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Cancer metabolism, including in mitochondria, is a disease hallmark
and therapeutic target, but its regulation is poorly understood.
Here, we show that many human tumors have heterogeneous and
often reduced levels of Mic60, or Mitofilin, an essential scaffold of
mitochondrial structure. Despite a catastrophic collapse of mito-
chondrial integrity, loss of bioenergetics, and oxidative damage,
tumors with Mic60 depletion slow down cell proliferation, evade
cell death, and activate a nuclear gene expression program of
innate immunity and cytokine/chemokine signaling. In turn, this
induces epithelial-mesenchymal transition (EMT), activates tumor
cell movements through exaggerated mitochondrial dynamics, and
promotes metastatic dissemination in vivo. In a small-molecule
drug screen, compensatory activation of stress response (GCN2)
and survival (Akt) signaling maintains the viability of Mic60-low
tumors and provides a selective therapeutic vulnerability. These
data demonstrate that acutely damaged, “ghost” mitochondria
drive tumor progression and expose an actionable therapeutic
target in metastasis-prone cancers.

mitochondria j cell motility j metastasis

The rewiring of metabolic pathways is a ubiquitous cancer
trait that confers cellular plasticity, expands clonal hetero-

geneity, and enables disease progression (1). There is now a
consensus that mitochondria are important for this process,
titrating energy output, buffering oxidative stress, and control-
ling a host of cell death programs (2). In particular, exploitation
of mitochondrial functions has been linked to metastatic com-
petence (3, 4). This involves oxidative bioenergetics (5) and
redox balance (6) but also deregulated mitochondrial dynamics
(7), a process that controls the size, shape, and distribution of
mitochondria and their trafficking to the cortical cytoskeleton,
where they fuel pivotal steps of cell motility, such as membrane
lamellipodia dynamics, turnover of focal adhesion (FA) and
phosphorylation of signaling kinases (8).

However, the environment of tumor growth is highly unfavor-
able to mitochondrial fitness. Erratic oxygen concentrations,
high levels of oxidative radicals (9), constantly changing meta-
bolic needs (10), and vulnerabilities of the mitochondrial prote-
ome (11) are all potent stimuli to disrupt mitochondrial integrity,
shut off organelle functions, and activate cell death (12).
Quality-control measures activated in these settings, in particular
mitophagy (13), are designed to remove such subpar, “ghost”
mitochondria and restore homeostasis. However, the role of
these pathways in cancer is far from clear, and activation of

mitophagy has been paradoxically linked to tumor progression
(14) as well as treatment resistance (15).

An important regulator of mitochondrial integrity is Mic60,
also called Mitofilin or inner membrane mitochondrial protein.
Mic60 is an essential constituent of a MICOS complex (16) that
maintains cristae architecture (17), organizes respiratory com-
plexes (18), and ensures outer membrane biogenesis (19).
Whether this pathway is important in cancer has not been
determined, but there is evidence that Mic60 participates in
mitochondrial fitness, including PINK1/Parkin-directed mitoph-
agy (20) and mitochondrial dynamics (21).

In this study, we investigated how mitochondrial fitness may
impact cancer traits and potentially expose therapeutic vulner-
abilities in advanced disease.

Significance

Exploitation of mitochondrial functions promotes tumor traits,
including metastasis, which is responsible for >90% of all can-
cer deaths. In this study, we investigated how mitochondrial
fitness impacts tumor behavior. We found that acutely dam-
aged, de-energized, and reactive oxygen species-producing
mitochondria not only persist in cancer but are also key ena-
blers of metastasis. These “ghost” mitochondria originate from
the heterogeneous and often reduced expression of Mic60, an
essential scaffold of organelle structure, in certain human can-
cers. The compensatory activation of gene expression pro-
grams as well as GCN2/Akt kinase signaling enables the
survival of Mic60-low tumors but also provides a new thera-
peutic target in advanced and hard-to-treat malignancies.
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Results
Mic60 Expression in Cancer. To study the role of mitochondrial
fitness in cancer, we focused on Mic60 as an essential scaffold
of organelle integrity and function (18). Inspection of the
Human Protein Atlas database showed that Mic60 expression
was highly heterogeneous in cancer, as several tumor types had
reduced, increased, or unchanged levels of Mic60 compared to
normal tissues (SI Appendix, Fig. S1A). Immunohistochemical
(IHC) staining of a universal tumor microarray (TMA; n = 5 to
8 cases per tumor type) gave similar results (Fig. 1A), where
Mic60 expression was reduced in colorectal adenocarcinoma
(COREAD) and glioblastoma (GBM), unchanged in breast
(BRCA) and prostate adenocarcinoma (PRAD), or increased in
lung adenocarcinoma (LUAD) compared to adjacent normal tis-
sue (SI Appendix, Fig. S1B). Consistent with these results, Mic60
mRNA levels in The Cancer Genome Atlas (TCGA) database
were reduced in GBM and COREAD but prominently upregu-
lated in LUAD (SI Appendix, Fig. S1C). Other potential Mic60-
low tumors in this analysis included malignancies of kidney,
thyroid, head and neck, and soft tissue, whereas uterine and cer-
vix cancer had higher Mic60 mRNA levels compared to normal
tissues (SI Appendix, Fig. S1C). Although breast cancer showed
increased Mic60 protein (SI Appendix, Fig. S1A) and mRNA (SI
Appendix, Fig. S1C) in public databases, our TMA analysis did

not reach statistical significance (SI Appendix, Fig. S1B). Hetero-
geneous Mic60 expression was also observed intratumorally.
When analyzed in patient samples of pancreatic ductal
adenocarcinoma (PDAC), Mic60 expression ranged from focal
perinuclear distribution in normal pancreatic acinar cells to dis-
ordered, submembranous or linear staining in in situ and inva-
sive neoplastic epithelium to absence in poorly differentiated
(basaloid) carcinomas by IHC (Fig. 1C). Mechanistically, differ-
entiation of patient-derived GBM neurospheres, a process
associated with the modulation of stemness and proliferative
potential (22), lowered Mic60 as well as HIF1α mRNA levels
(SI Appendix, Fig. S1D).

Mic60-Dependent Mitochondrial Integrity in Cancer. Next, we
examined the function of Mic60 in cancer. Using a proteomics
screen in PRAD PC3 cells, we identified 119 high-confidence
mitochondrial proteins that associate with Mic60 (Fig. 1D).
Bioinformatics analysis of this dataset identified multiple regu-
lators of mitochondrial membrane transport and organization,
protein sorting, Ca2+ homeostasis, and oxidative phosphoryla-
tion (SI Appendix, Fig. S1E). Therefore, we sought to repro-
duce the phenotype of Mic60-low tumors (Fig. 1A and SI
Appendix, Fig. S1 A–C) by generating clones of PC3 or GBM
LN229 cells with silencing of Mic60 by short hairpin RNA

Mic60-associated
proteins

siCtrl

siMic60

153+-22

89 18+-

150

100

0

C
ou

nt
s

100 104FITC

siMic60

siCtrl
50

46+-31

95+-41

102

0

T
M

R
E

siCtrl

siMic60

87
104

100

103FSC

+-1.7

67.5+-7.4

12+-1.7

32+-7.2

102

104

100

A B

G

E F

*

M G

#5
#1

#2
#3

#4
Mic60
Vinculin

Mic60
Vinculin

Mic60
Vinculin

Mic60
Vinculin

Mic60
Vinculin

C D

COREAD

Normal Tumor

GBM

Normal Tumor

BRCA

Normal Tumor

PRAD

Normal Tumor

LUAD

Normal Tumor

Fig. 1. Mic60 expression in cancer. (A) A universal TMA was analyzed for differential expression of Mic60 in tumor vs. adjacent normal tissue by IHC. N,
normal; T, tumor. Cases of COREAD (n = 6N, 8T), GBM (n = 5N, 8T), BRCA (n = 5N, 8T), PRAD (n = 5N, 5T), and LUAD (n = 6N, 8T) were examined. Repre-
sentative images are shown. Scale bars, low magnification, 6 mm; high magnification, 60 μm (×40). (B) Patient-derived tissue samples (#1 to #5) of GBM
(G) or disease-free margin (M) were analyzed by Western blotting. (C) Intratumoral heterogeneity of Mic60 expression in PDAC patients. Top Left, arrow,
perinuclear expression in normal acinar cells (×200); Top Right, perinuclear to diffuse cytoplasmic staining in nerves, smooth muscle, and ganglion cells
(arrow, ×200); Middle Left, apical cytoplasmic staining of high-grade pancreatic intraepithelial neoplasia (×400); Middle Right, faint perinuclear as well as
bright apical staining (arrow) of well-differentiated PDAC (×400); Bottom Left, asterisk, absent stain in high-grade basaloid PDAC, arrow (×200); Bottom
Right, transition between Mic60-positive well differentiated tumor (double arrows) and Mic60-negative high grade basaloid regions within the same
tumor gland (single arrow) (×400). (D) Mic60 interactome identified in PC3 cells by mass spectrometry. The fold vs. IgG condition, number of detected
peptides, and molecular weight (MW) are indicated. (E) PC3 cells transfected with control nontargeting siRNA (siCtrl) or Mic60-directed siRNA (siMic60)
were analyzed by transmission electron microscopy, and cristae length (mean ± SD) was quantified (n = 25). P < 0.0001. (F) PC3 cells as in E were analyzed
for mitochondrial outer membrane permeability by calcein staining and flow cytometry. Numbers correspond to mean fluorescence intensity (MFI; mean
± SD, n = 3). (G) PC3 cells as in E were analyzed for mitochondrial inner membrane potential by tetramethylrhodamine, ethyl ester (TMRE) staining and
flow cytometry. MFI (mean ± SD) is shown (n = 3). P = 0.01.
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(shRNA) or CRISPR-Cas9 (SI Appendix, Fig. S2A, Top). Small
interfering RNA (siRNA) sequences targeting Mic60 were also
characterized in PC3 cells, normal diploid fibroblasts, MRC5,
breast adenocarcinoma MDA231, and osteosarcoma HT1080
cells (SI Appendix, Fig. S2A, Bottom).

Using these approaches, silencing of Mic60 caused a cata-
strophic collapse of mitochondrial integrity in tumor cells, with
disassembly of tubular network and cristae organization (Fig.
1E). This was accompanied by acute mitochondrial damage,
characterized by increased outer membrane permeability (Fig.
1F) and depolarization of the inner membrane (Fig. 1G and SI
Appendix, Fig. S2B). As a result, Mic60-depleted tumor cells
exhibited decreased oxygen consumption rates (SI Appendix, Fig.
S2C), with lower basal and maximal respiration (SI Appendix,
Fig. S2D), reduced adenosine triphosphate (ATP) production
(SI Appendix, Fig. S2 E and F), and increased phosphorylation
of AMPK, a marker of cellular starvation (SI Appendix, Fig.
S2G). Despite a modest increase in antioxidant glutathione
(GSH), these cells showed acute oxidative stress with a
decreased GSH:glutathione disulfide (GSSG) ratio (SI
Appendix, Fig. S3A), heightened production of total and mito-
chondrial reactive oxygen species (ROS) (SI Appendix, Fig.
S3B), and increased expression of γH2AX (SI Appendix, Fig.
S3C), as well as formation of subnuclear γH2AX foci (SI
Appendix, Fig. S3D). Consistent with loss of mitochondrial integ-
rity, Mic60-low tumor cells activated quality-control mechanisms
of autophagy with punctate GFP-LC3 staining (SI Appendix, Fig.
S3E), processing of LC3 to a lipidated form, and upregulation of
p62, i.e., sequestosome (SI Appendix, Fig. S3F). Mitophagy was
also induced in these settings, as judged by increased MitoKeima
red fluorescence reporter activity (SI Appendix, Fig. S3G), loss
of mitochondrial mass (SI Appendix, Fig. S3H), and degradation
of mitochondrial outer membrane proteins (SI Appendix, Fig.
S3I). Silencing of p62 was insufficient to restore outer membrane
proteins or mitochondrial mass after Mic60 depletion.

Requirement of Mic60 for Tumor Cell Proliferation. Based on these
results, we next asked if the loss of mitochondrial fitness induced
by Mic60 depletion affected tumor functions. Consistent with
DNA damage (SI Appendix, Fig. S3C andD), Mic60-depleted cells
exhibited slower cell cycle progression (Fig. 2A) and accumulation
of cells with G2/M DNA content throughout a 7-d culture (Fig.
2B). This resulted in a reduced proliferation of normal and tumor
cell types (Fig. 2C and SI Appendix, Fig. S4A), as well as an inhibi-
tion of colony formation (Fig. 2D). An analysis of the DepMap
Portal (23) revealed dependency scores < 1 for all tumor types
examined after Mic60 silencing by RNA interference (RNAi) or
CRISPR-Cas9 (Fig. 2E and SI Appendix, Fig. S4B), consistent with
a general requirement of Mic60 for tumor cell proliferation.
Accordingly, PC3 clones with reduced Mic60 levels by shRNA or
CRISPR-Cas9 formed slow-growing superficial tumors in immu-
nocompromised mice (Fig. 2F) with decreased Ki-67 reactivity (SI
Appendix, Fig. S4C), a marker of cell proliferation. Conversely,
control PC3 cells formed exponentially growing flank tumors (Fig.
2F) with high Ki-67 staining (SI Appendix, Fig. S4C).

Despite cellular damage and activation of mitophagy, tumor
cells with reduced Mic60 did not upregulate ferroptosis-
associated genes (SI Appendix, Fig. S4D), a type of cell death
induced by mitochondrial stress, and oxidized lipid content, a
marker of ferroptosis, was unchanged compared to control cul-
tures (Fig. 2G). Similarly, Mic60 depletion only modestly affected
mitochondrial apoptosis, as quantified by caspase (DEVDase)
activity (Fig. 2H) or hypodiploid DNA content and flow cytome-
try (SI Appendix, Fig. S4E). Finally, no significant differences in
necroptotic cell death were observed in control or Mic60-silenced
cells over a 3-d (Fig. 2I) or 5-d culture (SI Appendix, Fig. S4F), by
analysis of plasma membrane integrity and light microscopy.

Mic60 Depletion Induces a Unique Innate Immunity and Cytokine/
Chemokine Gene Signature. Next, we looked at potential mecha-
nisms of cellular adaptation in Mic60-low tumors. By RNA
sequencing (RNA-Seq), Mic60 silencing induced unique tran-
scriptional changes in PC3 cells with upregulation of a type I
interferon (IFN) response and cytokines/chemokines reminiscent
of a senescence-associated secretory phenotype (SASP) (Fig. 3A)
(24). The Mic60 transcriptome activated in these settings also
comprised PI3K/Akt signaling (see below) as well as pathways of
genomic integrity (NER), endoplasmic reticulum stress, unfolded
protein response (UPR), pattern recognition (RIG-1), and cyto-
skeletal (ARP-WASP) remodeling (Fig. 3B). In contrast, Mic60
depletion suppressed eIF2α signaling (Fig. 3B and see below).

In validation experiments, Mic60-depleted cells upregulated
SASP-like cytokines (IL6, IL8, IL18, and IL1α), chemokines
(CXCL2, CXCL3), protease (MMP13), and growth factor mod-
ulators (IGFBP7, IGFBP3) (SI Appendix, Fig. S5A), as well as
effectors of IFN signaling, IFIT1, IFIT3, MX1, OAS1, ISG15,
and IFITM1 (SI Appendix, Fig. S5B) by RT-PCR. IL23 and
MMP1 were not affected (SI Appendix, Fig. S5A). Similar
results were obtained at the protein level, as Mic60 silencing
increased the expression of MX2 and MMP13 by Western blot-
ting (SI Appendix, Fig. S5C) and heightened the release of cyto-
kines (IL6, IL8, CXCL10), protease (MMP13), and IFNs
(IFNα and IFNβ) in the cell supernatant compared to control
transfectants (SI Appendix, Fig. S5D). Finally, TCGA analysis
demonstrated that all 52 IFN/SASP-like genes of the Mic60
transcriptome were significantly upregulated in Mic60-low
tumors of the head and neck, brain (GBM), colon, rectum, kid-
ney, and thyroid compared to normal tissues (Fig. 3C).

Mechanistically, siRNA silencing of STING (SI Appendix,
Fig. S5E), a key regulator of mitochondrion-directed innate
immunity, abolished the increase in cytokine mRNA levels after
Mic60 loss (Fig. 3D). In addition, Mic60 depletion was accom-
panied by an increased phosphorylation of STAT1 (Ser727) and
extracellular release of HMGB1 (SI Appendix, Fig. S5F), which
are two effectors of IFN signaling. In contrast, senescence-
associated β-galactosidase staining was unchanged in control or
Mic60-depleted cultures (Fig. 3E).

Mic60 Regulation of Tumor Cell Invasion and Metastasis. SASP sig-
naling has been associated with increased tumor cell invasion and
metastasis (25). Accordingly, Mic60 depletion changed the mor-
phology of PC3 cells to a flattened, elongated, and spindle-shaped
appearance, characterized by rearrangement of the actin cytoskel-
eton and redistribution of mitochondria to the cortical cytos-
keleton (Fig. 4A). This was associated with reduced cellular
roundness, increased surface area (Fig. 4B), and the appearance
of epithelial-mesenchymal transition (EMT) markers, including
E- and N-cadherin switch, and upregulation of vimentin, SLUG,
and SNAIL (Fig. 4C). Functionally, Mic60 depletion enhanced
FA turnover (SI Appendix, Fig. S6A), increasing the fraction of
new and decayed FA, while reducing stable FA (SI Appendix, Fig.
S6B). This resulted in a greater speed of single-cell movements,
longer distance traveled by individual cells (Fig. 4D), and acceler-
ated directional cell motility in a “wound” closure assay, shorten-
ing the half-time (t1/2) of wound closure from 16.3 h to 6.3 h (SI
Appendix, Fig. S6 C and D). In addition, silencing of Mic60
increased tumor cell invasion across Matrigel (Fig. 4E and SI
Appendix, Fig. S6E), whereas re-expression of Mic60 complemen-
tary DNA (cDNA) in these settings normalized Matrigel invasion
(Fig. 4F). As for signaling requirements, Mic60 silencing
increased the phosphorylation of Focal Adhesion Kinase (FAK)
(SI Appendix, Fig. S6F), and FAK targeting by siRNA (SI
Appendix, Fig. S6G) or a small-molecule inhibitor (FAKi) normal-
ized FA dynamics (SI Appendix, Fig. S6B) and restored the single-
cell motility of PC3 (SI Appendix, Fig. S6 H and I) or LN229 (SI
Appendix, Fig. S6 J and K) cells to levels of control transfectants.
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Although impaired in primary tumor growth (Fig. 2F), superfi-
cial flank tumors of Mic60-depleted PC3 cells gave rise to
increased metastatic dissemination to the lungs of immunocom-
promised mice (Fig. 4G). As a second, independent model of
metastasis, we injected control or Mic60-depleted PC3 cells in the
spleen of immunocompromised animals and looked at liver
metastasis after 11 d. Here, Mic60-silenced PC3 cells generated
more numerous and larger liver metastases compared to controls
(Fig. 4 H and I). Based on these data, we next looked at matched
patient samples of primary and metastatic LUAD. In this compar-
ison, Mic60 mRNA levels increased in metastases compared to
the primary tumor (Fig. 4J, Top) and the nonneoplastic lung tissue
(Fig. 4J, Bottom), suggesting that Mic60 becomes re-expressed at
established metastatic sites to support tumor cell proliferation.

Regulation of Mitochondrial Dynamics and Cell Movements by
Mic60. The mechanism(s) underlying increased tumor cell
motility after Mic60 targeting were next investigated. Despite
the loss of mitochondrial fitness, Mic60 depletion stimulated
mitochondrial dynamics in LN229 cells (SI Appendix, Fig. S7 A
and B) and less consistently in other tumor types, resulting in
higher rates of mitochondrial fission (SI Appendix, Fig. S7C).
Mitochondrial fusion was less affected (SI Appendix, Fig. S7 B
and C). As a result, Mic60-depleted cells exhibited heightened
subcellular mitochondrial trafficking, with a longer distance

traveled by individual mitochondria (SI Appendix, Fig. S7D)
and increased accumulation of mitochondria at the cortical
cytoskeleton of LN229 and PC3 cells compared to controls (SI
Appendix, Fig. S7 E and F).

Mechanistically, siRNA silencing of mitochondrial GTPase
RHOT1 or RHOT2 (SI Appendix, Fig. S8A), which mediate
mitochondrial trafficking in tumors (26), normalized the speed
of mitochondrial movements and the distance traveled by indi-
vidual mitochondria after Mic60 depletion (SI Appendix, Fig.
S8B). Buffering oxidative stress gave similar results, as the
reconstitution of Mic60-silenced cells with antioxidant Prx3
(27) corrected the increase in single-cell motility (SI Appendix,
Fig. S8C), lowered the speed of cell movements and the total
distance traveled by individual cells to levels of control cultures
(SI Appendix, Fig. S8D), and reversed the increase in Matrigel
invasion in these settings (SI Appendix, Fig. S8E). Reconstitu-
tion of Mic60-silenced cells with a mitochondrial-targeted
superoxide scavenger, MitoTempo, also normalized tumor cell
invasion to control levels (SI Appendix, Fig. S8F).

Adaptive GCN2-Akt Signaling as Therapeutic Vulnerability in Mic60-
low Tumors. Finally, we asked if adaptive mechanisms activated
in Mic60-low tumors exposed actionable therapeutic vulner-
abilities. In a small-molecule drug screen, antagonists of Akt
(Akt inhibitor VIII) or General Control Nonderepressible 2
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kinase GCN2 (GCN2-IN-1) killed Mic60-silenced PC3 cells
more efficiently than control cultures (Fig. 5 A and B). Natural
compounds, podophyllotoxin and curcumin, p53 reactivator
NSC319726, Bcl2 pathway inhibitor, Navitoclax, P glycoprotein
antagonist, Tariquidar, multi-CDK inhibitor, NVP-LCQ195 and
histone lysine-specific demethylase-1 inhibitor, and SP2509 also
showed preferential killing against Mic60-low PC3 cells (Fig.
5B). Consistent with these data, Mic60 silencing increased Akt
phosphorylation (SI Appendix, Fig. S9A), with downstream acti-
vation of Akt targets PDK1, BAD, p70S6K, and p27 quantified
in a phosphoarray screen (SI Appendix, Fig. S9 B and C). Func-
tionally, treatment with Akt inhibitor VIII or another small
molecule Akt antagonist, MK2206, suppressed proliferation
selectively of Mic60-depleted PC3 cells compared to control
transfectants (SI Appendix, Fig. S9D).

GCN2 is a critical eIF2α kinase in the integrated stress
response (ISR). Accordingly, ISR effectors ATF4, ATF6,
eIF2AK3, and calreticulin were selectively upregulated after
Mic60 depletion by RNA-Seq analysis (Fig. 5C). This was
accompanied by an increased expression of ATF4 and ATF6 by
Western blotting (Fig. 5D) and translocation of transcriptionally
active ATF4 to the nucleus of Mic60-low PC3 cells compared to
parental cultures (Fig. 5E). Consistent with these data, Mic60
silencing induced a strong phosphorylation of eIF2α in PC3 cells,
whereas total eIF2α was unaffected (Fig. 5D). Bioinformatics
analysis of the Ivy Glioblastoma Atlas Project (https://
glioblastoma.alleninstitute.org) demonstrated that ISR regula-
tors EIF2AK2, EIF2A, ATF4, XBP1, and DDIT3 were differen-
tially increased in Mic60-low GBM and spatially localized within
“pseudopalisades,” which are hypoxic hypercellular structures
associated with greater invasiveness (Fig. 5F). Furthermore, high

levels of ISR effectors DDIT3 and ATF4 correlated with short-
ened patient survival in Mic60-low GBM and kidney cancer
(Fig. 5G) but not Mic60-high BRCA and LUAD (SI Appendix,
Fig. S9E). Functionally, a small-molecule GCN2 inhibitor
(GCN2-IN-1) inhibited proliferation (pLKO, 3.3 × 105 ± 0.62 ×
105 cells; shMic60, 1.95 × 105 ± 0.4 × 105 cells; P = 0.009) and
activated Annexin V-associated apoptosis (Fig. 5H) and caspase-
dependent cell death (pLKO, 8.4 ± 6.3%; shMic60, 23.1 ± 5.6%;
P = 0.04) preferentially in Mic60-silenced PC3 cells compared to
control cultures. As an independent approach, siRNA silencing
of GCN2 (SI Appendix, Fig. S9F) also increased cell death selec-
tively in Mic60-silenced cultures (SI Appendix, Fig. S9G).

Discussion
In this study, we have shown that Mic60, an essential scaffold
of mitochondrial structure, is heterogeneously expressed and
often reduced in human cancer compared to normal tissues. As
modeled in tumor cell lines, even a partial reduction in Mic60
levels was sufficient to induce an acute loss of mitochondrial fit-
ness, leading to bioenergetics defects, cellular starvation, and
oxidative stress. Despite the activation of quality-control meas-
ures of autophagy and mitophagy, tumor cells harboring such
extensively damaged, ghost mitochondria managed to evade
cell death, slowed down cell proliferation, and activated mito-
chondrial dynamics to fuel increased cell invasion and metasta-
sis. This response was accompanied by the expression of an
IFN/SASP-like transcriptome, as well as adaptive activation of
GCN2/Akt survival signaling, which provided an actionable
therapeutic target in these metastasis-prone tumors.

The basis for the heterogeneous expression of Mic60 in can-
cer remains to be elucidated. This may result from mitochondrial
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and/or environmental stress conditions associated with tumor
growth, including defective oxidative phosphorylation (28), or
alternatively, mechanisms of tumor evolution, as suggested here
by Mic60 downregulation during differentiation of patient-
derived GBM neurospheres.

Irrespectively, decreased Mic60 levels generate subpar, ghost
mitochondria that bear striking similarities to the mitochondrial
defects seen in aging (29). Consistent with this parallel, in vivo
models of aging have been associated with reduced Mic60
levels (30), heightened SASP signaling (31), mitochondria-to-
nuclei retrograde gene expression (32), and a general, proin-
flammatory environment (33). However, key differences
between aged and Mic60-low mitochondria were also noted
(31). Aside from distinct profiles of cytokine induction, Mic60-
depleted tumor cells were negative for senescence-associated
β-galactosidase and did not undergo permanent G1 cell cycle
arrest, and gene expression changes in these settings were unre-
lated to p53 status.

A unique adaptive response of Mic60-low tumors was the
upregulation of a nuclear transcriptome combining a type I
IFN response characteristic of innate immunity (34) and cyto-
kines/chemokines reminiscent of SASP signaling (25). Mecha-
nistically, mitochondrial stressors induced by Mic60 loss, such
as ROS (35), loss of membrane integrity (36), and energy

starvation (37), have all been associated with mitochondria-to-
nuclei retrograde gene expression (38). Activation of a type I
IFN response in these settings fits well with a key role of mito-
chondria in innate immunity (39), in line with the activation of
STAT1 and the requirement of STING for cytokine production
observed here. While there is evidence that SASP-associated
cytokine/chemokine signaling promotes tumor growth, favors an
immunosuppressive microenvironment, and enhances metastasis
(25), the role of a type I IFN response in cancer is likely time-
and context-specific. Whereas acute IFN signaling has been asso-
ciated with antitumor immunity and improved treatment
responses (34), sustained inflammatory conditions are protu-
morigenic (40) and chronic IFN stimulation enables myeloid-
directed immunosuppression (41) and propagation of cancer
stemness (42).

Consistent with this scenario, Mic60-low tumors switched
from a proliferative to a highly motile and prometastatic pheno-
type, contributed by EMT, sustained FAK phosphorylation, and
heightened mitochondrial dynamics (8). Described as pheno-
type switching (43), this reversible transition between prolifera-
tive and migratory states has been proposed as a potential
escape mechanism for tumor cells to leave a stress-laden, unfa-
vorable microenvironment and colonize distant sites, i.e.,
metastasis (44). Regulators of mitochondrial dynamics, such as
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syntaphilin (27), FUNDC1 (45), and now Mic60 depletion (this
study), are important mediators of phenotype switching,
reprogramming oxidative bioenergetics, and redox balance to
promote heightened cell migration and invasion at the expense
of cell proliferation. Consistent with this model, oxidative stress
generated in Mic60-low tumors was a key mediator of increased
mitochondrial trafficking and tumor cell movements, in keeping
with a central role of ROS in tumor cell motility (46), EMT,
and metastasis (47).

Despite an extensive loss of mitochondrial fitness, activation
of autophagy/mitophagy, and high ROS production, Mic60-low
tumor cells managed to persist likely through the activation of
compensatory cell survival mechanisms. The induction of
GCN2/ISR as well as Akt signaling (48, 49) observed in these
settings appears ideally poised to adjust metabolism under
stress (50, 51), preserve mitochondrial integrity (22, 52) and
oppose cell death (53, 54). Although correlating with shortened
patient survival, a potential dependence of Mic60-low tumors
to GCN2/ISR/Akt adaptive signaling was therapeutically
exploitable, and proof-of-concept studies shown here demon-
strated that pharmacologic or genetic targeting of this pathway
can restore mitochondrial cell death and inhibit proliferation
selectively of Mic60-low tumor cells.

In summary, we have shown that persistent, acutely degraded
ghost mitochondria are major signaling hubs in cancer, driving
multiple, adaptive responses of nuclear gene expression, ISR
activation, and suppression of mitochondrial cell death to enable
metastatic competence. This reinforces the role of mitochondrial

reprogramming as an important therapeutic target in cancer
(55), especially in hard-to-treat and metastasis-prone malignan-
cies with currently limited therapeutic options.

Materials and Methods
Patient Samples. Primary patient samples arranged in a universal TMA were
examined for differential Mic60 expression by IHC, as described (56). Archival
tissues and clinical records were obtained from Fondazione Istituto di Ricovero
e Cura a Carattere Scientifico (IRCCS) Ca’Granda Hospital inMilan, Italy, under
a protocol approved by the Institutional Review Boards (IRBs) of Fondazione
IRCCS Ca’ Granda-Ospedale Maggiore Policlinico (code 179/2013). Because of
the retrospective nature of this study and the use of data anonymization prac-
tices, the need for written informed consent was waived. For the glioma
series, fresh-frozen material was available from Fondazione IRCCS Ca’ Granda
Hospital under IRB protocol 275/2013, and written informed consent from all
patients was obtained before surgery. Clinically annotated patient samples
with a confirmed histologic diagnosis of PDAC (n = 5) were obtained from the
archival database of the Department of Pathology at Yale New Haven Hospi-
tal upon approval from the Yale University IRB and examined for intratumoral
heterogeneity ofMic60 expression by IHC.

Proteomics. Immune complexes of Mic60 or nonbinding immunoglobulin G
(IgG) were precipitated from PC3 cells and separated by sodium dodecyl sul-
phate gel electrophoresis for ∼5 mm followed by fixing and staining with
colloidal Coomassie. The region of the gel-containing proteins was excised
and digested with trypsin. Tryptic peptides were analyzed by liquid
chromatography-tandemmass spectrometry (LC-MS/MS) on a Q Exactive high-
field (HF) mass spectrometer (Thermo Scientific) coupled with a Nano-
ACQUITY ultra performance liquid chromatography (UPLC) system (Waters).
Samples were injected onto a UPLC Symmetry trap column (180-μm inner
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diameter [i.d.] × 2 cm packed with 5-μm C18 resin; Waters), and tryptic pepti-
des were separated by RP-HPLC on a BEH C18 nanocapillary analytical column
(75-μm i.d. × 25 cm, 1.7-μmparticle size;Waters) using a 90-min gradient. Eluted
peptides were analyzed in data-dependent mode where themass spectrometer
obtained full MS scans from 400 to 2,000 m/z at 60,000 resolution. Full scans
were followed by MS/MS scans at 15,000 resolution on the 20 most abundant
ions. Peptide match was set as preferred, and the exclude isotopes option and
charge-state screening were enabled to reject singly and unassigned charged
ions.MS/MS spectrawere searched usingMaxQuant 1.6.5.0 (57) against the Uni-
Prot human protein database (October 2017). MS/MS spectra were searched
using full tryptic specificity with up to two missed cleavages, static carbamido-
methylation of Cys, variable oxidation of Met, and variable protein N-terminal
acetylation. Consensus identification lists were generated with false discovery
rates of 1% at protein and peptide levels. Undetected protein intensity values
of 0 were floored to the value of 106 (minimum nonzero detected intensity was
1,233,300), and a total of 1,534 detected proteins were taken for further anno-
tation analysis. Proteins were then annotated as mitochondrial related using
the MitoCarta 2.0 database, and 119 mitochondrial proteins detected with at
least 5 peptides at an intensity over 10-fold versus IgG control were considered
asMic60-associated proteins.

Mitochondrial Time-Lapse Videomicroscopy. Cells (2 × 104) growing on high
optical quality glass-bottom 35-mm plates (MatTek Corporation) were incu-
bated with 100 nM Mitotracker Deep Red FM dye for 1 h and imaged on a
Leica TCS SP8 × inverted laser scanning confocal microscope using a 63×
1.40NA oil objective as described (58).

Single-Cell Motility. Cells (2 × 104) were seeded in 4-well Ph+ Chambers (Ibidi)
in complete growth medium and allowed to attach for 16 h at 37 °C. Time-
lapse videomicroscopy was performed over 10 h, with a time-lapse interval of
10 min. Stacks were imported into Image J Fiji software for analysis, and at
least 10 to 20 cells per condition were tracked using the Manual Tracking plu-
gin for Image J Fiji. Tracking data were exported into the Chemotaxis and
Migration Tool v. 2.0 (Ibidi) for graphing and calculation of the mean and SD
of speed and accumulated distance of movement. For directional cell migra-
tion, wounds were made in monolayers of PC3 cells using a 10-μL pipette tip.
Cell debris were washed off, and cultures were maintained in complete
growth medium containing 10% fetal bovine serum at 37 °C and 5% CO2.
Time-lapse imaging of migrating cells was performed using a TE300 inverted
microscope (Nikon) equipped with an incubator set at 37 °C, 5% CO2, and
95% relative humidity. Each image was acquired using a 10× objective of the
same fields at each 10-min interval for a total of 24 h.

Small-Molecule Drug Screening. Cell viability screening against the MedChem
Express anti-cancer library (1,820 compounds) was performed using CellTiter-
Glo (Promega). PC3 cells stably transduced with pLKO or Mic60-directed
shRNA (shMic60) were maintained in complete media, trypsinized, and plated
(500 cells/well) in 40 μL of complete medium the day before the experiment in
white, clear-bottom 384-well plates. A total of 50 nL of test compound was
added to each well using the Janus MDT Nanohead (Perkin-Elmer). Each com-
pound was screened at a final concentration of 10, 1, 0.1, and 0.01 μM. After a
72-h incubation at 37 °C in the presence of 5% CO2, 20 μL of the CellTiterGlo
reagent was added to each well. After 15 min, luminescence was measured
using the Envision Multimode plate reader (PerkinElmer). The raw data were
normalized to % inhibition, where 0% is the relative light units (RLU) in the
presence of dimethylsulfoxide, and 100% is the RLU in the presence of 1 μM
bortezomib. Estimated half maximal inhibitory concentration (IC50) values for
each compound were determined using nonlinear regression fits on the data
to a one-site bindingmodel in XlFit (ID Business Solutions Ltd. [IDBS]). Because
only 4 data points were used in this calculation, the top and bottom of the
curve was fixed to 100% and 0%, respectively, with a constant slope value
of 1.

Statistical Analysis. Data are expressed as mean ± SEM or mean ± SD of
multiple independent experiments or replicates of representative experi-
ments out of a minimum of two or three independent determinations.
Two-tailed Student’s t test or Wilcoxon rank sum test was used for two-
group comparative analyses. For multiple-group comparisons, ANOVA or
Kruskal–Wallis test with post hoc Bonferroni’s procedure were applied. All
statistical analyses and graphing were performed using GraphPad soft-
ware package (Prism 9.0) for Windows. A P value of <0.05 was considered
statistically significant.

Data Availability. All study data are included in the article and/or SI Appendix.
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