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Abstract

This article provides an outline of clustering, key stages in creating self-organizing maps for
purposes of clustering, instructions on how to use a free online R Shiny app that constructs
self-organizing maps for data provided by users, and interpretations of the graphics produced.

Keywords: Unsupervised classification algorithm, competitive learning algorithm

1 Introduction

These days it is not uncommon to have high-dimensional
massive data sets in research projects, and finding sim-
ilarities among attributes for such data sets is at best
difficult. The use of advanced software in multivariate
data analysis has become a requirement, and reducing
the computational cost to analyze data has become vi-
tally important. However, software is typically expensive
and the coding involved can be time consuming.

This article presents an online open-source app pre-
pared specifically to perform clustering, one possible av-
enue in the analysis of high-dimensional data. The app is
implemented using R Shiny [9], an R package with which
interactive web apps can be built using R, [8]. One of the
nice features of R Shiny is that these apps can then be
hosted as standalone apps on a webpage.

In what follows, an overview of clustering and the clus-
tering algorithm used by the app is presented. This
overview is along the lines of the presentation in [1].
Then, the key steps in using the app are outlined and,
following this, a complete example of its implementation
with relevant discussions and interpretations of the graph-
ics produced is provided.

Clustering

Informally, a cluster refers to a group of observations
within a larger data set that exhibit similar attributes,
and clustering refers to the actual process of partitioning
the whole data set into reasonably homogeneous groups.
The clustering process itself uses an algorithm that takes
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advantage of a similarity measure of some form to classify
observations in a data set in a manner that permits the
grouping.

Since clustering algorithms classify data observations
into classes based on attributes present in the data,
and without direction from the analyst, these algorithms
are referred to as unsupervised classification algorithms.
While there are several such algorithms, see for example
[1], the app under discussion uses what is called a self-
organizing map.

Self-organizing maps

As mentioned in [1], a self-organizing map (SOM), also
called a Kohonen map, makes use of artificial neural net-
works to produce a low-dimensional graphical representa-
tion of high-dimensional data. This is done in a way that
not only preserves the structure in the original data, but
also brings to light any similarities present in the data by
providing information that can be used to construct visual
aids to identifying clusters within the data. The process
by which a SOM accomplishes a clustering of data in a
high-dimensional data set can be summarized as follows.

In the simplest of terms, a SOM takes input nodes, ob-
servations from the data, and maps these to a collection
of output nodes which provide the information needed
to produce a low-dimensional graphical representation of
clusters present in the data. The process by which this
is accomplished involves the use of what is referred to as
a competitive learning algorithm which runs through the
following stages.

Suppose the data comprise n rows of observations with
columns typically associated with a collection of p ≥ 3
variables. Corresponding to each row, i = 1, 2, . . . , n, of
the data, let the vector xi = (xi1, xi2, . . . , xip) contain the
preferably scaled non-dimensional entries of the ith row
in the data. The index i identifies an input node.
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Stage 1 – Initialization A set of units representing
the output nodes are typically arranged in a square lattice
of dimensions at most ⌊

√
n⌋ × ⌊

√
n⌋. Then the connec-

tion between each input node i and every output node j is
represented by a weight vector wj = (wj1, wj2, . . . , wjp)
having entries from the interval [0, 1] assigned either ran-
domly, or using prior knowledge of the data set.

Note: From a biological point of view, the output nodes
in a SOM can be associated with neurons and the com-
ponents of the vectors wj are associated with synapses.
These form the artificial neural network mentioned ear-
lier. These terms will not, however, be used in this paper.
Rather, an input node will be referred to as such, or as a
data observation, and an output node will be referred to
as an output node, or simply a node when this is obvious.

After the initialization of the weight vectors, the algo-
rithm begins a sequence of iterative processes.

Stage 2 – Training the weight vectors To start this
stage, a data observation (an input node), say xi, is se-
lected at random.

Finding the Best Matching Unit : The similarity of xi to
each of the weight vectorswj is measured using a distance
function, commonly the Euclidean distance. That is, for
the chosen input node i and for each output node j, the
distance

d (xi,wj) =

√√√√ p∑
k=1

(xik − wjk)
2

is calculated. The weight vector that minimizes this dis-
tance is called the winning weight vector, or best matching
unit for xi. Let J denote the best matching unit for the
output node i, that is,

J = argmin
j

{d (xi,wj)} .

Then, once the best matching unit J for the input node
i is found, a process referred to as activation takes place
for all weight vectors within some predetermined neigh-
borhood of the best matching unit. This leads to the
competitive learning part of the algorithm.

Training the Weight Vectors: Denote the predetermined
neighborhood of the best matching unit by N(J) and de-
fine

hJj =

{
η (t) , j ∈ N(J)
0, j /∈ N(J),

where the monotonically decreasing function η (t) defines
the learning rate. See, for example, [1] for further details
on defining neighborhoods and on options available for
learning rate functions.

For the som function, which the app uses, the learn-
ing rate decreases linearly from 0.05 to 0.01, [7, p. 19],
and the neighbourhood decreases linearly from 2/3 of the

nearest nodes on the map to zero, see [2, p. 6] and [6].
When the neighborhood is 1 or less, only the winning
weight vector learns. Hence, for this app, the SOM starts
with a cooperative and competitive learning process, then
switches to a strictly competitive learning process.

Now, let t = 1, 2, . . . , T denote time-steps, with t = 1
being the starting time-step. Then the current weight
vectors, denoted wj(1), are updated (they are trained)
using a predetermined number of iterations of the activa-
tion function

wj(t+ 1) = wj(t) + hJj [xi −wj(t)] .

Once all of the weight vectors in the neighborhood of the
node J have been updated, or trained, another different
input node is selected at random and Stage 2 is repeated.
The process ends once all input nodes have been selected,
and all of the weight vectors have been trained for every
input node.

Stage 3 – Visualization At the termination of the it-
erations in Stage 2 there are available the input nodes,
the output nodes arranged in a square lattice, and the
trained weight vectors connecting each input node to out-
put nodes.

It is worth noting that the trained weight vectors them-
selves will be partitioned into K ≤ n clusters. It is this
information that is used to project graphical representa-
tions of similarities, or clusters, in the data onto the two
dimensional lattice of output nodes.

Those interested in delving deeper into the finer details
of self-organizing maps can find further information on
the underlying theory and development of self-organizing
maps in, for example, [2] or [5].

2 The App in a Nutshell

The R Shiny SOM app provides a user interface for
the som function contained in package kohonen, [2] and
[7]. This app can be accessed at https://github.

com/iba-community/R-Shiny-for-Clustering. Once
started up, there are three tabs in the app that navigate
the user through the three main windows.

The Introduction tab opens the Introduction window
in which the app starts up, see Figure 1. Here the user
is introduced to the purpose of this application, given
general directions on how to use it, and given descriptions
of the plots that it produces.

The Import Data tab opens the Import Data window,
see Figure 2. This is where users are given the option
to upload their own data by selecting the option Upload
Data, or explore the app with data provided in the app
by selecting Use Sample Data.
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Figure 1: The Introduction window.

Note: Should the user wish to upload their own data,
then the data must be as a *.csv file, checked for missing
entries, and organized such that rows represent observa-
tions and columns represent variables for which the ob-
servations are made. While not a requirement, one of the
columns may be a labels column.

The Visualize Data tab opens the Visualize Data
window, see Figure 3. Here the user selects the variables
of interest and sets the various SOM parameter values
as desired. The graphics produced by the SOM app are
automatically displayed in this window. Illustrations of
choices in this window appear in the following complete
example.

3 A Complete Example

Fisher’s iris data [3], one of the most common benchmark
sample data sets, and a popular data set for validation
purposes on clustering algorithms, is used in this exam-
ple, see for example, [3] and [4, p. 3]. Here is a brief
description of the data.

Observations on 50 each of three species of the iris
flower family, iris setosa, iris virginica, and iris versi-
color are obtained (150 observations total) under four
variables. Data under these four variables are obtained
through measurements of the sepal length, sepal width,
petal length, and petal width for each flower. A fifth col-
umn in the data contains the labels variable which identi-
fies the species to the which each flower belongs. It should
be noted that the iris setosa species is clearly distinguish-
able from the other two species, while the iris versicolor
and virginica are not as clearly distinguishable from each
other.

To start things off, click on the Import Data tab, and
then select Iris from the Import a Sample Dataset option,
see Figure 4.

Next, click on the Visualize Data tab and select the
variables of interest: sepal length, sepal width, petal
length, and petal width in the SOM Options window,

Figure 2: The Import Data window.

Figure 3: The Visualize Data window.

Figure 4: The Use Sample Dataset button is green because it
has been pressed, and the iris dataset is highlighted because
it has been selected.
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see Figure 5. Then, for this example, set the SOM Size
to 5. This sets the dimensions of the square lattice for
the nodes to 5 × 5. Different dimensions can be chosen,
as long as they do not exceed ⌊

√
n⌋.

Note that the variables can also be selected in the Pre-
view Dataset window, see Figure 6, by clicking on an
observation of the variable (be aware that clicking on the
variable does NOT select the variable, instead, clicking
on the variable reorganizes the data), or in the SOM Op-
tions window by selecting the variables from the drop-
down menu. Notice that the boxes for Show Clusters and
Toroidal are NOT selected, however, turning each of these
selections on and off can assist in identifying clusters in
the data.

Side Note: It is recommended that a SOM should be
retrained several times before coming to any conclusions
about the data. The reason given for this is because of the
randomness involved in the SOM initialization process,
[2]. To retrain the SOM, click the Retrain SOM button
in the Visualize Data window. Graphs are automatically
updated every time a retraining is performed, and plots
of interest can then be downloaded with the Download
button located at the bottom-left of every graphic. Lastly,
Toroidal is on by default and turns the map into a torus.

Examples of each plot produced, along with relevant
options and interpretations are now given.

Colorless mapping plot

The Colorless Mapping Plot shows observations from the
data as small circles contained in hexagons, the hexagons
being the output nodes, see Figure 7. Observe that some
of the nodes are associated with observations and some
are not. Observations associated with a node (that is,
within a hexagon) and with close-by nodes have similar
weight vectors, indicating the corresponding data obser-
vations have similar attributes.

The SOM algorithm is unsupervised, as are all cluster-
ing processes, so the som function does not require labels.
However, labels can be added afterwards if the a labels
variable is available in the data. For example, the iris data
has “Species”as the labels variable in the last column of
the data set, which can be seen in Figure 6. To add labels
and colors to the mapping plot, click on Show Labels, and
select the variable Species from the drop-down list. The
mapping plot in Figure 8 colors the observations by the
associated species, and provides a legend.

Retrain the map several times until the cluster of iris se-
tosa is clearly separated from the partially mixed clusters
of iris virginica and iris versicolor. Follow the position of
the setosa cluster on the map after every retraining, and
observe that the setosa cluster will be clearly separated
from the other mixed clusters, and can appear in a differ-
ent corner of the map after each re-training. Notice that

Figure 5: The four variables are selected from the drop-down
list. The SOM size is set to 5, and Show Clusters and Toroidal
are NOT selected.

Figure 6: The four variables are selected from the iris data.
The fifth column is named Species, and is NOT selected.

Figure 7: The bottom-right cluster of data is separated from
the top-left mixed-cluster of data by the five empty nodes.
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if Toroidal is on, then the setosa cluster will not always
show up in the corners of the map.

Class plot

The Class Plot requires a labels column in the data which
must be selected from the drop-down list. This plot fol-
lows directly from the Colorless Mapping Plot with a leg-
end. To get the Class Plot for the iris data, select the
variable Species. Then the classes are updated with the
species label, and each of the nodes (again represented
by hexagons) is colored according to the color associated
with the most frequently occurring species tied to the
node, see for example [4, p. 15]. As the included leg-
end indicates, grey hexagons represent nodes that do not
contain any observations.

For comparison, in Figure 8, the bottom left hexagon of
the map has five iris versicolor and one iris virginica ob-
servation, while, in Figure 9, the bottom-left hexagon of
the map is purple, which is the color assigned to the most
frequently occurring species associated with this node,
iris versicolor. Additionally, the grey hexagons represent
the clear separation of the setosa (green) cluster from the
virginica (orange) and versicolor (purple) mixed clusters.

Continuous response map

The Continuous Response Map, see Figure 10, uses clas-
sical multidimensional scaling–cmdscale to lower the di-
mension of the weight vectors for the nodes in the map
to 3-dimensions. The new 3D vectors are treated as RGB
values for each node, then the node is colored by the RGB
value. The map displays clusters with similar hues. For
example, in Figure 10 the bottom right cluster of setosa
is colored with similar hues of green because the weight’s
of nearby nodes are similar, while the virginica and ver-
sicolor clusters mix hues from orange to purple.

Counts plot

In the Counts Plot nodes are represented by discs, see
Figure 11, each disc is colored according to the number
of observations associated with the corresponding node,
see for example [7, p. 13] or [4, pp. 15-16]. The legend
for this plot, if included, displays a spectrum of colors
with an associated count and the map displays colored
discs. As before, grey discs represent nodes that are not
associated with any data observations. Observe that in
Figure 11 the grey discs clearly separate the bottom right
setosa species from the two other species. The setosa
cluster is clumped together with nodes having high values.
The virginica cluster is more spread out across the top of
the map, the data in this cluster being spread out across
multiple discs. The versicolor cluster has about the same
number of observations as the virginica cluster. However,

Figure 8: The bottom-right cluster is of the species setosa.
The top cluster of data is iris virginica and is partially mixed
with the bottom-left cluster of iris versicolor.

Figure 9: Unlike in Figure 8, the colors are assigned to the
whole cells.

Figure 10: Each node is colored based on each node’s weight.
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one node belonging to the versicolor cluster has many
observations, while the rest of the observations in this
cluster are spread over multiple nodes.

Neighborhood distance plot

The Neighborhood Distance Plot is the SOM version of a
U-matrix plot, see for example [4, pp. 17-18], where nodes
are represented by discs. The color assigned to each node
represents the sum of the distances to that node’s imme-
diate neighbors, [7, p. 13]. The legend for this plot, if
included, also displays a spectrum of colors with associ-
ated distances, and the map shows colored discs. This
means that a node having a color associated with a small
distance will have close neighbors, and a node having a
color associated with a large distance will have more dis-
tant neighbors.

In Figure 12, colors assigned to the discs indicate that
the clusters have low values, which implies that neighbor-
ing nodes are close together. Alternatively, observe that
the majority of the nodes not associated with any data
observations have higher values, implying that neighbor-
ing nodes are further away. So, one may conclude that
observations from the setosa cluster are very likely close
to each other in terms of attributes, but further away
from observations belonging to the other two clusters. At
the same time, neighboring nodes associated with the ver-
sicolor and virginica clusters, being partially mixed, are
closer together.

Codes plot

In the Codes Plot, see Figure 13, nodes are represented
by discs containing what look like Pie Charts made up of
sectors of circles (wedge-shaped pieces) having different
radii. Each wedge represents one of the variables of in-
terest, and the radius of the wedge is proportional to the
data value corresponding to the variable for the node in
question, [7, p. 13]. The legend for this plot, if included,
shows the variables and their associated colors.

In Figure 13, the bottom-right discs representing the
setosa cluster suggest that values for the variable sepal
width vary considerably, while, values for the other vari-
ables barely vary. This contrasts with the versicolor and
virginica clusters, where values for all four variables vary
considerably from node to node.
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