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Abstract

Radiation therapy remains as one of the main cancer treatment modalities. Typical regimens
for radiotherapy comprise a constant dose administered on weekdays, and no radiation on
weekends. In this paper, we examine adaptive dosages of radiation treatment strategies for
heterogeneous tumors using a dynamical system model that consist of radiation-resistant and
parental populations with unique interactive properties, namely, PC3 and DU145 prostate
cancer cell lines. We show that stronger doses of radiation given in longer time intervals, while
keeping the overall dosage the same, are effective in PC3 cell lines, but not in DU145 cell lines.
In addition, we tested an adaptive dosing schedule by administering a stronger dosage on
Friday to compensate for the treatment-off period during the weekend, which was effective in
decreasing the final tumor volume of both cell lines. This result creates interesting possibilities
for new radiotherapy strategies at clinics that cannot provide treatment on weekends.

Keywords: mathematical oncology, tumor growth, radiotherapy, dose fractionation, lotka-
volterra model

1 Introduction

Radiotherapy is one of the predominant cancer treatment
modalities. Approximately 50% of all cancer patients re-
ceive radiotherapy treatments during the course of their
illness [11, 3], and it is estimated that radiation ther-
apy contributes around 40% towards curative treatment
[2]. It is also a highly cost effective single modality treat-
ment, accounting for only about 5% of the total cost of
cancer care [28]. Furthermore, advances in imaging tech-
niques, computerized treatment planning systems, radia-
tion treatment machines with improved X-ray production
and treatment delivery, as well as improved understand-
ing of the radiobiology are all increasing the impact and
importance of radiotherapy [4].

In clinics, the dosing schedule of radiotherapy is stan-
dardized using daily doses of 1.8 to 2.0 for 39–45 fractions
[33]. This is called fractionation, where the total dosage is
divided into smaller doses that are given over a period of
one to two months. The specific dose for each patient de-
pends on the location and severity of the tumor, as well as
the radiation-induced toxicity of normal tissues surround-
ing the tumor. Various studies focus on dose alteration to
improve radiotherapy outcome, including hypofraction-
ation and hyperfractionation [26]. Hypofractionation is
a treatment regimen that uses higher doses of radiation
in fewer visits to lower the effects of accelerated tumor

1University of California, Riverside, USA, 2Lafayette College,
USA, 3Karolinska Institute, Stockholm, Sweden

growth that typically occurs during the later stages of ra-
diotherapy. On the other hand, hyperfractionation is a
strategy dividing the same total dose into more frequent
deliveries, for instance, radiation doses given more than
once a day. A recent study in [37] shows that increasing
the total dosage to 80 Gy, that corresponds to a biolog-
ically equivalent dose of 200 Gy for prostate cancer is
associated with improved outcome, but doses above that
level did not result in additional clinical benefit. More-
over, population-based research revealed an association
between overall survival of prostate cancer patients in
doses over 75.6 Gy [33]. However, the dosage schemes
that can be tested in clinical trials are very limited. Sim-
ulation using in-silico models can help address this limita-
tion to test various dosing schedules without the concern
of toxicity to patients.

A large number of mathematical and computational
models have been developed to study tumor growth and
cancer treatments, including differential equations [24, 19,
8], multiphase models based on mixture theory [6, 31] or
phase field theory [30], and multiscale models that cou-
ple subcellular, cellular, and tissue scale phenomena [18].
The availability of detailed information about tumors has
undoubtedly stimulated this field to more complex mod-
els, although as the model complexity increases, it be-
comes more challenging to uniquely identify the model
parameter values [7]. In particular, often in the clinical
setting, it is not possible to collect appropriate amounts of
patients’ data to calibrate complex models. Hence, simple
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models such as ordinary differential equations (ODEs) are
commonly used when dealing with clinical data. See [12,
9, 36] for recent literature using ODE models to calibrate
data of radiotherapy treated tumors as in our study.

Radiotherapy also has a long history of mathematical
modeling. Radiation dosing is typically modeled using
the linear-quadratic (L-Q) model [32, 13]. Several recent
studies have applied the L-Q model to patient-specific
data, in an effort to evaluate and predict individual re-
sponses to radiotherapy [29, 10, 31, 12]. Logistic type
of radiotherapy response has been proposed with a con-
cept of proliferation saturation index, defined as the ratio
of tumor volume to the host-influenced tumor carrying
capacity, that correlates inversely with radiotherapy re-
sponse [27, 25]. Other radiotherapy models, including
those assuming a dynamic carrying capacity, have been
developed to more accurately calibrate and predict indi-
vidual patient response to radiotherapy [36].

Here, we investigate the effect of different radiother-
apy regimens on the growth of two types of heteroge-
neous prostate tumors comprising radiation-sensitive (or
parental) populations and resistant populations that in-
teract with one another. Although adaptive radiotherapy
and its potential clinical benefits have been proposed in
the clinical community since 1997 [35], it has not been
a common practice in the clinics until now [5]. How-
ever, recent improvements in imaging technologies along
with mathematical modeling have been proclaimed to al-
low us new opportunities toward patient-specific adaptive
radiation therapy [12]. Our work is in accordance with
this idea of using mathematical models to guide radiation
dose planning, which has been done for various types of
tumors, such as glioblastomas [22] and lung cancer [17].
The contribution of our study is to test the potential of
adaptive radiotherapy in silico for two types of prostate
cancer studied in [18]. The paper is structured as fol-
lows. Section 2 summarizes the mathematical model that
is used to describe the growth of heterogeneous cancer
and its response to radiotherapy with biological interpre-
tations of the model parameters. We also describe how
radiotherapy fractionation treatments are incorporated
into the model in order to properly simulate cell death
due to radiotherapy. In Section 3 we explore two differ-
ent scenarios on dose fractionation. Section 3.1 studies a
constant dosage treatment, while we change the dosage
and time interval between the administration of radia-
tion. The overall dosage is kept constant. In section 3.2,
we study a strategy to overcome the clinical radiotherapy
schedule with no radiotherapy treatments being adminis-
tered on weekends. We compare the strategy of changing
the dosage to be more heavily concentrated on Fridays at
the end of the week to a dosage that is spread out evenly.
Section 4 concludes our paper and summarizes our key
results. In addition, it includes our proposed fractiona-

tion scheme that incorporates our findings into a possible
dosage plan.

2 Mathematical Model of Cancer
Growth and Radiotherapy

The Lotka-Volterra model is one of the typical approaches
to describe the interactions between multiple types of can-
cer cells [15, 38, 14, 23, 18, 20]. We also employ the Lotka-
Volterra model to describe the growth of mixtures consist-
ing of parental and radioresistant tumor cell populations.
The equation tracks the dynamics of Vc(t), which is the
volume of the parental tumor population, or the “con-
trol”, in other words, the radiation-sensitive population,
and Vr(t), which is the volume of the radiation-resistant
tumor population.

dVc

dt
= pcVc

(
1− Vc

Kc
− λr

Vr

Kc

)
,

dVr

dt
= prVr

(
1− Vr

Kr
− λc

Vc

Kr

)
.

(1)

The parameters used in the Lotka-Volterra model each
have their own biological function. The rate of growth
of the control population is pc, and the rate of growth
of the radio-resistant population is pr. Kc is the car-
rying capacity of the control population, the maximum
volume to which the radio-sensitive or parental popula-
tion is limited to, and Kr is the carrying capacity of the
radioresistant population. In addition, λc and λr model
the interaction between the two populations, where λc de-
scribes the effect that the parental cell population has on
radioresistant cells, and λr describes the effect that the
radioresistant cell population has on the parental cells.
We note that −1 ≤ λc, λr ≤ 1. The signs of the inter-
action parameters λc and λr need not be equivalent. A
positive λc parameter represents a detrimental effect on
Vr, or the volume of the resistant tumor population, and
a negative λc parameter represents a beneficial effect on
Vr. The same is true for the effects of λr on Vc. If both
interaction parameters are positive then this represents
a competitive interaction between the two tumor popu-
lations, and if both are negative then this represents a
mutualistic interaction. One positive and one negative
interaction parameters signify that one tumor population
exerts a positive effect on the other while the latter exerts
a negative effect on the former tumor population, a so-
called antagonistic interaction. An interaction parameter
of 0 represents no effect on the other tumor population.
All model parameters and their biological interpretations
are summarized in Table 1.

We now explain how we incorporate treatment with
radiotherapy in the cancer model Eq. (1). We consider
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Table 1: Model parameters and their biological interpretation.

Parameter Biological meaning

Vc(t) Volume of the control (radiation-sensitive/parental) tumor population at time t
Vr(t) Volume of the radiation-resistant tumor population at time t
pc Rate of growth of the control population
pr Rate of growth of the radio-resistant population

Kc Carrying capacity of the control population
Kr Carrying capacity of the radio-resistant population
λc Effect of the control cell population on the radio-resistant cells
λr Effect of the radio-resistant cell population on the control cells

αc, βc Radio-sensitivity parameter of control cells
αr, βr Radio-sensitivity parameter of radio-resistant cells

Table 2: A summary of the parameter values used in the simulation for prostate cancer cell lines, PC3 and DU145.
The pre-treatment parameters p, K, and λ are taken from [18], provided in supplementary Table S1 and Figure 2d
of [18]. The radiotherapy parameters α and β are estimated from data in supplementary Figure S1b in [18].

Parameter
Cell line

Units
PC3 DU145

pc 0.36 0.6 day−1

pr 0.48 0.36 day−1

Kc 0.85 0.75 mm3

Kr 2.0 1.4 mm3

λc 0.2 0.25 day−1mm−3

λr 0.0 −0.5 day−1mm−3

αc 0.43 0.2843 Gy−1

αr 0.3 0.23 Gy−1

βc 0.0407 0.0161 Gy−2

βr 0.0402 0.0124 Gy−2

a typical tumor treatment regimen in which daily doses
of d Gy are administered Monday through Friday for 6
weeks. We use the linear-quadratic model [16] to account
for the effect of radiotherapy. This model assumes that
the fraction of cells that survive exposure to a dose d of
radiotherapy is given by

Survival fraction = e−αd−βd2

, (2)

where α and β are tissue specific radiosensitivity param-
eters that model single and double strand breaks of the
DNA [21]. We assume that the effect of radiotherapy is
instantaneous, with the non-surviving cell fraction imme-
diately removed when therapy is administered. In partic-
ular, we denote the dosing schedule by u(t) as the follow-
ing summation of indicator functions,

u(t) =

N∑
i=1

δ(t− ti), (3)

where δ(t) is a Dirac-delta function that is δ(0) = 1 and
zero elsewhere. This makes u(t) to be one only at ti
(for i = 1, 2, . . . , N), the times at which radiotherapy is
delivered. As we combine the radiotherapy model with
the radiosensitivity cancer growth model, we have

dVc

dt
= pcVc

(
1− Vc

Kc
− λr

Vr

Kc

)
,

− (1− e−αcd−βcd
2

) u(t)Vc, (4)

dVr

dt
= prVr

(
1− Vr

Kr
− λc

Vc

Kr

)
− (1− e−αrd−βrd

2

) u(t)Vr︸ ︷︷ ︸
cell death due to RT

. (5)

Here, αc and βc are radiosensitivity parameters for the
control cells, and αr and βr are for the resistant cells.
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3 Simulation of Radiotherapy
Dosage Fractionation

These simulations will investigate dosage strategies in two
separate prostate cancer cell lines, PC3 and DU145. Im-
portant to note when discussing each cell lines’ response
to varying dosage strategies is that each cell line varies in
their growth rate, response to radiation, carrying capac-
ity, and in the interaction parameters between control and
radio-resistant cell populations. For instance, regarding
the interaction between the control and radio-resistant
population, PC3 has competitive interaction, while the
control population of DU145 has antagonistic relation to
the radio-resistant population and only the control pop-
ulation benefits from coexistence. Also, regarding sensi-
tivity to radiotherapy, PC3 is more sensitive to the treat-
ment compared to DU145. See Table 2 for the parameter
values.

In our simulations, we consider a period of 6 weeks
of radiotherapy treatment with an initial 2 week can-
cer growth period. The dosage plans that we study are
described in each section in detail, but see Figure 1 for
some examples and a brief summary. The initial con-
dition for the model is taken as Vc(0) = 0.5mm3, and
Vr(0) = 0.5mm3, assuming the parental and resistant tu-
mor cell lines initially in a 1:1 ratio consistent with con-
ventional experimental methods [18]. Although we test
only for 1:1 ratio, we report on the control and resistant
volume separately to examine the efficacy of treatment
on each population.

In order to best measure the efficacy of radiation treat-
ment, we decided to quantify two basic features of each
simulation as a metric to determine the magnitude of in-
fluence each of our dosage strategies had on the growth of
the simulated tumor population. Those are tumor volume
and the tumor volume integrated in time, or area under
the curve. While tumor volume is the most obvious met-
ric to follow in order to measure the efficacy of simulated
treatment, the area under the curve is also an important
metric to follow because it represents the tumor volume
integrated over the treatment period, which gives you an
idea of the overall burden placed on the patient during
that period of time.

3.1 Comparison of constant dosage
strategies with different dose levels

In this section, we study radiotherapy schedules in which
the dosage value and time interval remain constant over
the six-week treatment period. In particular, we com-
pare different dosage levels, from 1 Gy to 4 Gy, while
increasing the time interval between each administered
dose for stronger dosages to keep the total dose at the
end of 6 weeks constant, at 42 Gy in total. The case of

Figure 1: Examples of radiotherapy dosage schedules
tested in this study. The clinical standard dosage plan
for prostate cancer is 2 Gy on weekdays, Monday to Fri-
day, for 6 weeks (top). The middle figures show exam-
ples of constant dosage schedules studied in section 3.1,
e.g., 1 Gy every day plan (middle, left) and 3 Gy every
3 days plan (middle, right). The bottom figures show
the dosage schedules tested in section 3.2, e.g., Control
schedules using constant dosage (bottom, left) and Exper-
imental schedules using stronger dosage on Friday (bot-
tom, right).
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Figure 2: Comparison of 1 Gy administered every 1 day
(top) versus 2 Gy administered every 2 days (bottom)
to a tumor model initiated as a 1:1 mixture of parental
and resistant tumor cell populations. The results show
the volumes for the individual parental (blue) and resis-
tant (green) populations from the PC3 cell line (left) and
DU145 cell line (right). When subjected to this change,
a 30% decrease in average tumor volume can be seen in
the PC3 cell line when comparing the 1 Gy schedule and
2 Gy schedule. This change in average tumor size is not
as noticeable in the DU145 cell line, as average tumor
size remains unaffected, but a larger variation of values
is noticed. See Tables 3–4 and Figure 3 for further com-
parison.

Figure 3: A line graph representing total final tumor vol-
ume for the PC3 cell line (left) based on values from Ta-
ble 3 as well as the DU145 cell line (right) based on values
in Table 4. Increasing both dosage values and the time
intervals in between dosages will not change the overall
dosage, so results are dependent on hypofractionation and
not an increased overall dosage. This strategy provides
promising results for the PC3 cell line, but not so much
for the DU145 cell line.

4 Gy has a lower total dosage due to the 6 week time
constraint, but still continues the observed trend even at
40 Gy total. This strategy is called hypofractionation.

In Tables 3 and 4, we can compare the results gener-
ated by ramping up dosage values as well as increasing
the time in between each administered dose. By organiz-
ing these events according to their respective dosage and
time interval increase, we can show a clear trend in the
data for the PC3 cell line, as shown in Table 3, in which
a higher dose administered over a greater period of time
gives better results than a lower dose administered over a
shorter length of time. For example, 2 Gy administered
every 2 days yields better results than 1 Gy administered
every 1 day. As an example, in Figure 2, we show the tu-
mor trajectory for the case of comparing a single (1 Gy)
dose administered every 1 day versus a 2 Gy dose admin-
istered every 2 days in both cell lines. Figure 2 follows
the basic parameters listed in Table 2. It is important to
note that the PC3 and DU145 cell lines are defined by
their own separate parameters and therefore present with
varying changes after dosage administration. For exam-
ple, the resistant population of tumor cells in the PC3
cell line have a higher carrying capacity, growth rate, and
higher levels of radio-sensitivity than do resistant cells in
the DU145 cell line. The same is true for parental cells in
the DU145 cell line vs. parental cells in the PC3 cell line.
This is why, despite it being seemingly counterintuitive,
we see resistant cells end with a smaller volume than the
more radiation-sensitive parental cells in the DU145 cell
line. In this instance, one should consider the growth rate
of the parental population and how it far exceeds that of
the resistant cells.

In Figure 2 we can see significant decay for the PC3
cell line in both final tumor size and the area under the
curve. In particular, the average tumor volume shows
a 30% decrease when comparing the 1 Gy schedule and
2 Gy schedule. However, results did not prove to be as
effective for the DU145 cell line, as shown in Table 4 and
Figure 3, since only a slight decrease in the area under
the curve is observable, and hardly any change can be
noted from the final volume of the tumor. In particular,
the parental DU145 cell line shows increasing final tumor
volume as dosages become stronger. Therefore, out of the
two cell lines, it would be safe to assume that this dosage
strategy proves effective only for the PC3 cell line and
not the DU145 cell line. We will further investigate the
underlying mechanism that makes the contrast between
the two cell lines in the future.

3.2 Comparison of uniform dosage
versus stronger dosage on Fridays

Next, we study various scenarios in which no radiation
would be administered over the weekend, to more closely
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Table 3: PC3 Cell line: Final tumor volume after treatment and area under the curve following an increase in time
interval with stronger dosage, while maintaining a constant overall dosage (i.e., under different hypofractionation
strategies). A steep decrease in final tumor volume was observed, as well as a decrease in the area under the curve.

Dosage (Gy) 1 2 3 4
Time Interval (days) 1 2 3 4

Final Tumor Volume
Parental 0.0020287 0.00043197 0.000076458 0.0000069054
Resistant 0.66080 0.56423 0.41890 0.22569
Total 0.662823 0.56466 0.41808 0.22570

Area Under Curve
Parental 298.16 277.67 262.53 251.33
Resistant 1046.4 911.99 791.61 694.12
Total 1344.5 1189.7 1054.1 945.45

Table 4: DU145 Cell line: Final tumor volume after treatment and area under the curve following an increase in time
interval with stronger dosage, while maintaining a constant overall dosage (i.e., under different hypofractionation
strategies). While a decrease in the area under the curve can be noted, the final tumor volumes of parental and
resistant populations yielded results with no obvious downward trend.

Dosage (Gy) 1 2 3 4
Time interval (days) 1 2 3 4

Final Tumor Volume
Parental 0.5162 0.53188 0.53996 0.526363
Resistant 0.34821 0.34030 0.32530 0.29257
Total 0.86444 0.87218 0.86526 0.81893

Area Under Curve
Parental 836.98 794.75 757.06 742.58
Resistant 661.44 624.52 590.47 569.93
Total 1498.4 1419.3 1347.5 1312.5

resemble a real-life scenario in which the radiotherapy
clinic would be closed on the weekends, therefore unable
to administer any radiation to a patient during this time
frame. This weekend time frame allows for unchecked
tumor growth for approximately 3 days until the next
dose of radiation is administered. The standard radia-
tion dosage strategy for most radiotherapy clinics would
be a consistent administration of 2 Gy of radiation ev-
ery weekday, and 0 Gy on weekends. However, instead
of administering a constant radiation dose of 2 Gy every
weekday, we decided to allocate more radiation at the
end of the week (on Friday) at the expense of lowering
the radiation dose for all of the days prior. The idea is to
maintain the same total amount of radiation at the end
of each week so as to not compromise the total amount of
radiation the patient receives, however instead of main-
taining a consistent dosage throughout, we can modify
the administration of radiation so that more of it is ad-
ministered at the end of each week in order to combat
weekend tumor growth.

We considered two different scenarios (Scenario A and
Scenario B) to test how a simulated tumor model might
shift as we vary the dosage values and their respective
time intervals. We also provide a variation on either
scenario (Scenario A′ and Scenario B′) in order to con-

firm the consistency of a stronger Friday dose by chang-
ing the Friday dosage value. We compared the results
from dosing every weekday (Scenarios A and A′) versus
dosing every Monday, Wednesday, and Friday (Scenarios
B and B′). However, we integrated the aforementioned
guiding principle in this investigation, i.e. stronger doses
given at the end of each week on Fridays, to compensate
for the weekend time intervals spent without radiother-
apy. For example, in this investigation, we administered
a higher dosage on Fridays than on any other weekday,
and then we allowed the tumor to “re-grow” on the week-
ends to represent a lack of radiotherapy treatment given
within that time frame. We used “end-of-week” values as
our main metric for determining the effectiveness of each
treatment modification, and each of these values are mea-
sured every Friday after radiation administration. Each
scenario is as follows. We remark that the dosage sched-
ule of scenarios A and B are plotted as bar graph in the
bottom of Figure 1.

• Scenario A involved the simulated administration of
1.8 Gy every day for five days to total 9 Gy at the
end of every week as our control group. In our ex-
perimental group this weekly 9 Gy value was main-
tained while varying daily dosage values. The dosage
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value in our experimental group would increase from
1.75 Gy every day Monday–Thursday, to a slightly
higher dose of 2 Gy every Friday. This sums to 9 Gy
at the end of every week, same as the control group.
Figures 5 and 6 depict the results of these changes in
either of the PC3 or DU145 cell lines, which shows
only a slight decrease in total tumor volume for the
experimental group as a result of these changes. Ta-
bles A1 and A2 in the Appendix list parental and re-
sistant end-of-week tumor volume sizes for the PC3
and DU145 cell lines in Scenario A, respectively.

• Scenario A′ involved a similar process, administer-
ing 2 Gy every day for five days as our control, and
1.75 Gy Monday–Thursday and 3 Gy on Friday as
our experimental schedule. We remark that the con-
trol case is one of the standard clinical treatment
schedules. This totals 10 Gy at the end of every
week. Similar results to Scenario A were observed,
with a steady decrease in end-of-week tumor volume
values. This change resulted in a much larger differ-
ence between experimental and control values than
Scenario A, however, and A′ more clearly exhibits
the benefits of a stronger Friday dosage. See tables
A5 and A6 in the Appendix for numerical results as
well as Figure A1 for a graphical representation.

Scenarios B and B′ consist of a variation from scenarios
A and A′, in which a dose is administered every Monday,
Wednesday and Friday (skipping Tuesday and Thursday),
still incorporating a stronger Friday dosage. The motiva-
tions behind this were to incorporate some of the findings
from earlier on in the paper to this dosage strategy as well,
that being the effectiveness of increasing the time inter-
val in between doses while maintaining a constant overall
dosage.

• Scenario B involved administering 3 Gy every Mon-
day, Wednesday and Friday for our control. Our ex-
perimental regime included 2.5 Gy on Monday and
Wednesday, and 4 Gy on Friday. This totals 9 Gy at
the end of each week. These values show a promis-
ing decrease in end-of-week tumor volume size when
concentrating a greater dose on Fridays. Figure 4 de-
picts the first two weeks of this scenario in both the
control and experimental groups for either cell line
as a side-by-side comparison. Figures 5 and 6 show
the difference between control and experimental tu-
mor volumes as a result of these changes in dosage
for the PC3 and DU145 cell lines, respectively. See
tables A3 and A4 in the Appendix for end-of-week
values.

• Similarly to Scenario B, Scenario B′ involved ad-
ministering a certain dosage, 2.5 Gy, every Monday,
Wednesday and Friday for our control. Our exper-
imental schedule consists of 2 Gy on Monday and

Wednesday, and 3.5 Gy on Friday. This totals 7.5 Gy
at the end of the week each week. Similar results to
Scenario B were observed, with a steady decrease in
end-of-week tumor volume values. See tables A7 and
A8 in the Appendix for numerical results as well as
Figure A2 for a graphical representation.

Scenarios A and A′ show us that by concentrating a
higher dosage at the end of the week while maintaining
a consistent weekly dosage, we end up with a smaller tu-
mor volume at the end of each week for both cell lines.
Scenarios B and B′ combined this idea with the previ-
ously discussed idea of allowing for more time in between
larger doses. We reconfirm the effectiveness of concen-
trating a higher dosage on Friday compared to Monday
and Wednesday in these scenarios. Smaller final tumor
volumes are obtained in both cell lines. However, when
we compare scenario A versus B, that is, smaller dosages
every five days versus larger dosages on every other day,
scenario B is more effective than scenario A only in the
PC3 cell line, not in the DU145 cell line. This is consistent
with the results obtained in section 3.1, hypofractionation
is effective only in PC3 cell line, but not in DU145 cell
line, even when combined with the stronger dosage on Fri-
day strategy. We remark that increasing the total dosage
using the same strategy always results in smaller tumor
size. For instance, A′ with total dosage 10 Gy is more
effective than A with total dosage 9 Gy and B with total
dosage 9 Gy is more effective than B′ with total dosage
7.5 Gy.

4 Conclusion and Future Outlook

In this study, we sought to study the effect of different
radiation dosing strategies on the growth of prostate tu-
mor spheroids consisting of a heterogeneous mixture of
parental and radiation-resistant populations. Our results
show that the administration of a higher dose with a
longer period of time in between doses gives more promis-
ing results for the PC3 cell line, but not necessarily for
the DU145 cell line. However, shifting dosage values so
that more of it is administered on Friday and less dur-
ing the week yields a moderate decrease in tumor volume
at the end of each week for both cell lines. Our results
showed us that by simply shifting dosage administration
values so that more of it is administered on Fridays, this
will yield lower overall tumor volume outcomes the more
you shift the dosage values, as seen in both cell lines in
Scenarios A and B. Combining this shift in dosage val-
ues with hypofractionation strategies yields much more
promising results in PC3 cell line, as noted in Scenar-
ios B and B′. It is important to note that all tests were
run in a simulated 1:1 ratio environment, and it would
be insightful to look into other heterogeneous mixtures of
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Figure 4: Scenario B - A comparison of 3 Gy administered
every Monday, Wednesday, and Friday (Control, top) vs.
2.5 Gy given on Monday and Wednesday, and 4 Gy every
Friday (Experimental, bottom), in a tumor initiated as a
1:1 mixture of parental (blue) and resistant green tumor
cell populations. The results show the volumes for the in-
dividual parental and resistant populations from the PC3
cell line (left) and DU145 cell line (right). Only the first
2 weeks are depicted to show more detail. A modest de-
crease in values at the end of each week can be noted
for both cell lines. A consistent dose will allow for more
growth on the weekend, however a stronger Friday dose
will yield a larger dip in the graph, increasing overall dos-
ing effectiveness.

parental and radiation resistant tumor populations. It is
also important to note that the significant difference in
results from the PC3 and DU145 cell lines shows us the
impact of the diversity of the tumor population itself on
radiation treatment.

We conclude from our results that we can improve the
treatment for a 1:1 PC3 cell line mixture using a com-
bination of both methods tested. Many different types
of treatments are possible in this manner, but one such
strategy is proposed in Figure 7. In this scheme, 3 Gy
of radiation is administered daily for the first week, with
a 4 Gy dose administered on the first Friday. Afterward
a constant dose of 2 Gy is administered every Monday,
Wednesday, and Friday for 5 weeks, with a final dose of
3 Gy administered at the end of the 6-week time period.
No radiation is administered on any weekend. This sam-
ple combination strategy assimilates both ideas described
in this paper; such that when the tumor is at its largest
we may give a stronger overall dose at the first week with
a stronger dose on the first Friday, and then afterward ap-
ply hypofractionation strategies from weeks 2–6. Because
a standard clinical radiotherapy procedure would involve
applying 10 Gy per week, and in this scenario the tumor
undergoes standard radiotherapy procedures for a 6-week
time frame, then this proposal strategy follows that 60 Gy
limit while providing a higher dose of radiation at the
first week. While this greatly slows future growth from
weeks 2–6 in the model (along with the effectively proven
implemented hypofractionation strategies), the effects of
increasing the radiation dosage in the first week by about
60% at the outset may have adverse biological effects that
would need to be observed in a laboratory setting.

In essence, this proposal offers a starting point to what
may be a simulation-based approach to radiotherapy that
would need to be balanced with the biological limitations
of living cells. A more balanced approach would only be
possible after testing various simulation-based radiother-
apy dosage strategies in a laboratory setting, and then
possibly using a feedback approach to integrate the re-
sults of each tested strategy into a simulation that can
better optimize each strategy with the use of more data.

When it comes to a 1:1 PC3 cell line mixture, com-
parison of this dosage strategy to our previous findings
shows us that implementation of both the usage of con-
stant dosage strategies with adaptive dose levels, as well
as a stronger dose on Fridays, proves to be more effec-
tive than using just one of the two strategies by itself.
Table 5 compares values between our proposed dosage
strategy and results from Table 3, and Table 6 compares
values between Scenario A, defined in Table A5, and our
proposed dosage plan. Both data sets show a clear drop
in tumor volumes, proving the effectiveness of combining
both strategies together.

Clinicians may be able to propose varying dosage
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Figure 5: PC3 cell line for Scenario A (top) and Scenario B (bottom). Each bar represents the total tumor volume
at the end of each week for either the control population (blue) or the experimental population (orange). 9 Gy are
administered every week for a period of 6 weeks for either scenario. Scenario A presents a slight decrease between
experimental and control populations, but by combining the two strategies, Scenario B presents itself as a much more
promising approach in decreasing overall tumor volume at the end of each week and across all 6 weeks of treatment.

Figure 6: DU145 cell line for Scenario A (top) and Scenario B (bottom). Each bar represents total tumor volume at
the end of each week. Control - blue, experimental - orange. 9 Gy are administered in a single week. DU145 presents
with similar results as the PC3 cell line when following the same dosage protocol described in Scenario A, however
as per the previous section, implementing increasing time intervals in between tumor fractionation is not as effective
for the DU145 cell line as it is for the PC3 cell line, therefore it presents with worse overall results than Scenario A
for DU145, confirming the ineffectiveness of hypofractionation on DU145.

Figure 7: Proposed dosage strategy (top) applied to a tumor initiated as a 1:1 mixture of parental and resistant PC3
cell line (bottom). In the first week, 3 Gy administered daily, with 4 Gy administered on the first Friday. Afterward
a constant dose of 2 Gy is administered every Monday, Wednesday, and Friday for 5 weeks, with a final dose of 3 Gy
administered at the end of the 6 week time period. The results show the volumes for the individual parental and
resistant populations. As detailed in Tables 5 and 6, our proposed dosage strategy results in the smallest final tumor
volume compared to all dosage plans tested in the previous sections and the standard clinical schedule.
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Table 5: Comparison of values between data collected from our simulation of the standard clinical radiotherapy
schedule (a constant 2 Gy dose every weekday with a break on weekends) and results from our proposed dosage
strategy. Both models used PC3 cell line parameters. A clear decrease in final tumor volume and total area can be
observed in both parental and resistant populations after implementation of the proposed dosage strategy.

Standard Clinical Proposed
Radiotherapy Schedule Dosage Strategy

Final Tumor Volume
Parental 1.0739× 10−7 1.0790× 10−8

Resistant 0.030486 0.0074191
Total 0.030486 0.0074191

Area Under Curve
Parental 19.910 6.1733
Resistant 140.41 33.693
Total 160.32 39.866

Table 6: Comparison of values between the standard clinical radiotherapy model,) results referenced in Table A5,
and our proposed dosage strategy. Scenario A involved administering 1.75 Gy every day from Monday through
Thursday and then 3 Gy every Friday, as well as withholding any radiation on weekends. We mirrored this scheme
more effectively in our proposed strategy, as exhibited by the decrease in end-of-week values for all six weeks. Our
proposed strategy proved to be most effective.

Tumor Volume week 1 week 2 week 3 week 4 week 5 week 6

Clinical
Standard

Parental 0.051106 0.0077640 0.0013167 0.00022713 3.9305× 10−5 6.8229× 10−6

Resistant 0.15534 0.064823 0.034116 0.019652 0.011837 0.0073082
Total 0.20645 0.072587 0.035433 0.019879 0.011876 0.0073150

Scenario A
Parental 0.044009 0.0063787 0.0010296 0.00016888 2.7777× 10−5 4.5829× 10−6

Resistant 0.13129 0.052691 0.026704 0.014785 0.0085415 0.0050479
Total 0.17530 0.059070 0.027734 0.014954 0.0085693 0.0050525

Proposed
Strategy

Parental 0.00039753 3.4299× 10−5 2.9631× 10−6 2.5612× 10−7 2.2186× 10−8 3.6478× 10−9

Resistant 0.0097035 0.0061374 0.0039301 0.0025354 0.0016432 0.0017628
Total 0.010101 0.0061717 0.0039331 0.0025357 0.0016432 0.0017628

strategies prior to the treatment cycle depending on the
cell mixture, cell line, size, and growth rate of the tumor
in order to fit the needs of each individual patient. This
proposal would be most effective in theory on this par-
ticular cell line (PC3) within a 1:1 mixture of parental
to radio-resistant cells. Due to the particularity of each
tumor in any individual patient, the importance of math
modeling in clinical radiotherapy remains well-grounded,
as ODE models can be used to predict the most effec-
tive course of treatment in any particular case, as op-
posed to following standard procedure that does not take
into account all of the variables involved in each individ-
ual tumor population, such as tumor heterogeneity. Our
hope is that in the future, with the help of ever-advancing
medical technology, patients’ tumors may be able to be
paramaterized in a similar manner to this study, and then
those parameters can be modeled using ODE’s that can
extrapolate the approximate growth behavior of the tu-
mor. Using this extrapolation, the best possible dosage
strategy can be approximated using much more advanced

optimization strategies than those implemented here, but
also one that builds upon the framework proposed earlier
in this paper.

Of note to point out is that all experiments in this sim-
ulation study were done in silico, and although param-
eters were derived from experiments, the natural world
contains many other complex parameters that cannot yet
be replicated within a computer simulation. Therefore,
further means of study and real-life investigations are nec-
essary before we can apply the findings of this study to a
clinical application. In addition, side effects and toxicity
of using higher dosage has to be addressed [1, 34]. That
being said, our work underscores the potential of adap-
tive cancer treatments, which is of recent interest in the
field. In particular, this concept can be applied to those
patients that have heterogeneous mixtures of cancer, with
both temporal and spatial variability in their cancer mi-
croenvironment and even therapy-induced perturbations.

In our future work, we propose to do further analysis
into different prostate cancer cell lines, such as the DU145
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cell line to examine the efficacy of adaptive dosages.
While the PC3 cell line showed promising results using
the hypofractionation strategy, the DU145 cell line did
not. This could be due to various factors, including the
differences in the proliferation rate and interaction types
of the populations. We aim to further identify the key
parameters and underlying mechanisms that yield such
differences to identify the cancer types and patients that
hypofractionation strategy should be applied to. Our fi-
nal goal is to develop strategies for cancer cell lines with
different interaction properties to improve treatment out-
come. Comparing other radiotherapy models with our
current choice, the linear-quadratic model with instant
response, will be our future work as well. It will be inter-
esting to validate our results across different radiotherapy
models including a logistic type of radiotherapy model
[27, 25], dynamic carrying capacity [36], and delayed re-
sponse from necrotic population [7]. In the future, we also
hope to do prospective experiments to examine the effi-
cacy of proposed dosage strategies, in addition to study-
ing other initial mixture ratios.

Code Availability

Code is available at https://github.com/josedualv/

Effective-dose-fractionation-schemes-of-

radiotherapy-on-prostate-cancer.
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Appendix

Tables and bar graphs for Scenarios A, B, A′, and B′ can
be found on the following pages 27–29.
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Figure A1: End-of-week tumor volumes in graphical format for Scenario A′ on the PC3 cell line (top) and on the
DU145 cell line (bottom). Scenario A′ shows the effectiveness of a higher Friday dosage without the implementation
of hypofractionation strategies on either cell line (as in Scenarios B and B′). While weekly dosage is higher than
that of Scenarios A and B (10 Gy vs 9 Gy), this value is consistent between control and experimental simulations
within this scenario, meaning the difference in end-of-week tumor volumes seen between the control and experimental
simulations is entirely due to a stronger Friday dosage.

Figure A2: End-of-week tumor volumes in graphical format for Scenario B′ on the PC3 cell line (top) and on the
DU145 cell line (bottom). This scenario involves administration of only 7.5 Gy every week, and implements a stronger
Friday dosage as well as hypofractionation strategies discussed earlier. While a stronger Friday dosage is still effective
for either cell line, hypofractionation strategies remain minimally effective to the overall tumor volume of DU145 cell
line.
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Table A1: PC3 cell line for Scenario A. Values represent tumor volume at the end of each week. Control: 1.8 Gy
administered Monday through Friday; Experimental: 1.75 Gy administered Monday through Thursday, 2 Gy admin-
istered on Friday. 9 Gy administered in a single week.

Tumor Volume week 1 week 2 week 3 week 4 week 5 week 6

Control
Parental 0.084901 0.021027 0.0061529 0.0018777 0.00058006 0.00017988
Resistant 0.22261 0.12080 0.083701 0.064383 0.052479 0.044384
Total 0.30751 0.14183 0.089854 0.066261 0.053059 0.044564

Experimental
Parental 0.082921 0.020487 0.0059828 0.0018221 0.00056178 0.00017386
Resistant 0.21667 0.11725 0.081114 0.062311 0.050729 0.042854
Total 0.29959 0.13774 0.087097 0.064133 0.051291 0.043028

Table A2: DU145 cell line for Scenario A. Values represent tumor volume at the end of each week. Control:
1.8 Gy administered Monday through Friday; Experimental: 1.75 Gy administered Monday through Thursday, 2 Gy
administered on Friday. 9 Gy administered in a single week.

Tumor Volume week 1 week 2 week 3 week 4 week 5 week 6

Control
Parental 0.15188 0.066600 0.036114 0.021379 0.013240 0.0084134
Resistant 0.23423 0.13887 0.10169 0.081892 0.069616 0.061283
Total 0.38611 0.20547 0.13780 0.10327 0.082856 0.069696

Experimental
Parental 0.14927 0.065328 0.035387 0.020933 0.012954 0.0082259
Resistant 0.23038 0.13631 0.099727 0.080260 0.068197 0.060011
Total 0.37965 0.201638 0.13511 0.10119 0.081151 0.068237

Table A3: PC3 cell line for Scenario B. Values represent tumor volume at the end of each week. Control: 3 Gy
administered Monday, Wednesday, and Friday; Experimental: 2.5 Gy administered Monday and Wednesday, 4 Gy
on Friday. 9 Gy administered in a single week.

Tumor Volume week 1 week 2 week 3 week 4 week 5 week 6

Control
Parental 0.019411 0.0015771 0.00013555 1.1705× 10−5 1.0112× 10−6 8.7391× 10−8

Resistant 0.15839 0.066878 0.035654 0.020827 0.012734 0.0079866
Total 0.17780 0.068455 0.035790 0.020839 0.012735 0.0079867

Experimental
Parental 0.016345 0.0012511 0.00010121 8.2218× 10−6 6.6823× 10−7 5.4331× 10−8

Resistant 0.12392 0.049846 0.025389 0.014144 0.0082270 0.0048978
Total 0.14027 0.051097 0.025490 0.014152 0.0082277 0.0048979

Table A4: DU145 cell line for Scenario B. Values represent tumor volume at the end of each week. Control: 3 Gy
administered Monday, Wednesday, and Friday; Experimental: 2.5 Gy administered Monday and Wednesday, 4 Gy
on Friday. 9 Gy administered in a single week.

Tumor Volume week 1 week 2 week 3 week 4 week 5 week 6

Control
Parental 0.22442 0.15275 0.12874 0.11798 0.11256 0.10967
Resistant 0.20989 0.11644 0.080110 0.060718 0.048637 0.040383
Total 0.43431 0.26919 0.20881 0.17870 0.16120 0.15005

Experimental
Parental 0.18009 0.12056 0.10093 0.092219 0.087874 0.085586
Resistant 0.18451 0.10023 0.068033 0.050978 0.040404 0.033206
Total 0.36460 0.22079 0.16896 0.14320 0.12828 0.11879
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Table A5: PC3 cell line for Scenario A′. Control: 2 Gy administered Monday through Friday; Experimental: 1.75 Gy
administered Monday through Thursday, 3 Gy administered on Friday. 10 Gy administered in a single week.

Tumor Volume week 1 week 2 week 3 week 4 week 5 week 6

Control
Parental 0.051106 0.0077640 0.0013167 0.00022712 0.000039305 0.0000068229
Resistant 0.15534 0.064823 0.034116 0.019652 0.011837 0.0073082
Total 0.20645 0.072587 0.035433 0.019879 0.011876 0.0073150

Experimental
Parental 0.044009 0.0063787 0.0010296 0.00016888 0.000027777 0.0000045829
Resistant 0.13129 0.052691 0.026704 0.014785 0.0085415 0.0050479
Total 0.17530 0.059070 0.027734 0.014954 0.0085693 0.0050525

Table A6: DU145 cell line for Scenario A′. Control: 2 Gy administered Monday through Friday; Experimental:
1.75 Gy administered Monday through Thursday, 3 Gy administered on Friday. 10 Gy administered in a single week.

Tumor Volume week 1 week 2 week 3 week 4 week 5 week 6

Control
Parental 0.11442 0.040030 0.017021 0.0077624 0.0036484 0.0017389
Resistant 0.18871 0.096959 0.061894 0.043493 0.032255 0.024753
Total 0.30313 0.13699 0.078915 0.051255 0.035903 0.026492

Experimental
Parental 0.10364 0.035558 0.014866 0.0066652 0.0030785 0.0014413
Resistant 0.17204 0.086988 0.054900 0.038185 0.028037 0.021301
Total 0.27568 0.12255 0.069766 0.044850 0.031116 0.022742

Table A7: PC3 cell line for Scenario B′. Values represent tumor volume at the end of each week. Control: 2.5 Gy
administered Monday, Wednesday, and Friday; Experimental: 2 Gy administered Monday and Wednesday, 3.5 Gy
on Friday. 7.5 Gy administered in a single week.

Tumor Volume week 1 week 2 week 3 week 4 week 5 week 6

Control
Parental 0.046328 0.0090815 0.0020226 0.00046238 0.00010633 0.000024483
Resistant 0.28760 0.18373 0.14793 0.13083 0.12139 0.11577
Total 0.33393 0.19281 0.14995 0.13129 0.12150 0.11579

Experimental
Parental 0.037598 0.0069530 0.0014604 0.00031438 0.000068035 0.000014740
Resistant 0.21896 0.13435 0.10526 0.091107 0.083055 0.078059
Total 0.25656 0.14130 0.10672 0.091421 0.083123 0.078074

Table A8: DU145 cell line for Scenario B′. Values represent tumor volume at the end of each week. Control: 2.5 Gy
administered Monday, Wednesday, and Friday; Experimental: 2 Gy administered Monday and Wednesday, 3.5 Gy
on Friday. 7.5 Gy administered in a single week.

Tumor Volume week 1 week 2 week 3 week 4 week 5 week 6

Control
Parental 0.32275 0.24864 0.22279 0.21006 0.20257 0.19766
Resistant 0.29400 0.20008 0.16489 0.14745 0.13762 0.13169
Total 0.61675 0.44872 0.38768 0.35751 0.34019 0.32935

Experimental
Parental 0.25674 0.19434 0.17308 0.16272 0.15668 0.15274
Resistant 0.25608 0.17060 0.13906 0.12344 0.11460 0.10922
Total 0.51282 0.36494 0.31214 0.28616 0.27128 0.26196
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