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Abstract

Study Design: Literature Review (Narrative)

Objective: To propose a new framework, to support the investigation and understanding of the pathobiology of DCM, AO
Spine RECODE-DCM research priority number 5.

Methods:Degenerative cervical myelopathy is a common and disabling spinal cord disorder. In this perspective, we review key
knowledge gaps between the clinical phenotype and our biological models. We then propose a reappraisal of the key driving
forces behind DCM and an individual’s susceptibility, including the proposal of a new framework.

Results: Present pathobiological and mechanistic knowledge does not adequately explain the disease phenotype; why only a
subset of patients with visualized cord compression show clinical myelopathy, and the amount of cord compression only weakly
correlates with disability. We propose that DCM is better represented as a function of several interacting mechanical forces,
such as shear, tension and compression, alongside an individual’s vulnerability to spinal cord injury, influenced by factors such as
age, genetics, their cardiovascular, gastrointestinal and nervous system status, and time.

Conclusion: Understanding the disease pathobiology is a fundamental research priority. We believe a framework of me-
chanical stress, vulnerability, and timemay better represent the disease as a whole.Whilst this remains theoretical, we hope that
at the very least it will inspire new avenues of research that better encapsulate the full spectrum of disease.

Keywords
cervical, myelopathy, spondylosis, spondylotic, stenosis, disc herniation, ossification posterior longitudinal ligament,
degeneration, disability, recovery, questionnaire

Introduction

Degenerative Cervical Myelopathy [DCM] is an all-
encompassing term for cervical spinal cord dysfunction as
a result of degenerative, arthritic, and/or congenital changes to
the cervical spine.1 DCM causes a wide range of symptoms,
including pain, imbalance and difficulty walking, loss of
dexterity, sensory loss, bowel or bladder dysfunction, and in
extreme circumstances total paralysis. DCM is estimated to
affect 1.4% to 3.1% of adults2 and today is often associated
with significant disability, despite treatment.3 This has life-
long implications, with dependency, unemployment, and
mental health difficulties prevalent.4-8

AO Spine RECODE-DCM (aospine.org/recode) [RE-
search objectives and COmmon Data Elements for DCM] is
an international consensus project which aims to accelerate
knowledge discovery to improve outcomes, by developing a
set of research tools.9 This process included a James Lind
Alliance research priority setting partnership, which brought
together both individuals living and working with DCM, to
establish the most important unanswered questions. Research
prioritization aims to catalyze progress by consolidating re-
sources on key knowledge gaps. The Number five priority
identified was improving our understanding of the
pathophysiology—that is, the biological basis of DCM.

Amongst the first descriptions of DCM was a surgical case
series, published in 1928 by Byron Stookey,10 which provided
a detailed description of symptoms related to ventral com-
pression of the spinal cord. Macroscopically, he reported
indentation and displacement of the spinal cord and correlated
it with the patient’s neurological symptoms, including motor

and sensory disturbances. Initially mistaken for chondromas,
Peet end Echols, clarified that the “tumours” are most likely
“intervertebral disc protrusions”11 and thus have a degener-
ative etiology. Presently, it is recognized that a variety of
degenerative changes in the spine can trigger cervical
myelopathy.1,12,13 This led Nouri et al. (2015)13 to propose
“Degenerative Cervical Myelopathy” as a new umbrella term,
subsequently endorsed through consensus by the AO Spine
RECODE-DCM initiative (aospine.org/recode).9

There are very few human post-mortem studies of DCM.12

Histologically, Brain et al. noted significant deformation of the
spinal cord14 extensive white and gray matter degeneration,
cavity formation, and loss of neurons and axons. In addition, a
unique series of ultramicroscopic studies demonstrated evi-
dence of demyelination and incomplete remyelination indi-
cating simultaneous injury and repair.15 Fehlings et al.
suggested that the extensive loss of cells, at least in part, may
be related to widespread cellular apoptosis in the spinal cord.16

Our recent unpublished study investigating markers of
macro-autophagy in post-mortem tissue has demonstrated a
correlation between symptom severity and dysregulation of
autophagy, providing the first human evidence for a mech-
anistic explanation for the apoptotic cell death observed in
DCM tissue.

Together, these studies highlight the intricate relationship
between structural changes in the spinal column and the
functional consequences that occur in the spinal cord, which
form the basis of DCM.

Pre-clinical studies to model DCM pathogenesis are also
limited.17 Compression-based studies include genetic models,
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such as the Twy-Twy mouse that develops calcification of the
ligamentum flavum at C1-C2, and studies of the insertion of
synthetic polymers into the spinal canal.18,19 Studies based on
these models have implicated pathobiological changes and
processes that include cell apoptosis,20,21 ischemia,22,23 axon
degeneration,24 myelin injury,15,25 and inflammation.26 While
such models have been instructive, compression arising
principally from the posterior and in the high cervical region
differs from the typical clinical presentation, with the majority
of patients presenting with anterior disc compression at C5-6
due to degeneration disc disease.27

The longstanding view has been that chronic tissue com-
pression secondary to spinal canal narrowing from degener-
ative and/or congenital changes is the direct cause of the spinal
cord injury in DCM. This concept is reflected in current
surgical practice, where decisions are often based on the extent
of cord compression visualized by MRI,28 and less, as our
recent clinical guidelines recommend,29 on the severity of
symptoms.

However, the chronic compression paradigm fails to ac-
count for the full spectrum of clinical disease (Figure 1),
namely:

(1) Spinal cord compression is common and most
frequently incidental and asymptomatic, with ap-
proximately 10% of individuals developing
symptoms.2

(2) The extent of static spinal cord compression does not
correlate well with the severity of symptoms, clinical
phenotype, or disease trajectory.30-36

(3) The functional decline in DCM is rarely linear; it can
be stable, step wise, or particularly in advanced stages
the decline appears to accelerate.37-39

(4) Microstructural MRI has demonstrated that cord
damage precedes the loss of spinal cord function and
is not restricted to the area of compression.40-47

Whilst explanations for these observations have been ad-
vanced, including that dynamic spinal cord compression is not
captured by routine, supine MRI,13,48 we propose a broader
paradigm, to unify these and other critical and emerging
observations in DCM. Specifically, we propose that DCM is a
function of mechanical stress, duration of injury and an in-
dividual’s intrinsic vulnerability to central nervous system
injury (Figure 2)

Degenerative Cervical MyelopathyZ
½Mechanical Stress�:½Vulnerability�:½Time�

This article will focus on these unifying concepts, that may
explain the discrepancies between radiological and clinical
findings. Pragmatically therefore, we will not cover in detail
the downstreammolecular mechanisms demonstrated in DCM
research that are well described elsewhere.12,17

Mechanical Stress

While conceptually, the driver of myelopathic progression has
been considered progressively worsening compression, this
has not been confirmed by empirical data30-32,34-36,49 and this
view oversimplifies the dynamic situation where several
forces will distort not only parenchymal tissue but also blood
vessels and nerve roots.50

A force is any interaction, that when unopposed, will
change the motion of an object. The application of a set of
forces to an object give rise to 5 principal mechanisms of
loading: compression, tension (i.e., stretch), bending, torsion,
and shear (Figure 3).51 An object subject to a constant force, is
referred to as having a static load, whereas a time-varying
force(s) a dynamic load.

The local loading in a material element is expressed by the
mechanical stress defined as the net force acting on a cross-

Figure 1. Cord compression does not represent DCM. Series of T2 weight sagittal cervical spine MRI. Cord compression is
commonly incidental [A], even with hyperintensity signal change, and the amount of compression weakly correlates to the disease
severity (A vs B vs C).
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sectional area (σ ¼ Force ðFÞ=Cross� Sectional Area ðA0Þ.
This can be used to represent the internal distribution of forces
in response to loading. At this small element level therefore,
tension, compression, and shear are the local stresses but at a
structural level, these can act in combination, to give rise to
bending or torsional loads. Compression and tension forces
across the cross section correspond to tensile and compressive
stresses, while a shear force transmitted across the section
corresponds to a local shear stress in the material element.
Deformation of the material at a local level is characterized by
the local strain. Like stress, it can occur in tension, com-
pression, or shear in response to the applied stress.52 Con-
sequently, the deformation of a material due to loading is often
described in terms of the stress–strain relationship, and the
nature of this curve defines the mechanical properties of a
material.53

The spinal cord is a viscoelastic material, meaning that it
has both viscous (stress and strain are dependent on rate) and
elastic (material will return to original form once loading has
stopped) properties.54 Combining these components gives rise
to three main characteristics of viscoelastic material behavior:
creep, stress relaxation, and hysteresis (Figure 4). Creep refers
to the continued deformation of the material after a load has
reached a constant state. Stress relaxation refers to the re-
duction in stress when a material is held at a constant strain or
deformation. Hysteresis refers to differences in the loading
and unloading response, as represented by a stress–strain
graph. The area between the two curves represents the en-
ergy dissipated. For this reason, viscoelastic materials are used
as shock absorbers. The peak stress in viscoelastic materials is
also dependent on the rate of loading, due to a rate-dependent
stiffening of the material. Consequently, a faster loading rate
leads to a greater peak stress.55 Any elastic properties have a

threshold beyond which they will exhibit irreversible or
“plastic deformation.” (Figure 4) This is best appreciated with
an elastic band; stretch up to a limit will enable an elastic band
to return to its original shape but stretch beyond this and the
band will be permanently elongate, and further increases
eventually cause it to snap. A viscoelastic material which
acquires plastic properties, becomes a viscoplastic material.56

Whilst plastic deformation of the spinal cord occurs in
DCM, it is not a determinant of it.49 Harada et al. (1992)
demonstrated a subset of patients recovered normal spinal
cord shape following surgical decompression57 and Martin
et al.40 (2018) observed plastic deformation in a cohort of
asymptomatic spinal cord compression. In DCM therefore, as
static compression is chronic and the spinal cord remains
viscoelastic, stress from compression specifically would be
limited.58

However, the response of the spinal cord to loading is
complicated by its normal mobility. The spinal cord is sus-
pended (therefore under modest tension) within cerebrospinal
fluid (CSF) contained by the dural sac, and only partially
anchored by the dentate ligaments and to a lesser extent
connected vasculature. The spinal cord continuously moves in
all three directions, cranial-caudal, anterior-posterior and
right-left.59,60 This movement is now well demonstrated using
MRI techniques,61-63 and thought to be principally related to
the cardiac cycle, due to local pulsatile vascular changes and/
or similar displacement of the brain from arterial in and venous
outflow, but also the respiratory cycle.64 Contrary to previous
belief, the denticulate ligaments limit cranial-caudal move-
ments of the SC, being especially resistant to caudal stress, but
have minimal or no significant contribution to limiting
anterior-posterior motion.65,66 This is now used diagnosti-
cally, for example, to identify a tethered spinal cord usingMRI

Figure 2. DCM is a function of mechanical stress, time, and vulnerability. Mechanical stress represents the combined effect of
loading on the spinal cord as a result of degenerative pathology of the spinal column, and time, its duration. This then drives initially injury to
the spinal cord, which will be retarded by repair processes but subsequently lead to symptoms. Vulnerability represents the factors that
govern an individual’s ability to resist spinal cord lesion and/or be resilient to developing symptoms as a consequence.
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in the prone position.67,68 Further, the material properties of the
spinal cord change with normal movement of the spine.69,70

This is largely in flexion, where the spinal cord lengthens,71,72

and the cross-sectional area of the spinal cord reduces,73,74

estimated to exhibit a strain of 12% in normal physiological
conditions.75-77 Movement of the spine can be abnormally
increased in DCM,78 with spondylolisthesis radiologically
prevalent,27 and an association with laxity disorders such as
Ehlers Danlos Syndrome.79 Such findings have been associated
with differing clinical manifestations of DCM.78,80,81

On a biomechanical level then, compression is not the only
mechanical force involved, nor likely dominant force in all
cases. For example, as illustrated in Figure 5, if one considers a
single level disc prolapse (the cause of 10% of DCM cases
with in the AO Spine Series27), then a variety of different
loading mechanisms may occur; compression (due to per-
pendicular contact), tension (second to displacement and
elongation of the spinal cord, and/or the effect of tethering),
and shear (due to oscillation of the spinal cord over the surface
of the disc prolapse).82 Compression loading is defined as
applying force inwards that is balanced by an at least equal
opposing force.51 As a soft mobile structure therefore, uni-
lateral compression of the spinal cord, for example, may
displace and not necessarily compress the spinal cord. Finite-
element modeling has replicated this concept, identifying
thresholds for ventral compression to exceed before me-
chanical stress is detected.83,84 This is also supported by
histological studies indicating the spinal cord tolerance of some
compression,85,86 with a re-alignment of spinal pathways, and
cadaveric models demonstrating tension-related deformation
before compression-related deformation.82,87,88

A strong argument for tension (or stretch) as a dominant
mechanism of injury in DCM was advanced by Henderson
et al. (2005),76 combining pre-clinical, clinical, and mathe-
matical data sources. This is further supported now by mi-
crostructural imaging studies, which are demonstrating
structural change throughout the spinal cord,89-91 well beyond
the proposed level of stenosis and poses interesting questions
for a significant relationship with tandem stenosis.92

The significance of shear forces however is also likely to be
more significant than currently understood. Vavasour et al.93

(2014) used phase-contrast MRI to evaluate the significance of
CSF flow in 13 DCM patients and age-matched healthy
controls. Based on their results, whilst CSF flow dynamics
were associated with the compression ratio, they were not
related to clinical function (as measured using somatosensory
evoked potentials or the Japanese Orthopaedic Association
scale [JOA]). However, their analysis also measured spinal
cord oscillation (cranio-caudal), calculating mean velocity and
absolute and maximum displacement, based on integrating the
velocity time curve. These measures did correlate with clinical
function. These results have been subsequently external vali-
dated by Wolf et al. (2018), and the subject of a follow-up, and
ongoing observational study.64,94Wolf et al. (2018) hypothesize
that the reduction in CSF volume at levels of stenosis, reduces
the ability of CSF to absorb mechanical stress and con-
tributes to increased oscillation. Whilst only case reports,
there are clinical indications of the significance of CSF to
DCM,95 for example, where CSF diversion (e.g., a lumbar
puncture) has led to a rapidly worsening clinical pic-
ture.96-98 The measurement of CSF pressure in DCM, and
its response to dynamic manipulation (e.g., head inclination

Figure 3. There are 5 principal types of mechanical loading; Compression [A], Tension (or Stretch) [B], Shear [C], Bending [D], and Torsion
[E]. At a small element level, compression, tension, and shear are the local stresses [Orange] but at a structural level, these can act in
combination, to give rise to bending or torsional loads [Gray]. Compression is the application of an inward force. Tension is the application of
a force which elongates a material. Shear forces result from sliding contact between two parallel surfaces. Loading methods are figuratively
represented in row 1, and how these might apply to DCM in vivo illustrated in row 2.
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Figure 4. Mechanical properties of a viscoelastic material. After the load has reached a constant state, the material continues to
deform (Creep, 1). This causes a reduction in stress (Stress Relaxation, 2) over time. This reduction is faster than its acquisition, causing a
hysteresis loop (3) which represents energy lost. The amount of stress measured is related to the rate of loading (4). [Adapted from55]
However, elastic properties have a threshold at which further loading will cause permanent deformation (when the load is removed) (5);
termed the yield point (E). The shape change can be associated with a temporary reduction in stress (P). A viscoelastic material which
acquires plastic properties can be termed viscoplastic [Adapted from].210
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or reclination) is the subject of an ongoing observational
study [NCT04345822].99

In spinal practice, the pathological significance of non-
compressive mechanical loading and spinal cord injury is
recognized. For example, tethered cord syndrome arises due to
stretch,100,101 and bending considered the principal loading
mechanism in cervical flexion myelopathy (Hiramaya’s dis-
ease), due to flexion of the spinal cord within a shorter and/or
non-elastic dural membrane.102 At a cellular level, these me-
chanical forces can change neuronal behavior, for example,
neural transmission,103,104 but also cause cellular injury, with
evidence focused in particular on stretch105,106 and shear107

forces, as well as compression.108,109 Of note, much of the more
recent evidence evaluating mechanical forces on cell function
has originated fromwithin developmental neurobiology, where,
for example, axon growth cones have been demonstrated to be
modulated by mechanical forces such as stretch.110 This could
have particular relevance to DCM, where due to the chronicity,
repair coincides with injury.15 Russel et al. (2012) using a rat
model and Galle et al. (2007) a guinea pig model of spinal cord
injury, demonstrated that the location of maximal tissue injury
correlated to the area of maximal strain.111,112

In DCM, the mechanical stress experienced will be com-
plicated by how these forces interact,84 for example, in a finite-
element model of static compression of the spinal cord, elas-
ticity measured using ultrasound reduced when the spinal cord
was compressed.113 These forces too, will have been exhibited
in combination, within the existing pre-clinical models that

underpin our current investigations of DCM.17,114 Mechanical
stress will also be influenced by the different mechanical
properties and tolerance of microstructures within the spinal
cord, for example, the white vs gray matter, or relative myelin
content of spinal cord pathways115 which are also subject to
change, for example, with age and evolution of injury.50,116

Consequently, the forces driving spinal cord pathology in
DCM are likely to be a combination of loading forces and not
simply compression, and we propose would be better repre-
sented by an umbrella term of “mechanical stress.” They are
also likely to be highly individualized and change over “time.”
Much of the literature exploring the biomechanical properties
of the spinal cord has been conducted with a view to appli-
cation in traumatic spinal cord injury.117,118 Whilst the clinical
significance of mechanical stress in such an acute, and often
devastating injury, has so far provided few practical appli-
cations,119 in DCM, the chronicity of the condition may place
greater relevance on this, in particular, because removing all
mechanical stress is the goal of surgery.29

Vulnerability

Whilst a clearer characterization of mechanical stress and
its impact may therefore account for some current inconsis-
tencies, it is unlikely to provide a full explanation for the onset
and progression of DCM, and in particular that 1) only a subset
of individuals with spinal cord compression develop symp-
toms related to DCM1,2 and that 2) symptom severity and

Figure 5. Case Example: A single level disc prolapse without deformity or instability (MRI, T2Weighted Sagittal Image). The resultant local
forces exhibited at onset [A] and as the spinal cord responds to loading [B] are illustrated anatomically and represented with exemplar
stress/time curves [not to scale] [C]. DCM is associated with a solitary disc prolapse in 1 in 10 surgical cases.Whilst this contact would cause a
compressive load to be applied to the spinal cord [A], this contact induce both compression and shear forces on the spinal cord due to its
oscillation. As a unilateral force, the spinal cord would be displaced posteriorly [B], which coupled with the viscoelastic properties of the
spinal cord, would cause stress from compression to reduce. Assuming adequate canal capacity this could reduce to zero. However, the
displacement would elongate the spinal cord, increasing its baseline physiological tension and shear forces continue due to contact.
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progression does not correlate with spinal cord
compression.28,30

Hence, an additional factor accounting for the development
and progression of DCM is required. We propose this is an
individual’s vulnerability to DCM, a combination of the intrinsic
vulnerability of the spinal cord to resist damage frommechanical
stress but also the human body to maintain normal homeostatic
function; their resilience to symptoms (Figure 6). In other words,
mechanical stress in itself is necessary but not sufficient to
explain DCM symptoms, and may be seen as a trigger but not
the unique cause. A causal concept of DCM requires an ad-
ditional factor Together, mechanical stress and individual vul-
nerability, provide a necessary and sufficient framework for a
causal understanding of DCM.

Genetic Effects on the Spinal Cord. Genetic studies support the
concept that intrinsic factors have a role in determining DCM.
In a case-controlled study of Utah residents, Patel et al.120

(2012) demonstrated that first and third degree relatives
of individuals with DCM had a 5 (CI = 2.1-13.2, P < .001) and
2-fold (CI = 1.04-3.7, P < .05) increased relative risk of having

DCM. Mukerji et al. (2007) reported on two identical twins
with an early presentation of myelopathy secondary to a
cervical disc prolapse.121 However, more specifically with
respect to vulnerability in our recent systematic review of
candidate gene studies in DCM, we were able to distinguish
between those contributing to spinal column deterioration and
those contributing to spinal cord deterioration.122 We found
that 12 genes had an effect on clinical onset of spinal cord
disease. Polymorphisms of eight genes were found to have an
effect on the radiological severity of DCM, while three genes
had an effect on clinical severity. Polymorphisms of six genes
had an effect on clinical response to surgery in spinal cord
disease. Amongst the genes identified were vulnerability
genes, such as APOE-ε4,123,124 and genes such as BMP4, in
which 6007C > T Single Nuclear Polymorphism (SNP) was
found to be protective for the development of clinical signs
and symptoms of DCM.125 Finally, we found that certain
genotypes are associated with either increased regenerative
capacity (e.g., HIF1A 1790G > A polymorphism126) or re-
duced improvements (e.g., OPN127 or the GG genotype of
the � 66T > G within RunX2128) following surgical

Figure 6. Vulnerability. Many interacting factors are likely to determine an individual’s vulnerability. Further research is required to
definitively characterize these and their causal mechanisms but for illustrative purposes, those outlined in this article are shown around a
‘Jenga’ tower, a structure who’s preserved stability is defined by the interacting support of many elements but can accommodate some
structural changes. Working outwards, potential causal mechanisms, system level and then whole-body factors. This latter distinction is made
as genetic and aging processes are likely to mediate influence through systems, as well as the spinal cord directly.

Davies et al. 85S



decompression. Genes associated with spinal column deteri-
oration were nearly exclusively associated with ossification of
the posterior longitudinal ligament, a condition in which the
hypertrophy and calcification occurring in the posterior lig-
ament has been associated with an autoimmune-driven
cause.12 Whilst the true epidemiology of DCM has been
difficult to characterize, owing to widespread underdiagnosis,
current data indicates that DCM or non-traumatic spinal cord
injury, is less common amongst Asian populations,12,129 de-
spite Asian populations having on average smaller canal di-
ameter130 ordinarily a risk factor of DCM’s occurrence131-133

and a higher prevalence of Ossification of the Posterior
Longitudinal Ligament.134 This further supports a role for
individual vulnerability factors in the development of DCM.

Age Effects on the Spinal Cord

Aging has broad biological implications.135,136 In clinical
practice, older age is associated with increased disease se-
verity (as quantified based on neuromuscular function) at
presentation, however, this does not appear a consequence of a
greater length of time with symptoms, for example, due to
delayed diagnosis.137 Further, whilst operative treatment on
average involves more levels and has an increased occurrence
of adverse events,137 when these factors and baseline severity
were controlled for using a propensity matched analysis in the
AO Spine observational data, age alone still reduced the extent
of recovery.138,139

The significance of age is likely to be multifactorial,
contributing both to resilience to symptoms but also resistance
to injury.136 Age is recognized to interact with neural repair
mechanisms, for example, affecting axonal outgrowth140,141

and remyelination.142,143 Imaging144-147 and autopsy studies148-150

have also demonstrated that the volume and properties of the

spinal cord alter with age in the absence of disease. This occurs
both within the gray and white matter, albeit is markedly less
(approximately 1/3) of what is observed within the brain.144

Exploring this using a mouse model, Piekarz et al.151 (2020)
demonstrated that age was associated with axon loss and de-
myelination, in particular a loss of and altered morphology of
alpha-motor neurons, and an altered extracellular matrix. Further,
biological processes changed, with evidence of increased apo-
ptosis, low levels of inflammation and increased vascular per-
meability, and different genetic expression patterns with a
reduction inmitochondrial protein synthesis. Of note, the increased
vascular permeability, as measured using contrast MRI specifi-
cally, was only altered for the cervical spinal cord.Morales et al.152

(1987) using electrophysiology in young and aged cats, identified
increased resistance and reduced conduction velocity in alpha-
motor neurons.

On a biomechanical level, these changes will alter the
material properties and the response to loading of the spinal
cord. Sparrey et al. (2009) explored this using a finite-element
model of thoracic spinal cord compression. They demon-
strated that changes to both white and gray matter structures
increased measured mechanical stress, with changes to the
white matter most significant.153 Okazaki et al.116 (2018)
comparing young and old bovine spinal cord specimen
demonstrated different tensile and compression stress patterns,
in particular, during compression modeling within young
specimen, stress was largely confined to white matter struc-
tures, whereas in older specimen distributed throughout the
spinal cord.

Understanding the significance of age is complicated by
the emerging distinction between chronological, that is, the
passing of time, and what is termed biological age, that is, the
presence of specific aging hallmarks within cells.154 A number
of markers of biological age, including epigenetic expression

Figure 7. The 3 dimensions of Mechanical Stress, Vulnerability and Time. Figure A represents a single time point (time
independent), akin perhaps to the onset of injury. The development of symptoms is based on an individual’s symptom threshold, related to
mechanical stress and their vulnerability. Factors discussed in this review are overlaid: Age, Genetics, and ReserveCapacity specific to vulnerability.
Cardiovascular andGastro-intestinal Factors straddling the symptom threshold, as disabilitymay furthermodulate vulnerability. Figure B includes time
as a third axis, indicating that the symptom threshold is likely to lower with time, as injury persists and vulnerability increases.
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patterns, have been determined.155 Whilst their assessment is
further complicated by the observation that biological age can
differ between tissue or organ systems,156 accelerated bio-
logical aging is now linked to numerous diseases of the central
nervous system and a potential therapeutic target.157 This
distinction perhaps aligns with clinical practice, where, for
example, frailty is a better indicator of morbidity than age in
DCM.158

Cardiovascular System Effects on the Spinal Cord. Ischemia and/
or microvascular changes within the spinal cord are a common
feature in pre-clinical models and autopsy specimen of DCM.
Ischemia due to a perfusion deficit74 possibly as a result of
microvascular changes22 has been proposed as a common final
pathway of critical compression.23 Ellingson et al.159 (2019)
using MRI to evaluate spinal cord perfusion in a cohort of
cervical spondylosis with and without myelopathy, demon-
strated that neurological function using the modified JOA
(mJOA) was inversely correlated with oxygen extraction.

The importance of maintaining perfusion is better dem-
onstrated in traumatic spinal cord injury, where it is considered
an important neuro-protective strategy.160,161 Spinal cord
perfusion is physiologically maintained through autor-
egulation; however, spinal cord damage can cause its
dysregulation.162,163 This has been demonstrated in pre- or
non-operative164 and peri-operative DCM patients.165-167

Hukude et al. (1988) using a canine model of DCM, dem-
onstrated differing features of spinal cord injury in the context
of high, normal, and low systemic blood pressure, across a
range of compression thresholds.168 This is supported clini-
cally more recently in studies, which have demonstrated that
the presence of cardiovascular disease was negatively asso-
ciated with functional outcomes following surgery,33,169 and
one study demonstrating different signal intensity patterns
within the spinal cord on MRI.170 A prospective observational
study of cord perfusion, in patients undergoing surgery for
DCM is currently underway [NCT04345822].99

Cardiovascular disease, including atherosclerosis, acute
coronary syndromes and hypertension, are common co-
morbidities amongst patients with DCM.171 The observed
ischemia in the spinal cord however is unlikely a direct
consequence of plaque or emboli; the incidence of spinal cord
infarction is extremely low,172 and in an autopsy study of 603
aged spinal cord specimen, Wang et al.173 (1996) observed
that atherosclerotic changes were extremely rare within the
spinal cord or its radicular arteries, even in the presence of
systemic atherosclerosis. Instead, a recent population study
from Taiwan identified DCM as an independent risk factor for
the occurrence of acute coronary syndromes, including
myocardial infarction174 suggesting a potentially conse-
quential relationship of DCM on the cardiovascular system.
This is supported by a series of observational studies in pa-
tients undergoing decompressive surgery, in which surgery led
to a reduction in blood pressure, with some able to stop prior
anti-hypertensive medication.175-177 Autonomic dysfunction

is also demonstrated in cervical spondylosis without mye-
lopathy and asymptomatic spinal cord compression,167,178,179

including a further population study from Taiwan reporting an
increased incidence of arrythmia amongst those with cervical
spondylosis.180 Whilst studies have not conducted longitu-
dinal observation in these cohorts, to explore any relationship
to the subsequent onset of DCM, this would align with the idea
of compensation and a vulnerability threshold, for which an
already impaired and/or medicated cardiovascular systemmay
have implications.

Gastro-Intestinal System Effects on the Spinal Cord. Biological
processes and pathways are can be influenced by nutrition. In
extreme circumstances, these can cause neurological disease
directly, such as in the case of B12 or Folate deficiencies.
However, this is likely to represent one end of a spectrum, with
less significant deficiencies a contributory factor for example
with implications for neural repair.181 In clinical studies, there
are increasing indicators for this. Nouri et al.182 (2020) in a
retrospective analysis of 725 patients undergoing surgery for
DCM or degenerative cervical radiculopathy, demonstrated
macrocytic anemia was more common in DCM, and its
presence associated with poorer pre-operative neurological
status . Further, Allam et al.183 (2017) (61) conducted a
randomized controlled study (N = 192), in patients declining
surgery for DCM of Cerebrolysin, a mixture of amino-acids
and peptides given via intramuscular injection, demonstrating
neurological benefit for the treatment arm.

Related to nutrition, is the increasing interest within
Neuroscience of the gut-brain axis, a system with bidirectional
(central nervous system on gut, and gut on central nervous
system [CNS]) significance on human function and disease.184

This includes increasing interest in the role of the microbiota
(the organisms that reside within the gut) and the microbiome
(the genetic material of the microbiota) in a range of neuro-
logical diseases, including Parkinson’s Disease, Autism
Spectrum Disorder, Multiple Sclerosis, Stroke185 but also
traumatic Spinal Cord Injury.186 Mechanistically changes in
the gut microbiota are principally hypothesized to influence
the CNS as consequence of a differential production, ex-
pression and turnover of neural transmitters, or via modulation
of inflammatory response.184 Conversely modulation of the
brain to gut function is partly a cause of the autonomic system
which is frequently disrupted in disease of the spinal cord.
Longitudinal studies in traumatic spinal cord injury demon-
strate a significant change in the microbiota following in-
jury.186 This autonomic disruption may also have wider
implications for the gastro-intestinal system, including organs
that direct metabolism (such as the liver, adrenal glands, and
adipose tissue) but also mediate the immune response (such as
the spleen).187 Altered metabolism itself is linked to an altered
immune response; with so called meta-inflammation, a pro-
inflammatory state.188 Inflammation is emerging as a key
mediator of disease and disability in DCM.189-192 In a chronic
disease such as DCM, one could therefore speculate that there
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is a further area of evolving interaction; that gastro-intestinal
dysfunction due to DCM could modulate their spinal cord
biology. In support of this hypothesis, Nouri et al.193 (2020) in
a secondary analysis of the AO Spine series observed that
patients with gastro-intestinal co-morbidities had equivalent
disease severity as measured using the mJOA, but different
patterns of disease on conventional MRI, including the fre-
quency and nature of signal intensity changes.

Neurological System—Adaptive Neuroplasticity and Redundancy
to Increase Resilience. Injury to the cervical spinal cord causes
structural and functional connectivity changes within the
brainstem and cerebrum that may include adaptive
neuroplasticity.90,194,195 Studies in DCM, principally using
advanced MRI techniques,196-202 but also transcranial mag-
netic stimulation,203 have demonstrated that the presence and
nature of these changes can represent clinical symptoms,
including pain and neuromuscular function, and predict re-
sponse to surgery. Principal regions of interest have been the
visual pathways (hypothesized to represent an increase reli-
ance on vision for balance)201,204 and supplementary motor
areas.195,203,205 For example, Zdunczyk et al.203 (2017) using
transcranial magnetic stimulation of the motor cortex, dem-
onstrated that a greater neuromuscular function (defined using
the JOA) was associated with a steeper recruitment curve and
activation of supplementary motor areas, and proposed the
concept of corticospinal reserve capacity.

This concept has been proposed across a range of neuro-
logical diseases to account for disconnects between histological
lesion burden and clinical phenotype.206 Whilst a number of
different terms have been used to describe this,187,203 it is in-
creasingly talked of as the “reserve capacity.”207

This mirrors what is observed in DCM; cervical spinal cord
tissue injury in DCM is initially asymptomatic2,40 and the
radiological changes affecting the spinal cord, at best offer a
partial surrogate for the disease phenotype.31,208,209

Conclusion

There is a clear need to improve understanding of the path-
ophysiological mechanisms and their clinical correlates for
DCM. Resolution of such uncertainty is key to optimizing
both management using current therapies and to inform the
development of new ones. Based on the current evidence we
propose DCM should be considered a function of mechanical
stress, vulnerability, and time. Mechanical stress encompasses
multiple mechanisms of loading, and not simply compression,
whilst vulnerability relates to primary protective mechanisms
such as genetic makeup and age, as well as adaptive protective
mechanisms, such as autoregulation, functional reserve ca-
pacity, and nutritional status [Figure 7]. These concepts re-
main theoretical at this stage, and areas for further
investigation. While our model is an oversimplification of a
complex and multifactorial problem,33 we hope that it will
inspire a fresh view on DCM and encourage new avenues of

research to better encapsulate the full spectrum of clinical
disease. This is critical to optimizing both current management
and informing the development of new therapies.
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