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Cross talk between glia and neurons is crucial for a variety of biological functions,
ranging from nervous system development, axonal conduction, synaptic transmission,
neural circuit maturation, to homeostasis maintenance. Extracellular vesicles (EVs),
which were initially described as cellular debris and were devoid of biological function,
are now recognized as key components in cell-cell communication and play a critical role
in glia-neuron communication. EVs transport the proteins, lipids, and nucleic acid cargo
in intercellular communication, which alters target cells structurally and functionally.
A better understanding of the roles of EVs in glia-neuron communication, both in
physiological and pathological conditions, can aid in the discovery of novel therapeutic
targets and the development of new biomarkers. This review aims to demonstrate that
different types of glia and neuronal cells secrete various types of EVs, resulting in specific
functions in intercellular communications.

Keywords: extracellular vesicles, glia, neuron, intercellular communication, cellular cargo

INTRODUCTION

Two-way intercellular communication between glia and neurons is essential for the optimal
functioning of the central nervous system (CNS) (Fields and Stevens-Graham, 2002; Basso and
Bonetto, 2016). The intercellular communication between glia and neurons is bidirectional and is
mediated through ion fluxes, neurotransmitters, cell adhesion molecules, and secretomes (Pascual
et al., 2020). Extracellular vesicles (EVs) have emerged as vital intermediaries for glia-neuron
communication and are among the most important constituents of secretomes (Koniusz et al., 2016;
Lizarraga-Valderrama and Sheridan, 2021).

Extracellular vesicles are membrane-surrounded structures released by most cell types and
are characterized by a specific set of proteins, lipids, and nucleic acids (Koniusz et al., 2016;
Harting et al., 2018; Lopez et al., 2019). They are broadly categorized based on their biological
function and biogenesis into exosomes (30–120 nm), microvesicles (100–1000 nm), and apoptotic
bodies (50–4000 nm) (Figure 1). The last two represent the heterogeneous populations of
vesicles generated by the external budding of the plasma membrane. Exosomes, in contrast,
are generated as intraluminal vesicles through the inward budding of the multivesicular bodies
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(Stoorvogel et al., 2002; Gould and Raposo, 2013; Koniusz et al.,
2016). Historically, EVs have been defined as membrane
debris that shuttle cellular waste from various cell types into
the extracellular space with no real biological significance
(Graykowski et al., 2020). Over time, studies have shown that
EVs can stimulate adaptive immune responses, and subsequent
studies have identified the importance of EVs in intracellular
communication. Both glia and neurons release EVs that contain
cargos such as proteins, nucleic acids, and lipid signaling
molecules (Agnati et al., 2010; Guo et al., 2010; Lippi et al., 2016).
These EV cargos may have potential roles in transcriptional and
translational regulation with putative influence on downstream
signaling pathways in recipient cells (Ung et al., 2014). Therefore,
EV-mediated intercellular communication between glia and
neuron likely results in changes in the transcriptome and
proteome of target cells and serves as an important method of
information transfer between them. In this review, we highlight
and discuss the recent studies of EV-mediated glia-neuron
communication in the CNS.

GLIA-NEURON INTERCELLULAR
COMMUNICATION

The functions of the CNS, including synaptic transmission,
axonal conduction, and information processing, depend on the
two-way communication between neurons and glial cells. Glial
cells regulate various functions of neurons, such as synapse
formation, the strengthening of synapses, and information
processing. Conversely, neurons regulate different glia activities,
including proliferation, differentiation, and myelination of glial
cells (Fields and Stevens-Graham, 2002). This interdependence
of neuron and glial activities suggests a systemic mechanism of
bidirectional glia-neuron communication (Figure 2).

Glial cells are the non-neuronal cells in the CNS and
the peripheral nervous system (PNS). They do not produce
electrical impulses, but they are the active participants in CNS
physiology (Pontén, 1975; Travis, 1994; Fields et al., 2015).
In the CNS, glial cells include astrocytes, microglia, NG2
glia, oligodendrocytes, radial glial cells (RGCs), and ependymal
cells. In addition, pituicytes from the posterior pituitary share
common characteristics with astrocytes, and tanycytes are special
ependymal cells in the median eminence of the hypothalamus.
In the PNS, glial cells include Schwann cells (SCs), satellite glial
cells (SGCs), and enteric glial cells (Jessen, 2004; Clasadonte and
Prevot, 2018; Rodríguez et al., 2019).

In the CNS, astrocytes exhibit heterogeneous functions and
morphology depending on their location (Khakh and Sofroniew,
2015; Ben Haim and Rowitch, 2017). They also participate
in neuronal functions, including supplying energy metabolites
and maintaining water ion homeostasis. Astrocytes are actively
involved in calcium excitability, tripartite synapse, neurovascular
coupling, and maintenance of the blood-brain barrier (BBB)
(Filosa et al., 2016). Microglia are prime immune cells of
myeloid origin. They also contribute to synaptic pruning during
development and synaptic modulation. These glial cells have
immunocompetent potential and are known as phagocytic

cells of the CNS (Prinz et al., 2019). Microglia originate
from yolk sac progenitors and contribute to synaptic pruning
during development and synaptic modulation (Wu et al.,
2015; Hong and Stevens, 2016). NG2 glial cells, also known
as oligodendrocytes progenitor cells (OPCs) (Ffrench-Constant
et al., 1986; Dimou and Götz, 2014), first appear in the early
phases of development and are present in the adult CNS
(Kirdajova and Anderova, 2020). OPCs are the precursors of
oligodendrocytes that produce myelin to insulate axons, enable
fast salutatory impulse propagation, and provide metabolic
support to myelinated axons (Saab et al., 2013; Moore et al.,
2020). Radial cells have a periventricular cellular body and extend
an elongated process, directing the newly formed neurons to
their destinations (Kriegstein and Alvarez-Buylla, 2009; Sharif
et al., 2018). With the various physiological functions of
neuroendocrine, neurogenic, and metabolic processes, tanycytes
are specialized ependymoglial cells derived from radial cells.
Tanycytes are found in the third ventricle and on the floor
of the fourth ventricle and have processes extending into the
hypothalamus (Wittkowski, 1998; Barry et al., 2014). These
glial cells are crucial in determining the functional interactions
of specific neuronal subpopulations involved in the control
of metabolism (García-Cáceres et al., 2019). Pituicytes are the
dominant, non-neuronal elements found in the posterior lobe
of the pituitary. Pituicytes are astrocyte-like cells that enclose
neurosecretory fiber terminals via their processes, remodel glia-
neurons to regulate the access of magnocellular neurosecretory
axons directly to the pericapillary space, and control the potential
paracrine and autocrine actions of secreted peptides (Hatton
et al., 1984; Wittkowski, 1998; Theodosis et al., 2008).

In the PNS, glial cells perform a plethora of functions linked
to axon regeneration, myelination, neuronal support, regulation
of synaptic connectivity, and sensory function (Kastriti and
Adameyko, 2017; López-Leal et al., 2020). Current evidence
shows that SCs, the main glial cell in the PNS, possess a
remarkable regenerative potential, and, in addition to their roles
in myelination, SCs play a critical role in energetic/metabolic
support of axons to maintain their integrity and function
(Beirowski et al., 2014; Salzer, 2015; Wong et al., 2017;
Babetto et al., 2020).

The above outline of diverse functions and types of glial
cells demonstrates a synchronized mechanism of glia-neuron
communication. Recent literature has identified the key role of
EVs in glia-neuron communication. EVs have the potential to
modify the morphology and function of target cells upon delivery
of the messages. However, more research needs to be done to
establish the precise role of EVs in glia-neuron communication.

HISTORICAL BACKGROUND OF
EXTRACELLULAR VESICLES IN
GLIA-NEURON COMMUNICATION

Although extracellular and vesicular roles of EVs were recognized
during the 1940s–1950s, Bonucci (1970) was the first to coin
the term “extracellular vesicles” (Chargaff and West, 1946;
Anderson, 1969; Bonucci, 1970; Yáñez-Mó et al., 2015). In
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FIGURE 1 | Different types of extracellular vesicles (EVs). EVs can be categorized into three main classes based on their mode of origin: (i) exosomes, (ii)
microvesicles, and (iii) apoptotic bodies. An EV cargo consists of a specific set of proteins, lipids, and nucleic acids, and neighboring cells use EVs as a method of
paracrine transfer of molecular signals between cells. Figure reproduced from Koniusz et al. (2016).

FIGURE 2 | Extracellular Vesicle-mediated glia-neuron intercellular communication in the central nervous system (CNS). In the CNS, cross talk between glia and
neurons is crucial for a variety of biological functions, ranging from neuroprotection, neural circuit maturation, homeostasis maintenance, and synaptic function
modulation. Solid arrows indicate the exchange of EVs between different glial cells and neurons.
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1970, Grillo’s proposal of the role of merocrine and apocrine
secretory processes in neuronal signaling was criticized due to
its experimental nature (Grillo, 1970; Dermietzel et al., 1972). In
1996, a complex signaling function of EVs was established. Later
on, several studies in the first decade of the 21st century reported
the intercellular transfer of nucleic acid through EVs.

Almost all types of cells in the body naturally release
some lipid bilayer-delimited particles called EVs, which vary
in function and chemical composition (Théry et al., 2018).
Aside from the transfer of receptors, bioactive lipids, proteins,
and nucleic acid, EVs also play a key role in the regulation
of homeostasis and immune functions (Koniusz et al., 2016)
and the transfer of biomolecules in glia-neuron intercellular
communication. Moreover, functionally transferred RNA in
recipient cells was reported (Baj-Krzyworzeka et al., 2006;
Ratajczak et al., 2006; Aliotta et al., 2007; Valadi et al., 2007;
Skog et al., 2008; Pegtel et al., 2010; Yáñez-Mó et al., 2015).
The significant impacts of EVs in communication within the
CNS include transsynaptic and interneuronal communication
(Budnik et al., 2016; Veziroglu and Mias, 2020). Astrocytes
have been shown to cause neuronal apoptosis in in vitro
studies (Söllvander et al., 2016; Nikitidou et al., 2017).
Additionally, EVs carrying cargo have been associated with
neuronal growth and survival, synaptic transmission, regulation,
and neurodegeneration (Agnati and Fuxe, 2014).

VARIOUS KINDS OF EXTRACELLULAR
VESICLES IN GLIA-NEURON
INTRACELLULAR COMMUNICATION

The deep involvement of EVs in CNS physiology has been
increasingly demonstrated in recent literature. EVs in CNS
research have opened new perspectives and emerged as
crucial players in neuron-glial communication, regulating
the circulation of pathogenic factors, inflammation, cargo
transport, neurotransmission, axonal integrity, and support
neurons (López-Guerrero et al., 2020). EVs are derived from all
kinds of CNS cells, including neurons and non-neuronal glial
cells, astrocytes, microglia, oligodendrocytes, NG2 cells, RGCs,
tanycytes, and pituicytes. EVs derived by these cells transfer the
proteins, lipids, and nucleic acid cargo, participate in neuron-glia
communication, and relay even more complex messages. Table 1
demonstrates the role of EVs derived from different types of CNS
cells. The role of EVs derived from different neurons and glial
cells in glia-neuron communications is summarized next.

Neuron-Derived Extracellular Vesicles
Early evidence of the release of EVs from neurons was
demonstrated using primary cell cultures of cortical neurons
in rat and mice embryos (Fauré et al., 2006). EVs derived
from neurons at the synapses may be taken up by other
neurons, suggesting the involvement of EVs in transsynaptic
communication. Cortical neurons in the mammalian nervous
system have been reported to release EVs triggered by increased
postsynaptic calcium levels due to synaptic glutamatergic activity
(Graykowski et al., 2020). Potassium-induced depolarization has

been reported to enhance the release of EVs from neurons
contributing to the removal of microglia from degenerating
neurites by the upregulation of microglial complement molecule
C3 (Bahrini et al., 2015). Recent studies show that neuron-
derived EVs carry mRNA and proteins, which further proves
the role of EVs in synaptic communication (Ashley et al., 2018).
Presynaptic release of EVs is also shown to modulate retrograde
signaling by the postsynaptic cell, which may be important
during CNS development, axon guidance, or synaptic plasticity
(Korkut et al., 2013).

Glia-Derived Extracellular Vesicles
Glial cells are distributed throughout the CNS and comprise
various populations of cells with different origins, functions, and
structures. Recent studies on glial cells derived from EVs suggest
that EVs are a key player in intercellular communication and CNS
function and dysfunction.

Astrocytes-Derived Extracellular Vesicles
Astrocytes are the most abundant type of glial cells, and
studies have reported that astrocyte-derived EVs (ADEVs) are
key players in glia-neuron communication. They have been
found to contribute to neuron maturation and the survival
and modulation of synaptic function (Durkee and Araque,
2019). ADEVs vary in size ranging from 150 to 500 nm and
carry various transfer molecules, including ATP, Hsp/Hsc70,
and synapsin I and angiogenesis modulating factors, such as
fibroblast growth factor 2 (FGF2), vascular endothelial growth
factor (VEGF), pigment epithelium-derived factor (PEDF), and
endostatin (Proia et al., 2008; Pegtel et al., 2010; Frühbeis
et al., 2013b; Agnati and Fuxe, 2014). Studies have shown that
ADEVs also transport mitochondrial DNA (Guescini et al.,
2010) and microRNA (miRNA), which contribute to intercellular
communication (Jovičić and Gitler, 2017). The neuroprotecting
properties of ADEVs have been shown to be effective against
hypoxia, ischemia, oxidative stress, and hypoglycemia through
prion protein-dependent mechanisms (Guitart et al., 2016;
Pascua-Maestro et al., 2019). Reduced neuronal cell death has
been reported through the exposure of ADEVs to oxygen and
glucose deprivation (Xu et al., 2019). Regulation of autophagy by
ADEVs has demonstrated apoptosis inhibition in neurons (Pei
et al., 2019). Moreover, the role of ADEVs in traumatic brain
injuries was recently shown to contribute to neuroprotection and
damage repair through mitochondrial function, restoration, and
apoptosis downregulation (Chen et al., 2020).

Neuronal morphology, dendritic development, and synaptic
homeostasis have been proven to be directly regulated by ADEVs
through modification of their miRNA cargo (Chaudhuri et al.,
2018; Luarte et al., 2020). It also appears that ADEVs influence
neurite outgrowth, guide axons, are involved in the potentiation,
and help in the biogenesis of synapses. Furthermore, the
treatment of ADEVs with interleukin-10 (IL-10) regulates the
signaling of gap junction and cAMP-response element binding
protein (CREB) (Datta Chaudhuri et al., 2020). Along with
the different proteins, lipids, and nucleotide cargo, ADEVs also
carry neurotoxic factors such as human immunodeficiency virus
(HIV)-related neurotoxic proteins (Katuri et al., 2019).
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TABLE 1 | Role of extracellular vesicles (EVs) derived from different types of central nervous system (CNS) cells in glia-neuron intercellular communication.

S. No. Type of cell secreting
extracellular vesicles

Functions References

1. Neuron Trans synaptic communication, removal of microglia of degenerating neuritis Bahrini et al., 2015; Graykowski et al., 2020

2. Astrocytes Neuron maturation and survival, and modulation of synaptic function,
transport mtDNA and miRNA, ATP, Hsp/Hsc70 and synapsin I,

neuro-protection, reduced neuronal cell death, regulation of autophagy,
brain damage repair, neurons morphology, dendritic development and

synaptic homeostasis, regulation of signaling of gap junction and CREB,
transport of neurotoxic factors, loss of excitatory and inhibitory synapses

Proia et al., 2008; Guescini et al., 2010; Pegtel
et al., 2010; Frühbeis et al., 2013b; Agnati and
Fuxe, 2014; Jovičić and Gitler, 2017; Saribas

et al., 2017; Chaudhuri et al., 2018; Durkee and
Araque, 2019; Katuri et al., 2019; Xu et al.,

2019; Chen et al., 2020; Datta Chaudhuri et al.,
2020; Hu et al., 2020; Luarte et al., 2020

3. Oligodendrocytes Pathological functions, bidirectional neuron-glia communication, transport
of proteolipid protein, 2′,3′-Cyclic nucleotide 3′-phosphodiesterase (CNP),
myelin basic protein, and myelin-oligodendrocyte glycoprotein, metabolites,

protective proteins, glycolytic enzymes, mRNA, and miRNA, axonal
integrity, neuro-protection, promotion of fast axonal transport and its

maintenance in starving neurons

Krämer-Albers et al., 2007; Falchi et al., 2013;
Frühbeis et al., 2013a; Fröhlich et al., 2014;
Frühbeis et al., 2020; Krämer-Albers, 2021

4. Microglia Neurodegenerative processes, detrimental and protective role in myelin
injuries, enhancement in excitatory transmission, neuronal production and

modulation of synaptic activity, neuro-inflammation, transport of
endocannabinoid N-arachidonoylethanolamine, aminopeptidase CD13 and

the lactate transporter monocarboxylate transporter-1 (MCT-1) markers,
neurodegeneration in amyotrophic lateral sclerosis, TNF production

Potolicchio et al., 2005; Antonucci et al., 2012;
Turola et al., 2012; Gabrielli et al., 2015;

Paolicelli et al., 2019; Christoforidou et al.,
2020; Pascual et al., 2020; Raffaele et al., 2020

Various proteins have been reported to damage the CNS. One
example is negative regulatory factor (Nef) protein. Nef is a small
protein expressed abundantly in astrocytes of HIV-1-infected
brains and are released in ADEVs. These Nef-containing ADEVs
play a significant role in the pathogenesis of HIV-associated
neurological disorders (Saribas et al., 2017).

Additionally, the loss of excitatory and inhibitory synapses
can be due to an uptake of ADEVs by hippocampal neurons
through increased expression and the release of several miRNAs
(Hu et al., 2020). A recent study also observed the modulation of
neuronal uptake, differentiation, and firing by activated human
ADEVs (You et al., 2019). Current literature has demonstrated
the therapeutic and toxic potential of ADEVs, which suggests
the need for further investigation on the impacts of ADEVs on
glia-neuron communication.

Oligodendrocyte-Derived Extracellular Vesicles
Multifunctional oligodendrocytes insulate the axon by producing
the myelin sheath, which depends on bidirectional glia-neuron
communication (Sherman and Brophy, 2005; Nave, 2010).
Other functions of oligodendrocytes include controlling the
extracellular ion balance, participating in the BBB, participating
in the repairing and scarring processes after CNS injuries,
and providing trophic support to neurons. Oligodendrocytes
release EVs and heterogeneous compositions of oligodendrocyte-
derived EVs (ODEVs), which have been proven to play a
crucial role in pathological functions (Falchi et al., 2013).
A novel mode of bidirectional glia-neuron communication
through ODEVs, particularly exosomes, has been established
in a mouse model (Frühbeis et al., 2013a). ATP-triggered
activation of P2 × 7 receptors and the subsequent action
of acid sphingomyelinase evoke ODEV secretion, particularly
in microvesicles (Bianco et al., 2009). Calcium treatment
induces the release of ODEVs and is reported to carry major

proteins involved in myelin, such as proteolipid protein, CNP,
myelin basic protein, and myelin-oligodendrocyte glycoprotein
(Krämer-Albers et al., 2007). Interestingly, the ODEVs lacking
these proteins have been suggested to be impaired (Frühbeis
et al., 2013a). Studies show that the promyelinating effect of
the neuronal-conditioned medium is counteracted by ODEVs
(Reiter and Bongarzone, 2020). The release of glutamate by
electrically active axons stimulates the calcium ion entry through
oligodendroglial glutamate receptors, which activates the release
of ODEVs, particularly exosomes and neurons, and internalizes
them by using their cargo (Frühbeis et al., 2013a). Active
neurons pass demand signals to oligodendrocytes to deliver
the supportive biomolecules through ODEVs, which transfer
metabolites, protective proteins, glycolytic enzymes, mRNA, and
miRNA to axons contributing to the maintenance of axonal
integrity (Frühbeis et al., 2013a). The uptake of ODEVs by
neurons results in EV-content retrieval, leading to multiple
effects on neurons. Subsequently, the therapeutic effects of
ODEVs on stressed neurons include restored, faster axonal
transport compared to untreated neurons and neurons treated
with EVs from other sources. Therefore, studies suggest that
the neuroprotective effects of ODEVs maintain vital cellular
functions (Frühbeis et al., 2013a; Fröhlich et al., 2014; Krämer-
Albers, 2021). The promotion of fast axonal transport and its
maintenance in starving neurons have also been associated with
ODEVs (Frühbeis et al., 2020). Together, these studies indicate
that ODEVs contribute a wide range of functions in glia-neuron
communication, including long-term maintenance of neurons,
axonal transport, myelin diseases, and loss of axonal integrity.

Microglia-Derived Extracellular Vesicles
Microglia are found throughout the brain and the spinal
cord and act as the first line of defense in the brain as
resident macrophages (Lawson et al., 1992; Kreutzberg, 1995;
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Ginhoux et al., 2013; Filiano et al., 2015). Studies report that
intercellular communication by microglia in both physiological
and pathological conditions involves biomolecules secreted
through microglial EVs (MGEVs) (Paolicelli et al., 2019).
Several studies report the existence of MGEVs (Verderio et al.,
2012; Garzetti et al., 2014) and their active role in glia-neuron
communication in various pathological and physiological
conditions, including neurodegenerative processes (Paolicelli
et al., 2019). Recent studies report the detrimental and protective
effects of MGEVs on myelin injuries. Enhanced excitatory
transmission, neuronal production, and modulation of synaptic
activity through ceramide and sphingosine synthesis induction
have been associated with the interaction of MGEVs and
neurons, which suggests the role of MGEVs in glia-neuron
communication (Antonucci et al., 2012; Turola et al., 2012;
Paolicelli et al., 2019). MGEVs, particularly exosomes, have been
associated with various mental disorders, such as depression,
anxiety, bipolar disorder, and schizophrenia (Saeedi et al.,
2019). Recent studies suggested the neuroinflammatory role
of misfolded and inflammatory proteins and the neurotoxic
potential of MGEVs (Pascual et al., 2020). Additionally, the
endocannabinoid N-arachidonoylethanolamine are carried by
MGEVs, stimulating the cannabinoid receptor 1 of GABAergic
neurons and contributing to the inhibition of presynaptic
transmissions (Gabrielli et al., 2015). Proteomic analysis
suggests that MGEVs carry some unique markers, such as
aminopeptidase CD13 and the lactate transporter MCT-1
(Potolicchio et al., 2005). Regulation and propagation of
neuroinflammatory responses in the CNS have also been
associated with MGEVs through pro-inflammatory cytokines
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(Bianco et al., 2005; Takenouchi et al., 2015). Subsequently,
the treatment of microglia with lipopolysaccharide has also
been associated with altered production of MGEVs (Yang et al.,
2018). Additionally, MGEVs with P2 × 7 receptors reduce
apoptosis (Turola et al., 2012), which suggests the need to
study MGEVs for potential biomarkers of various chronic
neurodegenerative diseases (Panaro et al., 2020; Aires et al.,
2021). In Alzheimer’s disease, MGEVs have positive and negative
effects (Trotta et al., 2018). Similarly, miRNA carried by MGEVs
is associated with neurodegeneration in amyotrophic lateral
sclerosis (Christoforidou et al., 2020). Tumor necrosis factor
production through MGEVs was also found to alter neuronal
functions (Raffaele et al., 2020). Recent studies also associated
the communication of neural progenitor cells (NPCs) and
microglia with MGEVs and EVs released from NPCs (Cossetti
et al., 2012; Pluchino and Cossetti, 2013; Cossetti et al., 2014;
Matarredona et al., 2018).

NG2 Glial Cells-Derived Extracellular Vesicles
The majority of proliferative cells outside neurogenic niches
in the adult CNS comprise neural progenitors expressing
chondroitin sulfate proteoglycan 4, which are known as NG2 glial
cells (also referred to as OPCs or polydendrocytes) (Nishiyama
et al., 1999; Dawson et al., 2003; Nishiyama et al., 2014;
Nakano et al., 2017). NG2 glial cells have an important role
in remyelination as they have the ability to proliferate and
differentiate after a demyelinating insult. In CNS injuries and

neurodegenerative diseases, NG2 glial cells rapidly proliferate
and migrate to restore their population in focal cellular loss
(McTigue et al., 2001; Nishiyama et al., 2009; Kang et al., 2010;
Hughes et al., 2013). NG2-glial cells-derived EVs are reported
as the important intercellular transporter of retinoic acid and
enable the cross talk between NG2 glial cells and neurons to
mediate remyelination and axonal/neurite outgrowth (Goncalves
et al., 2019; Bahram Sangani et al., 2021). However, limited
literature is available describing the role of EVs in neuron-NG2
glial cell communication.

Schwann Cells-Derived Extracellular Vesicles
Schwann cells support maintenance and regenerative responses
of axons by diverse mechanisms of intercellular communication.
A crucial role of SCs has been established in the regulation of a
variety of passive axonal functions, including myelin formation
with subsequent elevation in the conduction velocity, and
active axonal functions, including sodium channel enrichment,
internodal distance specifications, and metabolic maintenance
(Court et al., 2004; Hartline and Colman, 2007; Nave and Trapp,
2008; Voas et al., 2009; Feldman et al., 2017).

Schwann cells-derived EVs (SDEVs) are also secreted from
different phenotypic SCs and carry distinct protein and nucleic
acid cargoes that exert either a neuroprotective or a pathological
effect on the recipient cells (Wong et al., 2022). In addition
to the classical mechanism of axonal communication of SCs,
SDEVs mediate the lateral molecular cargo transfer from SCs
to axons (Court et al., 2008; Lopez-Verrilli et al., 2013; López-
Leal et al., 2020). SDEVs have also been found to be taken by
peripheral axons to increase neurite sprouting of sensory neurons
in vitro and to regenerate axons by 50% following neuronal
injury in vivo (Lopez-Verrilli et al., 2013; López-Leal et al., 2020).
SDEVs have also been found to carry and transfer p53 to axons
(Lopez-Verrilli et al., 2013). The p75 neurotrophin receptor
(p75NTR) plays a key role in the SC-axon myelination during
development and may arbitrate cell survival and cytoskeletal
remodeling via p53 or induce cell death via c-Jun N-terminal
kinase pathway activation (Cosgaya et al., 2002; Chao, 2003).
SDEVs play a regulatory role in the homeostasis of different
cell types of the PNS through p75NTR and sortilin is identified
by a small RNA profile (Gonçalves et al., 2020). EVs from
skin precursor-derived SCs have been demonstrated to play a
crucial role in axonal regrowth and regeneration of neurons
(Wu et al., 2020) and repair of peripheral nerve defects by
nerve grafts (Yu et al., 2021). Similarly, the transfer of RNA
through EVs secreted by SC-like differentiated adipose stem
cells has been shown to promote neurite outgrowth (Ching
et al., 2018). The proliferation and maintenance of human dental
pulp cells have also been shown to be promoted by SDEVs
(Li et al., 2022).

In addition to their physiological roles, SDEVs have also
been shown to exhibit pathological impact. SDEVs from
high glucose-stimulated SCs have been reported to involve in
mediating the development of diabetic peripheral neuropathy
in a diabetic mouse model (Jia et al., 2018). SDEVs are
also reported to be involved in the development of age-
related schwannomatosis (a rare genetic disorder that results
in tumors that grow on the peripheral nerves throughout the
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body) (Chignon-Sicard et al., 2019). These compelling findings
elucidate the importance of SDEVs in glia-neuron cross talk both
in health and in pathological conditions.

Satellite Cells-Derived Extracellular Vesicles
The surface of neurons cell bodies in the ganglia of the PNS
is covered by SGCs that are found in sensory, sympathetic,
and parasympathetic ganglia. SGCs have a variety of functions,
including the regulation of the microenvironment of sympathetic
ganglia (Hanani and Spray, 2020). A recent study reported that
SGCs shed vesicles in the size range of exosomes and alter their
protein profile under inflammatory conditions in vitro (Vinterhøj
et al., 2019). However, the relevance of SGC-derived EVs in
glia-neuron communication is still in its infancy and requires
further studies.

Radial Glial Cells, Tanycytes, and Pituicytes-Derived
Extracellular Vesicles
Radial glial cells are progenitor cells of a bipolar shape with
the specialized function of producing neurons and certain
glia, including astrocytes and oligodendrocytes (Noctor et al.,
2001; Rakic, 2009; Beattie and Hippenmeyer, 2017). Long radial
processes of RGCs facilitate the transfer of newly produced
neurons to their final destination (Rakic, 1972; Campbell and
Götz, 2002). The third ventricle of the brain and the floor
of the fourth ventricle possess special ependymal cells called
tanycytes, which extend into the hypothalamus (Jansen et al.,
1982; Wittkowski, 1998; Rodríguez-Rodríguez et al., 2019). The
posterior part of the pituitary gland contains some glial cells,
called pituicytes, which release and store neurohypophysial
hormones (Hatton et al., 1984; Hatton, 1988).

So far, no studies have shown the role of EVs secreted
from these glial cells. However, given their diverse physiological
functions such as neurogenesis, neuronal migration, and
maintenance of permeable neurovascular interfaces (Goodman
and Hajihosseini, 2015; Anbalagan et al., 2018; Berg et al., 2018),
it is imperative to explore the role of EVs secreted by these cells
in future studies.

CONCLUSION

In the last two decades, cell-to-cell communication through
secreted EVs has been established. Similarly, new biological
functions continue to be defined, emphasizing the importance
of the functional cargoes transferred from one cell to another
in physiological and pathological processes. In CNS disorders,
intercellular communication is essential to protect neurons. The
CNS entails a complex chain of events requiring coordinated
short- and long-distance communication between numerous cell
types, especially glial cells, in order to maintain their neuronal
circuits. Unlike neurons, glial cells are electrically inexcitable.
However, despite being unable to generate action potentials, glia
are, in fact, highly active cells, communicating primarily through
EV-mediated signals. Several studies have shown that both glia
and neuronal cells release EVs and maintain communication
that have an effect on the overall regulation of neurological
activities. Furthermore, future studies to understand how glia
operate as a system and how they interact with neural networks
and subcellular domains of neurons would offer a promising
strategy to gain pathogenic information and identify therapeutic
targets and biomarkers for neurological disorders.
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