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Abstract

Study Design: Narrative review.

Objective: Degenerative cervical myelopathy is one of the most frequent impairments of the spinal cord encountered in-
ternationally in adults. Currently, surgical decompression is the recommended treatment for people with DCM (PwCM)
presenting with moderate to severe symptoms or neurological deficits. However, despite surgical intervention, not all patients
make a complete recovery due to the irreversible tissue damage within the spinal cord. The objective of this review is to
describe the state and gaps in the current literature on rehabilitation for PwCM and possible innovative rehabilitation strategies.

Methods: Literature search.
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Results: In other neurological disorders such as stroke and acute traumatic spinal cord injury (SCI), timely and strategic
rehabilitation has been shown to be indispensable for maximizing functional outcomes, and it is imperative that appropriate
perioperative rehabilitative interventions accompany surgical approaches in order to enable the best outcomes. In this review,
the current state of knowledge regarding rehabilitation for PwCM is described. Additionally, various therapies that have shown
to improve outcomes in comparable neurological conditions such as stroke and SCI which may be translated to DCM will be
reviewed.

Conclusions:We conclude that locomotor training and arm/hand therapy may benefit PwCM. Further, we conclude that body
weight support, robotic assistance, and virtual/augmented reality therapies may be beneficial therapeutic analogs to locomotor
and hand therapies.

Keywords
body weight support, gait, hand, therapy, virtual reality, rehabilitation, cervical, spondylosis, myelopathy

Introduction

Degenerative cervical myelopathy is a spinal cord disorder
caused by degenerative changes of the vertebral column that
result in chronic compression of the spinal cord.1 Degener-
ative cervical myelopathy is among the most frequent causes
of SCI in adults, occurring in about 2% of the adult
population.2,3 While some patients may enter a period of
neurological quiescence after the initial presentation, many
continue to deteriorate slowly or in stepwise fashion during
the period of expectant management.4 Surgical decompression
of the spinal cord is recommended for patients with symp-
tomatically moderate to severe DCM, or for patients with
progressing neurological deterioration,5 however most pa-
tients do not achieve full neurological recovery even with
successful surgical decompression.6 Being a disease primarily
associated with the process of spinal degeneration and aging, it
is expected that the incidence of DCM will continue to in-
crease in countries with aging populations and will impose a
significant impact on our health and economic burden.7-11

The importance of rehabilitation in this setting cannot be
overstated. Not only can rehabilitation help the disabled attain
maximum function but it can also help patients regain a sense
of well-being and a personally satisfying level of indepen-
dence. In addition to optimizing recovery, rehabilitation also
helps to minimize secondary medical conditions such as
neurogenic bowel and bladder dysfunction, neuropathic pain,
spasticity, cardiovascular disease, sublesional osteoporosis,
among others. Furthermore, it is known that rehabilitation
activities can contribute to neuroplasticity in the critical period
of recovery.

Whilst rehabilitation is considered a significant component
of care for many neurological conditions including stroke,
traumatic brain injury (TBI), and acute traumatic (SCI), it has
not yet been well propagated for DCM due to the paucity of
clinical studies.12 Furthermore, access, coverage, and quality
of rehabilitation can be highly variable in different healthcare
settings.13 In DCM, there is emerging evidence14 of potential
targets for rehabilitation that could impact recovery in a

substantial manner, and based on similar pathophysiology, the
existing rehabilitation interventions for traumatic SCI and
stroke could also potentially be translatable.

A significant number of research gaps exist in the literature
for DCM, and within the AO-Spine funded RECODE-DCM
project,15 Perioperative Rehabilitation has been identified as
priority #6 in the top 10 unmet research needs of DCM. The
aims of this review are as follows: (1) summarize the current
evidence for perioperative rehabilitation for DCM, (2) sum-
marize examples of therapies, and their hypothesized mech-
anisms of action, from SCI and stroke that have transferable
potential for DCM, and 3) provide an insight on potential
future directions for perioperative rehabilitation for DCM.

Current Evidence in DCM and Related
Neurological Disorders

The published literature on rehabilitation for PwCM is sparse.
A recent systematic review concluded that no randomized
controlled clinical trials exist on rehabilitation for PwCM,12

and all of the studies included in this review are non-
randomized, non-controlled, and only one study discussed
rehabilitation in relation to surgery for DCM. This review
forms an important basis which can inform us on necessary
future research targets in rehabilitation for DCM.16-24 A de-
scription of outcomes of these studies can be found in Table 1.
The search was conducted in PubMed with the following
terms: (“cervical compressive myelopathy” or “cervical
spondylotic myelopathy” or “degenerative cervical myelop-
athy” or “nontraumatic myelopathy”) AND (rehabilitation or
“body weight support treadmill training” or “gait training”
or “locomotor training” or “balance therapy” or “exercise”
or “functional electrical stimulation” or “robotic therapy” or
“conservative therapy” or “traction” or “manual therapy”).
This search was initially conducted July 6, 2020 and was
repeated on September 1, 2021. The search identified 196
articles. The titles and abstracts of these articles were screened
for manuscripts which examined the effect physical therapy,
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manual therapy, rehabilitation, exercise, locomotor training, or
hand therapy. We excluded articles that only discussed im-
aging prognostication of outcomes or outcomes of surgery or
medical conservative treatments. From this we identified 9
articles which are summarized in Table 1.

In contrast to DCM, there exists currently a more sizeable
body of scientific evidence focusing on various rehabilitation
strategies for traumatic SCI and stroke, and these efforts have
resulted in meaningful changes in the current clinical practice
guidelines adopted around the world.5 These guidelines, for
example, include useful recommendations on rehabilitation of
locomotion and hand function,5 and also guide us on the
timing of rehabilitative intervention. While we believe that the
various effects of these strategies are likely to be specific to
therapeutic targets in related neurological disorders, there are
parallels in DCM. For example, the clinical presentation of
stroke, SCI, and DCM frequently include spastic hypertonia,
reduction in hand dexterity, as well as deficits in proprio-
ception.25-34 As such, functional rehabilitation targets such as
accelerating and facilitating motor recovery, training of

dexterity and selective motor control, and adaptation to loss of
certain sensory modalities, are in fact ubiquitous across these
several disease entities. Furthermore, rehabilitation exercises
for physical maintenance of muscle bulk, preservation of joint
range of motion, and prevention or reduction of nociceptive
and neuropathic pain, are equally important for all those CNS
insults. Studies have shown that many of the therapeutic
targets in DCM such as walking, balance, and pain are largely
similar to that of SCI, and more broadly stroke as well.5,35,36 In
this review, we will use a framework focusing on published
recovery priorities of PwCM.37

Pain

DCM is the most frequent reason for attending pain clinics for
spinal cord related neuropathic pain.38 The neuropathic pain in
PwCM is likely due to disruption of neuronal pathways as a
consequence of spinal cord and nerve root compression and
intrinsic damage. Amongst patients with DCM experiencing
pain, neuropathic quality pain is present in over 70% of

Table 1. Description of studies on rehabilitation for DCM.

Study
Sample
size Intervention Notable findings

Almeida et al16 N = 1 C-spine non-thrust manual therapy (NAGS and
SNAGS) and C-spine stabilizing exercises

Twenty-nine (29) treatment sessions improved
-pain (75%)
-paresthesia (63%)
-NDI (42%)
-mJOA (40%)
-triangle step test (32%)
-10mwt (38%)

Browder
et al17

N = 7 Active range of motion, intermittent cervical
traction, and thoracic manipulations

Mean of nine (9) sessions resulted in improvement in
-pain (85%)
-resolution of weakness (3/3)

Yoshimatsu18 N = 69 c-spine traction, c-spine immobilization, drug
therapy, and exercise therapy (undefined)

Rigorous traction was associated witd increased likelihood of
improvement (β = 2.5)

Magagnin
et al19

N = 6 BWSTT Over 30 sessions, mJOA improved in 4/6 participants

McKinley
et al20

N = 18 In-patient rehabilitation FIM improved 39% by discharge

Cheng et al21 N = 16 Treadmill perturbations in standing and walking Following 8 sessions, improvements of:
-balance (∼35%)
-TUG (∼20%)

Yap et al22 N = 21 Rehabilitation center Improvement in upper limb function, lower limb function,
activities of daily living, and mobility (assessed by clinical
consensus)

Popovic et al23 N = 1 Functional electrical stimulation 3 sessions/
week × 5 weeks

Improvements in action reach arm test exceeded minimal
clinically important difference

Pastor24 N = 1 30 sessions of hip functional electrical
stimulation, exercise, and gait training

FIM improved ∼51%

Abbreviations: C-spine, cervical spine; NAGS, natural apophyseal glides; SNAGS, sustained natural apophyseal glides; NDI, neck disability index; mJOA, modified
Japanese Association Scale; 10mwt, 10 meter walk test; BWSTT, body weight support treadmill training; FIM, Functional Independence Measure; TUG, timed up
and go.
Articles were identified from searches on Pubmed of terms: (“cervical compressive myelopathy” or “cervical spondylotic myelopathy” or “degenerative cervical
myelopathy” or “nontraumatic myelopathy”) AND (rehabilitation or “balance therapy” or “exercise” or “functional electrical stimulation” or “robotic therapy”
or “conservative therapy” or “traction” or “manual therapy”).
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individuals.39 Various non-pharmacological interventions
have been proposed for addressing neuropathic pain,40 in-
cluding locomotor training (with or without body weight
support), transcranial direct current stimulation, electrical
stimulation modalities such as transcutaneous electrical nerve
stimulation, transcranial magnetic stimulation (TMS), and
meditation.

The beneficial effects of exercise on pain have been de-
scribed in both animal models and in humans with SCI. For
example, a recent meta-analysis of animal studies observed
that exercise improved mechanical and thermal allodynia in
SCI.41 In humans, robotic-assisted locomotor training reduced
pain intensity within a rehabilitation session and across
intervention.40,42 There is growing evidence that higher in-
tensity exercise results in more substantial improvements in
mechanical hyperalgesia than lower intensity exercise.43

Potential mechanisms of this improvement are through re-
ductions of inflammatory cytokines in the spinal cord and
endogenous opioid pathways.43 Animal studies have shown
that a gradual increase in exercise intensity over time can
improve serotonin receptor expression in the spinal dorsal
horn, periaqueductal gray, raphe nuclei, and noradrenergic
neurons of the locus coeruleus, and improve expression of
brain derived neurotrophic factor and reduced micro-glial
reactivity in the locus coeruleus in peripheral nerve in-
jury.44 Unfortunately in spite of research on promising ther-
apies for neuropathic pain, it appears largely unresolved in
current practice. For example, one study of ratings of effec-
tiveness of various medications by clinicians rated anti-
epileptic drugs (e.g., gabapentoids) as the most effective,
and it was only mildly effective or better in only approxi-
mately 30% of cases.38 Thus, currently neuropathic pain may
be under-treated by medication therapies alone and represents
a particular need for further research with rehabilitation in both
humans and animal models.

Walking

The evidence of locomotor training (with or without body
weight support or robotic assistance) for improving walking
function has been consistent in the literature for those with
incomplete SCI. In the context of DCM, higher intensity
training has also been shown to give rise to superior benefits.45

While more impaired individuals may need body weight or
robotic assistance, a higher intensity and dosage of locomotor
training utilizing body weight or robotic support is likely to be
beneficial. Research is needed in areas of actual training
regimens, for example rehabilitation of individual muscle
groups, dorsal column (proprioceptive) deficits, or general
exercise tolerance etc.

In terms of exercise intensity, gait training in persons with
incomplete neurological impairment at 70–85% maximal
heart rate appears to be superior to training at 50–65%
maximal heart rate for improving walking speed.46 These
improvements appear to be mediated through increased serum

brain-derived neurotrophic factor and insulin like growth
factors, as well in higher intensity exercise and better physical
conditioning.45 Higher intensity exercise also facilitates de-
scending serotonin (5HT) and noradrenergic (NE) drive to the
spinal cord, which is critical to increasing the gain of lower
motor neurons and locomotor recovery.47,48 This facilitates
increased voluntary activity of motor units, facilitating greater
locomotor practice, greater re-learning, and thus greater re-
covery. This may be critical as evidence suggests that 5HT
raphe-spinal projections are critical in the recovery of DCM
post-decompression in animal models.14

Body weight support treadmill training and robotic-assisted
locomotor training have been well researched in the spinal cord
literature and are recommended therapies for treatment of SCI.5

One major benefit of robotic vs manual locomotor training is in
freeing clinician time and energy while increasing the number
of steps taken in locomotor practice resulting in substantial
reductions in cost to deliver therapy.49,50 It appears that a critical
component of locomotor recovery is delivering a sufficient
sensory stimulus to the locomotor generating spinal and su-
praspinal circuits to facilitate healthy step-like movements to
facilitate a functional reorganization of these circuits.51-53 For
example, a trial using robotic locomotor therapy in patients with
cervical/thoracic myelopathy due to ossification of the posterior
longitudinal ligament had improvements of leg coordination
during walking.54 Proposed mechanisms of this benefit include
neuronal sprouting, improvements in motor evoked potential
amplitude and latencies, reduced atrophy, and improved reflex
excitability.55,56 Thus, PwCM by virtue of incomplete lesions
are excellent candidates for favorable outcomes with this
therapy.

A recently published clinical practice guideline has iden-
tified 10 level one randomized controlled trials that demon-
strated greater improvements in moderate-to-high intensity
training than in low-intensity or otherwise conventional
physical therapy.81 According to this exhaustive review, it is
suggested that patients with SCI, stroke, and TBI need to train
with a high dosage of locomotion rehabilitation,57 and this
form of rehabilitation should be facilitated by various adjuncts
such as body weight support treadmill training (BWSTT)/
robotics/virtual reality wherever appropriate.57 This approach
is largely coherent with common knowledge in exercise
physiology that adaptations are specific to imposed de-
mands.58 We also agree that more research is needed to de-
velop activity or task specific training frameworks focusing on
movement quality and skill acquisition.59

Arm/Hand Function

Like rehabilitation for walking function, successful rehabili-
tation of arm and hand function is likely to involve a high
intensity exercise component rather than focus on quality
alone. Furthermore, exercises should be task specific.60,61

Facilitation of this through adjunctive treatments such as
functional electrical stimulation (FES) and rehabilitation
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robotics may, however, be beneficial. Similar to BWSTT and
robotic locomotor therapy, FES and arm/hand robots work to
enable greater practice and have shown to be helpful in
persons with CNS injuries.5,25,62 Pilot testing using robotic
glove therapies have been encouraging for improving hand
function and pinch grip strength,25 and in stroke patients there
is considerable research being done on robotic assisted arm
and hand therapy.63 A recent randomized controlled trial
reported that greater improvements were observed with high
intensity hand therapy when controlled for stroke severity.62

Thus research on comparative effectiveness of high intensity
hand therapy and robotic and/or FES assisted arm/hand
therapy should carefully control for degree of myelopathic
severity.

Non-invasive neuromodulatory therapies (TMS, trans-
cranial direct current stimulation, etc.) may be employed for
arm/hand function, and clinical trials following stroke sug-
gests improvements in hand function,64 and effects of these
therapies are highly parameter specific. Future research should
continue to examine stimulation frequency, dosing, as well as
the simulation of functional movements.

Balance and Proprioception

For PwCM with reduced somatosensory evoked potential
magnitude, vibratory therapies may be a beneficial sensory
adjunct to increase the gain of sensory input. Local and whole
body vibration are potential therapies that have been shown to
be effective in stoke.65-67 Specifically, we now know that wrist
tendon vibration during a variety of upper extremity motions
can help improve end point stability and reduce proximal
muscle activity65,67,68 and whole body vibrations31,33,69 can
help improved overall balance. Robotic-augmented therapy
focusing on sensing joint position has been shown to be useful
in improving leg joint reposition sense and targeted stepping
in patients with proprioceptive sensory deficits following
insults to the spinal cord,70 and robot-augmented wrist so-
matosensory training can improve wrist positional perception
in persons with Parkinsonism.71 Interestingly, virtual reality
augmented rehabilitation has shown promise in several
studies.72 For example, semi-immersive virtual reality has
been shown to result in improvements in several balance
measures including the Berg Balance Scale and the Activities-
specific Balance Confidence scale.73

Sexual Function

Rehabilitation of sexual function is an area which requires a
multidisciplinary approach and framework that acknowledges
concerns related to biology, self-image, desire, self-
confidence, as well as pharmaceuticals. Locomotion exer-
cise has been shown to be efficacious for improving sexual
function,74,75 and physical therapy plays a vital role in im-
proving the mobility, strength, and stamina needed.76 Un-
fortunately, it seems far more is known about the medical and

surgical treatments of sexual dysfunction than the physical
rehabilitation aspect. Some evidence does suggest that pelvic
floor exercises are likely to be beneficial in improving sexual
function in PwCM with erectile dysfunction, pre-mature
ejaculation, arousal, orgasm, and satisfaction related
problems.77,78

Bladder/Bowel Function

Bladder and bowel regulation is often overlooked as an im-
portant aspect of DCM rehabilitation. We know from evidence
in spinal injuries that body weight–supported treadmill ex-
ercise has a demonstrated benefit for improving bladder and
bowel function,74,79 and specifically, bladder fill capacity
increases and time needed to defecate decreases following
locomotor exercise.74,80 Studies have shown that after assisted
locomotor training, bladder function may improve and may
even become normal in up to 1/3 of individuals with SCI.81

Additionally, pelvic floor muscle strengthening may be
beneficial in treating urinary incontinence.82 Further research
is needed in the area of how exercise patterns and rehabili-
tation strategies affect peristalsis, bowel regularity, and
sphincter control in patients with DCM.

Spasticity

With regard to spasticity, several potential therapies exist
showing promise in other comparable neurological diseases,
for example TMS, locomotor training, and vibration
therapies.42,83 In a recently published meta-analysis, TMS
demonstrated greater effectiveness in reducing spasticity for
SCI compared to a sham procedure. In one particular study by
Benito et al,84 the authors demonstrated a 40% reduction in
spasticity coherent with the overall reduction in spasticity of
the meta-analysis. Thus, based on the similar pathophysiology
of an upper motor neuron lesions causing spasticity, we be-
lieve that TMS should be closely examined as a part of a
rehabilitation program for DCM.

Similarly, a recent systematic review of robotic assisted
locomotor training demonstrated a trend in the literature for
reducing spasticity with robotic locomotor training.42 In this
review,42 the methods to assess spasticity were varied between
clinician-generated measures (such as the modified Ashworth
scale) and other self-reported metrics. Further research is
warranted on the effectiveness of robotic locomotor training
on reducing spasticity in PwCM.

Mental Health, Quality of life, and Economics

One domain not described in the published recovery priori-
ties of DCM,37 but of paramount importance is mental
health. Depression and anxiety are relatively common in
PwCM prior to surgery and those who have depression have
worse recoveries of function and mental health following
decompression.85,86 PwCM reportedly have worse mental
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health related quality of life than people with depression,
angina, osteoarthritis, cancer, congestive heart failure, dia-
betes, myocardial infarction, chronic lung disease, and mul-
tiple sclerosis.87,88 Recent small scale studies on locomotor
training with FES and robotic assistance demonstrated im-
provements in mental health related quality-of-life in SCI,89,90

and likewise high intensity body weight support locomotor
training has also been shown to improve quality of life in
people with Parkinsonism.91 By virtue of improving walking
ability, locomotor training may reduce home renovation costs
by >US$50,000/person and also substantially reduce lifetime
healthcare costs in more impaired individuals.,81,92 thus
easing these patients’ overall disease burden. PwCM remain at
increased risk of falls and fragility fractures, and due to their
sedentary lifestyles they are also prone to developing coronary
artery disease, arrhythmias, and strokes.93-96 Considering that
DCM impacts ∼2% of the population, proper perioperative
rehabilitation has immensely important role to positively
impact mental health, quality of life, and personal and societal
economics throughout the lifespan. We believe that more
research is needed on the actual healthcare savings from the
biological benefits gained from various rehabilitation strate-
gies in PwCM. To this end, recent health economic investi-
gations have been conducted related to surgery for PwCM,97,98

and these efforts need to be replicated for perioperative re-
habilitation. Of critical, need will be examinations of ap-
propriate timing, intensity, and type of therapies with respect
to reducing cost to PwCM, healthcare systems, and society at
large.

Emerging Therapies

Ischemic Conditioning

A complimentary therapy emerging in the literature for
central nervous system conditions is that of remote ischemic
conditioning (IC)—a technique of applying a blood pressure
cuff for 5 minutes repeatedly at ischemic pressures. Similar
to high intensity exercise, IC acts through humoral, neural,
and anti-inflammatory gene up-regulating mechanisms.99

Ischemic conditioning is believed to facilitate 5HT and
NE drive to the spinal cord by producing a build-up of
bradykinin, nitric oxide, and other markers of ischemia.99,100

These stimulate thinly and/or unmyelinated group III/IV
afferents.99,100 This intervention results in increased sym-
pathetic outflow (which is reduced in PwCM) and stimu-
lates the release of 5HT via the raphe nuclei.99-101 As
plasticity of the 5HT raphe-spinal projections are critical in
the functional recovery of DCM,14 IC may facilitate greater
motor recovery in DCM. Specifically, in the context of
stroke, 7 sessions of IC over 2 weeks resulted in improve-
ments in walking speed and quadriceps exercise endurance
time.102 This was without any other contributing therapy.102

Importantly, IC resulted in increased gait speed on average
equal to the minimal clinically important difference for

persons chronically post stroke.102 Similarly, IC has resulted
in improvements in 6-minute walk distance in persons with
multiple sclerosis.103 Thus, IC is an emerging therapy with
strong potential to facilitate improved walking speed and
endurance in PwCM.

Intermittent Hypoxia

A therapy conceptually similar to ischemic conditioning, it
involves alternating breathing air with lower levels of oxygen
and normally oxygenated air, and has been shown to be a
promising new intervention104-106 which can enhance spinal
cellular plasticity evidenced by elevation of brain derived
neurotrophic factor and vessel endothelial growth factor.107 In
individuals with injury to the spinal cord, intermittent hypoxia
has been shown to increase ankle strength, walking speed,
walking endurance, and improve walking balance.104-106

Because intermittent hypoxia also facilitates release of 5-
HT, at least to the cervical phrenic motor nuclei, it would
likely have additive benefits to other therapies discussed
here.108

Virtual and Augmented Reality

Virtual and augmented reality in rehabilitation has recently
become another popular research interest including the field of
neuro-rehabilitation. A systematic review recently identified
25 studies examining virtual reality within the context of SCI
research alone over the last 20 years.72 Statistically significant
improvements in motor function were noted in 15/17 studies,
in aerobic function in 3/3 studies, in balance in 8/10 studies.72

Notably, however, most (18/25) had a high risk of bias, lower
levels of evidence, and lower PEDro scores due to be com-
binations of non-randomized, non-controlled, and non-blin-
ded.72 As physical, aerobic, and balance function are all
necessary components of walking, virtual reality assisted
therapy may be a vital component of successful physical
therapy for DCM.

Neuromodulatory Stimulations

One further therapy that should be considered is that of
neuromodulatory stimulation therapies such as transcranial
direct current stimulation and TMS. One recent systematic
review of 8 studies involving individuals post stroke, with
Parkinsonism, and SCI reported inconclusive evidence for
improving walking beyond gait therapy.109 Repetitive TMS,
however, may improve walking speed in individuals post
stroke.110 Therefore, the evidence for these therapies even in
the broader neuro-rehabilitation field is yet inconclusive.

Future Directions

There is converging evidence to suggest that high intensity lo-
comotor training has potential for multi-domain improvements
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for PwCM. It has been implicated as a potential therapeu-
tic agent in every facet of recovery for PwCM. Yet only 2
cohort studies have examined this in DCM.19,21 These
studies observed improvements in bladder/bowel function
with robotic-assisted locomotor training and balance with
perturbation training during walking.19,21 Thus, there ap-
pears ample potential to translate the above-mentioned ther-
apies already demonstrating promise in SCI, stroke, and MS to
DCM.

When examined closely, there is substantial convergence in
the neurological rehabilitation literature surrounding the im-
portance of the serotonergic and noradrenergic systems. That
is, serotonergic raphe–spinal pathways are critical to recovery
of DCM and are implicated in recovery of neuropathic pain,
walking, and are also important for trunk function.14,47,111

Locomotor training and IC stimulate these pathways44,47,99

making these both sound mechanism based therapies for
DCM.

Locomotor training and IC represent well-supported and
emerging therapies, respectively, targeting the serotonergic
and noradrenergic systems, that are critical to the recovery of
DCM. However, therapeutic adjuncts such as BWSTT/
robotics and FES may be highly beneficial in facilitating
greater active practice and increased dosage.19,50,55,112-116

Additionally, virtual/augmented reality incorporated into re-
habilitation may help to reverse the known overreliance on
vision for balance in DCM and improve the “reality” of gait
training.29,73,117-119 Virtual reality, or mechanical, balance
training combined with gait training may have a combinatorial
benefit for balance and walking without increasing therapy
time.21,72,120-122

Increased benefits of locomotor training occur with
intensity.45,46,123,124 Thus, special emphasis for future re-
search should be placed on evaluating most important in-
tensity to achieve optimal therapeutic outcomes. Given the
dearth of research on peri-operative rehabilitation, sub-
stantial research is needed on all parameters of every
therapy investigated. High quality, well-controlled ran-
domized trials must be encouraged to accomplish this re-
search priority.

There are numerous other therapies not included in this
review for various therapeutic targets that have demonstrated
mixed effectiveness in patients with spinal cord impairments.
TMS and transcranial direct current stimulations are 2 such
therapies. These are often examined in the context of neu-
rological injury; however, a recent meta-analysis found there
was no effect of either on neuropathic pain.125 Thus, while
TMS may be effective in treating spasticity,83 its effec-
tiveness outside this target may be limited. Other therapies,
such as transcutaneous electrical stimulation, and acu-
puncture, have few studies showing effectiveness or the
research is of very low quality.126,127 Certainly these ther-
apies may warrant investigation in DCM; however, there
appears to be insufficient evidence to provide firm research
recommendations.

Conclusions

The direct evidence of the benefits of peri-operative reha-
bilitation is sparse. However, there is ample evidence from the
broader neurological field to recommend substantial research
into locomotor training, arm/hand therapy in conjuncture with
body weight–supported treadmill training, robotic-guided
rehabilitation, virtual/augmented reality, and FES as a
means of peri-operative physical therapy. Therapies such as
ischemic conditioning may prove to be promising adjuncts.
Finally, strategies focusing on psychological rehabilitation
and quality of life for patients with DCM must not be
overlooked. Therefore, we conclude that well-structured
clinical trials on the benefits of peri-operative rehabilitation
(including locomotor training and hand therapy supplemented
with robotics, body-weight support, virtual reality, and/or
FES) are needed to improve outcomes in PwCM.
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