
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Department of Microbiology and Immunology 
Faculty Papers Department of Microbiology and Immunology 

11-2011 

Innate and adaptive immunity to the nematode Strongyloides Innate and adaptive immunity to the nematode Strongyloides 

stercoralis in a mouse model. stercoralis in a mouse model. 

Sandra Bonne-Annee 
Thomas Jefferson University 

Jessica A. Hess 
Thomas Jefferson University 

David Abraham 
Thomas Jefferson University 

Follow this and additional works at: https://jdc.jefferson.edu/mifp 

 Part of the Medical Immunology Commons, and the Medical Microbiology Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 

Bonne-Annee, Sandra; Hess, Jessica A.; and Abraham, David, "Innate and adaptive immunity to 

the nematode Strongyloides stercoralis in a mouse model." (2011). Department of Microbiology 

and Immunology Faculty Papers. Paper 149. 

https://jdc.jefferson.edu/mifp/149 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Department of Microbiology and Immunology Faculty Papers by an authorized 
administrator of the Jefferson Digital Commons. For more information, please contact: 
JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/mifp
https://jdc.jefferson.edu/mifp
https://jdc.jefferson.edu/mi
https://jdc.jefferson.edu/mifp?utm_source=jdc.jefferson.edu%2Fmifp%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=jdc.jefferson.edu%2Fmifp%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/672?utm_source=jdc.jefferson.edu%2Fmifp%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


Innate and adaptive immunity to the nematode Strongyloides 
stercoralis in a mouse model

Sandra Bonne-Année, Jessica A. Hess, David Abraham*

Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 
19104

Abstract

Mice have been used to the study the mechanisms of protective innate and adaptive immunity to 

larval S. stercoralis. During primary infection neutrophils and eosinophils are attracted by parasite 

components and kill the larvae by release of granule products. Eosinophils also function as antigen 

presenting cells for the induction of a Th2 response. B-cells produce both IgM and IgG that 

collaborate with neutrophils to kill worms in the adaptive immune response. Vaccine studies have 

identified a recombinant diagnostic antigen that induced high levels of immunity to infection with 

S. stercoralis in mice. These studies demonstrate that there are redundancies in the mechanisms 

used by the immune response to kill the parasite and that a vaccine with a single antigen may be 

suitable as a prophylactic vaccine to prevent human strongyloidiasis.
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INTRODUCTION

Strongyloidiasis has been described as the most neglected of the “neglected tropical 

diseases” (1). This is surprising given that it has been estimated that Strongyloides 
stercoralis infects 30–100 million people in both resource-rich and resource-poor nations (2–

3). One reason this disease has been neglected is that its prevalence has been severely 

underestimated. Diagnosis of this disease requires special detection methods that are not part 

of routine screening methods utilized to identify other parasitic infections in population 

surveys (2). Also, the parasites are shed in low and inconsistent numbers which further 

complicates the diagnosis. Use of recombinant antigen-based serological diagnosis has 

greatly expanded the detection rates of this infection within endemic populations (4–5). 

Another reason this infection is overlooked is that the disease it causes is relatively benign 

during acute infection. Chronic infections may persist for the lifetime of the host and are 

commonly subclinical. However, chronically infected individuals who become 

immunosuppressed, often because of corticosteroid treatment or infection with HTLV-1, can 
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develop hyperinfection syndrome, a condition that is life threatening (6–9). Although 

chemotherapy (albendazole or ivermectin) is available for S. stercoralis infections, efficacy 

is rarely 100% (10–11).

The life cycle of S. stercoralis is complex with direct, autoinfective and free-living 

developmental cycles. The third-stage infective larvae (L3) initiate infection by penetrating 

the skin of the human host and then undergo a migration through the host tissues, during 

which the L3 undergo rapid development from the free living infective third-stage larvae to a 

postpenetration, host-adapted transformed stage called the L3+ (12–13). The L3+ differs 

from the L3 antigenically, which is intuitive based on the differing environments in which 

the two worms reside. Similarly, significant physiological differences were seen between the 

infective larvae of S. venezuelensis and larvae found in the connective tissue, lungs and 

intestinal mucosa (14).

After molting twice the larvae enter the small intestine as mature egg-laying parthenogenetic 

female adult worms. The eggs hatch in the gut and first-stage larvae are released in the feces 

and in the direct developmental cycle they develop into third-stage infective larvae. In the 

free-living developmental cycle the first-stage larvae develop into free-living male and 

female adult worms which reproduce in the environment producing third-stage infective 

larvae. Alternatively, the first-stage larvae may develop into autoinfective third-stage larvae 

that never leave the host. Small numbers of these larvae may develop into adult worms, 

which results in chronic infections that may persist for decades through the continuous 

controlled replenishment of adult worms from autoinfective third-stage larvae. In patients 

that are immunosuppressed hyperinfection may develop by the uncontrolled production of 

first-stage larvae and their development into autoinfective third-stage larvae that migrate 

throughout the host.

Another reason that strongyloidiasis has been a neglected disease is the difficulty of 

performing experiments with the parasite. Only humans, primates and dogs are naturally 

susceptible to infection with S. stercoralis, which significantly limits experimentation. 

Strongyloides ratti and venezuelensis naturally infect rodents, and they have been used to 

study the biology and immunology of these infections (15–18). However, a limitation of 

these studies is that results generated with the rodent parasites S. ratti and S. venezuelensis 
may not apply to the human pathogen S. stercoralis. Attempts to infect mice with S. 
stercoralis have revealed that immunologically intact mice and mice deficient in T cells 

killed the infections within several days (19). However, SCID mice, which have a deficiency 

in both T and B cells, could be infected with S. stercoralis, with low numbers of adult worms 

and first stage larvae developing in the mice after infection (20). This indicates that S. 
stercoralis can develop in mice and that lymphocytes are part of the immune response 

involved in eliminating the infection.

One of the challenges in studying this infection in mice is the fact that the parasites migrate 

throughout the body. This makes accurate recovery of the parasites difficult and studying the 

parasite microenvironment in the host nearly impossible. To overcome these issues, diffusion 

chambers have been used as a means of containing the parasites in vivo in the subcutaneous 

tissues, a natural habitat for the larvae. Diffusion chambers are constructed out of Lucite 
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rings to which are adhered membranes that block worms from exiting the diffusion chamber 

but allow free ingress and egress of host cells and soluble factors. The diffusion chamber 

system allows a thorough examination of parasite survival in mice and analyses of diffusion 

chamber contents indicate the innate and adaptive immune factors that are present in the 

parasite microenvironment.

INNATE IMMUNITY (Figure 1)

The innate immune response to S. stercoralis larvae in naïve mice is characterized by the 

recruitment of neutrophils, macrophages and eosinophils to the parasite, as seen within 

diffusion chambers. Similarly, S. venezuelensis induced an increase of eosinophils and 

mononuclear cells in the blood, peritoneal cavity fluid, and bronchoalveolar lavage fluid 

(21). Cell contact is required for killing of S. stercoralis larvae, which occurred within seven 

days in naïve immunocompetent mice (22). Elimination of neutrophils and eosinophils from 

naïve mice by treatment with a monoclonal antibody against Gr-1 resulted in an increase in 

parasite survival (23), suggesting that these cells are active participants in the protective 

innate immune response. Likewise, studies with S. ratti have revealed that cellular infiltrates, 

consisting of neutrophils, eosinophils and macrophages, were observed in the skin in 

response to the invading larvae in rats and mice during both primary and secondary 

responses (24–25) and that granulocytes are crucial in the early defense against migrating 

larvae of S. ratti in mice (26).

Neutrophils

Studies performed with purified neutrophils indicated that they can independently kill the 

larvae (27) and that killing of the larvae by neutrophils is dependent on the neutrophil 

specific granular protein myeloperoxidase (MPO) (23). If neutrophil recruitment to the 

parasites in mice was blocked, either because of a defect in G i2 signaling (28) or in the 

expression of CXCR2 (27), the capacity of mice to kill S. stercoralis larvae was significantly 

decreased. CXCR2 dependent recruitment of neutrophils to larvae occurs independently of 

IL-17 and molecules extracted from S. stercoralis are capable of directly recruiting 

neutrophils through CXCR2, using signaling pathways similar to those used by host 

chemokines. In addition, the S. stercoralis soluble extract also induced neutrophils to release 

MIP-2 and KC, which further enhanced the recruitment of neutrophils. The finding that 

neutrophils produce increased amounts of neutrophil-recruiting chemokines following 

exposure to S. stercoralis soluble extract suggests an efficiently orchestrated system whereby 

a primary stimulus from a parasite causes an autocrine amplification of cell recruitment 

through release of host-derived chemokines. The efficiency of this recruitment strategy is 

further highlighted by the observation that the CXCR2 receptor has the ability to respond to 

both parasite- and host-derived factors resulting in highly efficient neutrophil recruitment 

and control of infection with S. stercoralis (29).

Eosinophils

Several methods have been used to assess the potential of eosinophils to kill the larvae of S. 
stercoralis and to determine if they are required for protective innate immunity to the 

infection. IL-5 plays a key role in the differentiation, maturation, and survival of eosinophils 
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(30–31). Treatment of mice with a monoclonal antibody to IL-5 reduced eosinophils and 

concomitantly reduced the capacity of mice to control the larvae of S. ratti in primary 

infections (32). Survival of S. stercoralis was increased in naïve mice deficient in IL-5 and 

survival of the larvae was diminished in mice overexpressing IL-5 (33), thereby suggesting a 

direct role for eosinophils in killing the larvae. Treatment of naïve mice with an anti-CCR3 

monoclonal antibody specifically eliminated eosinophils and blocked innate protective 

immunity to the infection (23, 27). Surprisingly, larval killing in naïve PHIL mice, that 

constitutively lack eosinophils, was not diminished. Treatment of the PHIL mice with a 

monoclonal antibody to eliminate neutrophils resulted in a diminished protective innate 

immune response. This demonstrated that in the complete absence of eosinophils, 

neutrophils were capable of controlling the infection (23). It was therefore concluded that 

both eosinophils and neutrophils can kill the larvae; in untreated mice both cell types are 

required for optimal protective innate immunity (27). However, in mice with a genetic 

deficiency in eosinophils, neutrophils are sufficient to compensate for the loss of eosinophils 

and kill the larvae. The mechanism used by mouse eosinophils to kill the larvae was shown 

to be dependent on the granular protein major basic protein (MBP) and not eosinophil 

peroxidase (EPO) (23). MBP, EPO, eosinophil cationic protein (ECP) and eosinophil-

derived neurotoxin (EDN), purified from human eosinophils, were tested in vitro for their 

toxicity to the larvae of S. stercoralis. Only MBP and ECP were toxic to the host adapted 

larvae (L3+), while survival of infective larvae remained unaffected (34).

Studies on the schistosomula of S. mansoni have demonstrated that both EPO from 

eosinophils and MPO from neutrophils are toxic to the parasite. EPO and MPO apparently 

kill the organism through a similar mechanism dependent on hydrogen peroxide and a halide 

(35). Likewise, both EPO and MPO contribute to tyrosine nitration through oxidation of 

nitrite (36). Other studies have shown that MPO and EPO form reactive halide species 

through different mechanisms (37) and that MPO and EPO lyse Mycobacterium tuberculosis 
through different mechanisms. EPO induced cell wall lesions and lysis in the presence or 

absence of hydrogen peroxide whereas MPO required hydrogen peroxide to kill M. 
tuberculosis in the absence of any morphological changes in the pathogen (38). MPO from 

neutrophils was required to kill the larvae of S. stercoralis whereas EPO from eosinophils 

did not function in that capacity, suggesting that the two peroxidases function against the 

larvae of S. stercoralis through different mechanisms, which results with one peroxidase 

killing the worm and the other not.

As with neutrophils, eosinophils are directly recruited to the parasite without the need for 

other host cell assistance. Chemoattractants derived from the larvae and host species 

stimulate similar receptors and second messenger signals to induce eosinophil chemotaxis. 

The parasite extract stimulates multiple receptors on the eosinophil surface, which ensures a 

robust innate immune response to the parasite. The redundancy of the chemotactic factors 

produced by the parasite and the multiple responding receptors on the eosinophils suggests 

chemotactic receptors on these pivotal cells may have evolved to ensure a robust response to 

this infection (39).

It is puzzling as to why the larvae of S. stercoralis recruit both neutrophils and eosinophils, 

cells that can kill the worm. One possibility is that the efficient recruitment of neutrophils 
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and eosinophils to the larvae explains why mice are refractory to infection with this parasite. 

It would be interesting to see if cells from hosts susceptible to the infection also are recruited 

to the parasite. Alternatively, there may be an advantage for the parasite to recruit the cells 

either for a direct beneficial effect as seen for Trichinella spiralis (40) or to repair tissue 

damage caused by the migrating larvae thereby promoting host survival.

Complement

In addition to neutrophils and eosinophils, complement activation is required for innate 

protective immunity to larval S. stercoralis. In vitro studies have shown that complement 

component C3 was detected on the surface of the larvae (41) and eosinophils only killed the 

larvae if a source of complement was provided (23). Mice deficient in C3 did not kill the 

parasite whereas mice deficient in C3aR did eliminate the worms, suggesting that C3b is the 

active component of C3 that is required to mediate larval killing (42). C3b may function in 

the larval killing process as an adherence molecule for cells, or it may facilitate activation 

and degranulation of the cells. Live S. stercoralis larvae activated complement in vitro 

through both the classical and alternative pathways which promoted the adherence of human 

monocytes and neutrophils to the surface of S. stercoralis (43). Complement also promotes 

the binding of cells to the larvae of S. ratti (44).

Antigen presenting cells (APC)

The transition from the innate to the adaptive immune response requires the parasite to be: 

(1) killed, (2) dissociated into a phagocytosable form, and (3) presented by antigen 

presenting cells to T cells. Eosinophils are efficiently and independently recruited to the 

parasite (39) where they have the capacity to kill the larvae through the release of MBP (23). 

Interestingly, eosinophils also have the capacity to act as APC inducing parasite specific Th2 

responses and antibody responses in both primary and secondary infections of mice with S. 
stercoralis (45–46). Eosinophils have also been reported to function as APC inducing Th2 

responses in several experimental allergy models (47–49). Therefore, eosinophils have the 

capacity to chemotax to the parasite microenvironment, kill the parasite and then present the 

antigens to naïve T cells to induce adaptive immunity to the infection.

ADAPTIVE IMMUNITY (Figure 2)

The adaptive immune response in mice induced by immunization with live larvae is highly 

effective with greater than 90% of the challenge larvae killed within 24 hours. Interestingly, 

the immune response generated by immunizing mice with live infective larvae was directed 

at the L3+ (12). Combining this observation with the susceptibility of the L3+ to MBP (34), 

suggests that infective stage L3 are resistant to immune attack whereas the L3+ is the 

susceptible stage. Furthermore, antigenic differences were seen between the L3, L3+ and 

autoinfective larvae associated with chronic infections and hyperinfection. Immunity 

generated with L3 and directed at L3+ did not kill the autoinfective larvae (13). This might 

explain how infections persist in human hosts for decades. Incoming infective larvae would 

be targeted by the adaptive immune response and this immunity would prevent 

overwhelming infection with the parasite. The autoinfective larvae would survive in the face 

of this immune response, thereby perpetuating the parasite within the host. Furthermore, 
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production of autoinfective larvae is apparently controlled by the immune response, based 

on their uncontrolled development in immunosuppressed individuals. The net result is that 

the immune response controls infective and autoinfective larvae through different 

mechanisms which results in infections with S. stercoralis persisting for the lifetime of the 

host, yet causing only minor pathological effects in most cases.

T cells

Humans appear to control infection with S. stercoralis through a T-helper type 2 (Th2) 

response based on the observation that patients co-infected with HTLV-1 and S. stercoralis 
have decreased production of Th2-type cytokines, increased IFN-γ production and greater 

susceptibility to hyperinfection (8, 50–51). Th2 responses are the hallmark of many helminth 

infections with expression of IL-4 and IL-5 essential for control of Onchocerca volvulus 
(52), Heligmosomoides polygyrus (53), Trichuris muris (54) and Angiostrongylus 
cantonensis (55). Protective adaptive immunity to S. stercoralis larvae in mice requires 

CD4+ but not CD8+ T cells (56). Immunized mice treated with recombinant IL-12 

demonstrated a pronounced shift from a Th2 to a Th1 response and thus blocked mice from 

developing protective adaptive immunity. Furthermore, depletion of the Th2 associated 

cytokines IL-4 or IL-5 from immunized mice using monoclonal antibodies impaired larval 

killing (56). The requirement for a Th2 response for protective immunity also has been 

reported for S. venezuelensis (57) and S. ratti (58). S. venezuelensis infections in Lewis rats 

shift the immune response from Th1 during acute infections to Th2 during the recovery 

phase (59) and IL-12 deficient mice infected with S. venezuelensis had higher levels of Th2 

cytokines and decreased parasite burdens (60). Primary infections of rats with S. ratti 
induced a Th2 response within 2–3 weeks post infection (61) which resulted in the 

production of IL-4, IL-5 and IL-13 and a suppression of IFN-γ in mice and rats (62–63).

Eosinophils

Reports on human effector cell responses to S. stercoralis are limited. The frequent absence 

of eosinophils associated with migrating larvae suggests that while peripheral eosinophilia is 

a common systemic response, eosinophils are not primarily involved in the tissue response to 

the parasite. Lymphocytes, macrophages and neutrophils are frequently seen in close 

association with the larvae in various tissues, however, their role in controlling the infection 

has not been elucidated (64–65). Cumulatively, the data on human protective immune 

responses to S. stercoralis are limited and analysis of the data is restricted to identifying 

correlations between immune responses and disease states; therefore in vitro and animal 

models are required to define the actual role of cells in immunity to the S. stercoralis.

Depleting IL-5 from mice immunized against infection with S. stercoralis, either by 

monoclonal antibody treatment (34, 56) or by genetically knocking out IL-5 (33) resulted in 

decreased numbers of eosinophils and an absence of protective adaptive immunity. However, 

when eosinophils were specifically absent, either due to elimination by monoclonal antibody 

treatment (27) or the use of PHIL mice which are genetically deficient in eosinophils (23), it 

was determined that eosinophils were not required as effector cells in the adaptive immune 

response. Interestingly, immunized IL-5 deficient mice, that had severely reduced numbers 

of eosinophils, failed to establish protective immunity, and had lower levels of parasite-
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specific IgM (33). Reconstitution of immunized IL-5 deficient mice with wild type 

eosinophils elevated the parasite-specific IgM levels and the mice were then able to 

eliminate challenge infections (33). Similarly it has been reported that IgM induced by the 

adjuvant alum is compromised in mice genetically deficient in eosinophils and that transfer 

of IL-4 expressing eosinophils restored the production of antigen specific IgM (66), thereby 

confirming a role for eosinophils in IgM production. Immunized PHIL mice, that have no 

eosinophils but intact cytokine levels, did not have reduced IgM levels (23). The immunized 

PHIL mice appear to have an alternative source for molecules required for the induction of 

IgM production that IL-5 −/− mice do not have. Therefore, eosinophils function as effector 

cells in the innate immune response, antigen presenting cells and as sources of cytokines 

required for IgM production in the adaptive immune response.

Neutrophils

Studies were performed to determine the role of neutrophils in protective adaptive immunity 

to S. stercoralis. Using CXCR2−/− mice it was demonstrated that a reduction in recruitment 

of neutrophils resulted in significantly reduced adaptive protective immunity. Protective 

antibody developed in immunized CXCR2−/− mice, thereby demonstrating that neutrophils 

are not required for the induction of the adaptive protective immune response. Moreover, 

neutrophils from wild-type and CXCR2−/− mice killed the larvae of S. stercoralis at the same 

rate, thus demonstrating that the defect in the CXCR2−/− mice was in recruitment of 

neutrophils and not in their ability to kill larvae (27). Mice deficient in Gαi2 also failed to 

kill the larvae in a challenge infection with S. stercoralis despite developing an antigen-

specific Th2 response characterized by increased IL-4, IL-5, IgM, and IgG. Neutrophils 

from Gαi2−/− mice were competent in killing larvae; however, immunized Gαi2−/− mice had 

significantly reduced recruitment of neutrophils to the parasite microenvironment, as seen 

within the diffusion chamber (28). These data demonstrate that CXCR2 and Gαi2 are not 

required for the development of the protective immune responses against S. stercoralis; 

however, they are essential for the recruitment of neutrophils required for killing of larvae.

Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen 

associated molecular patterns on pathogens and alert the immune response to the presence of 

invading pathogens. TLRs are involved in both the innate and adaptive immune responses 

against several nematode infections including Brugia malayi (67), Onchocerca volvulus 
(68), Trichuris muris (69) and Syphacia obvelata (70). Interestingly, TLR4 deficient mice 

were shown to have impaired neutrophil recruitment in several systems (71–72). C3H/HeJ 

mice, that have a point mutation in the Tlr4 gene, were used to determine the role of TLR4 

in protective immunity to S. stercoralis. TLR4 was not required for killing the larvae during 

the innate immune response, but was required for killing the parasites during the adaptive 

immune response. No differences were seen in the T cell responses, antibody responses or 

cell recruitment to the parasite between wild type and C3H/HeJ mice after immunization. 

However, it was determined that neutrophils from the C3H/HeJ mice could not participate in 

killing the worms in the adaptive immune response. The Tlr4 mutation severely alters the 

effector function, but not recruitment, of cells to the parasite microenvironment (73). Finally, 

as in the innate immune response, neutrophils deficient in myeloperoxidase (MPO) had 
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significantly decreased larval killing capacity (23). Therefore, neutrophils require both MPO 

and TLR4 to kill the larvae of S. stercoralis in the adaptive immune response.

B cells

The function of B cells during S. stercoralis infection was studied in mice with specific B 

cell deficiencies. Protective innate immunity in μMT mice, that lack mature B cells, was 

sufficient to eliminate all parasites; however, immunized μMT mice that had no detectable 

antibody levels did not kill the challenge infections. Xid mice, that lack B-1 cells, developed 

a modest level of parasite specific IgG with little IgM following immunization and also did 

not kill worms in the challenge infections. These studies demonstrates that B cells, and 

specifically B-1 cells, are required for adaptive immunity and not innate immunity to S. 
stercoralis and suggest that IgM is required for adaptive immunity (74).

Complement and antibody

The protective adaptive immune response in mice to larval S. stercoralis is dependent on 

complement activation. In the initial studies, immunized mice treated with Cobra venom 

factor to deplete C3, were shown to be unable to kill the larvae (41). The necessity of 

complement was confirmed in immunized C3−/−mice, where larval killing also did not 

occur. C3aR−/− mice killed larvae during the adaptive immune response as efficiently as 

wild-type mice thereby suggesting that C3b is the active complement component (42). C3 

has been observed to be on the surface of larvae recovered from immunized mice (41), and 

possibly serves as an anchor for cells to attach to the larvae in order to mediate killing of the 

parasite, as has been seen with human complement and cells in response to S. stercoralis 
(43). Thus complement activation is an integral component of both protective innate and 

adaptive immunity to S. stercoralis in mice.

Mice immunized with S. stercoralis have elevated IgA, IgG1 and IgM levels in the serum 

(22). IgM recovered at one week post immunization passively transfers protective immunity 

to naive mice through a mechanism dependent on granulocytes and complement (41) and 

both IgM and IgG recovered at three and five weeks post immunization passively transfer 

immunity. IgG requires complement and neutrophils to kill the worms and functions through 

antibody-dependent cellular cytotoxicity (ADCC) based on studies in FcRγ −/− mice. This is 

in contrast to IgM from mice immunized with live larvae where protective immunity is 

ADCC-independent. Western blots were performed to determine what antigens the 

protective IgM and IgG recognized and it was determined that both antibody isotypes 

recognized some shared antigens, whereas other antigens were recognized independently by 

either protective IgG or IgM. Furthermore, IgM bound to the surface of the cuticle, basal 

cuticle-hypodermis, coelomic cavity, and glandular esophagus, whereas the IgG bound only 

to the basal cuticle-hypodermis and the coelomic cavity (75). It therefore was concluded that 

while IgM and IgG antibodies are both protective against larval S. stercoralis, they recognize 

different antigens and utilize different killing mechanisms. Similarly, (i) a role for antibody 

and cells in adaptive protective immunity to S. stercoralis in jirds has been observed (76), 

(ii) IgG is required for antibody-dependent immunity to S. ratti (77), and (iii) a correlation 

was observed between protective immunity to S. ratti and IgG in mice and rats (58, 78–79).
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Serum from S. stercoralis seropositive patients was used to evaluate the protective antibody 

response in humans. Only IgG from humans was able to passively transfer protective 

immunity to mice through an ADCC-independent mechanism that was dependent on mouse 

complement and neutrophils. The protective IgG binds to the cuticle and glands surrounding 

the esophagus. Western blot analysis comparing human and mouse IgG, identified unique 

antigens recognized by human IgG, and few antigens recognized by both human and mouse 

IgG. Therefore, there are multiple antibody dependent mechanisms that function in adaptive 

immunity killing the larvae of S. stercoralis. Both IgM and IgG from mice and IgG from 

humans participate in killing the parasite, although the antigenic targets and mechanisms are 

different. Interestingly, human and mouse antibody both require complement and neutrophils 

to kill the larvae.

Vaccine Development—Studies were performed to identify antigens from S. stercoralis 
that would induce protective immunity and thereby be components of a vaccine against the 

infection. Mice immunized with soluble antigens derived from S. stercoralis larvae, 

administered with alum as the adjuvant, had a 50% reduction in larval survival. Purified IgG 

from mice immunized with the soluble antigens passively transferred immunity to naïve 

mice and was ADCC independent. Immunization of mice with the small pool of antigens 

specifically recognized by the protective IgG induced a level of parasite killing comparable 

to live larval immunization (75). These studies demonstrated that a limited pool of native 

antigens, identified by mouse protective antibody, were capable of inducing a high level of 

protective immunity to S. stercoralis in mice.

Using protective human IgG, seven proteins were recognized in the pool of soluble S. 
stercoralis antigens, but only three were identified in the S. stercoralis EST database. The 

three proteins, tropomyosin (Sstmy-1), Na+-K+ATPase (Sseat-6), and LEC-5 (Sslec-5) were 

constructed into DNA plasmids. Sseat-6 was the only plasmid that induced a limited, but 

statistically significant, level of protective immunity against the S. stercoralis larvae (80), 

showing that the DNA encoding a single antigen could induce the development of protective 

immunity.

Single recombinant purified protein antigens were tested for efficacy as a vaccine against S. 
stercoralis. Ss-EAT-6, Ss-TMY-1 and Ss-LEC-5 were selected as they were recognized by 

human IgG and there was success with Ss-eat-6 using DNA immunization (80). In addition, 

the recombinant diagnostic antigens Ss-NIE-1 and Ss-IR (4) were included in the study. 

Immunization with the recombinant antigens in alum revealed that only immunization with 

the diagnostic antigen Ss-IR stimulated high and reproducible levels of protective immunity 

to infection. IgG from mice immunized with Ss-IR could transfer protective immunity and 

was found to bind to the larval surface and to the granules in the glandular esophagus. 

Interestingly, this is the same location that the protective human IgG bound to the worms 

(81–82). Ss-IR has been identified as a highly effective recombinant antigen for use in a 

vaccine against S. stercoralis. The mechanism of action appears to be antibody dependent 

and the observation that it functions so successfully with alum as its adjuvant suggests that a 

Th2 response may be required (83). In addition, the fact that alum is widely used as an 

adjuvant in humans adds to the potential for this vaccine to be used as a prophylactic vaccine 

in humans protecting them from infection with S. stercoralis.
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CONCLUSIONS

It is clear from the studies on both innate and adaptive immunity that there is redundancy in 

the mechanisms used by the immune response to kill S. stercoralis in mice. In the innate 

response both eosinophils and neutrophils can kill the larvae. In the adaptive immune 

response neutrophils were required but functioned with both IgM and IgG. Furthermore, IgG 

induced by live parasites, IgG induced by soluble parasite antigens and IgG from infected 

humans all seemed to kill the larvae through different mechanisms. It is possible that this 

vast armamentaria against the parasite is only present in mice which might explain why they 

are naturally resistant to this infection. Alternatively, susceptible human hosts also may have 

these methods to control the infection; however the worm has developed immune evasion 

mechanisms to specifically combat them in the human host.

It is interesting that complement and neutrophils were required by the protective adaptive 

immune response regardless of the source or isotype of the antibody. The observation that 

human and mouse IgG functioned in a similar manner provides evidence that the mouse 

model used for studying immunity to S. stercoralis is providing information that will 

translate into the human response to the infection. This is further confirmed by the discovery 

that an antigen that functions as a diagnostic indicator of human infection with S. stercoralis 
also functions as a vaccine against infection in mice. The SsIR antigen is clearly 

immunogenic in humans, which supports the concept thatthe antigen will be suitable as a 

prophylactic vaccine to prevent human strongyloidiasis.
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Figure 1. Innate immune response to Strongyloides stercoralis in mice.
During primary infection with larval Strongyloides stercoralis, neutrophils and eosinophils 

are attracted to the parasite microenvironment by parasite components. Killing of larvae is 

mediated by both eosinophils and neutrophils through the release of MBP from eosinophils 

and MPO from neutrophils. Both cell types require complement component C3b to kill the 

larvae. Eosinophils also have the capacity to function as antigen presenting cells, presenting 

parasite antigens to T cells resulting in the induction of a Th2 response.
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Figure 2. Adaptive immune response to Strongyloides stercoralis in mice.
Immunization of mice with live larvae results in a Th2 response characterized by the 

production of both IL-4 and IL-5. B-cells produce both IgM and IgG that collaborate with 

neutrophils to kill the worms through an accelerated killing process. As in the protective 

innate immune response, larval killing is dependent on the release of MPO from neutrophils 

and on complement component C3b.
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