94    <.0001  Simulate      0.0002 
trt     1    3      2.5904    1.1852    28     2.19    0.0374  Simulate      0.1520 
trt     1    4      5.6986    1.1852    28     4.81    <.0001  Simulate      0.0003 
trt     2    3     -3.2668    1.1852    28    -2.76    0.0102  Simulate      0.0472 
trt     2    4     -0.1585    1.1852    28    -0.13    0.8946  Simulate      0.9991 
trt     3    4      3.1083    1.1852    28     2.62    0.0140  Simulate      0.0632 
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All the methods agree.  The differences considered statistically significant at 0α =0.05 are 1 vs. 

2, 1 vs. 3, 1 vs. 4, 2 vs. 3, 3 vs. 4. 

Using 0ρ =0.148104 and the reduced 7.292 error degrees of freedom leads to the following 

SAS® output: 

The following differences are considered significant for the following methods at 0α =0.05 

using the reduced 7.292 error degrees of freedom: 

                      Table 5.5.2. Significant differences in treatment level means for  
                      different multiple comparison methods using the ADFMR  
                      method. 

Method Significant Treatment Level Means 
Fisher’s Protected LSD 1 vs. 2, 1 vs. 3, 1 vs. 4, 2 vs. 3, 3 vs. 4 
Bonferroni 1 vs. 2, 1 vs. 4, 2 vs. 3
Tukey 1 vs. 2, 1 vs. 4, 2 vs. 3, 3 vs. 4 
Simulate 1 vs. 2, 1 vs. 4, 2 vs. 3, 3 vs. 4 

                        Differences of Least Squares Means 
 
                            Standard 
Effect  trt  trt  Estimate     Error    DF  t Value  Pr > |t|  Adjustment     Adj P 
 
trt     1    2      5.8571    0.8708  7.29     6.73    0.0002  Bonferroni    0.0014 
trt     1    3      2.5904    0.8708  7.29     2.97    0.0197  Bonferroni    0.1183 
trt     1    4      5.6986    0.8708  7.29     6.54    0.0003  Bonferroni    0.0016 
trt     2    3     -3.2668    0.8708  7.29    -3.75    0.0066  Bonferroni    0.0399 
trt     2    4     -0.1585    0.8708  7.29    -0.18    0.8605  Bonferroni    1.0000 
trt     3    4      3.1083    0.8708  7.29     3.57    0.0085  Bonferroni    0.0510 
trt     1    2      5.8571    0.8708  7.29     6.73    0.0002  Tukey         0.0010 
trt     1    3      2.5904    0.8708  7.29     2.97    0.0197  Tukey         0.0747 
trt     1    4      5.6986    0.8708  7.29     6.54    0.0003  Tukey         0.0012 
trt     2    3     -3.2668    0.8708  7.29    -3.75    0.0066  Tukey         0.0268 
trt     2    4     -0.1585    0.8708  7.29    -0.18    0.8605  Tukey         0.9977 
trt     3    4      3.1083    0.8708  7.29     3.57    0.0085  Tukey         0.0340 
trt     1    2      5.8571    0.8708  7.29     6.73    0.0002  Simulate      0.0010 
trt     1    3      2.5904    0.8708  7.29     2.97    0.0197  Simulate      0.0747 
trt     1    4      5.6986    0.8708  7.29     6.54    0.0003  Simulate      0.0012 
trt     2    3     -3.2668    0.8708  7.29    -3.75    0.0066  Simulate      0.0268 
trt     2    4     -0.1585    0.8708  7.29    -0.18    0.8605  Simulate      0.9977 
trt     3    4      3.1083    0.8708  7.29     3.57    0.0085  Simulate      0.0340 

trt     2    3     -3.2668    0.8708    28    -3.75    0.0008  Tukey         0.0043 
trt     2    4     -0.1585    0.8708    28    -0.18    0.8569  Tukey         0.9978 
trt     3    4      3.1083    0.8708    28     3.57    0.0013  Tukey         0.0068 
trt     1    2      5.8571    0.8708    28     6.73    <.0001  Simulate      <.0001 
trt     1    3      2.5904    0.8708    28     2.97    0.0060  Simulate      0.0288 
trt     1    4      5.6986    0.8708    28     6.54    <.0001  Simulate      <.0001 
trt     2    3     -3.2668    0.8708    28    -3.75    0.0008  Simulate      0.0043 
trt     2    4     -0.1585    0.8708    28    -0.18    0.8569  Simulate      0.9978 
trt     3    4      3.1083    0.8708    28     3.57    0.0013  Simulate      0.0068 
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Strategy 4: Weighted P-value 

Using the seven estimates of ρ  and weights equal to 1/7, the weighted p-value strategy yields 

weighted p-values according to the following table: 

        Table 5.5.3. Significant differences in treatment level means for different multiple  
        comparison methods using the Weighted P-value method. 

 Multiple Comparison Adjustment Method  
Comparison Bonferroni Simulate Tukey LSD Result
trt1 vs. trt2 0.000248 0.000225 0.000225 0.000041 Reject H0

trt1 vs. trt3 0.022488 0.017489 0.017489 0.003748 Reject H0

trt1 vs. trt4 0.000312 0.000282 0.000282 0.000052 Reject H0

trt2 vs. trt3 0.245456 0.153403 0.153403 0.040909 FTR H0

trt2 vs. trt4 1.000000 0.999373 0.999373 0.908709 FTR H0

trt3 vs. trt4 0.300138 0.182297 0.182297 0.050023 FTR H0

 

According to table 5.5.3, treatment means 2, 3, and 4 are all significantly different than the 

control.  Fisher’s Protected LSD also shows treatment means 2 and 3 differ significantly from 

each other.  However, as stated earlier, Fisher’s Protected LSD does not control the family-

wise error rate in cases with more than three treatment levels—which is the case here. 

5.6: FINAL COMMENTS REGARDING THE ANALYSIS 

It is obvious from Figure 5.1.1 that a difference exists between the means for the control and 

some of the treatment levels.  However, without replication, standard methods fail.  Using a 

plug-in value for ρ  allows a valid analysis to be conducted.  The conditional p-value plot for 

the overall F-test also provides clear support to the claim of difference in treatment means.   

Insufficient data exists for an exact choice for the value of 0ρ .  However, the results make it 

clear the value of ρ  should be below 0.5.  This would indicate a situation in which the 

variability among greenhouses is small compared with the variability between pots and the 

overall variability.  This is a reasonable assumption, supported by the data. 



 

 115

When it comes to the pairwise comparisons, again, Figure 5.1.1 shows a clear drop in the 

number of TSM on the potted plants treated with all three treatments versus the control, with 

extreme drops with treatments 2 and 4.  There is a questionable difference between treatment 

levels 2 and 4 vs. 3 that is supported by some of the methods.  However, there is some overlap 

in Figure 5.1.1.  Based on the analysis, one should recommend to the researcher that 

treatments 2 and 4 controlled the TSM infestation.  Treatment 3 seems to reduce the TSM 

infestation, just not as much or as clearly as the other two methods.  
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CHAPTER 6: FUTURE DIRECTION AND SUMMARY 

6.1: RANDOMIZED COMPLETE BLOCK DESIGN 

Another design structure to look at is the randomized complete block design (RCBD).  The 

focus of this section is on models with RCBD design structures.   

Description 

The model for a RCBD can be expressed as follows: 

                                               ijkijjiijk ry εδµ +++=  (6.1.1) 
 

where ijky  is the measurement taken on the kth individual in the jth block given the ith 

treatment, iµ  is the fixed effect of treatment i, jr  is the random effect of the jth block, ijδ  is 

the block× treatment interaction, and ijkε  is the random effect of individual k in block j given 

treatment i; i = 1, 2, …,t    j = 1, 2, …, bi    k = 1, 2, …, nij.  Assume ( )2,0~ δσδ nij , where 2
δσ  

represents the unit-to-unit variability of a block× treatment combination; assume 

( )2,0~ εσε nijk , where 2
εσ  represents the subunit-to-subunit variability within a 

unit×block× treatment combination; assume ( )2,0~ Rj nr σ , where 2
Rσ  represents the block-

to-block variability. It is assumed that jr  is independent of ijδ  and ijkε . 

The variance of an observation is ( ) 222var Rijky σσσ εδ ++= .  The variance of the difference 

between two treatment means is 
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However, in the balanced case, ( ) ⎟⎟
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designing experiments, blocks are chosen to separate classifiable error from random error.  

Thus, block-to-block variability 2
Rσ  may be small or large, relative to the other components of 

variance and depending on what the researcher decided to use as blocks.  So, quantities 

involving 2
Rσ  may not be constant even in similar studies.  In the case of balanced data, 2

Rσ  

drops out of Equation 6.1.2.  So, ρ  may be fairly constant in many situations.  Knowing 

reliable information on the value of ρ  allows for hypothesis testing in cases of un- and under-

replicated experiments. 

Example 

A researcher is interested in testing the effects of four different treatments on hospital patients.  

Each treatment is given to one hundred different patients for a total of four hundred patients 

per hospital.  The researcher would like the results to apply to different hospitals.  Only three 

hospitals agree to allow the research.  Similar studies have been conducted in the past with the 

involvement of many hospitals.  In this case the ratio of the variability between hospitals and 

the variability within a hospital may be a knowable quantity, and that it may be fairly constant 

for studies of a similar nature.   

We will consider the two-treatment under-replicated balanced case.  The test statistic for 

testing H0: 21 µµ = vs. HA: 21 µµ ≠  is of the form 
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where 2ˆεσ  represents a pooled estimate of the within class variance.  Let 
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Properties 

In a balanced case, the test statistic for the RCBD case (6.1.3) is the same as the test statistic 

for the CRD case (2.1.1) and the probability of rejecting the null hypothesis is the same as in 

Equation 2.1.2.  Likewise, the full t-treatment RCBD case should closely resemble the full t-

treatment CRD case discussed in this paper.  The difference between the two will be the form 

of the V matrix. 

6.2: USING A POSTERIOR DISTRIBUTION OF THE ICC TO INCREASE THE 
ACCURACY OF THE CHOICE OF THE ICC  

In the case of minimal replication it is possible to construct a hybrid test procedure that 

combines a Bayesian prior on ρ  with under-replicated data to find a posterior mean ( ρ
t

) to 

use as the plug-in value 0ρ  in one of the strategies described in this paper. 

Essentially, ρ
t

 will be a weighted average of prior information and current data.  If the prior 

information is considered to be reliable, more weight will be given to the prior information.  If 

the prior information is considered less reliable, more weight should be given to the current 
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data.  Because in an under-replication situation very little data exists to incorporate into ρ
t

, 

most of the weight will be given to the prior information. 

This paper has already explored various prior distributions on ρ .  One such prior is the 

Beta(5,30) distribution.  This distribution has a mean of 0.14286.  Suppose a set of under-

replication data yielded an estimated ICC of 0.20.  If in prior studies of a similar nature the 

ICC has been found to follow approximately a Beta(5,30) distribution, it would not be 

unreasonable to use ρ
t

 with a value between 0.14286 and 0.20.  That value could then be used 

in the ADFMR strategy.  The probability of rejecting the null hypothesis using such a method 

would not differ considerably using ρ
t

 from which it would be using ρ . 

6.3: INTRODUCING THE PLUG-IN METHOD TO THE LITERATURE 

 The utility of the methods in this study is dependent upon their introduction to practicioners.  

If deemed an acceptable method of analysis, the plug-in method may be commonly used as a 

solution to the inability to conduct hypothesis tests on treatments means in situations in which 

replication is prohibitive.  I intend to present methods at conferences and submit articles to 

subject area journals to introduce the methodology to researchers in various areas of 

application. 

6.4: SUMMARY 

In this study, we investigated the use of plug-in values of the intraclass correlation coefficient 

and weighted p-values in unreplicated and under-replicated experiments.  We defined a test in 

the two-treatment no replication case and found it to be a feasible method of analysis.  We 

proposed strategies for implementation in this case.  We looked at properties of each of the 

strategies and provided an example of implementation.  We investigated the t-treatment no 

replication case for which we also looked at properties and provided an example of 
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implementation.  We explained and demonstrated the implementation of several multiple 

comparison procedures in the context of the plug-in method.  We then extended the plug-in 

method and strategies to the general under-replication t-treatment case.   

This study provides a method of data analysis in situations that otherwise prohibit analysis by 

traditional methods.  These methods result in hypothesis tests that can maintain significance 

levels near or below nominal levels with power to detect differences in treatment means.  The 

strategies presented in this study can easily be implemented by practicioners.  Examples of 

implementation have been given for each of the strategies using the widely available SAS® 

software.  A complete example is given of the analysis of a set of real-world data using each of 

the strategies presented in this study. 

 

6.5 IMPLICATIONS AND DRAWBACKS 

The methodology described in this study allows researchers to conduct tests of hypothesis 

with no replication and with very minimal replication and still obtain statistical results.  In the 

examples and explanations given for lack of abundant replication it is suggested that the plug-

in methods be used when replication is prohibitive.  The plug-in methodology might also be 

used by researchers in an effort to save money and resources, where those resources are 

available, but, the researcher could benefit from using less.  Suppose a company conducts 

quality control tests on a regular basis that include subsampling and costly replication.  Over 

time, the company may have a very accurate and consistent estimate of the ICC for this 

process.  The company may choose to use this ICC estimate to enable future quality control 

tests without replication.  This could save the company considerable time and resources. 

The ICC must be <0.5 in order for the methods described in this paper to work.  An ICC 

value <0.05 indicates a situation in which the between-class variability is less than the within-

class variability.  As 1→ρ , ∞→+
−

=
n

w 1
1 ρ
ρ .  This leads to small test statistics and large 
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p-values.  Tests based on ICC values >0.5 will have little ability to detect differences in 

treatment means.  This restriction, ICC<0.5, excludes this methodology from being used in 

many situations in which ICC>0.5.    
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APPENDICES 

APPENDIX A: TABLES 

Table 1: Probability of Rejection (α=0.05, no replication, t=2, b=1) 

The following table contains the two-tail probability of rejecting the hypothesis H0: µ1 = µ2 vs. 

HA: µ1 ≠ µ2 (i.e.- t=2 treatments) where b=1 experimental unit per treatment and significance 

level α=0.05.  Both alpha (the probability of rejecting the null hypothesis when it is in fact 

correct) and power (the probability of rejecting the null hypothesis when it is in fact incorrect) 

can be obtained from this table. 

The table includes the following variables: 

n = the number of observational units per experimental unit 

Rho = the value of the actual ICC ( ρ ) 

Rho* = the value the researcher uses for the ICC (which is not generally the same as 
the value of the actual ICC, because it must be chosen from prior information) 

St.Diff. = the standardized difference to be tested, 
εσ
µµ 21St.Diff. −

=  

Probt = the probability of rejecting the null hypothesis in favor of the two-tail 
alternative, given the values of the other variables.
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St.Diff = 0

Rho*
n Rho 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 0.00 0.0500 0.0183 0.0069 0.0026 0.0010 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000
0.05 0.1062 0.0500 0.0237 0.0112 0.0052 0.0023 0.0010 0.0004 0.0002 0.0001 0.0000
0.10 0.1654 0.0909 0.0500 0.0272 0.0145 0.0075 0.0038 0.0018 0.0008 0.0004 0.0001
0.15 0.2225 0.1359 0.0830 0.0500 0.0295 0.0170 0.0094 0.0050 0.0026 0.0012 0.0005
0.20 0.2762 0.1823 0.1201 0.0782 0.0500 0.0312 0.0188 0.0109 0.0061 0.0032 0.0016
0.25 0.3262 0.2284 0.1598 0.1106 0.0752 0.0500 0.0323 0.0201 0.0120 0.0068 0.0036
0.30 0.3729 0.2737 0.2009 0.1460 0.1045 0.0733 0.0500 0.0330 0.0209 0.0126 0.0072
0.35 0.4166 0.3179 0.2426 0.1837 0.1372 0.1006 0.0720 0.0500 0.0335 0.0214 0.0130
0.40 0.4578 0.3610 0.2848 0.2232 0.1728 0.1316 0.0981 0.0712 0.0500 0.0337 0.0216
0.45 0.4969 0.4029 0.3271 0.2641 0.2110 0.1661 0.1283 0.0968 0.0709 0.0500 0.0337
0.50 0.5344 0.4440 0.3695 0.3062 0.2514 0.2038 0.1625 0.1269 0.0964 0.0709 0.0500

30 0.00 0.0500 0.0021 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.2176 0.0500 0.0120 0.0028 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.3402 0.1280 0.0500 0.0190 0.0069 0.0023 0.0007 0.0002 0.0000 0.0000 0.0000
0.15 0.4282 0.2052 0.1021 0.0500 0.0235 0.0105 0.0043 0.0016 0.0006 0.0002 0.0000
0.20 0.4951 0.2748 0.1583 0.0903 0.0500 0.0265 0.0132 0.0062 0.0026 0.0010 0.0003
0.25 0.5485 0.3365 0.2140 0.1354 0.0837 0.0500 0.0285 0.0153 0.0076 0.0034 0.0014
0.30 0.5928 0.3914 0.2676 0.1826 0.1224 0.0797 0.0500 0.0298 0.0167 0.0087 0.0040
0.35 0.6307 0.4408 0.3186 0.2302 0.1642 0.1144 0.0772 0.0500 0.0307 0.0176 0.0093
0.40 0.6639 0.4858 0.3670 0.2777 0.2079 0.1528 0.1094 0.0756 0.0500 0.0312 0.0181
0.45 0.6935 0.5273 0.4131 0.3245 0.2530 0.1942 0.1458 0.1064 0.0747 0.0500 0.0314
0.50 0.7205 0.5659 0.4572 0.3708 0.2989 0.2380 0.1860 0.1419 0.1049 0.0744 0.0500

50 0.00 0.0500 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.3003 0.0500 0.0090 0.0015 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.4402 0.1429 0.0500 0.0170 0.0054 0.0015 0.0004 0.0001 0.0000 0.0000 0.0000
0.15 0.5281 0.2305 0.1082 0.0500 0.0221 0.0091 0.0034 0.0012 0.0003 0.0001 0.0000
0.20 0.5904 0.3059 0.1698 0.0937 0.0500 0.0254 0.0121 0.0053 0.0021 0.0007 0.0002
0.25 0.6379 0.3705 0.2296 0.1421 0.0859 0.0500 0.0276 0.0143 0.0068 0.0029 0.0011
0.30 0.6761 0.4265 0.2860 0.1921 0.1269 0.0813 0.0500 0.0291 0.0158 0.0079 0.0035
0.35 0.7081 0.4759 0.3386 0.2420 0.1708 0.1177 0.0784 0.0500 0.0301 0.0169 0.0086
0.40 0.7356 0.5202 0.3880 0.2911 0.2163 0.1578 0.1119 0.0766 0.0500 0.0307 0.0174
0.45 0.7598 0.5604 0.4344 0.3390 0.2628 0.2006 0.1498 0.1085 0.0755 0.0500 0.0310
0.50 0.7817 0.5976 0.4785 0.3859 0.3098 0.2456 0.1912 0.1452 0.1067 0.0751 0.0500

100 0.00 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.4317 0.0500 0.0067 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.5716 0.1577 0.0500 0.0153 0.0043 0.0011 0.0002 0.0000 0.0000 0.0000 0.0000
0.15 0.6484 0.2545 0.1136 0.0500 0.0209 0.0081 0.0028 0.0009 0.0002 0.0000 0.0000
0.20 0.6994 0.3343 0.1799 0.0965 0.0500 0.0245 0.0112 0.0046 0.0017 0.0005 0.0001
0.25 0.7368 0.4007 0.2429 0.1477 0.0877 0.0500 0.0270 0.0135 0.0062 0.0025 0.0009
0.30 0.7662 0.4570 0.3013 0.2000 0.1305 0.0826 0.0500 0.0286 0.0152 0.0073 0.0031
0.35 0.7903 0.5059 0.3552 0.2516 0.1761 0.1203 0.0794 0.0500 0.0297 0.0163 0.0081
0.40 0.8108 0.5492 0.4051 0.3018 0.2230 0.1617 0.1140 0.0774 0.0500 0.0303 0.0169
0.45 0.8287 0.5882 0.4517 0.3505 0.2705 0.2057 0.1528 0.1101 0.0762 0.0500 0.0306
0.50 0.8446 0.6239 0.4955 0.3978 0.3183 0.2516 0.1953 0.1478 0.1081 0.0757 0.0500

∞ 0.00 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 1.0000 0.0500 0.0044 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 1.0000 0.1774 0.0500 0.0135 0.0033 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000
0.15 1.0000 0.2845 0.1199 0.0500 0.0197 0.0071 0.0023 0.0006 0.0001 0.0000 0.0000
0.20 1.0000 0.3685 0.1913 0.0996 0.0500 0.0236 0.0103 0.0040 0.0014 0.0004 0.0001
0.25 1.0000 0.4361 0.2578 0.1538 0.0896 0.0500 0.0263 0.0127 0.0056 0.0021 0.0007
0.30 1.0000 0.4922 0.3183 0.2085 0.1344 0.0839 0.0500 0.0280 0.0145 0.0068 0.0028
0.35 1.0000 0.5400 0.3733 0.2618 0.1817 0.1231 0.0804 0.0500 0.0292 0.0157 0.0076
0.40 1.0000 0.5818 0.4236 0.3133 0.2301 0.1658 0.1161 0.0782 0.0500 0.0299 0.0164
0.45 1.0000 0.6191 0.4701 0.3627 0.2786 0.2109 0.1560 0.1118 0.0769 0.0500 0.0302
0.50 1.0000 0.6530 0.5135 0.4103 0.3271 0.2578 0.1995 0.1504 0.1095 0.0763 0.0500
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St.Diff = 0.5

Rho*
n Rho 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 0.00 0.1851 0.0927 0.0452 0.0214 0.0098 0.0044 0.0019 0.0008 0.0003 0.0001 0.0000
0.05 0.2352 0.1375 0.0788 0.0440 0.0238 0.0124 0.0062 0.0030 0.0013 0.0006 0.0002
0.10 0.2780 0.1782 0.1128 0.0698 0.0420 0.0245 0.0137 0.0073 0.0037 0.0018 0.0008
0.15 0.3174 0.2167 0.1467 0.0977 0.0635 0.0400 0.0244 0.0142 0.0079 0.0041 0.0020
0.20 0.3549 0.2540 0.1809 0.1271 0.0875 0.0587 0.0381 0.0238 0.0142 0.0080 0.0042
0.25 0.3910 0.2906 0.2154 0.1579 0.1138 0.0802 0.0549 0.0363 0.0230 0.0138 0.0078
0.30 0.4259 0.3267 0.2504 0.1902 0.1423 0.1044 0.0747 0.0518 0.0345 0.0220 0.0132
0.35 0.4597 0.3625 0.2859 0.2238 0.1729 0.1313 0.0975 0.0704 0.0491 0.0328 0.0207
0.40 0.4927 0.3981 0.3219 0.2587 0.2056 0.1609 0.1234 0.0923 0.0669 0.0467 0.0310
0.45 0.5251 0.4335 0.3584 0.2948 0.2402 0.1931 0.1525 0.1178 0.0884 0.0641 0.0445
0.50 0.5568 0.4689 0.3956 0.3324 0.2770 0.2281 0.1849 0.1470 0.1139 0.0856 0.0618

30 0.00 0.4779 0.1128 0.0194 0.0027 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.4936 0.2203 0.0903 0.0334 0.0111 0.0032 0.0008 0.0002 0.0000 0.0000 0.0000
0.10 0.5192 0.2811 0.1500 0.0760 0.0359 0.0156 0.0062 0.0022 0.0007 0.0002 0.0000
0.15 0.5502 0.3294 0.2000 0.1182 0.0668 0.0356 0.0177 0.0080 0.0033 0.0012 0.0004
0.20 0.5816 0.3729 0.2452 0.1591 0.1001 0.0604 0.0345 0.0184 0.0090 0.0040 0.0015
0.25 0.6116 0.4135 0.2880 0.1993 0.1350 0.0886 0.0556 0.0331 0.0183 0.0093 0.0042
0.30 0.6398 0.4519 0.3292 0.2393 0.1712 0.1194 0.0805 0.0519 0.0316 0.0179 0.0092
0.35 0.6662 0.4884 0.3691 0.2791 0.2086 0.1528 0.1087 0.0746 0.0487 0.0300 0.0170
0.40 0.6909 0.5232 0.4081 0.3190 0.2471 0.1883 0.1401 0.1011 0.0700 0.0460 0.0283
0.45 0.7141 0.5565 0.4462 0.3589 0.2867 0.2259 0.1745 0.1313 0.0955 0.0664 0.0436
0.50 0.7362 0.5887 0.4837 0.3989 0.3273 0.2656 0.2119 0.1654 0.1253 0.0914 0.0635

50 0.00 0.6969 0.1097 0.0078 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.6169 0.2549 0.0928 0.0292 0.0078 0.0018 0.0003 0.0000 0.0000 0.0000 0.0000
0.10 0.6208 0.3180 0.1620 0.0774 0.0339 0.0134 0.0047 0.0014 0.0004 0.0001 0.0000
0.15 0.6426 0.3661 0.2161 0.1240 0.0676 0.0344 0.0161 0.0068 0.0025 0.0008 0.0002
0.20 0.6679 0.4093 0.2635 0.1678 0.1034 0.0608 0.0336 0.0171 0.0079 0.0032 0.0011
0.25 0.6927 0.4495 0.3078 0.2101 0.1404 0.0906 0.0558 0.0323 0.0173 0.0084 0.0036
0.30 0.7160 0.4873 0.3499 0.2517 0.1783 0.1231 0.0818 0.0519 0.0309 0.0170 0.0084
0.35 0.7376 0.5229 0.3904 0.2928 0.2172 0.1578 0.1113 0.0755 0.0487 0.0294 0.0163
0.40 0.7577 0.5566 0.4296 0.3335 0.2569 0.1946 0.1439 0.1030 0.0707 0.0459 0.0277
0.45 0.7766 0.5887 0.4676 0.3740 0.2974 0.2334 0.1795 0.1343 0.0970 0.0669 0.0434
0.50 0.7943 0.6194 0.5047 0.4143 0.3387 0.2739 0.2179 0.1694 0.1278 0.0927 0.0639

100 0.00 0.9404 0.0881 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.7481 0.2901 0.0945 0.0252 0.0054 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000
0.10 0.7305 0.3524 0.1728 0.0785 0.0322 0.0116 0.0036 0.0009 0.0002 0.0000 0.0000
0.15 0.7428 0.3988 0.2300 0.1288 0.0681 0.0334 0.0148 0.0058 0.0020 0.0006 0.0001
0.20 0.7608 0.4411 0.2791 0.1750 0.1061 0.0611 0.0328 0.0162 0.0071 0.0027 0.0009
0.25 0.7791 0.4806 0.3243 0.2190 0.1447 0.0922 0.0559 0.0317 0.0166 0.0078 0.0032
0.30 0.7964 0.5175 0.3670 0.2618 0.1841 0.1259 0.0829 0.0519 0.0304 0.0163 0.0078
0.35 0.8124 0.5521 0.4078 0.3037 0.2240 0.1618 0.1134 0.0762 0.0486 0.0289 0.0157
0.40 0.8272 0.5846 0.4469 0.3451 0.2646 0.1996 0.1469 0.1045 0.0712 0.0458 0.0273
0.45 0.8409 0.6154 0.4847 0.3859 0.3058 0.2392 0.1833 0.1367 0.0982 0.0673 0.0433
0.50 0.8538 0.6448 0.5214 0.4263 0.3475 0.2804 0.2224 0.1725 0.1297 0.0937 0.0642

∞ 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 0.3379 0.0957 0.0203 0.0032 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 1.0000 0.3946 0.1855 0.0796 0.0301 0.0098 0.0026 0.0006 0.0001 0.0000 0.0000
0.15 1.0000 0.4375 0.2460 0.1343 0.0687 0.0322 0.0135 0.0049 0.0015 0.0004 0.0001
0.20 1.0000 0.4779 0.2964 0.1830 0.1090 0.0613 0.0320 0.0152 0.0064 0.0023 0.0007
0.25 1.0000 0.5160 0.3424 0.2287 0.1494 0.0939 0.0560 0.0311 0.0158 0.0071 0.0027
0.30 1.0000 0.5516 0.3855 0.2726 0.1901 0.1290 0.0840 0.0519 0.0298 0.0157 0.0073
0.35 1.0000 0.5848 0.4265 0.3154 0.2312 0.1660 0.1155 0.0770 0.0485 0.0284 0.0151
0.40 1.0000 0.6158 0.4655 0.3573 0.2727 0.2048 0.1500 0.1061 0.0717 0.0457 0.0269
0.45 1.0000 0.6450 0.5030 0.3984 0.3145 0.2452 0.1873 0.1390 0.0994 0.0677 0.0431
0.50 1.0000 0.6727 0.5392 0.4389 0.3567 0.2870 0.2272 0.1756 0.1316 0.0946 0.0644
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St.Diff = 1

Rho*
n Rho 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 0.00 0.5620 0.3837 0.2451 0.1475 0.0839 0.0452 0.0230 0.0110 0.0050 0.0021 0.0008
0.05 0.5515 0.4027 0.2813 0.1878 0.1198 0.0729 0.0421 0.0230 0.0118 0.0056 0.0025
0.10 0.5458 0.4164 0.3079 0.2200 0.1514 0.1001 0.0632 0.0379 0.0215 0.0114 0.0056
0.15 0.5442 0.4280 0.3294 0.2469 0.1795 0.1260 0.0851 0.0549 0.0336 0.0193 0.0103
0.20 0.5462 0.4394 0.3482 0.2704 0.2049 0.1507 0.1071 0.0732 0.0476 0.0293 0.0168
0.25 0.5516 0.4516 0.3661 0.2922 0.2286 0.1745 0.1292 0.0924 0.0633 0.0412 0.0252
0.30 0.5601 0.4652 0.3840 0.3134 0.2515 0.1977 0.1515 0.1125 0.0805 0.0550 0.0355
0.35 0.5713 0.4804 0.4028 0.3347 0.2744 0.2211 0.1742 0.1336 0.0991 0.0705 0.0477
0.40 0.5848 0.4975 0.4228 0.3569 0.2979 0.2451 0.1978 0.1559 0.1193 0.0880 0.0620
0.45 0.6004 0.5165 0.4443 0.3803 0.3226 0.2703 0.2227 0.1798 0.1414 0.1076 0.0786
0.50 0.6178 0.5372 0.4677 0.4055 0.3490 0.2972 0.2495 0.2057 0.1658 0.1298 0.0979

30 0.00 0.9677 0.7404 0.3987 0.1533 0.0438 0.0096 0.0016 0.0002 0.0000 0.0000 0.0000
0.05 0.8777 0.6597 0.4337 0.2501 0.1264 0.0556 0.0211 0.0068 0.0018 0.0004 0.0001
0.10 0.8183 0.6258 0.4483 0.2986 0.1838 0.1036 0.0529 0.0240 0.0096 0.0032 0.0009
0.15 0.7824 0.6075 0.4575 0.3296 0.2252 0.1447 0.0864 0.0474 0.0234 0.0102 0.0038
0.20 0.7624 0.5986 0.4658 0.3526 0.2573 0.1793 0.1183 0.0730 0.0416 0.0214 0.0097
0.25 0.7530 0.5968 0.4752 0.3722 0.2841 0.2095 0.1480 0.0992 0.0622 0.0360 0.0187
0.30 0.7508 0.6005 0.4866 0.3909 0.3082 0.2368 0.1759 0.1252 0.0844 0.0532 0.0307
0.35 0.7534 0.6085 0.5004 0.4100 0.3316 0.2628 0.2027 0.1511 0.1077 0.0726 0.0455
0.40 0.7595 0.6199 0.5166 0.4304 0.3552 0.2886 0.2295 0.1773 0.1321 0.0939 0.0627
0.45 0.7680 0.6340 0.5351 0.4523 0.3799 0.3152 0.2569 0.2045 0.1579 0.1172 0.0825
0.50 0.7783 0.6503 0.5556 0.4762 0.4062 0.3432 0.2857 0.2333 0.1856 0.1428 0.1051

50 0.00 0.9986 0.8821 0.4747 0.1355 0.0217 0.0021 0.0001 0.0000 0.0000 0.0000 0.0000
0.05 0.9432 0.7383 0.4860 0.2692 0.1249 0.0481 0.0151 0.0038 0.0007 0.0001 0.0000
0.10 0.8838 0.6836 0.4896 0.3216 0.1922 0.1033 0.0492 0.0203 0.0071 0.0020 0.0004
0.15 0.8452 0.6545 0.4921 0.3521 0.2373 0.1490 0.0862 0.0451 0.0209 0.0083 0.0027
0.20 0.8232 0.6392 0.4958 0.3737 0.2706 0.1864 0.1208 0.0727 0.0399 0.0195 0.0082
0.25 0.8122 0.6333 0.5021 0.3919 0.2976 0.2180 0.1524 0.1006 0.0618 0.0346 0.0173
0.30 0.8085 0.6343 0.5113 0.4093 0.3217 0.2460 0.1815 0.1280 0.0852 0.0527 0.0296
0.35 0.8095 0.6404 0.5235 0.4275 0.3447 0.2723 0.2092 0.1550 0.1096 0.0730 0.0449
0.40 0.8137 0.6503 0.5386 0.4471 0.3681 0.2984 0.2365 0.1821 0.1349 0.0951 0.0628
0.45 0.8201 0.6630 0.5561 0.4685 0.3926 0.3250 0.2644 0.2099 0.1615 0.1192 0.0834
0.50 0.8281 0.6780 0.5758 0.4919 0.4187 0.3531 0.2935 0.2392 0.1898 0.1456 0.1066

100 0.00 1.0000 0.9812 0.5813 0.0936 0.0039 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.9793 0.8028 0.5342 0.2861 0.1222 0.0409 0.0105 0.0020 0.0003 0.0000 0.0000
0.10 0.9333 0.7307 0.5248 0.3413 0.1990 0.1026 0.0459 0.0173 0.0053 0.0013 0.0002
0.15 0.8994 0.6925 0.5206 0.3707 0.2472 0.1525 0.0858 0.0431 0.0189 0.0069 0.0020
0.20 0.8796 0.6720 0.5201 0.3908 0.2814 0.1921 0.1227 0.0723 0.0385 0.0180 0.0072
0.25 0.8694 0.6629 0.5236 0.4076 0.3085 0.2247 0.1559 0.1017 0.0614 0.0336 0.0162
0.30 0.8656 0.6618 0.5309 0.4239 0.3323 0.2533 0.1860 0.1303 0.0858 0.0523 0.0288
0.35 0.8656 0.6664 0.5418 0.4412 0.3550 0.2798 0.2143 0.1581 0.1111 0.0733 0.0445
0.40 0.8683 0.6751 0.5559 0.4602 0.3781 0.3059 0.2420 0.1858 0.1371 0.0961 0.0629
0.45 0.8727 0.6867 0.5726 0.4811 0.4024 0.3327 0.2701 0.2141 0.1643 0.1208 0.0840
0.50 0.8783 0.7007 0.5917 0.5041 0.4284 0.3608 0.2995 0.2437 0.1931 0.1477 0.1078

∞ 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 0.8691 0.5927 0.3062 0.1171 0.0321 0.0060 0.0007 0.0000 0.0000 0.0000
0.10 1.0000 0.7803 0.5641 0.3636 0.2065 0.1014 0.0420 0.0141 0.0037 0.0007 0.0001
0.15 1.0000 0.7330 0.5515 0.3911 0.2580 0.1561 0.0852 0.0409 0.0167 0.0056 0.0014
0.20 1.0000 0.7070 0.5461 0.4092 0.2930 0.1981 0.1247 0.0718 0.0370 0.0165 0.0061
0.25 1.0000 0.6947 0.5463 0.4242 0.3200 0.2318 0.1595 0.1028 0.0610 0.0325 0.0150
0.30 1.0000 0.6916 0.5516 0.4392 0.3434 0.2608 0.1907 0.1326 0.0864 0.0518 0.0278
0.35 1.0000 0.6946 0.5611 0.4556 0.3657 0.2876 0.2196 0.1613 0.1126 0.0736 0.0440
0.40 1.0000 0.7020 0.5741 0.4738 0.3885 0.3137 0.2477 0.1896 0.1393 0.0971 0.0630
0.45 1.0000 0.7125 0.5900 0.4942 0.4125 0.3405 0.2760 0.2183 0.1671 0.1224 0.0846
0.50 1.0000 0.7253 0.6083 0.5167 0.4383 0.3686 0.3056 0.2483 0.1964 0.1498 0.1090
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St.Diff = 1.5

Rho*
n Rho 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 0.00 0.8870 0.7675 0.6214 0.4700 0.3322 0.2193 0.1351 0.0775 0.0413 0.0202 0.0090
0.05 0.8411 0.7284 0.6021 0.4743 0.3551 0.2522 0.1692 0.1067 0.0629 0.0344 0.0173
0.10 0.8048 0.7002 0.5888 0.4774 0.3721 0.2779 0.1979 0.1337 0.0851 0.0506 0.0277
0.15 0.7755 0.6786 0.5788 0.4798 0.3855 0.2989 0.2227 0.1586 0.1071 0.0680 0.0401
0.20 0.7520 0.6616 0.5711 0.4820 0.3965 0.3167 0.2445 0.1815 0.1285 0.0861 0.0540
0.25 0.7333 0.6484 0.5653 0.4842 0.4061 0.3323 0.2641 0.2027 0.1494 0.1048 0.0691
0.30 0.7191 0.6387 0.5615 0.4869 0.4149 0.3463 0.2819 0.2227 0.1697 0.1237 0.0854
0.35 0.7091 0.6322 0.5599 0.4905 0.4236 0.3595 0.2987 0.2418 0.1895 0.1429 0.1025
0.40 0.7030 0.6290 0.5605 0.4953 0.4328 0.3726 0.3150 0.2603 0.2092 0.1624 0.1206
0.45 0.7005 0.6291 0.5637 0.5020 0.4430 0.3861 0.3313 0.2788 0.2290 0.1824 0.1397
0.50 0.7015 0.6324 0.5697 0.5110 0.4549 0.4008 0.3485 0.2980 0.2494 0.2032 0.1600

30 0.00 0.9999 0.9938 0.9392 0.7686 0.5002 0.2479 0.0922 0.0256 0.0053 0.0008 0.0001
0.05 0.9909 0.9449 0.8426 0.6859 0.4999 0.3209 0.1786 0.0846 0.0334 0.0107 0.0027
0.10 0.9662 0.8926 0.7836 0.6478 0.4998 0.3562 0.2315 0.1352 0.0695 0.0307 0.0113
0.15 0.9363 0.8493 0.7436 0.6245 0.4998 0.3783 0.2681 0.1757 0.1047 0.0556 0.0255
0.20 0.9081 0.8144 0.7142 0.6081 0.4999 0.3941 0.2956 0.2087 0.1368 0.0818 0.0436
0.25 0.8841 0.7867 0.6919 0.5961 0.5001 0.4063 0.3174 0.2363 0.1658 0.1080 0.0639
0.30 0.8652 0.7655 0.6753 0.5874 0.5009 0.4165 0.3356 0.2601 0.1921 0.1333 0.0855
0.35 0.8513 0.7501 0.6635 0.5817 0.5026 0.4257 0.3515 0.2812 0.2161 0.1577 0.1077
0.40 0.8418 0.7399 0.6562 0.5792 0.5058 0.4349 0.3663 0.3006 0.2385 0.1813 0.1303
0.45 0.8362 0.7344 0.6531 0.5799 0.5110 0.4449 0.3809 0.3192 0.2601 0.2044 0.1532
0.50 0.8340 0.7331 0.6542 0.5841 0.5188 0.4565 0.3963 0.3379 0.2815 0.2275 0.1766

50 0.00 1.0000 0.9998 0.9888 0.8819 0.5803 0.2408 0.0594 0.0086 0.0007 0.0000 0.0000
0.05 0.9981 0.9736 0.8950 0.7462 0.5459 0.3408 0.1768 0.0740 0.0242 0.0059 0.0010
0.10 0.9844 0.9262 0.8265 0.6910 0.5347 0.3776 0.2395 0.1336 0.0639 0.0253 0.0079
0.15 0.9620 0.8822 0.7796 0.6589 0.5285 0.3986 0.2794 0.1792 0.1031 0.0518 0.0219
0.20 0.9383 0.8453 0.7453 0.6370 0.5245 0.4129 0.3079 0.2150 0.1383 0.0802 0.0408
0.25 0.9175 0.8157 0.7193 0.6210 0.5216 0.4235 0.3299 0.2441 0.1694 0.1083 0.0624
0.30 0.9007 0.7928 0.6998 0.6094 0.5200 0.4323 0.3478 0.2686 0.1970 0.1353 0.0853
0.35 0.8883 0.7760 0.6858 0.6014 0.5198 0.4402 0.3632 0.2900 0.2220 0.1609 0.1087
0.40 0.8798 0.7648 0.6768 0.5971 0.5214 0.4483 0.3774 0.3094 0.2449 0.1854 0.1323
0.45 0.8747 0.7584 0.6725 0.5965 0.5254 0.4573 0.3914 0.3278 0.2667 0.2091 0.1561
0.50 0.8724 0.7564 0.6725 0.5996 0.5322 0.4681 0.4063 0.3463 0.2883 0.2326 0.1801

100 0.00 1.0000 1.0000 0.9998 0.9733 0.6929 0.2098 0.0206 0.0006 0.0000 0.0000 0.0000
0.05 0.9997 0.9880 0.9313 0.7961 0.5874 0.3582 0.1732 0.0635 0.0167 0.0030 0.0003
0.10 0.9936 0.9482 0.8584 0.7256 0.5637 0.3956 0.2457 0.1316 0.0587 0.0209 0.0056
0.15 0.9790 0.9055 0.8068 0.6859 0.5516 0.4152 0.2885 0.1818 0.1015 0.0486 0.0191
0.20 0.9617 0.8681 0.7689 0.6595 0.5438 0.4278 0.3178 0.2199 0.1393 0.0788 0.0385
0.25 0.9457 0.8375 0.7402 0.6403 0.5384 0.4371 0.3397 0.2502 0.1722 0.1086 0.0611
0.30 0.9327 0.8137 0.7185 0.6263 0.5348 0.4446 0.3573 0.2753 0.2009 0.1368 0.0851
0.35 0.9230 0.7962 0.7029 0.6165 0.5330 0.4514 0.3723 0.2968 0.2265 0.1634 0.1095
0.40 0.9163 0.7844 0.6927 0.6109 0.5334 0.4585 0.3860 0.3161 0.2499 0.1886 0.1339
0.45 0.9122 0.7775 0.6874 0.6092 0.5364 0.4668 0.3995 0.3344 0.2718 0.2127 0.1583
0.50 0.9103 0.7750 0.6867 0.6115 0.5424 0.4769 0.4138 0.3527 0.2934 0.2365 0.1828

∞ 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 0.9961 0.9621 0.8495 0.6375 0.3786 0.1661 0.0499 0.0093 0.0010 0.0000
0.10 1.0000 0.9666 0.8891 0.7617 0.5956 0.4158 0.2523 0.1287 0.0527 0.0163 0.0035
0.15 1.0000 0.9273 0.8339 0.7139 0.5762 0.4330 0.2982 0.1844 0.0995 0.0450 0.0161
0.20 1.0000 0.8904 0.7927 0.6826 0.5641 0.4436 0.3282 0.2251 0.1402 0.0772 0.0360
0.25 1.0000 0.8595 0.7613 0.6600 0.5558 0.4512 0.3500 0.2566 0.1750 0.1087 0.0597
0.30 1.0000 0.8352 0.7375 0.6435 0.5500 0.4573 0.3672 0.2821 0.2049 0.1383 0.0848
0.35 1.0000 0.8173 0.7203 0.6319 0.5465 0.4629 0.3816 0.3038 0.2312 0.1659 0.1102
0.40 1.0000 0.8050 0.7090 0.6249 0.5456 0.4690 0.3947 0.3230 0.2549 0.1918 0.1355
0.45 1.0000 0.7978 0.7028 0.6221 0.5476 0.4764 0.4077 0.3411 0.2770 0.2164 0.1605
0.50 1.0000 0.7949 0.7014 0.6236 0.5528 0.4859 0.4215 0.3591 0.2986 0.2405 0.1855
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St.Diff = 2

Rho*
n Rho 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 0.00 0.9882 0.9602 0.9037 0.8132 0.6925 0.5535 0.4126 0.2851 0.1816 0.1057 0.0557
0.05 0.9692 0.9280 0.8632 0.7745 0.6661 0.5457 0.4232 0.3088 0.2104 0.1326 0.0764
0.10 0.9459 0.8965 0.8290 0.7446 0.6465 0.5400 0.4315 0.3277 0.2347 0.1571 0.0971
0.15 0.9212 0.8673 0.7999 0.7204 0.6312 0.5357 0.4381 0.3433 0.2558 0.1796 0.1174
0.20 0.8967 0.8406 0.7748 0.7002 0.6186 0.5321 0.4437 0.3567 0.2745 0.2004 0.1372
0.25 0.8732 0.8163 0.7528 0.6830 0.6080 0.5292 0.4485 0.3683 0.2912 0.2197 0.1566
0.30 0.8515 0.7946 0.7335 0.6681 0.5989 0.5267 0.4528 0.3787 0.3064 0.2379 0.1755
0.35 0.8318 0.7753 0.7166 0.6552 0.5912 0.5248 0.4568 0.3882 0.3204 0.2550 0.1940
0.40 0.8146 0.7586 0.7022 0.6444 0.5848 0.5234 0.4606 0.3971 0.3336 0.2714 0.2121
0.45 0.8003 0.7448 0.6903 0.6356 0.5798 0.5229 0.4647 0.4057 0.3463 0.2873 0.2300
0.50 0.7890 0.7340 0.6813 0.6292 0.5768 0.5236 0.4695 0.4145 0.3588 0.3030 0.2479

30 0.00 1.0000 1.0000 0.9996 0.9935 0.9553 0.8333 0.6070 0.3443 0.1451 0.0438 0.0092
0.05 0.9998 0.9973 0.9853 0.9497 0.8732 0.7456 0.5745 0.3879 0.2227 0.1051 0.0392
0.10 0.9970 0.9847 0.9553 0.9010 0.8159 0.6997 0.5594 0.4095 0.2687 0.1539 0.0744
0.15 0.9890 0.9640 0.9218 0.8590 0.7746 0.6700 0.5501 0.4232 0.3003 0.1924 0.1083
0.20 0.9760 0.9396 0.8894 0.8238 0.7430 0.6485 0.5435 0.4331 0.3240 0.2237 0.1393
0.25 0.9600 0.9144 0.8595 0.7939 0.7177 0.6319 0.5385 0.4407 0.3427 0.2498 0.1673
0.30 0.9431 0.8899 0.8325 0.7682 0.6967 0.6184 0.5344 0.4468 0.3582 0.2722 0.1929
0.35 0.9268 0.8673 0.8085 0.7461 0.6790 0.6072 0.5312 0.4520 0.3715 0.2918 0.2162
0.40 0.9120 0.8474 0.7878 0.7273 0.6642 0.5980 0.5286 0.4567 0.3831 0.3095 0.2379
0.45 0.8994 0.8306 0.7705 0.7117 0.6521 0.5907 0.5270 0.4612 0.3938 0.3256 0.2581
0.50 0.8893 0.8173 0.7569 0.6997 0.6430 0.5855 0.5267 0.4661 0.4041 0.3409 0.2774

50 0.00 1.0000 1.0000 1.0000 0.9997 0.9921 0.9254 0.6989 0.3572 0.1090 0.0184 0.0016
0.05 1.0000 0.9994 0.9945 0.9738 0.9163 0.8000 0.6218 0.4114 0.2210 0.0915 0.0274
0.10 0.9991 0.9922 0.9717 0.9280 0.8517 0.7387 0.5935 0.4317 0.2764 0.1504 0.0664
0.15 0.9948 0.9761 0.9410 0.8848 0.8047 0.7008 0.5774 0.4433 0.3111 0.1944 0.1046
0.20 0.9860 0.9546 0.9092 0.8475 0.7688 0.6742 0.5666 0.4513 0.3357 0.2287 0.1389
0.25 0.9739 0.9309 0.8790 0.8155 0.7402 0.6539 0.5585 0.4572 0.3546 0.2565 0.1694
0.30 0.9605 0.9072 0.8512 0.7879 0.7166 0.6377 0.5521 0.4618 0.3698 0.2798 0.1965
0.35 0.9471 0.8850 0.8263 0.7641 0.6968 0.6243 0.5469 0.4658 0.3826 0.2999 0.2210
0.40 0.9349 0.8653 0.8047 0.7438 0.6802 0.6132 0.5428 0.4693 0.3937 0.3176 0.2434
0.45 0.9244 0.8485 0.7866 0.7270 0.6666 0.6044 0.5398 0.4727 0.4037 0.3337 0.2641
0.50 0.9160 0.8352 0.7724 0.7139 0.6563 0.5980 0.5382 0.4767 0.4134 0.3487 0.2836

100 0.00 1.0000 1.0000 1.0000 1.0000 0.9999 0.9876 0.8210 0.3608 0.0548 0.0024 0.0000
0.05 1.0000 0.9999 0.9980 0.9868 0.9458 0.8444 0.6645 0.4325 0.2170 0.0775 0.0179
0.10 0.9998 0.9959 0.9814 0.9461 0.8781 0.7696 0.6219 0.4504 0.2823 0.1464 0.0592
0.15 0.9977 0.9834 0.9538 0.9030 0.8271 0.7248 0.5993 0.4597 0.3197 0.1957 0.1011
0.20 0.9923 0.9645 0.9231 0.8647 0.7882 0.6939 0.5846 0.4657 0.3450 0.2326 0.1383
0.25 0.9841 0.9425 0.8930 0.8314 0.7571 0.6707 0.5739 0.4701 0.3639 0.2618 0.1708
0.30 0.9745 0.9198 0.8649 0.8025 0.7316 0.6523 0.5656 0.4735 0.3788 0.2858 0.1994
0.35 0.9647 0.8982 0.8395 0.7775 0.7102 0.6372 0.5589 0.4763 0.3912 0.3061 0.2247
0.40 0.9556 0.8788 0.8174 0.7561 0.6922 0.6247 0.5535 0.4788 0.4018 0.3239 0.2476
0.45 0.9478 0.8623 0.7988 0.7384 0.6775 0.6147 0.5494 0.4814 0.4113 0.3398 0.2686
0.50 0.9415 0.8492 0.7841 0.7246 0.6663 0.6073 0.5469 0.4846 0.4204 0.3547 0.2883

∞ 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 1.0000 0.9995 0.9950 0.9708 0.8910 0.7162 0.4583 0.2086 0.0590 0.0087
0.10 1.0000 0.9981 0.9888 0.9619 0.9037 0.8017 0.6530 0.4713 0.2883 0.1410 0.0508
0.15 1.0000 0.9892 0.9650 0.9202 0.8494 0.7495 0.6225 0.4772 0.3289 0.1966 0.0969
0.20 1.0000 0.9732 0.9360 0.8813 0.8074 0.7141 0.6034 0.4809 0.3549 0.2366 0.1375
0.25 1.0000 0.9532 0.9064 0.8470 0.7740 0.6878 0.5898 0.4834 0.3736 0.2672 0.1723
0.30 1.0000 0.9319 0.8782 0.8169 0.7466 0.6671 0.5794 0.4854 0.3881 0.2919 0.2022
0.35 1.0000 0.9112 0.8525 0.7908 0.7235 0.6502 0.5710 0.4870 0.3999 0.3125 0.2285
0.40 1.0000 0.8925 0.8300 0.7684 0.7043 0.6363 0.5643 0.4885 0.4100 0.3303 0.2520
0.45 1.0000 0.8765 0.8110 0.7499 0.6885 0.6251 0.5591 0.4902 0.4189 0.3461 0.2732
0.50 1.0000 0.8638 0.7960 0.7353 0.6763 0.6167 0.5557 0.4926 0.4275 0.3607 0.2930
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St.Diff = 2.5

Rho*
n Rho 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 0.00 0.9995 0.9972 0.9890 0.9677 0.9239 0.8494 0.7420 0.6080 0.4617 0.3210 0.2017
0.05 0.9969 0.9896 0.9731 0.9417 0.8899 0.8140 0.7139 0.5946 0.4653 0.3382 0.2253
0.10 0.9907 0.9771 0.9530 0.9147 0.8591 0.7846 0.6918 0.5842 0.4684 0.3526 0.2460
0.15 0.9808 0.9611 0.9310 0.8884 0.8315 0.7596 0.6736 0.5759 0.4710 0.3648 0.2643
0.20 0.9678 0.9428 0.9084 0.8633 0.8066 0.7381 0.6583 0.5690 0.4733 0.3754 0.2808
0.25 0.9524 0.9231 0.8858 0.8396 0.7841 0.7191 0.6450 0.5630 0.4753 0.3849 0.2959
0.30 0.9353 0.9027 0.8636 0.8173 0.7635 0.7021 0.6333 0.5578 0.4772 0.3935 0.3098
0.35 0.9174 0.8822 0.8420 0.7963 0.7446 0.6867 0.6228 0.5532 0.4789 0.4014 0.3228
0.40 0.8993 0.8621 0.8214 0.7766 0.7271 0.6727 0.6132 0.5490 0.4805 0.4087 0.3351
0.45 0.8816 0.8428 0.8020 0.7583 0.7111 0.6599 0.6047 0.5453 0.4821 0.4156 0.3468
0.50 0.8651 0.8250 0.7842 0.7416 0.6965 0.6485 0.5970 0.5422 0.4838 0.4222 0.3581

30 0.00 1.0000 1.0000 1.0000 1.0000 0.9996 0.9954 0.9682 0.8710 0.6634 0.3894 0.1626
0.05 1.0000 1.0000 0.9996 0.9974 0.9888 0.9629 0.9022 0.7888 0.6193 0.4174 0.2297
0.10 0.9999 0.9990 0.9955 0.9859 0.9640 0.9215 0.8489 0.7401 0.5967 0.4324 0.2716
0.15 0.9989 0.9948 0.9854 0.9667 0.9343 0.8828 0.8078 0.7069 0.5823 0.4422 0.3012
0.20 0.9958 0.9865 0.9700 0.9436 0.9042 0.8487 0.7750 0.6821 0.5718 0.4494 0.3239
0.25 0.9899 0.9743 0.9513 0.9189 0.8754 0.8188 0.7480 0.6626 0.5638 0.4549 0.3420
0.30 0.9813 0.9590 0.9305 0.8940 0.8483 0.7923 0.7250 0.6464 0.5572 0.4595 0.3572
0.35 0.9706 0.9417 0.9087 0.8696 0.8231 0.7685 0.7051 0.6327 0.5517 0.4634 0.3702
0.40 0.9586 0.9235 0.8869 0.8460 0.7997 0.7470 0.6875 0.6207 0.5469 0.4667 0.3817
0.45 0.9463 0.9052 0.8657 0.8238 0.7780 0.7276 0.6718 0.6102 0.5428 0.4698 0.3920
0.50 0.9343 0.8879 0.8459 0.8033 0.7584 0.7101 0.6578 0.6010 0.5393 0.4726 0.4015

50 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9951 0.9484 0.7567 0.4098 0.1247
0.05 1.0000 1.0000 0.9999 0.9994 0.9959 0.9818 0.9390 0.8405 0.6680 0.4413 0.2243
0.10 1.0000 0.9997 0.9980 0.9923 0.9773 0.9441 0.8812 0.7779 0.6313 0.4542 0.2763
0.15 0.9996 0.9972 0.9907 0.9766 0.9500 0.9049 0.8353 0.7367 0.6096 0.4618 0.3098
0.20 0.9979 0.9911 0.9779 0.9555 0.9205 0.8693 0.7987 0.7069 0.5946 0.4670 0.3339
0.25 0.9941 0.9809 0.9609 0.9318 0.8914 0.8376 0.7686 0.6837 0.5834 0.4709 0.3526
0.30 0.9879 0.9674 0.9413 0.9072 0.8637 0.8094 0.7433 0.6648 0.5744 0.4741 0.3678
0.35 0.9798 0.9515 0.9202 0.8827 0.8376 0.7841 0.7214 0.6489 0.5670 0.4767 0.3806
0.40 0.9704 0.9344 0.8986 0.8587 0.8133 0.7613 0.7021 0.6352 0.5606 0.4789 0.3916
0.45 0.9606 0.9170 0.8775 0.8360 0.7907 0.7406 0.6849 0.6231 0.5551 0.4809 0.4015
0.50 0.9509 0.9004 0.8577 0.8150 0.7702 0.7220 0.6696 0.6125 0.5503 0.4828 0.4104

100 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9935 0.8737 0.4285 0.0664
0.05 1.0000 1.0000 1.0000 0.9998 0.9986 0.9915 0.9634 0.8821 0.7126 0.4633 0.2161
0.10 1.0000 0.9999 0.9990 0.9956 0.9850 0.9590 0.9047 0.8077 0.6603 0.4728 0.2795
0.15 0.9999 0.9984 0.9938 0.9827 0.9605 0.9205 0.8557 0.7599 0.6316 0.4778 0.3165
0.20 0.9990 0.9937 0.9829 0.9635 0.9319 0.8841 0.8163 0.7258 0.6125 0.4811 0.3419
0.25 0.9967 0.9852 0.9674 0.9408 0.9029 0.8514 0.7841 0.6997 0.5985 0.4835 0.3609
0.30 0.9927 0.9731 0.9488 0.9166 0.8749 0.8221 0.7569 0.6787 0.5876 0.4853 0.3760
0.35 0.9870 0.9585 0.9283 0.8921 0.8483 0.7957 0.7335 0.6611 0.5785 0.4869 0.3885
0.40 0.9804 0.9423 0.9071 0.8680 0.8233 0.7718 0.7129 0.6460 0.5709 0.4882 0.3992
0.45 0.9733 0.9258 0.8862 0.8450 0.8001 0.7502 0.6946 0.6328 0.5643 0.4893 0.4086
0.50 0.9663 0.9099 0.8665 0.8237 0.7789 0.7308 0.6784 0.6212 0.5586 0.4905 0.4171

∞ 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 1.0000 1.0000 1.0000 0.9997 0.9972 0.9827 0.9246 0.7673 0.4912 0.2011
0.10 1.0000 1.0000 0.9996 0.9977 0.9909 0.9718 0.9270 0.8386 0.6923 0.4939 0.2821
0.15 1.0000 0.9991 0.9960 0.9877 0.9696 0.9350 0.8757 0.7836 0.6549 0.4952 0.3236
0.20 1.0000 0.9958 0.9871 0.9705 0.9424 0.8984 0.8338 0.7451 0.6312 0.4959 0.3503
0.25 1.0000 0.9888 0.9732 0.9491 0.9138 0.8647 0.7994 0.7159 0.6141 0.4965 0.3696
0.30 1.0000 0.9783 0.9558 0.9255 0.8856 0.8344 0.7705 0.6927 0.6009 0.4969 0.3845
0.35 1.0000 0.9650 0.9361 0.9012 0.8586 0.8071 0.7455 0.6733 0.5903 0.4972 0.3967
0.40 1.0000 0.9501 0.9154 0.8770 0.8331 0.7822 0.7237 0.6568 0.5813 0.4975 0.4070
0.45 1.0000 0.9346 0.8948 0.8539 0.8093 0.7597 0.7043 0.6424 0.5735 0.4978 0.4159
0.50 1.0000 0.9196 0.8752 0.8323 0.7876 0.7395 0.6872 0.6298 0.5669 0.4982 0.4239
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APPENDIX B: EQUATIONS 

A test statistic for testing H0: ii ′= µµ vs. HA: ii ′≠ µµ  can be computed from our data as 

follows:  Let ρ  denote the true ICC.  Let 0ρ  denote the value the researcher chooses for the 

ICC.  Let i0µ  and i′0µ  represent the hypothesized values of the mean for treatment i and the 

mean for treatment i' respectively.  Let ∑
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where 2ˆεσ  represents a pooled estimate of the within class variance. 

The probability of rejecting H0 for an upper-tail test at the 0.05 level can be determined using 

the following steps: 
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where Z~n(0,1), λ  is a constant (our non-centrality parameter), and U~ 2
υχ .  To the left of the 

inequality is a random variable with a non-central t distribution with non-centrality parameter 

λ  and degrees of freedom υ . 

 



 

 131

APPENDIX C: DATA SETS 

Data Set C.1: Class Data 

Two introductory statistics courses (class) were taught by two different methods (trt).  Final 

grades were recorded for each student on a scale from 0 (Failure) to 4 (Excellent).   

Data class; 
Input class trt student y; 
Datalines; 
 

1 1 1 3
1 1 2 3
1 1 3 4
1 1 4 3
1 1 5 2
1 1 6 0
1 1 7 4
1 1 8 2
1 1 9 2
1 1 10 3
1 1 11 3
1 1 12 3
1 1 13 0
1 1 14 3
1 1 15 3
1 1 16 4
1 1 17 1
1 1 18 2
1 1 19 3
1 1 20 3
1 1 21 4
1 1 22 3
1 1 23 3
1 1 24 2
1 1 25 2
1 1 26 2
1 1 27 4
1 1 28 4
1 1 29 4
1 1 30 3
1 1 31 3
1 1 32 3
1 1 33 4



 

 132

1 1 34 4
1 1 35 3
2 2 1 4
2 2 2 0
2 2 3 3
2 2 4 4
2 2 5 3
2 2 6 4
2 2 7 3
2 2 9 4
2 2 10 4
2 2 11 3
2 2 12 4
2 2 13 4
2 2 15 3
2 2 16 3
2 2 17 2
2 2 18 4
2 2 19 4
2 2 20 4
2 2 21 3
2 2 22 3
2 2 23 3
2 2 24 4
2 2 25 4
2 2 26 3
2 2 27 3
2 2 28 4
2 2 30 4
2 2 31 4
2 2 32 4
2 2 33 3
2 2 34 3
2 2 35 4
2 2 36 3
2 2 37 4
2 2 38 2
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Data Set C.2: KSU Grades Data 

The following data set contains estimated intraclass correlation coefficients for KSU grades 

given in a selection of undergraduate courses offered from 2001-2003.  The experimental unit 

in the data is the course/per semester and the sub-sampling unit is the course sections for that 

semester.  The total number of students (stud_tot), the total number of sections (class_tot), 

and the ratio of the two are also listed.   

Data rho; 
Input year semester course rho stud_tot class_tot stud_avg; 
Datalines; 
 

2002 F ENGL100 0.0524 1252 63 19.9 
2001 F PSYCH110 0.0214 1186 19 62.4 
2001 F ENGL100 0.0718 1157 60 19.3 
2002 F PSYCH110 0.0203 1045 7 149.3 
2003 SP PSYCH110 0.0089 972 6 162.0 
2002 F CHM210 0.0981 907 5 181.4 
2002 SP PSYCH110 0.1296 906 11 82.4 
2001 F CIS101 0.0040 894 6 149.0 
2002 F CIS101 0.0001 856 7 122.3 
2001 SP PSYCH110 0.1918 829 9 92.1 
2001 SP CIS101 0.1459 813 8 101.6 
2001 F CHM210 0.0171 808 5 161.6 
2002 SP CIS101 0.0947 738 8 92.3 
2003 SP CIS101 0.1011 716 8 89.5 
2002 SP ENGL100 0.0829 702 42 16.7 
2001 SP ENGL100 0.0497 663 36 18.4 
2003 SP ENGL100 0.0525 562 33 17.0 
2001 SP CHM230 0.0103 536 4 134.0 
2002 SP CHM230 0.0327 512 4 128.0 
2003 SP CHM230 0.1096 502 4 125.5 
2003 SP CHM210 0.0832 448 2 224.0 
2002 SP CHM210 0.0117 378 2 189.0 
2001 F MATH010 0.0067 352 24 14.7 
2002 F MATH010 0.0014 336 26 12.9 
2001 F SPAN161 0.0724 307 14 21.9 
2002 F SPAN161 0.0893 247 11 22.5 
2001 SP PSYCH202 0.0895 244 2 122.0 
2001 F PSYCH202 0.2266 241 2 120.5 
2002 F MUSIC250 0.1341 208 3 69.3 
2003 SP SPAN161 0.0466 195 8 24.4 
2002 SP SPAN161 0.1380 187 8 23.4 
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2001 SP SPAN161 0.0689 184 8 23.0 
2003 SP MUSIC255 0.2034 153 17 9.0 
2001 F MUSIC255 0.0247 145 17 8.5 
2001 SP MUSIC255 0.0699 130 17 7.6 
2003 SP MATH010 0.0439 117 15 7.8 
2001 SP MATH010 0.0863 116 15 7.7 
2002 SP MATH010 0.1012 103 15 6.9 
2002 F MATH100 0.0424 96 4 24.0 
2001 SP PSYCH350 0.0479 54 3 18.0 
2001 SP ENGL125 0.3358 35 4 8.8 
2002 SP ENGL125 0.1127 30 3 10.0 
2001 F CHM111 0.0102 18 2 9.0 
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Data Set C.3: Spider Mites Test Data 

One of four different treatments (trt) was applied to the eight potted plants (pot) within each 

of four greenhouses (grnhs).  At the end of treatment period, the number of spider mites was 

counted (count).   

Data class; 
Input grnhs trt pot count; 
Datalines; 
 

1 1 1 25
1 1 2 47
1 1 3 43
1 1 4 30
1 1 5 55
1 1 6 30
1 1 7 40
1 1 8 42
2 2 1 0
2 2 2 0
2 2 3 0
2 2 4 0
2 2 5 1
2 2 6 3
2 2 7 0
2 2 8 0
3 3 1 14
3 3 2 44
3 3 3 3
3 3 4 15
3 3 5 13
3 3 6 3
3 3 7 26
3 3 8 6
4 4 1 0
4 4 2 0
4 4 3 0
4 4 4 0
4 4 5 1
4 4 6 0
4 4 7 0
4 4 8 9
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Data Set C.4: Spider Mites Pre-treatment Data 

The number of two-spotted spider mites (count) was determined for each of eight potted 

plants (pot) for seven different varieties (variety) within each of four greenhouses (grnhs).   

Data class; 
Input grnhs variety pot count; 
Datalines; 
 

1 Cajun Cranberry 1 19 
1 Cajun Cranberry 2 16 
1 Cajun Cranberry 3 13 
1 Cajun Cranberry 4 5 
1 Cajun Cranberry 5 25 
1 Cajun Cranberry 6 3 
1 Cajun Cranberry 7 2 
1 Cajun Cranberry 8 19 
1 Cajun White 1 3 
1 Cajun White 2 0 
1 Cajun White 3 8 
1 Cajun White 4 5 
1 Cajun White 5 2 
1 Cajun White 6 0 
1 Cajun White 7 0 
1 Cajun White 8 0 
1 Impulse Orange White 1 0 
1 Impulse Orange White 2 0 
1 Impulse Orange White 3 0 
1 Impulse Orange White 4 0 
1 Impulse Orange White 5 0 
1 Impulse Orange White 6 0 
1 Impulse Orange White 7 15 
1 Impulse Orange White 8 0 
1 Impulse Orange 1 0 
1 Impulse Orange 2 110 
1 Impulse Orange 3 20 
1 Impulse Orange 4 100 
1 Impulse Orange 5 2 
1 Impulse Orange 6 25 
1 Impulse Orange 7 90 
1 Impulse Orange 8 20 
2 Cajun Cranberry 1 2 
2 Cajun Cranberry 2 5 
2 Cajun Cranberry 3 0 
2 Cajun Cranberry 4 1 
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2 Cajun Cranberry 5 3 
2 Cajun Cranberry 6 12 
2 Cajun Cranberry 7 0 
2 Cajun Cranberry 8 0 
2 Cajun White 1 12 
2 Cajun White 2 4 
2 Cajun White 3 23 
2 Cajun White 4 2 
2 Cajun White 5 0 
2 Cajun White 6 45 
2 Cajun White 7 65 
2 Cajun White 8 21 
2 Impulse Orange White 1 0 
2 Impulse Orange White 2 0 
2 Impulse Orange White 3 16 
2 Impulse Orange White 4 9 
2 Impulse Orange White 5 1 
2 Impulse Orange White 6 17 
2 Impulse Orange White 7 18 
2 Impulse Orange White 8 2 
2 Impulse Orange 1 5 
2 Impulse Orange 2 15 
2 Impulse Orange 3 13 
2 Impulse Orange 4 20 
2 Impulse Orange 5 14 
2 Impulse Orange 6 12 
2 Impulse Orange 7 20 
2 Impulse Orange 8 15 
3 Cajun Cranberry 1 9 
3 Cajun Cranberry 2 6 
3 Cajun Cranberry 3 48 
3 Cajun Cranberry 4 12 
3 Cajun Cranberry 5 0 
3 Cajun Cranberry 6 8 
3 Cajun Cranberry 7 50 
3 Cajun Cranberry 8 1 
3 Cajun White 1 5 
3 Cajun White 2 0 
3 Cajun White 3 70 
3 Cajun White 4 38 
3 Cajun White 5 5 
3 Cajun White 6 3 
3 Cajun White 7 22 
3 Cajun White 8 3 
3 Impulse Orange White 1 1 
3 Impulse Orange White 2 15 
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3 Impulse Orange White 3 0 
3 Impulse Orange White 4 2 
3 Impulse Orange White 5 0 
3 Impulse Orange White 6 4 
3 Impulse Orange White 7 0 
3 Impulse Orange White 8 0 
3 Impulse Orange 1 1 
3 Impulse Orange 2 0 
3 Impulse Orange 3 20 
3 Impulse Orange 4 26 
3 Impulse Orange 5 36 
3 Impulse Orange 6 22 
3 Impulse Orange 7 3 
3 Impulse Orange 8 1 
4 Cajun Cranberry 1 2 
4 Cajun Cranberry 2 4 
4 Cajun Cranberry 3 0 
4 Cajun Cranberry 4 35 
4 Cajun Cranberry 5 8 
4 Cajun Cranberry 6 0 
4 Cajun Cranberry 7 0 
4 Cajun Cranberry 8 25 
4 Cajun White 1 0 
4 Cajun White 2 0 
4 Cajun White 3 0 
4 Cajun White 4 5 
4 Cajun White 5 0 
4 Cajun White 6 0 
4 Cajun White 7 0 
4 Cajun White 8 0 
4 Impulse Orange White 1 23 
4 Impulse Orange White 2 2 
4 Impulse Orange White 3 9 
4 Impulse Orange White 4 3 
4 Impulse Orange White 5 5 
4 Impulse Orange White 6 19 
4 Impulse Orange White 7 6 
4 Impulse Orange White 8 10 
4 Impulse Orange 1 0 
4 Impulse Orange 2 80 
4 Impulse Orange 3 7 
4 Impulse Orange 4 8 
4 Impulse Orange 5 13 
4 Impulse Orange 6 1 
4 Impulse Orange 7 25 
4 Impulse Orange 8 12 
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1 Summer Rose Lilac 1 55 
1 Summer Rose Lilac 2 34 
1 Summer Rose Lilac 3 36 
1 Summer Rose Lilac 4 45 
1 Summer Rose Lilac 5 18 
1 Summer Rose Lilac 6 58 
1 Summer Rose Lilac 7 38 
1 Summer Rose Lilac 8 53 
1 Summer Rose Red 1 1 
1 Summer Rose Red 2 4 
1 Summer Rose Red 3 8 
1 Summer Rose Red 4 20 
1 Summer Rose Red 5 30 
1 Summer Rose Red 6 22 
1 Summer Rose Red 7 9 
1 Summer Rose Red 8 12 
1 Ivy Geranium 1 5 
1 Ivy Geranium 2 46 
1 Ivy Geranium 3 3 
1 Ivy Geranium 4 62 
1 Ivy Geranium 5 37 
1 Ivy Geranium 6 45 
1 Ivy Geranium 7 43 
1 Ivy Geranium 8 45 
2 Summer Rose Lilac 1 87 
2 Summer Rose Lilac 2 50 
2 Summer Rose Lilac 3 37 
2 Summer Rose Lilac 4 73 
2 Summer Rose Lilac 5 55 
2 Summer Rose Lilac 6 36 
2 Summer Rose Lilac 7 12 
2 Summer Rose Lilac 8 47 
2 Summer Rose Red 1 0 
2 Summer Rose Red 2 14 
2 Summer Rose Red 3 0 
2 Summer Rose Red 4 23 
2 Summer Rose Red 5 18 
2 Summer Rose Red 6 42 
2 Summer Rose Red 7 12 
2 Summer Rose Red 8 10 
2 Ivy Geranium 1 27 
2 Ivy Geranium 2 8 
2 Ivy Geranium 3 25 
2 Ivy Geranium 4 14 
2 Ivy Geranium 5 55 
2 Ivy Geranium 6 10 
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2 Ivy Geranium 7 10 
2 Ivy Geranium 8 15 
3 Summer Rose Lilac 1 43 
3 Summer Rose Lilac 2 12 
3 Summer Rose Lilac 3 7 
3 Summer Rose Lilac 4 5 
3 Summer Rose Lilac 5 3 
3 Summer Rose Lilac 6 66 
3 Summer Rose Lilac 7 22 
3 Summer Rose Lilac 8 37 
3 Summer Rose Red 1 1 
3 Summer Rose Red 2 1 
3 Summer Rose Red 3 0 
3 Summer Rose Red 4 17 
3 Summer Rose Red 5 1 
3 Summer Rose Red 6 20 
3 Summer Rose Red 7 0 
3 Summer Rose Red 8 6 
3 Ivy Geranium 1 42 
3 Ivy Geranium 2 35 
3 Ivy Geranium 3 43 
3 Ivy Geranium 4 35 
3 Ivy Geranium 5 42 
3 Ivy Geranium 6 17 
3 Ivy Geranium 7 38 
3 Ivy Geranium 8 30 
4 Summer Rose Lilac 1 7 
4 Summer Rose Lilac 2 8 
4 Summer Rose Lilac 3 101 
4 Summer Rose Lilac 4 46 
4 Summer Rose Lilac 5 52 
4 Summer Rose Lilac 6 58 
4 Summer Rose Lilac 7 16 
4 Summer Rose Lilac 8 11 
4 Summer Rose Red 1 26 
4 Summer Rose Red 2 22 
4 Summer Rose Red 3 32 
4 Summer Rose Red 4 37 
4 Summer Rose Red 5 14 
4 Summer Rose Red 6 11 
4 Summer Rose Red 7 60 
4 Summer Rose Red 8 19 
4 Ivy Geranium 1 37 
4 Ivy Geranium 2 1 
4 Ivy Geranium 3 70 
4 Ivy Geranium 4 63 
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4 Ivy Geranium 5 26 
4 Ivy Geranium 6 36 
4 Ivy Geranium 7 7 
4 Ivy Geranium 8 80 
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VERIFICATION OF RESULTS 

Verification that the function listed as Equation 2.2.9 is a valid probability density 

function:  

( ) ( )
( ) ( )

( )

,111 1 βαα

βα
βα +−−

⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ −

ΓΓ
+Γ

=
n

cy
n

cycyfY  ∞<< y
cn
1  (2.2.9) 

where  

n
c 1

1 0

0 +
−

=
ρ

ρ
. 

We generate values of x in the range of greatest probability: 
cn
1  through 10 by 0.0001 for 

10,1 == βα , 
cn
1  through 10 by 0.001 for 30,5 == βα , and 

cn
1  through 200 by 0.001 for 

4,10 == βα  to check for (1) values being positive, and (2) values integrating to 1.0 by use of 

Riehmann sums.  This is repeated for the following situations: 

α β ρ0 n 

1 10 0.1 10 

1 10 0.1 1000 

1 10 0.5 10 

1 10 0.5 1000 

 

α β ρ0 n

5 30 0.1 10

5 30 0.1 1000

5 30 0.5 10

5 30 0.5 1000

 

α β ρ0 n

10 4 0.1 10

10 4 0.1 1000

10 4 0.5 10

10 4 0.5 1000

 

In all cases, the function returned positive probabilities and integrated to 1.0. 
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Verification that the function listed as Equation 2.2.12 is a valid probability density 

function:  

( ) ( )
( ) ( ) ∞<<⎟

⎠
⎞

⎜
⎝
⎛
+ΓΓ

+Γ
=

+
− x

x
xxf X 0,

1
11

βα
α

βα
βα  (2.2.12) 

which is the equivalent to F
β
α , a constant times an F-distributed random variable with 

αυ 21 =  and βυ 22 = .   

We generate values of x in the range of greatest probability: 0 through 100 by 0.001 for 

10,1 == βα , 0 through 5 by 0.001 for 30,5 == βα , and 0 through 100 by 0.001 for 

4,10 == βα  to check for (1) values being positive, and (2) values integrating to 1.0 by use of 

Riehmann sums.  This is repeated for the following situations: 

α β ρ0 n 

1 10 0.1 10 

1 10 0.1 1000 

1 10 0.5 10 

1 10 0.5 1000 

 

α β ρ0 n

5 30 0.1 10

5 30 0.1 1000

5 30 0.5 10

5 30 0.5 1000

 

α β ρ0 n

10 4 0.1 10

10 4 0.1 1000

10 4 0.5 10

10 4 0.5 1000

In all cases, the function returned positive probabilities and integrated to 1.0. 

Verification that 2ˆεσ  from Equation 3.1.2 is an unbiased estimator of 2
εσ . 

A simulation of was conducted to determine whether Equation 3.1.2 is an unbiased estimator 

of 2
εσ .  A data set was generated with the value of 2

εσ  being 1.0 and the value of ρ  being 

0.10.  An estimate of 2
εσ  was computed using both Equation 3.1.2 (pooled) and Equation 

2.3.4 (UMVUE).  The value 0.20 was used as a plug-in value in place of ρ  in Equation 2.3.4.  

These steps were iterated 10,000 times and a mean and standard deviation were computed on 

the estimates.  The following table shows the results. 
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t 4
b 1 3  

n 5 20 5 20
Mean 1.0067340 1.0048189 1.0057520 0.9996724

Pooled 
St. Dev. 0.3485084 0.1645745 0.2020840 0.0913511
Mean 1.0067340 1.0048189 0.9573357 0.9842369

UMVUE 
St. Dev. 0.3485084 0.1645745 0.1763341 0.0885420

 

As can be seen, Equation 3.1.2 (pooled) provides an unbiased estimate of 2
εσ , and the 

estimate using Equation 2.3.4 (UMVUE) with a plug-in value in place of ρ  can lead to an 

estimate of 2
εσ  that is biased. 
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