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Innate and adaptive immunity to the nematode Strongyloides
stercoralis in a mouse model

Sandra Bonne-Année, Jessica A. Hess, David Abraham”
Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
19104

Abstract

Mice have been used to the study the mechanisms of protective innate and adaptive immunity to
larval S. stercoralis. During primary infection neutrophils and eosinophils are attracted by parasite
components and kill the larvae by release of granule products. Eosinophils also function as antigen
presenting cells for the induction of a Th2 response. B-cells produce both IgM and 1gG that
collaborate with neutrophils to kill worms in the adaptive immune response. Vaccine studies have
identified a recombinant diagnostic antigen that induced high levels of immunity to infection with
S. stercoralis in mice. These studies demonstrate that there are redundancies in the mechanisms
used by the immune response to kill the parasite and that a vaccine with a single antigen may be
suitable as a prophylactic vaccine to prevent human strongyloidiasis.
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INTRODUCTION

Strongyloidiasis has been described as the most neglected of the “neglected tropical
diseases” (1). This is surprising given that it has been estimated that Strongyloides
stercoralis infects 30—100 million people in both resource-rich and resource-poor nations (2—
3). One reason this disease has been neglected is that its prevalence has been severely
underestimated. Diagnosis of this disease requires special detection methods that are not part
of routine screening methods utilized to identify other parasitic infections in population
surveys (2). Also, the parasites are shed in low and inconsistent numbers which further
complicates the diagnosis. Use of recombinant antigen-based serological diagnosis has
greatly expanded the detection rates of this infection within endemic populations (4-5).
Another reason this infection is overlooked is that the disease it causes is relatively benign
during acute infection. Chronic infections may persist for the lifetime of the host and are
commonly subclinical. However, chronically infected individuals who become
immunosuppressed, often because of corticosteroid treatment or infection with HTLV-1, can
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develop hyperinfection syndrome, a condition that is life threatening (6-9). Although
chemotherapy (albendazole or ivermectin) is available for S. stercoralis infections, efficacy
is rarely 100% (10-11).

The life cycle of S. stercoralisis complex with direct, autoinfective and free-living
developmental cycles. The third-stage infective larvae (L3) initiate infection by penetrating
the skin of the human host and then undergo a migration through the host tissues, during
which the L3 undergo rapid development from the free living infective third-stage larvae to a
postpenetration, host-adapted transformed stage called the L3* (12-13). The L3* differs
from the L3 antigenically, which is intuitive based on the differing environments in which
the two worms reside. Similarly, significant physiological differences were seen between the
infective larvae of S. venezuelensis and larvae found in the connective tissue, lungs and
intestinal mucosa (14).

After molting twice the larvae enter the small intestine as mature egg-laying parthenogenetic
female adult worms. The eggs hatch in the gut and first-stage larvae are released in the feces
and in the direct developmental cycle they develop into third-stage infective larvae. In the
free-living developmental cycle the first-stage larvae develop into free-living male and
female adult worms which reproduce in the environment producing third-stage infective
larvae. Alternatively, the first-stage larvae may develop into autoinfective third-stage larvae
that never leave the host. Small numbers of these larvae may develop into adult worms,
which results in chronic infections that may persist for decades through the continuous
controlled replenishment of adult worms from autoinfective third-stage larvae. In patients
that are immunosuppressed hyperinfection may develop by the uncontrolled production of
first-stage larvae and their development into autoinfective third-stage larvae that migrate
throughout the host.

Another reason that strongyloidiasis has been a neglected disease is the difficulty of
performing experiments with the parasite. Only humans, primates and dogs are naturally
susceptible to infection with S. stercoralis, which significantly limits experimentation.
Strongyloides rattiand venezuelensis naturally infect rodents, and they have been used to
study the biology and immunology of these infections (15-18). However, a limitation of
these studies is that results generated with the rodent parasites S. rattiand S. venezuelensis
may not apply to the human pathogen S. stercoralis. Attempts to infect mice with S,
stercoralis have revealed that immunologically intact mice and mice deficient in T cells
killed the infections within several days (19). However, SCID mice, which have a deficiency
in both T and B cells, could be infected with S. stercoralis, with low numbers of adult worms
and first stage larvae developing in the mice after infection (20). This indicates that S.
stercoralis can develop in mice and that lymphocytes are part of the immune response
involved in eliminating the infection.

One of the challenges in studying this infection in mice is the fact that the parasites migrate
throughout the body. This makes accurate recovery of the parasites difficult and studying the
parasite microenvironment in the host nearly impossible. To overcome these issues, diffusion
chambers have been used as a means of containing the parasites in vivo in the subcutaneous
tissues, a natural habitat for the larvae. Diffusion chambers are constructed out of Lucite
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rings to which are adhered membranes that block worms from exiting the diffusion chamber
but allow free ingress and egress of host cells and soluble factors. The diffusion chamber
system allows a thorough examination of parasite survival in mice and analyses of diffusion
chamber contents indicate the innate and adaptive immune factors that are present in the
parasite microenvironment.

INNATE IMMUNITY (Figure 1)

Neutrophils

Eosinophils

The innate immune response to S. stercoralis larvae in naive mice is characterized by the
recruitment of neutrophils, macrophages and eosinophils to the parasite, as seen within
diffusion chambers. Similarly, S. venezuelensis induced an increase of eosinophils and
mononuclear cells in the blood, peritoneal cavity fluid, and bronchoalveolar lavage fluid
(21). Cell contact is required for Killing of S. stercoralis larvae, which occurred within seven
days in naive immunocompetent mice (22). Elimination of neutrophils and eosinophils from
naive mice by treatment with a monoclonal antibody against Gr-1 resulted in an increase in
parasite survival (23), suggesting that these cells are active participants in the protective
innate immune response. Likewise, studies with S. rafti have revealed that cellular infiltrates,
consisting of neutrophils, eosinophils and macrophages, were observed in the skin in
response to the invading larvae in rats and mice during both primary and secondary
responses (24-25) and that granulocytes are crucial in the early defense against migrating
larvae of S. rattiin mice (26).

Studies performed with purified neutrophils indicated that they can independently kill the
larvae (27) and that killing of the larvae by neutrophils is dependent on the neutrophil
specific granular protein myeloperoxidase (MPO) (23). If neutrophil recruitment to the
parasites in mice was blocked, either because of a defect in G i2 signaling (28) or in the
expression of CXCR2 (27), the capacity of mice to kill S. stercoralis larvae was significantly
decreased. CXCR2 dependent recruitment of neutrophils to larvae occurs independently of
IL-17 and molecules extracted from S. stercoralis are capable of directly recruiting
neutrophils through CXCR2, using signaling pathways similar to those used by host
chemokines. In addition, the S. stercoralis soluble extract also induced neutrophils to release
MIP-2 and KC, which further enhanced the recruitment of neutrophils. The finding that
neutrophils produce increased amounts of neutrophil-recruiting chemokines following
exposure to S. stercoralis soluble extract suggests an efficiently orchestrated system whereby
a primary stimulus from a parasite causes an autocrine amplification of cell recruitment
through release of host-derived chemokines. The efficiency of this recruitment strategy is
further highlighted by the observation that the CXCR?2 receptor has the ability to respond to
both parasite- and host-derived factors resulting in highly efficient neutrophil recruitment
and control of infection with S. stercoralis (29).

Several methods have been used to assess the potential of eosinophils to kill the larvae of S.
stercoralis and to determine if they are required for protective innate immunity to the
infection. IL-5 plays a key role in the differentiation, maturation, and survival of eosinophils
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(30-31). Treatment of mice with a monoclonal antibody to IL-5 reduced eosinophils and
concomitantly reduced the capacity of mice to control the larvae of S. ratt/ in primary
infections (32). Survival of S. stercoralis was increased in naive mice deficient in IL-5 and
survival of the larvae was diminished in mice overexpressing IL-5 (33), thereby suggesting a
direct role for eosinophils in killing the larvae. Treatment of naive mice with an anti-CCR3
monoclonal antibody specifically eliminated eosinophils and blocked innate protective
immunity to the infection (23, 27). Surprisingly, larval killing in naive PHIL mice, that
constitutively lack eosinophils, was not diminished. Treatment of the PHIL mice with a
monoclonal antibody to eliminate neutrophils resulted in a diminished protective innate
immune response. This demonstrated that in the complete absence of eosinophils,
neutrophils were capable of controlling the infection (23). It was therefore concluded that
both eosinophils and neutrophils can kill the larvae; in untreated mice both cell types are
required for optimal protective innate immunity (27). However, in mice with a genetic
deficiency in eosinophils, neutrophils are sufficient to compensate for the loss of easinophils
and kill the larvae. The mechanism used by mouse eosinophils to kill the larvae was shown
to be dependent on the granular protein major basic protein (MBP) and not eosinophil
peroxidase (EPO) (23). MBP, EPO, eosinophil cationic protein (ECP) and eosinophil-
derived neurotoxin (EDN), purified from human eosinophils, were tested in vitro for their
toxicity to the larvae of S. stercoralis. Only MBP and ECP were toxic to the host adapted
larvae (L3™), while survival of infective larvae remained unaffected (34).

Studies on the schistosomula of S. mansonihave demonstrated that both EPO from
eosinophils and MPO from neutrophils are toxic to the parasite. EPO and MPO apparently
kill the organism through a similar mechanism dependent on hydrogen peroxide and a halide
(35). Likewise, both EPO and MPO contribute to tyrosine nitration through oxidation of
nitrite (36). Other studies have shown that MPO and EPO form reactive halide species
through different mechanisms (37) and that MPO and EPO lyse Mycobacterium tuberculosis
through different mechanisms. EPO induced cell wall lesions and lysis in the presence or
absence of hydrogen peroxide whereas MPO required hydrogen peroxide to kill M.
tuberculosis in the absence of any morphological changes in the pathogen (38). MPO from
neutrophils was required to kill the larvae of S. stercoralis whereas EPO from eosinophils
did not function in that capacity, suggesting that the two peroxidases function against the
larvae of S. stercoralis through different mechanisms, which results with one peroxidase
killing the worm and the other not.

As with neutrophils, eosinophils are directly recruited to the parasite without the need for
other host cell assistance. Chemoattractants derived from the larvae and host species
stimulate similar receptors and second messenger signals to induce eosinophil chemotaxis.
The parasite extract stimulates multiple receptors on the eosinophil surface, which ensures a
robust innate immune response to the parasite. The redundancy of the chemotactic factors
produced by the parasite and the multiple responding receptors on the eosinophils suggests
chemotactic receptors on these pivotal cells may have evolved to ensure a robust response to
this infection (39).

It is puzzling as to why the larvae of S. stercoralis recruit both neutrophils and eosinophils,
cells that can kill the worm. One possibility is that the efficient recruitment of neutrophils
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and eosinophils to the larvae explains why mice are refractory to infection with this parasite.
It would be interesting to see if cells from hosts susceptible to the infection also are recruited
to the parasite. Alternatively, there may be an advantage for the parasite to recruit the cells
either for a direct beneficial effect as seen for 7richinella spiralis (40) or to repair tissue
damage caused by the migrating larvae thereby promoting host survival.

Complement

In addition to neutrophils and eosinophils, complement activation is required for innate
protective immunity to larval S. stercoralis. In vitro studies have shown that complement
component C3 was detected on the surface of the larvae (41) and eosinophils only killed the
larvae if a source of complement was provided (23). Mice deficient in C3 did not kill the
parasite whereas mice deficient in C3aR did eliminate the worms, suggesting that C3b is the
active component of C3 that is required to mediate larval killing (42). C3b may function in
the larval killing process as an adherence molecule for cells, or it may facilitate activation
and degranulation of the cells. Live S. stercoralis larvae activated complement in vitro
through both the classical and alternative pathways which promoted the adherence of human
monocytes and neutrophils to the surface of S. stercoralis (43). Complement also promotes
the binding of cells to the larvae of S. ratti (44).

Antigen presenting cells (APC)

The transition from the innate to the adaptive immune response requires the parasite to be:
(1) killed, (2) dissociated into a phagocytosable form, and (3) presented by antigen
presenting cells to T cells. Eosinophils are efficiently and independently recruited to the
parasite (39) where they have the capacity to kill the larvae through the release of MBP (23).
Interestingly, eosinophils also have the capacity to act as APC inducing parasite specific Th2
responses and antibody responses in both primary and secondary infections of mice with S.
stercoralis (45-46). Eosinophils have also been reported to function as APC inducing Th2
responses in several experimental allergy models (47-49). Therefore, eosinophils have the
capacity to chemotax to the parasite microenvironment, kill the parasite and then present the
antigens to naive T cells to induce adaptive immunity to the infection.

ADAPTIVE IMMUNITY (Figure 2)

The adaptive immune response in mice induced by immunization with live larvae is highly
effective with greater than 90% of the challenge larvae killed within 24 hours. Interestingly,
the immune response generated by immunizing mice with live infective larvae was directed
at the L3™ (12). Combining this observation with the susceptibility of the L3* to MBP (34),
suggests that infective stage L3 are resistant to immune attack whereas the L3* is the
susceptible stage. Furthermore, antigenic differences were seen between the L3, L3* and
autoinfective larvae associated with chronic infections and hyperinfection. Immunity
generated with L3 and directed at L3* did not kill the autoinfective larvae (13). This might
explain how infections persist in human hosts for decades. Incoming infective larvae would
be targeted by the adaptive immune response and this immunity would prevent
overwhelming infection with the parasite. The autoinfective larvae would survive in the face
of this immune response, thereby perpetuating the parasite within the host. Furthermore,
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production of autoinfective larvae is apparently controlled by the immune response, based
on their uncontrolled development in immunosuppressed individuals. The net result is that
the immune response controls infective and autoinfective larvae through different
mechanisms which results in infections with S. stercoralis persisting for the lifetime of the
host, yet causing only minor pathological effects in most cases.

Humans appear to control infection with S. stercoralis through a T-helper type 2 (Th2)
response based on the observation that patients co-infected with HTLV-1 and S. stercoralis
have decreased production of Th2-type cytokines, increased IFN-y production and greater
susceptibility to hyperinfection (8, 50-51). Th2 responses are the hallmark of many helminth
infections with expression of IL-4 and IL-5 essential for control of Onchocerca volvulus
(52), Heligmosomoides polygyrus (53), Trichuris muris (54) and Angiostrongylus
cantonensis (55). Protective adaptive immunity to S. stercoralis larvae in mice requires
CD4" but not CD8* T cells (56). Immunized mice treated with recombinant 1L-12
demonstrated a pronounced shift from a Th2 to a Thl response and thus blocked mice from
developing protective adaptive immunity. Furthermore, depletion of the Th2 associated
cytokines IL-4 or IL-5 from immunized mice using monoclonal antibodies impaired larval
killing (56). The requirement for a Th2 response for protective immunity also has been
reported for S. venezuelensis (57) and S. ratti (58). S. venezuelensis infections in Lewis rats
shift the immune response from Th1 during acute infections to Th2 during the recovery
phase (59) and IL-12 deficient mice infected with S. venezuelensishad higher levels of Th2
cytokines and decreased parasite burdens (60). Primary infections of rats with S. ratti
induced a Th2 response within 2—3 weeks post infection (61) which resulted in the
production of IL-4, IL-5 and IL-13 and a suppression of IFN-y in mice and rats (62—63).

Reports on human effector cell responses to S. stercoralis are limited. The frequent absence
of eosinophils associated with migrating larvae suggests that while peripheral eosinophilia is
a common systemic response, eosinophils are not primarily involved in the tissue response to
the parasite. Lymphocytes, macrophages and neutrophils are frequently seen in close
association with the larvae in various tissues, however, their role in controlling the infection
has not been elucidated (64-65). Cumulatively, the data on human protective immune
responses to S. stercoralis are limited and analysis of the data is restricted to identifying
correlations between immune responses and disease states; therefore in vitro and animal
models are required to define the actual role of cells in immunity to the S. stercoralis.

Depleting IL-5 from mice immunized against infection with S. stercoralis, either by
monoclonal antibody treatment (34, 56) or by genetically knocking out 1L-5 (33) resulted in
decreased numbers of eosinophils and an absence of protective adaptive immunity. However,
when eosinophils were specifically absent, either due to elimination by monoclonal antibody
treatment (27) or the use of PHIL mice which are genetically deficient in eosinophils (23), it
was determined that eosinophils were not required as effector cells in the adaptive immune
response. Interestingly, immunized IL-5 deficient mice, that had severely reduced numbers
of eosinophils, failed to establish protective immunity, and had lower levels of parasite-
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specific IgM (33). Reconstitution of immunized IL-5 deficient mice with wild type
eosinophils elevated the parasite-specific IgM levels and the mice were then able to
eliminate challenge infections (33). Similarly it has been reported that IgM induced by the
adjuvant alum is compromised in mice genetically deficient in eosinophils and that transfer
of IL-4 expressing eosinophils restored the production of antigen specific IgM (66), thereby
confirming a role for eosinophils in IgM production. Immunized PHIL mice, that have no
eosinophils but intact cytokine levels, did not have reduced IgM levels (23). The immunized
PHIL mice appear to have an alternative source for molecules required for the induction of
IgM production that IL-5 ~/~ mice do not have. Therefore, eosinophils function as effector
cells in the innate immune response, antigen presenting cells and as sources of cytokines
required for IgM production in the adaptive immune response.

Studies were performed to determine the role of neutrophils in protective adaptive immunity
to S. stercoralis. Using CXCR2~/~ mice it was demonstrated that a reduction in recruitment
of neutrophils resulted in significantly reduced adaptive protective immunity. Protective
antibody developed in immunized CXCR2~/~ mice, thereby demonstrating that neutrophils
are not required for the induction of the adaptive protective immune response. Moreover,
neutrophils from wild-type and CXCR2~/~ mice killed the larvae of S. stercoralis at the same
rate, thus demonstrating that the defect in the CXCR2~/~ mice was in recruitment of
neutrophils and not in their ability to kill larvae (27). Mice deficient in Ga.i2 also failed to
kill the larvae in a challenge infection with S. stercoralis despite developing an antigen-
specific Th2 response characterized by increased IL-4, IL-5, IgM, and IgG. Neutrophils
from Gai2~/~ mice were competent in killing larvae; however, immunized Gai2™/~ mice had
significantly reduced recruitment of neutrophils to the parasite microenvironment, as seen
within the diffusion chamber (28). These data demonstrate that CXCR2 and Ga.i2 are not
required for the development of the protective immune responses against S. stercoralis,
however, they are essential for the recruitment of neutrophils required for killing of larvae.

Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen
associated molecular patterns on pathogens and alert the immune response to the presence of
invading pathogens. TLRs are involved in both the innate and adaptive immune responses
against several nematode infections including Brugia malayi (67), Onchocerca volvulus
(68), Trichuris muris (69) and Syphacia obvelata (70). Interestingly, TLR4 deficient mice
were shown to have impaired neutrophil recruitment in several systems (71-72). C3H/HeJ
mice, that have a point mutation in the Tlr4 gene, were used to determine the role of TLR4
in protective immunity to S. stercoralis. TLR4 was not required for killing the larvae during
the innate immune response, but was required for killing the parasites during the adaptive
immune response. No differences were seen in the T cell responses, antibody responses or
cell recruitment to the parasite between wild type and C3H/HeJ mice after immunization.
However, it was determined that neutrophils from the C3H/HeJ mice could not participate in
killing the worms in the adaptive immune response. The Tlr4 mutation severely alters the
effector function, but not recruitment, of cells to the parasite microenvironment (73). Finally,
as in the innate immune response, neutrophils deficient in myeloperoxidase (MPQO) had
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significantly decreased larval killing capacity (23). Therefore, neutrophils require both MPO
and TLR4 to kill the larvae of S. stercoralis in the adaptive immune response.

The function of B cells during S. stercoralis infection was studied in mice with specific B
cell deficiencies. Protective innate immunity in uMT mice, that lack mature B cells, was
sufficient to eliminate all parasites; however, immunized uMT mice that had no detectable
antibody levels did not kill the challenge infections. Xid mice, that lack B-1 cells, developed
a modest level of parasite specific 19gG with little IgM following immunization and also did
not kill worms in the challenge infections. These studies demonstrates that B cells, and
specifically B-1 cells, are required for adaptive immunity and not innate immunity to S.
stercoralis and suggest that IgM is required for adaptive immunity (74).

Complement and antibody

The protective adaptive immune response in mice to larval S. stercoralisis dependent on
complement activation. In the initial studies, immunized mice treated with Cobra venom
factor to deplete C3, were shown to be unable to kill the larvae (41). The necessity of
complement was confirmed in immunized C3~/~mice, where larval killing also did not
occur. C3aR™~ mice killed larvae during the adaptive immune response as efficiently as
wild-type mice thereby suggesting that C3b is the active complement component (42). C3
has been observed to be on the surface of larvae recovered from immunized mice (41), and
possibly serves as an anchor for cells to attach to the larvae in order to mediate killing of the
parasite, as has been seen with human complement and cells in response to S. stercoralis
(43). Thus complement activation is an integral component of both protective innate and
adaptive immunity to S. stercoralis in mice.

Mice immunized with S. stercoralis have elevated I1gA, 1gG1 and IgM levels in the serum
(22). IgM recovered at one week post immunization passively transfers protective immunity
to naive mice through a mechanism dependent on granulocytes and complement (41) and
both IgM and 1gG recovered at three and five weeks post immunization passively transfer
immunity. 1gG requires complement and neutrophils to Kill the worms and functions through
antibody-dependent cellular cytotoxicity (ADCC) based on studies in FcRy ~~ mice. This is
in contrast to IgM from mice immunized with live larvae where protective immunity is
ADCC-independent. Western blots were performed to determine what antigens the
protective IgM and IgG recognized and it was determined that both antibody isotypes
recognized some shared antigens, whereas other antigens were recognized independently by
either protective 1gG or IgM. Furthermore, IgM bound to the surface of the cuticle, basal
cuticle-hypodermis, coelomic cavity, and glandular esophagus, whereas the 1gG bound only
to the basal cuticle-hypodermis and the coelomic cavity (75). It therefore was concluded that
while IgM and IgG antibodies are both protective against larval S. stercoralis, they recognize
different antigens and utilize different killing mechanisms. Similarly, (7) a role for antibody
and cells in adaptive protective immunity to S. stercoralis in jirds has been observed (76),
(i) 19G is required for antibody-dependent immunity to S. ratti (77), and (7i7) a correlation
was observed between protective immunity to S. raftiand 1gG in mice and rats (58, 78-79).
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Serum from S. stercoralis seropositive patients was used to evaluate the protective antibody
response in humans. Only IgG from humans was able to passively transfer protective
immunity to mice through an ADCC-independent mechanism that was dependent on mouse
complement and neutrophils. The protective 1gG binds to the cuticle and glands surrounding
the esophagus. Western blot analysis comparing human and mouse IgG, identified unique
antigens recognized by human 1gG, and few antigens recognized by both human and mouse
IgG. Therefore, there are multiple antibody dependent mechanisms that function in adaptive
immunity Killing the larvae of S. stercoralis. Both IgM and IgG from mice and 1gG from
humans participate in killing the parasite, although the antigenic targets and mechanisms are
different. Interestingly, human and mouse antibody both require complement and neutrophils
to kill the larvae.

Vaccine Development—Studies were performed to identify antigens from S. stercoralis
that would induce protective immunity and thereby be components of a vaccine against the
infection. Mice immunized with soluble antigens derived from S. stercoralis larvae,
administered with alum as the adjuvant, had a 50% reduction in larval survival. Purified 1gG
from mice immunized with the soluble antigens passively transferred immunity to naive
mice and was ADCC independent. Immunization of mice with the small pool of antigens
specifically recognized by the protective 1gG induced a level of parasite killing comparable
to live larval immunization (75). These studies demonstrated that a limited pool of native
antigens, identified by mouse protective antibody, were capable of inducing a high level of
protective immunity to S. stercoralis in mice.

Using protective human IgG, seven proteins were recognized in the pool of soluble S.
stercoralis antigens, but only three were identified in the S. stercoralis EST database. The
three proteins, tropomyosin (Sstmy-1), Na*-K*ATPase (Sseat-6), and LEC-5 (Sslec-5) were
constructed into DNA plasmids. Sseat-6 was the only plasmid that induced a limited, but
statistically significant, level of protective immunity against the S. stercoralis larvae (80),
showing that the DNA encoding a single antigen could induce the development of protective
immunity.

Single recombinant purified protein antigens were tested for efficacy as a vaccine against S.
stercoralis. Ss-EAT-6, Ss-TMY-1 and Ss-LEC-5 were selected as they were recognized by
human IgG and there was success with Ss-eat-6 using DNA immunization (80). In addition,
the recombinant diagnostic antigens Ss-NIE-1 and Ss-IR (4) were included in the study.
Immunization with the recombinant antigens in alum revealed that only immunization with
the diagnostic antigen Ss-IR stimulated high and reproducible levels of protective immunity
to infection. 1gG from mice immunized with Ss-IR could transfer protective immunity and
was found to bind to the larval surface and to the granules in the glandular esophagus.
Interestingly, this is the same location that the protective human IgG bound to the worms
(81-82). Ss-IR has been identified as a highly effective recombinant antigen for use in a
vaccine against S. stercoralis. The mechanism of action appears to be antibody dependent
and the observation that it functions so successfully with alum as its adjuvant suggests that a
Th2 response may be required (83). In addition, the fact that alum is widely used as an
adjuvant in humans adds to the potential for this vaccine to be used as a prophylactic vaccine
in humans protecting them from infection with S. stercoralis.
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CONCLUSIONS

It is clear from the studies on both innate and adaptive immunity that there is redundancy in
the mechanisms used by the immune response to Kill S. stercoralisin mice. In the innate
response both eosinophils and neutrophils can kill the larvae. In the adaptive immune
response neutrophils were required but functioned with both IgM and 1gG. Furthermore, 1gG
induced by live parasites, 1gG induced by soluble parasite antigens and 1gG from infected
humans all seemed to kill the larvae through different mechanisms. It is possible that this
vast armamentaria against the parasite is only present in mice which might explain why they
are naturally resistant to this infection. Alternatively, susceptible human hosts also may have
these methods to control the infection; however the worm has developed immune evasion
mechanisms to specifically combat them in the human host.

It is interesting that complement and neutrophils were required by the protective adaptive
immune response regardless of the source or isotype of the antibody. The observation that
human and mouse 1gG functioned in a similar manner provides evidence that the mouse
model used for studying immunity to S. stercoralisis providing information that will
translate into the human response to the infection. This is further confirmed by the discovery
that an antigen that functions as a diagnostic indicator of human infection with S. stercoralis
also functions as a vaccine against infection in mice. The SsIR antigen is clearly
immunogenic in humans, which supports the concept thatthe antigen will be suitable as a
prophylactic vaccine to prevent human strongyloidiasis.
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Figure 1. Innateimmune response to Strongyloides stercoralisin mice.
During primary infection with larval Strongyloides stercoralis, neutrophils and eosinophils

are attracted to the parasite microenvironment by parasite components. Killing of larvae is
mediated by both eosinophils and neutrophils through the release of MBP from eosinophils
and MPO from neutrophils. Both cell types require complement component C3b to kill the
larvae. Eosinophils also have the capacity to function as antigen presenting cells, presenting
parasite antigens to T cells resulting in the induction of a Th2 response.
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Figure 2. Adaptive immune response to Strongyloides stercoralisin mice.
Immunization of mice with live larvae results in a Th2 response characterized by the

production of both IL-4 and IL-5. B-cells produce both IgM and IgG that collaborate with
neutrophils to kill the worms through an accelerated killing process. As in the protective
innate immune response, larval killing is dependent on the release of MPO from neutrophils
and on complement component C3b.
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