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Introduction

Age-related macular degeneration (AMD), a progressive 
disease affecting the central retina, is the leading cause 
of irreversible blindness in industrialized countries and 
accounts for 8.7% of blindness worldwide (1). Age is the 
leading risk factor for development of AMD, affecting 
4.8% of people ages 65 and older, and up to 25% of people 
by age 80 (2,3). In the early stages of AMD (also known 
as “dry” AMD), the clinical presentation can range from 

asymptomatic to blurred central vision that impairs daily 
activities. It is pathologically characterized by thickening 
of Bruch’s membrane due to yellow, subretinal deposits 
of lipid-rich proteins called drusen (4,5). The buildup of 
drusen disrupts both fluid efflux across Bruch’s membrane 
and cholesterol metabolism, causing oxidative stress on the 
RPE and accumulation of lipid peroxidation byproducts 
(6,7).  Dry AMD can remain stable and minimally 
symptomatic for many years. However, 20.2% of cases 
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progress to advanced disease which contributes to 90% of 
AMD-related blindness (8-10).

Advanced AMD can be classified into two subtypes: 
late-stage dry AMD [known as geographic atrophy (GA)], 
and neovascular (“wet”) AMD (nAMD). GA results 
from progressive, irreversible loss of photoreceptor and 
retinal pigment epithelium (RPE) cells by the mechanism 
described above (11). Wet AMD is believed to arise from 
abnormal blood vessel growth from the choroid into the 
normally avascular subretinal and sub-RPE layers, a process 
known as choroidal neovascularization (CNV) (3,5). CNV 
is thought to be a multifactorial consequence of drusen 
accumulation, disrupted choroidal blood supply to the 
RPE, and hypoxic conditions that induce the expression of 
angiogenic signaling proteins (5). If untreated, nAMD can 
lead to retinal exudation, sub-macular hemorrhage, and 
subretinal fibrosis that significantly impairs vision.

The treatment of nAMD has significantly advanced 
since the era of thermal laser photocoagulation and 
photodynamic therapy (PDT) two to three decades ago (12).  
Currently, intravitreal anti-vascular endothelial growth 
factor (VEGF) injection is the gold-standard therapy that 
can maintain or improve visual acuity in the majority of 
patients with nAMD. However, to date, no treatment exists 
for progression of dry AMD or GA (13).

This literature review aims to highlight standard-of-
care and clinical trial evaluation of drug delivery routes for 
the treatment of wet AMD, and therapies currently being 
evaluated for both neovascular and non-neovascular AMD 
(Figures 1,2). Numerous drug targets and therapeutic routes 
are currently being explored and exciting advances are 
currently under clinical investigation (14-17). The goal of 
our review is to summarize therapies that are currently in 
clinical use, therapies under investigation in clinical trials, and 
therapeutics that did not meet their clinical trial endpoint.

The review was conducted using Pubmed to identify 
peer-reviewed journal articles using the keywords age-
related macular degeneration, anti-vascular endothelial 
growth factor, ocular gene therapy, and other related search 
terms between the years of 1990 to 2020. ClinicalTrials.
gov was used to gather data on current clinical trials not yet 
published in the literature. We present the following article 
in accordance with the Narrative Review reporting checklist 
(available at http://dx.doi.org/10.21037/aes-21-8).

Intravitreal therapies

Intravitreal injection (IVI) of anti-VEGF agents is currently 

the standard of care for nAMD (18). This delivery route has 
become well-established in vitreoretinal practices and is safe 
and efficacious. IVI is a simple, minimally-invasive delivery 
method that is used to provide efficient, in-office treatment. 
Topical anesthesia is sufficient for the majority of patients, 
though subconjunctival anesthetic can also be administered. 
A 30-gauge needle (or smaller) is typically used to 
administer 0.05cc of drug, although up to 0.1cc of fluid can 
be safely tolerated during IVI with minimal transient rise in 
intraocular pressure (19,20).

Despite their efficacy, IVIs still carry a risk for visually-
significant complications that increases with the number of 
injections (21). Risks include endophthalmitis, intraocular 
inflammation, rhegmatogenous retinal detachment (RRD), 
and IOP elevation (22-24). Not only do these complications 
increase with the number of injections, but the four to eight 
week anti-VEGF injection schedule typically required to 
control exudation poses a significant treatment burden 
on the patient, provider, and entire healthcare system. 
Consequently, the frequency of injections administered 
in clinical trials is often greater than the frequency in 
real-world clinical practice. Additionally, the course of 
disease is variable between patients, and those with greater 
neovascular activity or bilateral disease may require more 
frequent visits which may lead to treatment fatigue. 
These burdens, in part, account for the discrepancy in 
visual outcomes of nAMD patients between clinical trials 
versus observational studies, with the former showing a 1 
to 2 letter-line improvement (25-29) and the latter only 
approximately 1 letter-line improvement (30-34).

Steroid therapies

Intravitreal corticosteroids are commonly used as a 
standalone therapy for various retinal diseases, including 
diabetic macular edema (DME), cystoid macular edema 
(CME), uveitis, and retinal vascular occlusion (RVO) (35). 
Steroids induce the production of various proteins that 
inhibit the release of arachidonic acid, a critical player in 
the expression of pro-inflammatory markers, from cellular 
plasma membranes (35,36). Among many cellular growth 
factors that have been isolated in ocular neovascularization, 
VEGF has been shown to play a key role in the pathogenesis 
of nAMD (8,37). Steroids lead to downstream inhibition of 
VEGF expression and decreased blood vessel permeability, 
and were thus thought to have therapeutic potential for 
treatment of nAMD. However, studies have failed to show 
steroid monotherapy to be beneficial, and it is therefore, 
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Figure 1 Summary of treatments discussed for neovascular (“wet”) age-related macular degeneration (AMD).

Treatments for 
wet AMD

Intravitreal 
therapies

Dexamethasone implant 
in conjunction with  
anti-VEGF therapy

Bevacizumab  
(Avastin, Lytenava)

full-length, humanized 
anti-VEGF-A monoclonal 

IgG1 antibody 

Ranibizumab (Lucentis)
humanized anti-VEGF-A 

antibody fragment

Triple therapy 
(dexamethasone, 

photodynamic therapy, 
bevacizumab)

Pegaptanib (Macugen)
anti-VEGF RNA aptamer 

that selectively binds 
VEGF-165 

Aflicbercept (Eylea)
chimeric fusion protein that 

binds all isoforms of VEGF-A, 
plus VEGF-B and PIGF

RGX-314
AAV8 vector that delivers 

soluble anti-VEGF Fab 
protein

CLS-AX

injectable suspension of 
axitinib, a tyrosine kinase 
inhibitor (TKI) that disrupts 

VEGF signaling

Bevasirinib

AGN211745

anti-angiogenic siRNA 
therapeutic designed to 
silence the VEGF gene 

Brolucizimab (Beovu)
humanized, single-chain 
variable fragment that 

binds VEGF-A 

RGX-314
AAV8 vector that delivers 

soluble anti-VEGF Fab 
protein

Ranibizumab PDS
humanized anti-VEGF-A 

antibody fragment

Abicipar pegol

anti-angiogenic siRNA that 
utilized RNAi technology to 
target VEGFR-1 in patients 

with CNV

high-affinity VEGF-A binder 

ADVM-022
AAV2 capsid that delivers 

cDNA encoding aflibercept 
protein

OTX-AFS
extended-release 

suprachoroidal formulation 
of aflibercept

OTX-TKI

biodegradable implant that 
uses a  hydrogel to deliver 
intravitreal TKIs to disrupt 

downstream VEGF signaling 

Oral anti-VEGF/PDGF 
formulation 

Vitamins (C and E), 
carotenoids (lutein and 

zeaxanthin), and minerals 
(zinc and copper)
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Anti-VEGF 
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Anti-VEGF 
gene therapy

Anti-VEGF 
gene therapy

Anti-VEGF 
gene therapy

Port Delivery 
System (PDS)

Hydrogels

Small-interfering 
RNA (siRNA)

Designed Ankyrin 
repeat proteins

X-82

AREDS2

Subretinal 
therapies

Suprachoroidal 
therapies

Nanotechnology  
and Drug Delivery 

Systems

Oral Therapies
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Figure 2 Summary of treatments discussed for non-neovascular (“dry”) age-related macular degeneration (AMD).

Treatments for 
dry AMD

Complement 
cascade 
inhibitors Eculizumab

OT-551 

Avacincaptad pegol 
(Zimura) 

MC-1101

human 
embryonic stem 

cells (hESCs) 

induced 
pluripotent cells 

(iPSCs) 

human umbilical 
tissue-derived 
cells (hUTCs)

AAVCAGsCD59 (HMR59) 

small, lipophilic molecule 
with antioxidant properties

FHTR2163

vasodilator with antioxidant 
and anti-inflammatory 

properties

RGX-314

AAV2 vector that delivers 
soluble CD59 gene product 

to the RPE 

IgG1 monoclonal antibody 
targeting HtrA1

AAV8 vector that delivers 
soluble anti-VEGF Fab 

protein

Pegcetacoplan (APL-2) 

Lampalizumab

synthetic peptide 
embedded in a linear, 
polyethylene glycol 

polymer that inhibits C3

antigen-binding fragment 
against Factor D

monoclonal antibody to 
C5

pegylated RNA aptamer 
that inhibits C5 

C3 inhibitors

C5 inhibitors

Factor D 
inhibitors

Gene therapy

High-temperature 
requirement A 

serine peptidase 
1(HtrA1) inhibitors

Gene therapy

Other 
intravitreal 
therapies

Subretinal 
therapies

Eye drop 
therapies

Stem cell 
therapies

not recommended (36,38).
A few smal l  randomized tr ia l s  have  eva luated 

adjunctive steroid administration in eyes resistant 
to  ant i-VEGF monotherapy.  Despite  anatomical 
improvements in retinal fluid absorption, no benefit 
for visual  acuity was seen in patients receiving a 
dexamethasone implant in conjunction with anti-
VEGF therapy (aflibercept or ranibizumab) compared 
to controls receiving anti-VEGF therapy alone (39).  

However, older literature has shown that triple therapy 
consisting of PDT, dexamethasone, and bevacizumab can 
improve visual acuity, stabilize vision, and potentially reduce 
the number of anti-VEGF injections required (40-42).  
Statistical significance failed to be proven due to small 
sample sizes, and given the development of new therapies 
and efficacy of current anti-VEGF monotherapy, triple 
therapy is uncommon for the treatment of nAMD in clinical 
settings today.
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Anti-VEGF intravitreal therapies

The first systemically administered anti-VEGF agent 
available on the market was bevacizumab (Avastin®), a 
full-length, humanized anti-VEGF-A monoclonal IgG1 
antibody that was FDA approved in 2004 for the treatment 
of metastatic colon cancer (43). Later that year, pegaptanib 
(Macugen®), an anti-VEGF RNA aptamer that selectively 
binds VEGF-165 with high affinity, was the first ocular anti-
VEGF therapy FDA approved for nAMD treatment (44).  
Pegaptanib decreased the rate of visual-acuity loss, 
progression to blindness, and the number of letters lost by 
50% after 1 year of treatment (45). Shortly thereafter, an 
open-label, uncontrolled clinical study found that systemic 
infusion of bevacizumab was also efficacious for nAMD 
treatment (46). Clinicians began using off-label bevacizumab 
IVIs which were later shown to improve functional visual 
outcomes in nAMD patients (47). The use of pegaptanib 
was consequently discontinued by many clinicians due to 
the availability of more effective treatments.

The off-label use of bevacizumab was efficacious, but 
researchers believed a treatment with a smaller molecular 
weight than bevacizumab [149 kilodaltons (kDa)] could 
potentially reach the choroid more efficiently. Ranibizumab 
(Lucentis®, 48 kDa), a humanized anti-VEGF-A antibody 
fragment that utilizes an affinity-matured Fab region 
derived from the same parent molecule as bevacizumab (48),  
was subsequently developed specifically for intravitreal 
nAMD treatment and FDA approved in 2006. Ranibizumab 
was the first ocular anti-VEGF drug to significantly 
improve visual acuity and prevent vision loss in nAMD 
patients after one year of monthly treatment (25).

In 2011, The Comparison of Age-Related Macular 
Degeneration Treatment Trials (CATT) found that 
intravitreal bevacizumab and ranibizumab treatment had 
equivalent effects on functional visual outcomes (49). 
Minor differences in visual acuity improvement were seen 
between patients receiving as-needed treatments of either 
drug compared to those receiving monthly treatments 
after both 1 and 2 years (27). That same year, the FDA 
approved another intravitreal nAMD treatment: aflibercept 
(Eylea®), a chimeric fusion protein consisting of the second 
immunoglobulin (Ig) domain of VEGF receptor (R)-1, 
third Ig binding domain of VEGFR-2, and Fc region of 
human IgG1 (50). Aflibercept uniquely binds all isoforms 
of VEGF-A, in addition to VEGF-B, and placental growth 
factor (PIGF) which is selectively expressed in pathological 
angiogenic tissue (51).

While ranibizumab and aflibercept have been FDA 
approved for wet AMD, off-label bevacizumab remains a 
common treatment choice due to its significantly lower cost 
and non-inferior clinical efficacy (bevacizumab is 40 times 
cheaper than ranibizumab and aflibercept) (52). When 
comparing ranibizumab and aflibercept in treatment-naïve 
nAMD patients, no significant differences were found 
in visual acuity after 1 year of IVI (53). Similar anatomic 
response rates for macular thickness and subretinal fluid 
have been found between bevacizumab, ranibizumab, 
and aflibercept (54). Taken together, the choice of anti-
VEGF therapy can usually be decided on an individual 
basis between providers and patients, with particular 
consideration regarding out-of-pocket-cost and treatment 
administration frequency.

An ophthalmic formulation of bevacizumab, ONS-
5010 (Lytenava®), is currently being investigated in the 
NORSE 2 Phase III clinical trial (55). The NORSE 1 
Phase II trial showed no statistical differences in eyes 
treated with intravitreal ONS-5010 compared to eyes 
treated with intravitreal ranibizumab in safety measures, 
visual acuity, and letter-line improvement after 11 months 
of treatment. Results from the Phase III trial are expected 
in 2021, and if successful, ONS-5010 will be the first FDA-
approved formulation of bevacizumab to be used for retinal 
indications.

Brolucizimab is the most recent anti-VEGF therapy to 
be FDA approved in 2019. With a molecular weight of only 
26 kDa, this humanized, single-chain variable fragment 
binds VEGF-A with greater bioavailability than previous 
therapies (56). Visual acuity at 2 years was shown to be 
non-inferior when administered at every 3 month intervals 
as compared to bimonthly aflibercept injections (57). 
However, reports of occlusive vasculitis after brolicuzimab 
injection have led to apprehension in the ophthalmology 
community in adopting its use (58).

Anti-VEGF intravitreal gene therapy

Gene therapy has recently emerged as a viable treatment 
method for monogenic hereditable dystrophies and is 
undergoing investigation for retinal degenerative diseases 
such as AMD. In the latter case, the goal of intravitreal gene 
therapy is to offer a long-lasting, single-dose treatment 
that has sustained therapeutic effect through creating a 
protein biofactory (20). The eye is a particularly good 
candidate for gene therapy for several reasons: (I) it is easily 
accessible, (II) treatment can be monitored using non-



Annals of Eye Science, 2021Page 6 of 20

© Annals of Eye Science. All rights reserved. Ann Eye Sci 2021;6:33 | https://dx.doi.org/10.21037/aes-21-8

invasive technology, such as optical coherence tomography 
(OCT), (III) ocular immune privilege reduces the risk 
of significant host-immune response, (IV) an effective 
therapeutic dose may be achieved with a smaller quantity 
of viral vector, and (V) systemic exposure is limited due to 
anatomical barriers inherent to the eye (59,60). Luxturna® 
(voretigine neparvovec-rzyl) was the first ocular gene 
therapy to be FDA approved in 2017 for treatment of Leber 
congenital amaurosis type 2 (LCA2) (61), pioneering the era 
of gene therapy for inherited and acquired ocular diseases 
alike. Luxturna utilizes an adeno-associated virus (AAV)-
based viral vector, a delivery vehicle shared by many other 
ocular gene therapies (62,63), to deliver a functional copy 
of the RPE65 gene (64). Several anti-VEGF gene therapy 
treatments are also being investigated for both dry AMD and 
wet AMD. Table 1 summarizes the different ocular routes of 
administration for gene and non-gene therapies for AMD.

ADVM-022 (Adverum Biotechnologies) is a novel, 
adeno-associated virus (AAV)-based therapy that utilizes 
an AAV2 capsid to deliver cDNA encoding the aflibercept 
protein (65). This therapy is currently being investigated in 
the ongoing phase I OPTIC trial (66). As of June 2020, 2 
cohorts of 6 eyes each have been enrolled in the study and 
have received one IVI of ADVM-022 at 6×1011 vg/eye and 
2×1011 vg/eye, respectively. Complications were limited 
to inflammation related to the injection. No subject has 
required rescue anti-VEGF injection since initial ADVM-
022 treatment, with visual acuity being maintained and 
imaging showing improvements in retinal anatomy across 

all eyes. The efficacy of this treatment is promising, and 
further results are underway. However, several challenges 
inherent to the intravitreal delivery route exist. Intravitreal 
viral vectors are limited in their ability to transduce RPE or 
photoreceptor cells, the most common retinal gene therapy 
targets, due to the physical barriers imposed by the internal 
limiting membrane and retinal layers (67). To overcome 
these physical limitations of IVIs, subretinal delivery of 
gene therapy has also been evaluated as a delivery route for 
ocular gene therapy.

Subretinal (SR) therapies

The SR space offers direct access to the diseased RPE, but 
subretinal delivery is significantly more difficult and invasive 
when compared to IVIs (68). A protocol recently published 
by Davis et al. (69) details the procedure for SR delivery of 
gene therapy as follows: (I) surgical preparation, including 
vector preparation and injection site planning; (II) pars plana 
vitrectomy and induction of a posterior vitreous detachment; 
(III) creation of a retinotomy, and optional creation of a pre-
bleb with balanced salt solution, forming a localized retinal 
detachment between the RPE and photoreceptor layer; and 
(IV) vector injection via a subretinal microcannula into the 
bleb. A limitation of this technique is that only relatively 
small areas of the retina can be treated at a time. Thus, 
multiple retinotomies may be required to treat the desired 
retinal surface area. The procedure poses the typical risks of 
vitreoretinal surgery, including cataract development, retinal 

Table 1 Summary of pros and cons of different treatment delivery routes used for age-related macular degeneration

Route of administration Advantages Disadvantages

Intravitreal Minimally invasive; commonly used; efficient, 
in-office procedure

Increased humoral response to intravitreal gene therapy; 
requires higher dose to achieve therapeutic effect at the outer 
retina or RPE

Subretinal Direct drug delivery to RPE, which is particularly 
useful in gene therapy; greater immune privilege 
when compared to intravitreal injection

Requires PPV and creation of a retinotomy; potentially  
challenging surgical approach that is not yet commonly used; 
longer procedure time; procedure associated complications 
including cataract formation and retinal detachment

Suprachoroidal Does not require creation of a retinotomy; high 
bioavailability in the RPE, sclera, and choroid; 
avoids PPV-associated complications

Novel surgical approach that is not yet commonly used; longer 
procedure time; theoretical increased risk of suprachoroidal 
hemorrhage

Topical (eye drops) Convenient and accessible; non-invasive;  
do not require patient to come to physician’s 
office

Poor bioavailability in the posterior segment; increased  
systemic exposure to the medication

Systemic (oral)

Systemic (intravenous) Minimal risk of ocular complications

IOP, intraocular pressure; RPE, retinal pigment epithelium; RRD, rhegmatogenous retinal detachment.
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detachment, and possible vision loss (69). Additionally, 
vector material may reflux into the vitreous through 
the injection site and lead to formation of an epiretinal 
membrane that can worsen visual outcomes (70). Despite the 
challenges associated with SR drug delivery, it is particularly 
important in certain inherited retinal disorders to target 
the SR space when administering gene or cell therapy. This 
method of drug delivery continues to be explored as an 
important modality for gene therapies.

Subretinal anti-VEGF gene therapy

A current Phase I/IIa trial using RGX-314 (Regenxbio) has 
shown promising results utilizing a novel AAV-8 vector to 
subretinally deliver a soluble anti-VEGF Fab protein (71). 
Five different doses of RGX-314 (3×109, 1×1010, 6×1010, 
1.6×1011, and 2.5×1011 genome copies/eye) were evaluated 
for safety and efficacy in 42 eyes previously treated 
with nAMD therapy. As of August 2020, no immune or 
inflammatory responses beyond what is normally expected 
post-retinal surgery were observed, and all confirmed 
adverse effects during the trial have not been drug-related. 
Cohorts 3 (6×1010 genome copies/eye), 4 (1.6×1011 genome 
copies/eye), and 5 (2.5×1011 genome copies/eye) have shown 
the best results in the study thus far, with a 62.2%, 61.3%, 
and 84.5% decrease seen in annual anti-VEGF injection 
rates respectively.

Suprachoroidal approach

The suprachoroidal space (SCS) is another attractive 
space for drug delivery applied in AMD and other retinal 
degenerations. It has been evaluated as an effective site for 
drug delivery using various molecular and protein-based 
therapies (72-77). Due to its close proximity to the retina 
and RPE, the SCS also offers the potential for low drug 
doses with high bioavailability in the posterior segment (78). 
Drug delivery into the SCS also avoids the risks associated 
with retinal surgeries while potentially offering similar 
immune privilege to SR drug delivery.

Recent clinical trials have shown successful distribution 
of ocular therapies to the SR space via SCS delivery (79). 
Three different SCS delivery methods have been described 
in the literature thus far. Freehand injection using a 
standard hypodermic needle is the simplest approach for 
drug delivery to the SCS: the surgeon advances the needle 
through the sclera and into the SCS at a tangential angle, 
and injects the drug which diffuses within the SCS (80). This 

method has been evaluated in preclinical models but the 
difficulty in reproducible SCS access precludes clinical use. 
Alternatively, a much shorter, 700-μm microneedle has been 
tested for transscleral injection in in-vivo animal models (81)  
and involves a protocol similar to IVI. This technique is 
planned to be incorporated in clinical trials evaluating 
suprachoroidal anti-VEGF gene therapy for nAMD. Lastly, 
a flexible, tunneled microcatheter has been used to allow 
suprachoroidal and suprachoroidal-to-subretinal delivery to 
the posterior pole. The surgeon creates a limbal conjunctival 
peritomy followed by a radial scleral cut down, allowing the 
catheter to enter the SCS and be guided to its target site 
using indirect ophthalmoscopy (82). Preclinical studies have 
shown an acceptable safety profile for these SCS approaches 
without severe adverse events such as suprachoroidal 
hemorrhage (82-86). Clinical trials are also planned using 
tunneled microcatheters for suprachoroidal-to-subretinal 
gene therapy in AMD with GA.

Suprachoroidal anti-VEGF therapy

Preclinical trials have evaluated gene therapy delivery into 
the SCS using animal models and have suggested diffuse 
distribution in the RPE 2 weeks following injection (87). 
A single injection of RGX-314, the same AAV8 vector 
expressing anti-VEGF that was described in a previous 
section, successfully suppressed CNV in rodent eyes 
within 2 weeks of administration, and maintained similar 
findings on evaluation 7 weeks after treatment (80). 
Additionally, no differences in anti-VEGF levels in the 
retina were found between therapy delivered in the SR 
space versus the SCS.

In September 2020, Ocular Therapeutix® announced 
the development of OTX-AFS, an extended-release 
suprachoroidal formulation of aflibercept, following 
promising, preliminary results in their phase I trial on 
OTX-TKI (described in the section on hydrogels) (88). A 
protocol for a phase I trial is scheduled to be released soon.

Additionally, the FDA recently approved initiation of a 
phase I/IIa clinical trial evaluating suprachoroidal delivery 
of CLS-AX (Clearside Biomedical), an injectable suspension 
containing axitinib (89). Axitinib is a tyrosine kinase 
inhibitor (TKI) that disrupts downstream VEGF signaling, 
and is currently approved for treatment of renal cell cancer. 
Preclinical data in animal models has shown CLS-AX to 
be durable in the SCS, well-tolerated, and successful in 
preventing further CNV (90). This trial is set to begin 
enrolling within the coming months.
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Nanotechnology and other drug delivery systems

Advancements in nanotechnology and biomaterials have led 
to the development of microscopic drug delivery systems 
(DDSs), including hydrogels, microparticles, nanoparticles, 
implants, and liposomes (91,92). The use of DDSs for 
ocular therapy offers many advantages that make them an 
attractive alternative to the current mainstay treatment 
of IVIs. These include improved retinal penetration and 
tapered release of highly concentrated drug therapies (93), 
which both serve to reduce the treatment and surveillance 
burden. However, loading DDSs with anti-VEGF molecules 
and other protein-based therapies is more complicated from 
a pharmacological standpoint due to their fragile tertiary 
and quaternary structures (94). The technique involved in 
delivering various DDSs will be discussed in each subsection 
when applicable.

Port delivery systems (PDS)

PDS has shown promise for long-lasting delivery of anti-
VEGF medication that may decrease IVI treatment burden 
for nAMD. The PDS implant is a novel drug delivery 
system that acts as a depot and continuously delivers a 
therapeutic agent (i.e., ranibizumab) into the vitreous 
cavity over extended periods of time (95). Prior to surgical 
insertion, local anesthesia is administered (96). Scleral 
implantation is accomplished via conjunctival peritomy, 
scleral dissection using a 3.2 mm blade, 532 nm laser 
ablation of the exposed pars plana, and insertion of the 
self-retaining device into the scleral opening (96). Once 
implanted, the drug passively diffuses from the release 
control element into the vitreous, offering sustained-release 
until emptied. Similar to IVIs, the PDS can be refilled 
in-office using a small needle to inject new fluid into the 
implant.

Recent results from the LADDER phase II trial of a 
ranibizumab PDS show similar functional and anatomical 
visual outcomes as monthly intravitreal ranibizumab (95). No 
significant differences were found between time to first refill 
across the 40-mg/mL, and 100-mg/mL PDS dosage-arms, 
with median refill times ranging from 13 to 15 months. The 
10-mg/mL arm had a median refill time of 8.7 months, which 
is still a significantly lower treatment burden than monthly 
IVIs (95). As expected, higher rates of adverse effects were 
noted in the PDS arm when compared to IVI, including 
vitreous hemorrhage, nausea, and headache. However, these 
events were not severe and did not cause significant visual 

acuity deficits (97). Endophthalmitis was also a complication 
of the technique.

The phase III ARCHWAY study is currently underway 
and is assessing safety and non-inferiority of 24-week PDS 
dosing to monthly IVI delivery of ranibizumab. Initial 
results have successfully proven non-inferiority, with a 
0.5 letter gain in the monthly injection arm to a 0.2 letter 
gain in the PDS arm, and only 2% of subjects requiring 
a medication refill in the PDS arm prior to the scheduled  
24-week refill (98).

Hydrogels

To overcome the surgical risks associated with PDS, 
injectable hydrogels are being explored as potential extended-
release DDSs for ocular drug therapy (14). Hydrogels are 
water-soluble DDSs that form three-dimensional, cross-
linked polymer networks (99). They offer varying levels 
of porosity, distensibility, and mechanical resistance, and 
these features can be modulated through natural, synthetic, 
or hybrid polymers (14). When incorporating therapeutic 
agents into the polymer network, each gel’s unique cross-
linking properties must be accounted for to ensure bioactivity 
upon arrival to the target site (100-103).

To date, only one ocular hydrogel DDS has reached clinical 
trials. OTX-TKI (Ocular Therapeutix) is an injectable, 
biodegradable implant that utilizes a hydrogel to deliver 
intravitreal TKIs to disrupt downstream VEGF signaling 
(104,105). Once implanted into the vitreous, OTX-TKI 
offers sustained drug-release for up to 6–7 months (105). Pre-
clinical in vitro studies in Dutch belted rabbits demonstrated 
successful delivery and maintenance of high OVX-TKI 
concentrations in the vitreous using this therapy (106).  
Precise information regarding the structural design of 
OTX-TKI is currently unavailable, though a presentation 
regarding this novel technology given by Ocular Therapeutix 
in October 2020 advertises a polyethylene glycol hydrogel 
delivery platform (107). The current phase I trial has fully 
enrolled two cohorts using 200 μg, and 400 μg doses, 
respectively, and a third cohort is in the process of being 
enrolled to compare 600 to 400 μg + anti-VEGF induction 
injection. According to the most recent presentation, subjects 
in the first two cohorts have demonstrated a favorable safety 
profile. In cohort 2 (400 μg), one patient demonstrated 
treatment durability of 9 months, and a few subjects showed 
decreased retinal fluid on OCT by 2 months. Comprehensive 
results are still underway, and will be closely followed.
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Polymers

The brimonidine DDS (Allergan) is a biodegradable 
intravitreal implant made from a polymer matrix (14). It 
is loaded with brimonidine tartrate, a selective alpha-2 
adrenergic receptor agonist, and is currently used to treat 
glaucoma. Brimonidine has been shown to reduce oxidative 
stress in the RPE (108) and has a neuroprotective effect in 
in vitro models of retinal degeneration (109). Results from 
the recent phase II clinical trial showed the brimonidine 
DDS to be a safe and effective treatment of GA secondary 
to dry AMD (110). When compared to sham groups, eyes 
treated with 132 and 264 μg of brimonidine via DDS had 
significantly less growth in geographic atrophy lesion size. A 
phase III trial is currently in the process of being developed.

Small-interfering RNA (siRNA)

siRNA is a class of double-stranded RNA molecules that 
regulates gene expression via RNA interference (RNAi) (111),  
a biological process that inhibits gene expression via 
degradation of complementary messenger RNA (112). 
siRNA-based therapies have recently emerged as promising 
treatments for nAMD, offering translational modulation 
of pathological protein production, convenient intravitreal 
delivery, the potential to elicit a pan-retinal effect, and a 
high level of specificity (113,114). A few ocular drugs in 
this class have been developed to target the main pathway 
involved in the pathogenesis of AMD: the pro-angiogenic 
VEGF pathway (115).

Bevasirinib, an anti-angiogenic siRNA therapeutic 
designed to silence the VEGF gene using an RNAi 
mechanism, was the first intravitreal siRNA therapy 
developed for nAMD (115,116). Despite being successful 
in both in vitro and in vivo models (117), the phase III 
trial was discontinued in 2009 due to failure to show 
bevasirinib injections at 8 to 12 week intervals (after initial 
pre-treatment with 3 ranibizumab injections) to be more 
effective than monthly ranibizumab injections (118,119). 
AGN211745 (also known as siRNA-027) is another anti-
angiogenic siRNA that utilized RNAi technology to 
target VEGFR-1 in patients with CNV (120). Similar to 
bevasirinib, development of AGN211745 was halted in 2009 
following a phase II trial due to insignificant improvements 
in visual acuity (121).

Recent advances in siRNA therapy include the FDA 
approval of ONPATTRO® in 2018 and GIVLAARITM 

in 2019 for use in hereditary transthyretin-mediated 
amyloidosis and acute hepatic porphyria, respectively (122). 
RNA-based drug therapies utilizing RNAi mechanisms are 
thus effective treatments, and further research is warranted 
for future AMD therapies of this nature.

Designed ankyrin repeat proteins

Ankyrin repeats are naturally occurring amino acid motifs 
that perform various cellular functions, including cell-cell 
signaling, cell cycle regulation, and transcription (123). 
These repeats serve as high-affinity scaffolding domains for 
high-specificity interactions with target receptors (124,125) 
and are great candidates for drug delivery due to their 
stable thermodynamic properties (126). Designed ankyrin 
repeat domains (DARPins) were engineered to mimic 
these protein structures. This platform was first introduced 
in ocular therapeutics as abicipar pegol, a high-affinity 
VEGF-A binder (127) delivered via IVI with up to 5.5 times 
more concentrated dosages than ranibizumab (128).

The recent phase II REACH trial compared functional 
and anatomical visual outcomes in naive nAMD patients 
randomized into three arms: 0.5 mg IVI of ranibizumab,  
1 mg IVI of abicipar, or 2 mg IVI of abicipar (128). Results 
were promising and showed similar best corrected visual 
acuity and reduction in central retinal thickness across all 
arms. This prompted the phase III SEQUOIA and CEDAR 
clinical trials to assess the efficacy and safety of abicipar. 
Non-inferiority was established when comparing abicipar 
to ranibizumab, and treatment burden was shown to be 
lower with 8-week and 12-week abicipar regimens (129).  
However, intraocular inflammation (IOI) rates were 
relatively high after administration of abicipar, affecting 
10.4% of patients in phase II trials and 15.3% of patients 
in phase III trials (130). Although reported IOI rates for 
current intravitreal anti-VEGF range from 0.3–14.3% 
(131-135), the FDA did not approve abicipar for clinical 
use in nAMD patients due to the unfavorable risk-benefit 
ratio. Despite the shortcomings of abicipar’s safety profile, 
DARPins are promising, advanced DDSs that should 
continue to be explored as potential AMD treatments.

Oral therapy

Oral therapy is perhaps the most common and convenient 
route for systemic drug administration. Oral drug dosages 
can be easily adjusted, self-administered, is non-invasive, 
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and has the potential for solid formulations to have a long 
shelf-life (136). For patients with systemic diseases and 
concomitant ocular manifestations, oral administration 
is effective and reduces patients’ total drug intake (137). 
However, for patients with localized eye disease, oral 
dosages are not as appealing due to the many ocular 
barriers preventing efficient drug delivery to the posterior 
segment. Higher dosages or greater frequency of oral 
drug administration may thus be required to achieve the 
desired therapeutic effect, posing a significant risk of drug 
toxicity (138). For this reason, X-82, an oral anti-VEGF/
PDGF formulation designed for nAMD treatment, failed 
to demonstrate safety and tolerability in phase II trials 
despite promising results in previous trials (139). Oral drug 
administration has also been shown to produce an ocular 
bioavailability of only 2% (140), making this route of drug 
delivery inefficient for AMD and other localized ocular 
diseases.

Age-Related Eye Disease Studies (AREDS) 1 and 2 
were large, multicenter phase III trials that analyzed the 
effects of nutritional supplements and dietary modifications 
on AMD progression (141,142). Oral supplementation of 
specific combinations of vitamins (C and E), carotenoids 
(lutein and zeaxanthin), and minerals (zinc and copper) was 
shown to decrease the risk of progression to late stages of 
AMD and GA (143,144). Adherence to a Mediterranean 
dietary pattern with high intake of omega-3 fatty acids 
decreased risk of progression to GA as well (145). Due to 
minimal risks associated with these supplements and dietary 
changes and the potential for disease-sparing benefits, some 
ophthalmologists recommend these to patients diagnosed 
with early stages of AMD.

Several other oral pharmaceuticals are being investigated 
in clinical trials for their potential therapeutic effects 
in patients with GA. Oral doxycycline (Oracea®) is 
currently being investigated in a phase III trial for its anti-
inflammatory effects and potential to reduce the rate of 
GA spread (146). Metformin, a commonly prescribed drug 
for type II diabetes mellitus, has been noted for its role 
in preventing AMD development (147,148). It activates 
retinal 5' adenosine monophosphate-activated protein 
kinase (AMPK) and glucose metabolism, and these two 
mechanisms have been shown to be protective of the 
RPE and photoreceptor layers in rodent models (149). An 
ongoing phase II trial is evaluating the safety and efficacy of 
metformin for progression of GA in non-diabetic patients, 
and results are expected in October 2021 (150).

Dry AMD therapies

To date, there are no FDA approved therapies for dry AMD 
progression or GA despite being common precursors to 
vision loss. The total area of GA grows geometrically over 
time, and mean time to central involvement is 2.5 years. 
Bilateral eye involvement, on average, occurs 7 years after 
initial GA diagnosis (151,152). GA development is not 
exclusive to dry AMD, as studies have shown up to 17–18% 
of nAMD patients receiving anti-VEGF treatment develop 
GA within 2 years (153,154). These numbers translate 
to devastating effects on patients’ vision and quality of 
life, and the prevalence of advanced AMD is projected to 
double by 2040 (1). Thus, treatments for prevention of 
GA progression are becoming more crucial as the global 
population continue to age. The complement cascade has 
been implicated as a central factor in the multifactorial 
pathogenesis of GA (11), and therapeutics that target the 
inhibition of various complement factors are currently in 
trials.

Complement cascade inhibitors

C5 is an effector molecule produced by all three pathways of 
the complement cascade and plays a key role in forming the 
membrane attack complex (MAC) (155). Chronic activation 
of MAC may lead to death of the RPE, and therapies 
that selectively inhibit C5 may mitigate this pathogenic 
complement dysregulation seen in advanced forms of AMD 
(155,156). In 2007, eculizumab, a monoclonal human 
antibody to C5, was first FDA approved for treatment of 
paroxysmal nocturnal hemoglobinuria. By blocking C5, 
eculizumab prevents downstream activation of the terminal 
complement system and inhibits formation of the MAC. 
It was thus thought to be a potential systemic treatment 
for GA, and was investigated in the COMPLETE phase II 
study. Thirty patients were randomized into one of three 
intravenous treatment groups: low dose eculizumab (600 mg 
for 4 weeks, then 900 mg every other week for 20 weeks), 
high dose eculizumab (900 mg for 4 weeks, then 1,200 mg 
every other week for 20 weeks), or placebo (157). At both 
26 weeks and 52 weeks of follow-up, eculizumab failed to 
decrease GA lesion progression when compared to placebo 
(P=0.96 and P=0.93, respectively). However, no subjects 
progressed to wet AMD, and thus a different study endpoint 
with longer follow-up may be warranted to determine its 
efficacy in this regard.
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Avacincaptad pegol (Zimura®), a pegylated RNA aptamer 
delivered via IVI, is a novel C5-inhibitor currently in phase 
III trials for treatment of GA (158). A total of 286 subjects 
with GA secondary to AMD were randomized into one 
of three avacincaptad dosage groups during the first part 
of the phase II trial: 1 mg, 2 mg, and sham (159). The 
second part of this trial randomized 209 subjects into 2 mg 
avacincaptad, 4 mg avacincaptad, and sham cohorts. The 
results from this trial showed that avacincaptad reduced 
the rate of atrophic area spread by 27.4% and 27.8% in the  
2 and 4 mg treatment groups respectively (159), had a 0% 
incidence rate of endophthalmitis, and a favorable safety 
profile with no drug-related adverse events. Ongoing phase 
III trials are aiming to confirm the efficacy of avacincaptad, 
and if successful, will be the first treatment option available 
to individuals with GA.

C3 is an upstream component of C5 in the complement 
cascade,  and marks the convergence of the three 
complement pathways that may ultimately lead to cell lysis 
and inflammation (160). C3 plays a key role in complement 
cascade amplification, particularly through the alternative 
pathway (161,162), and its breakdown products are markedly 
elevated in serum plasma of patients with GA (163). 
Pegcetacoplan (APL-2) was the first complement inhibitor 
to enter clinical trials for treatment of dry AMD and GA. 
It is a synthetic peptide embedded in a linear, polyethylene 
glycol polymer, and its potent inhibition of C3 offers 
the potential for broad anti-inflammatory effects (164).  
Phase II trials showed a 29% reduction in the GA growth 
rate during a 12-month period in patients receiving monthly 
intravitreal pegcetacoplan, and a 20% reduction in patients 
receiving treatment every other month when compared to 
sham injections (165). 1.2% of patients enrolled in the trial 
developed endophthalmitis. The phase III trial is currently 
underway and has enrolled 1, 259 patients. The primary 
aims are to further evaluate APL-2’s efficacy in reducing 
rates of GA spread and its safety profile. Results of this 
phase III trial are expected in 2021.

Factor D is an important activator of C3 convertase, 
and acts as the rate-limiting enzyme of the alternative 
pathway (166,167). It was thus thought to be a viable 
therapeutic target for treatment of dry AMD, leading to 
the development of lampalizumab, an antigen-binding 
fragment against Factor D. In a phase II trial, lampalizumab 
IVI successfully reduced GA lesion growth by 20% in an 
18-month period when compared to sham (168). However, 
Chroma and Spectri, two identical phase III trials, failed to 

show significant differences in slowing GA progression over 
48 weeks with every 4 or 6 week lampalizumab injection. 
These trials found lesions to enlarge by an average of  
2 mm2 each year, consistent with the natural rate of GA 
progression described in the literature (13), and were thus 
suspended in September 2017 (169).

Other intravitreal therapies

Gene therapy is also being explored to target components 
of the complement pathway. CD59 is a natural inhibitor of 
MAC (170), and is currently being studied as a therapeutic 
target for both dry and wet AMD. AAVCAGsCD59 
(HMR59) is an IVI that uses an AAV2 vector to deliver 
soluble CD59 gene product to the RPE (171). Phase I trials 
evaluating HMR59 are currently underway for both forms of 
AMD. Another gene therapy being investigated for dry AMD 
is subretinal GT005, which uses an AAV2 vector to code for 
complement factor I (CFI) (172). CFI is a serum protease 
that can inhibit the entire complement cascade (173),  
and pre-clinical trials in rodent models have shown dose-
dependent decreases in complement activation and CNV 
when treated with GT005 (172). There have yet to be 
any safety concerns in the ongoing phase I/II trials in the 
United Kingdom, and results are forthcoming.

High-temperature requirement A serine peptidase 
1 (HtrA1) has been implicated in the pathogenesis of 
geographic atrophy, inducing breakdown of the extracellular 
matrix protein and degeneration of photoreceptors and 
RPE. Locus variations of the ARMS2/HTRA1 gene have 
been implicated to increase risk of dry AMD development 
and progression (174). FHTR2163 is an IgG1 monoclonal 
antibody targeting HtrA1 administered as intravitreal 
injections every 4 to 8 weeks. The phase I open-label trial 
met safety criteria and a phase II clinical trial (GALLEGO) 
is currently enrolling patients to determine its efficacy in 
reducing GA lesion progression and safety profile (175).

Eye drop therapies

Eye drop therapies are commonly used for treatment of 
anterior segment pathologies. Topical drug delivery to the 
posterior segment is limited due to inherent ocular barriers, 
including its many structural layers, dynamic blood flow, 
and presence of efflux pumps (140). Despite this challenge, 
eye drop formulations continue to be explored due to their 
convenience and ease of use. OT-551 is a small, lipophilic 
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molecule with antioxidant properties (176). Due to its 
ability to penetrate membranes and protective properties 
of antioxidants, OT-511 was investigated in a phase II 
trial in 2010 for its efficacy in reducing GA progression 
(176,177). Ten patients were treated with topical 0.45% 
OT-551 monocularly for 2 years in a randomized fashion; 
the fellow eye served as a control. Though the primary 
outcome of reducing the GA lesion progression failed to 
be met, a decrease in visual acuity was significantly lower 
in the treatment eye than in the fellow eye (176). However, 
larger studies failed to replicate this effect and OT-551 did 
not progress to larger clinical trials. MC-1101, a vasodilator 
with antioxidant and anti-inflammatory properties, 
successfully demonstrated safety and tolerability in a phase 
Ib trial (178). Phase II/III trials are currently underway to 
investigate its efficacy in maintaining visual function (179).

Stem cell therapies

Stem cells are promising vehicles for tissue regeneration 
and if successful, may revolutionize the prognosis of 
degenerative diseases. Research on ocular stem cell therapy 
has involved cells from various cell lines in both pre-clinical 
and clinical trials, including human embryonic stem cells 
(hESCs) (180-182), induced pluripotent cells (iPSCs) (183), 
and human umbilical tissue-derived cells (hUTCs) (79). The 
intended effects of ocular cell therapy depend on the site of 
delivery and type of cell. In some cases, the goal is for cells 
to secrete a trophic, immunomodulatory or neuroprotective 
factor while in others the cells directly replace damaged or 
degenerated RPE or photoreceptors (184).

A phase I trial involving 2 patients successfully delivered 
an RPE patch derived from hESCs, with significant visual 
improvements of 21 and 29 letter-line after 12 months (180).  
Another phase I/IIa trial enrolled 16 subjects with 
advanced atrophic AMD, and demonstrated the feasibility 
of subretinal implantation of an hESC-derived RPE 
monolayer (181). The National Eye Institute is currently 
launching a phase I/IIa trial of 12 subjects with GA to 
evaluate the safety of transplanting an RPE monolayer from 
autologous iPSCs (183).

In human clinical trials, the use of hESC and iPSC-
derived therapies is still in its early stages, with under 
100 patients undergoing transplantation thus far (185). 
Limitations of stem cell therapy include the risk of 
oncogenicity, need for more efficient cell-line generation, 
and lack of knowledge regarding the translation of results 
seen in animal studies to human subjects. The journey 

ahead for stem cell therapy is exciting, but many challenges 
must be overcome before it enters clinical use.

Conclusions

The introduction of anti-VEGF therapies as the gold 
standard for nAMD has been associated with a 46–50% 
decrease in vision loss attributable to nAMD (186,187). 
However, standard-of-care monthly intravitreal dosing 
is a burdensome treatment regimen for many patients. 
Gene therapy and stem cell therapy have shown promising 
early results in clinical trials, as have various PDSs and 
nanotechnology therapies. They offer the potential for an 
expanded range of therapeutic opportunities for patients 
with nAMD and/or GA. Aside from oral vitamin/mineral 
supplementation, no current treatments exist to ameliorate 
progression to advanced AMD. Significant unresolved gaps 
in knowledge exist in both disease-modifying drug targets 
and drug/delivery systems which are an important area of 
study. A critical need for treatment of dry AMD and GA 
remains unmet and is a driving force for the development of 
new drug therapies and delivery options in AMD research.
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