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Abstract

In 1954, Armitage and Doll published one of the most influential papers in the history of
mathematical epidemiology. However, when one examines the literature one finds that there
are in fact at least three distinct mathematical models attributed to the 1954 paper. In
this study, we examine this important paper and the mathematical derivation of their model.
We find, very surprisingly, that no stochastic process can account for all the assumptions
of the model and that many of the models in the literature use a consistent subset of the
assumptions used in Armitage and Doll’s paper.

Keywords: multistage carcinogenesis, Armitage and Doll, Nordling, cancer, power-law

1 Introduction

In 1954, Peter Armitage and Richard Doll, two British
epidemiologists, published a landmark paper [1]. The
“multistage model of carcinogenesis,” as their idea would
come to be known, was the birth of mathematical oncol-
ogy and more generally of mathematical epidemiology of
noncommunicable disease [2].

The power of the multi-stage model is due in large part
to its deliberate flexibility: Cancer is the end result of
n discrete and irreversible changes which (might need to)
occur in order. Yet from a mathematician’s perspective,
this flexibility translates as confusion: How does one model
support such a broad hypothesis? Not surprisingly, many
different answers to this question have appeared in the
literature. In this paper, we consider the historical works
of both Armitage and Doll to help determine their original
model. Our ultimate conclusion is that there is no single
stochastic process that satisfies all of the mathematical
hypotheses that Armitage and Doll listed in their 1954
work. In the next section, we give a historical overview of
the lives and contributions of both Armitage and Doll; our
third section lists assumptions for the model with the his-
torical context and justification for each assumption. The
fourth section begins with the proof of the inconsistency of
these assumptions, as well as a detailed overview of some
of the mathematical models that are used to represent
Armitage and Doll’s framework of multistage carcinogen-
esis. A mathematical appendix with detailed proofs is

1Department of Mathematics and Computer Science, Western
Carolina University, Cullowhee, NC, 2Department of Mathematics
and Computer Science, Adelphi University, Garden City, NY

included for those who are interested in seeing a rigorous
justification for the results.

2 Nordling’s Work: A Prelude to
the Armitage and Doll Model

The Armitage and Doll model was a careful redefinition
and derivation of a slightly earlier paper by Nordling
[3]. Nordling wished to explain a phenomenon that had
been found even earlier across several European countries
[4, 5]: An inexplicable power law (a relationship of the
form y = axn for constants a, the scale parameter, and
n, the degree of the power law) of degree 6 in cancer
mortality with age. Later in life, Doll lamented that
Nordling did not receive the recognition he was due for his
truly groundbreaking idea [6]. We posit that Nordling’s
work did not receive the attention until much later for
four basic reasons:

1. Nordling’s data analysis methodology,

2. the specificity of his biological hypothesis,

3. the specificity of the phenomena that Nordling wished
to explain,

4. a lack of mathematical transparency.

In the rest of this section, we will explain each of these
assertions.

2.1 Data analysis methodology

Nordling’s data analysis grouped mortality from all cancers
together as if cancer were a single homogenous disease.
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This was not an uncommon practice of the time: It is
exactly the methodology that had been employed by earlier
researchers in Europe. However, physicians and several
epidemiologists of the time understood that cancer was in
fact several similar illnesses most easily characterised by
their host tissue. To suggest that lung cancer and cancer
of the jaw, for example, were essentially the same was very
likely too far a stretch for clinicians to accept. This must
have been understood by Armitage, Doll, and others who
reported that the degree six power law held even when
data was analyzed for many different cancers.

2.2 Biological hypothesis

Nordling’s biological hypothesis was that cancer was
caused by seven irreversible mutations. This hypothe-
sis was also suggested independently by Herman Muller
in 1951 [7]. Muller’s work at that time, built off of his
work from the 1920s where he established that radiation
exposure can give rise to mutations [8]. The issue is that
this seemed to contradict many decades of laboratory
research. Even though the hypothesis that cancer was
the result of genetic instability was not new (in fact this
hypothesis dates back to at least the work of McCombs
and McCombs in 1930 [9] and may have predated even
that by more than a decade [6]), the number of mutations
contradicted lab findings that showed that one or two
mutations were sufficient [10]. These findings had made
one and two stage models of carcinogenesis the established
norm of the day [6, 10]. Besides this, Nordling’s biological
hypothesis makes no mention of order with respect to
mutations. This seemed to discard experiments, dating
back to the 1880s, showing two fundamentally different
types of mutagens: initiators and promoters [11].

2.3 Specificity of the phenomena that
Nordling wished to explain

Nordling only sought to explain a power law which seemed
prevalent in data across multiple countries. However, he
made no attempt to examine cancer incidence for cancers
of the sexual organs, which Armitage and Doll addressed
explicitly, nor did he try to explain how his theory might
be modified for exposure to carcinogenic substances at
different points in an individual’s life.

2.4 Mathematical transparency

The last reason we posit that Nordling’s work had little
chance of gaining mainstream notoriety is because there
was no mathematical justification in his paper—just a
reference stating that “several successive mutations in the
same cell, probably about seven in the case of human
cancer, would be necessary” (page 69, [3, 69]). This is

in sharp contrast to Armitage and Doll who included
a simplified mathematical derivation in the text of the
paper, a mathematical appendix with further details, and
a reference to an earlier paper by Doll which further
developed the mathematical concepts [1].
These specific limitations must have been at least par-

tially understood and appreciated at the time of Nordling’s
publication. Within the same volume of the British Jour-
nal of Cancer (but a later issue) we see an attempt to
correct these shortcomings by P. Stocks [12]. In his paper,
Stocks gives a careful mathematical derivation for the
incidence of stomach cancer and exchanges the term “mu-
tation” for the term “encounter.” However, the author is
very clear in his closing paragraph to say that “with these
[minor] reservations there appears to be no important
conflict between the hypotheses [of Stocks and Nordling]
themselves.”

3 Historical Context of the
Armitage and Doll Assumptions

For the purposes of this paper we use two different cate-
gories of assumptions involved in the Armitage and Doll
model: explicit and implicit. The explicit assumptions are
those that Armitage and Doll listed either in the main text
of their paper or in its mathematical appendix. However,
these assumptions alone are not enough to build a single
mathematical model. Therefore, we will also appeal to
implicit assumptions. These are the assumptions listed in
either paper which are referenced as providing additional
information in the mathematical appendix or information
gleamed from papers published by Armitage or Doll later
in life. The explicit assumptions listed are as follows:

1. Cancer is the result of several discrete changes with
very low rates of occurrence,

2. Changes are stable (i.e irreversible),

3. Changes must proceed in a unique order,

4. Mortality is a good indicator for incidence (i.e. the
waiting time from first cancer cell to death by cancer
is short and deterministic),

5. Changes occur independently (i.e. can occur in any
order but only cause cancer if they occur in a specific
order),

6. The probability of a specific change occurring in a
given interval is only a function of the length of the
interval and not when the interval occurs (i.e. inde-
pendent increments).

Armitage and Doll point to another paper [13] which adds
the assumptions that the probability of the ith change
occurring in an interval of length ∆ is pi∆+ o(∆), where
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o(∆) is the standard little o-notation, and that the process
was viewed as a pure-birth process with n stages. Thus if
the full population is able to contract cancer (assuming
an infinite life span), then risk should be asymptotically
constant [2].

Of course, there is another possibility which would imply
that risk should decrease after some period of time: if
some proportion of the population is immune to cancer
risk. However, in a later commentary on their model, Doll
seemed to claim that he did not hold this view. In his
words: “Whether an exposed subject does or does not
develop a cancer is largely a matter of luck; bad luck if
the several necessary changes all occur in the same stem
cell when there are several thousand such cells at risk,
good luck if they don’t. Personally, I find that makes
good sense, but many people apparently do not” [6] . The
last comment from the quote may have come from the
alternative assumption that risk heterogeneity accounts
for departures from the power law late in life (see for
example the work of [14, 15]). Thus from [13] and [6] we
can add the following implicit assumptions:

7. The waiting time for the ith stage is exponentially
distributed,

8. Almost surely, every person develops cancer (assum-
ing an infinite lifespan).

As the justifications for the implicit assumptions have
already been provided, we will use the rest of this section
to justify the explicit assumptions of the Armitage and
Doll model.

3.1 Cancer is the result of several discrete
changes

As stated previously, the main reason for this assumption
was to explain the power law found in many populations
around the world. However, the multi-stage theory of
carcinogenesis was not the only theory put forth to account
for this phenomenon. A competing theory stated that
cancer is the result of a population of seven cells each
of which would be activated by a single mutation. In
essence, so the theory goes, seven cells would create a
“critical mass” where cancer could thrive in the body. An
idea first advanced by Fisher and Hollomon separately
from Dahlberg’s earlier work [4, 3]. While this theory
definitely could explain the power law, it failed to explain a
different important oncological observation: Long periods
of dormancy between the application of a carcinogen and
a clinically visible tumor. One could thus argue that the
true intent of the Armitage and Doll paper was to see if
the multiple mutation theory could explain a wider range
of characteristic cancer behaviours.

3.2 Changes are irreversible

While there is some reason to believe that this assumption
was at least partially biologically motivated (perhaps by
relative risk reports that Armitage had compiled linking
lung cancer with the early exposure to smoking and earlier
work done by Muller on radiation and its effects on cancer
risk), it seems at least partially that this was a mathe-
matical simplification used to make the calculations more
tractable. Later in life, Doll, who at the time was head of
the Statistics department at Oxford University said that
“I can see that an awful lot of people who would be able to
understand the purposes of statistical methods, and would
be able to use them sensibly, are wasting their time if they
really try to go deeply into the maths. In my teaching, I
tried to get across purposes, methods, philosophies, and
reduce the maths to a minimum” [16]. In fact as the
following theorem shows, even with reversible changes,
one still obtains a power law.

Theorem 3.1. Assume that we have a finite state time-
homogeneous Markov chain with states X1, X2, . . . , Xn

where the exponential rate of movement from Xi to Xi+1

is given by λ, the rate from X2 to X1 is also λ and rate
for any other situation is 0. Further assume that we begin
at state X1 at time t = 0, then the probability density
function of being absorbed by state Xn follows a power law
of degree n− 1.

Proof. Under the assumptions of the above theorem, we
see that if YT is our state at time t = T, then define the
function

F (T ) = Pr(YT = Xn)

=

∞∑
i=0

1

2i

(
1−

n+2i−1∑
k=0

e−λT

(
λkT k

k!

))
,

then

F ′(T ) =

∞∑
i=0

1

2i
e−λT λn+2i−1Tn+2i−1

(n+ 2i− 1)!

= e−λT
∞∑
i=0

1

2i
λn+2i−1Tn+2i−1

(n+ 2i− 1)!

=
(
1− λT +O(T 2)

)( λnTn−1

(n− 1)!2
+O(Tn+1)

)
=

λnTn−1

(n− 1)!2
+O(Tn)

It is worth noting that Theorem 3.1 is a very special
case (as there is a single reversible transition); however, it
shows that the assumption of irreversablility is unnecessary.
There are more general theorems that would yield the same
conclusion, such as the following, the proof of which is
omitted here.
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Theorem 3.2. Assume that we have a finite state time-
homogeneous Markov chain with states X1, X2, . . . , Xn

where, if i < n, the wait in stage Xi has expected value
1

λi+α , that the probability of advancing to stage Xi+1 is

given by λi

λi+αi
and that the probability of returning to state

X1 is α
λi+α and Xn is an absorbing state. Furthermore

let τ be the hitting time for an individual starting at state
X1 at time t = 0. Then

Pr(τ < T ) = pkTn +O(Tn+1),

where

p =

n∏
i=1

λi

λi + αi
, and k =

n∏
i=1

λi.

3.3 Unique order of changes

The uniqueness of order was most likely not a mathemati-
cal simplification but a biologically consistent hypothesis.
Laboratory experiments showed that, in mice, the order of
exposure to mutagenic substances was immensely impor-
tant. Also, accounting for a single order of precancerous
stages, Armitage and Doll were able to explain why mu-
tagenic exposure at different points in life would have
varying effects on a population. As an example, if a young
person were exposed to a mutagen that only affected the
last precancerous stage, then the mutagen would have
only a negligible effect on cancer development. However,
someone later in life would have a much higher level of
risk from the same level of exposure.

Beyond not being a mathematical simplification (in fact,
more than a third of the their mathematical appendix is
dedicated to dealing with the case of having exposure that
affects a single stage), the assumption is not necessary
to obtain a power law. In fact, even having a unique set
of stages to develop cancer is not necessary to predict a
power law, as the following theorem illustrates.

Theorem 3.3. Assume that there are m possible sets of
stages. We assume further that that an individual will
develop cancer if every stage in any set is activated. Let
us denote these sets of stages by S1, S2, . . . , Sm such that
|Si ∩ Sj | = 0 whenever i ≠ j. Furthermore, assume that
the waiting time for stages are independent and that the
set with minimum cardinality is S1 with cardinality n, and
that the expected waiting time for stage si, j ∈ Si is

1
λi,j

.

Let τ be the hitting time for developing cancer. Then

Pr(τ < T ) = aTn +O(Tn+1),

where a is a constant depending only on the sets Si of
cardinality n.

Proof. Let S1 and S2 be such sets, τ1, τ2 be the hitting

times for S1 and S2 respectively, then

Pr(τ1(or 2) < t) =

|S1(or 2)|∏
i=1

(1− eλit)

=

|S1(or 2)|∏
i=1

(
λit+O(t2)

)
=

|S1(or 2)|∏
i=1

λi

 tn +O(tn+1).

Thus, let τ = min{τ1, τ2}. Then Pr(τ < t) = Pr(τ1 <
t or τ2 < t). Since |S1 ∩ S2| = 0 and the stages within
each set are independent, τ1 is independent of τ2, so

Pr(τ < t) = Pr(τ1 < t) + Pr(τ2 < t)

− Pr(τ1 < t)Pr(τ2 < t),

and thus

Pr(τ < t) =

|S1|∏
i=1

λ1,i

 t|S1| +

|S2|∏
i=1

λ2,i

 t|S2|

+ o
(
tmax{|S1|,|S2|}

)
.

From here, a simple induction argument proves the theo-
rem.

What the above theorem shows is that the power law
shows the length of the shortest path in an Armitage and
Doll type model.
Some readers may find interesting that what we have

described here is a mathematical model called a hyper-
graph.

3.4 Mortality is a good indicator for can-
cer incidence

This assumption was largely pragmatic. Although can-
cer screening was still very much in its infancy, it was
established as a commonly recorded cause of death in
England and Wales [2]. Because of this, autopsy data was
considered much more reliable, especially for individuals
between the ages of 25 and 70. This methodology was
used by many other epidemiologists of the period as well
(see for example [17] and the references therein).

3.5 Changes occur independently

It is very likely that this was a mathematical simplification.
As Armitage and Doll did not even list what exactly they
meant by changes, it is impossible to ascribe a biological
meaning to this assumption. However, the independence
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is clearly something that Armitage and Doll considered.
In their mathematical appendix they state that “there are
(r − 1)! factorial possible orders in which [the r] changes
could occur. . . Furthermore, any change is equally likely
to occur at any instant in the interval (0, t).” However,
this is by no means a necessary assumption to observe
a power law in cancer incidence. To see this, one needs
only consider the Taylor series for the stopping time in an
Erlang random process [18].

4 Armitage and Doll Models
of Carcinogenesis

Many different models attributed to Armitage and Doll
appear throughout the mathematical literature. Given all
of the assumptions in the previous section, it seems like
there should be a “standard” Armitage and Doll model.
However, as the following theorem shows this is actually
not possible.

Theorem 4.1. There is no stochastic process that satisfies
all the explicit and implicit assumptions of the Armitage
and Doll model of carcinogenesis with two or more stages.

Proof. Assume that n stages must occur in order to de-
velop cancer. Call these stages X1, X2, . . . , Xn where the
random variableXi ∈ {0, 1} is 0 if the change at stage i has
not occurred and 1 if it has, thus at time T = 0 all Xi are
0. Furthermore, assume that the waiting time for each Xi

to go from 0 to 1 occurs almost surly in finite time. Then
define a new random variable C = (y1, y2, . . . , yn) where yi
is the index of the ith change that took place. In order to
develop cancer then, almost surely, C = (1, 2, . . . , n−1, n).
However, since changes can occur independently then with
positive probability, C can take on the value (2, 1, . . . , n)

which is a contradiction.

The intuition behind the formal proof is this: one needs
only consider two of the assumptions which together form
a contradiction. If our stochastic system has independent
stages and a unique path to cancer then with a positive
probability some part of the population will be stochasti-
cally protected from cancer. If this protection exists for
some subset of the population, it can not also be the case
that almost surely everyone gets cancer.

Since the full set of assumptions for the Armitage-Doll
model is untenable, it is not surprising that many re-
searchers have chosen to work with subsets of these as-
sumptions. In this section, we will explore three common
models attributed to [1], we will show which assumptions
these models chose to embrace and discard and we will
look at asymptotic properties of these three models.

4.1 Weibull random process

The Weibull distribution is ubiquitous in reliability engi-
neering. This distribution falls within the much broader
category of time-inhomogenous exponential distributions.
While originally described in the late 1920s by M. Frechet
[19], it is named for the Swedish mathematician Waloddi
Weibull, who derived it independently in 1951 [20]. This
distribution is defined as the unique distribution that gen-
erates an exact power law as its hazard function. The
hazard function of a random variable, say T , is the limiting
function

λ(t) = lim
δ→0

Pr (t ≤ T + δ | T > t)

δ
,

which represents the instantaneous potential per unit time
of an event occurring, given survival up to time t. In
particular,

λ(t) =
f(t)

1− F (T )

if T is a continuous random variable [21].
Here, F (t) is a cumulative distribution function for a

continuous random variable with probability density of
f(t). We therefore define the Weibull distribution as the
unique solution to the equation

λ(t) = atn−1 =
f(t)

1− F (t)
.

By solving this separable differential equation, one obtains
the following theorem.

Theorem 4.2. The cumulative distribution function for
a Weibull random process has the form

F (t) = 1− e−
atn

n .

Given that the defining epidemiological behaviour which
Nordling and Armitage and Doll wished to explain is the
presence of a power law, it seems clear why this distri-
bution would be a clear front-runner to represent the
Armitage and Doll model. Additionally this distribution
satisfies the following property:

Theorem 4.3. If Xt ∈ {0, 1} is a Weibull random process
such that X0 = 0 then almost surely there exists a t = T
such that XT = 1 and for all τ > T Xτ = 1.

Thus if this distribution is chosen, we see that we ob-
tain a power law for the duration of human life (and in
fact eternally), almost surely every person would develop
cancer, and a change would be irreversible. However, a
Weibull distribution is really just a single event with a
time inhomogenous rate, thus all the other assumptions
of the Armitage and Doll model are discarded. It should
be noted that while some authors treat this as the exact
model, others (including experts on the multistage model)
treat it as an approximation that is easy to work with
[22].
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4.2 Max of exponential random variables

Given exponential random variables T1, T2, . . . , Tn where
the expected value of Ti is

1
λi

Define the random variable
τ = max{T1, T2, . . . , Tn}, then we say that τ follows a
max independent exponential distribution. The following
Theorem describes important properties of a max inde-
pendent exponential distribution. The proof is contained
in the mathematical appendix of this paper.

Theorem 4.4. If τ follows a max independent exponential
distribution, then the following equality holds:

Pr(τ < t) =

n∏
i=1

1− e−λi .

Furthermore, if we fix an order, then the probability that
all the events occur by time t and that they occur in the
correct order is

Pr(τ < t) =
1

n!

n∏
i=1

1− e−λi .

Remark. It is important to highlight some unique
properties of this ordered max-exponential distribution.
Notice that some cells will be “fortunate” enough to have
their mutations occur in an order which precludes the
development of the cancer in the cell. Since each individual
has a finite number of cells, each of which has a nonzero
probability of never developing cancer, this means that
some individuals will simply be immune to cancer through
random chance.
If we assume that there are n stages and m cells in a

person’s body, the probability a person never develops
cancer is

Pr (cancer is never developed) =

(
1− 1

n!

)m

.

Hence, if τ follows a max-exponential distribution with
a fixed order, then it is an improper random variable, i.e.
limt→∞ Pr(τ ≤ t) < 1 (see e.g. [23]).
Given the exact derivation in the mathematical ap-

pendix of the Armitage and Doll paper, it seems likely
that this was the original model that they envisioned. In
fact the proof of this theorem found in our mathematical
appendix is nearly identical to the one found in [1].

Given that this is the case, it is very tempting to count
this model as “the” correct multistage model. However,
it is impossible to reconcile some of the asymptotic prop-
erties of this model with the later papers of Doll. In
particular, as will be shown later in the present paper,
as time goes to infinity, the asymptotic risk goes to 0.
This is because, under this model some (albeit a very,
very small percentage) of an infinite population become
stochastically immune to cancer.

Perhaps another reason why this model is not used as
frequently is that calculating exact relative risk is not as
easy as with the next model that we present.

4.3 Sum of exponential random variables

Given exponential random variables T1, T2, . . . , Tn where
the expected value of Ti is

1
λi

Define the random variable

τ =
∑n

i=1 Ti then we say that τ follows a sum of indepen-
dent exponential random variables. There is a beautiful
interpretation to this distribution that coincides nicely
with the multistage theory of carcinogenesis: Assume a
pure birth process on the non-negative integers starting
at 0 with transition rate from i to i + 1 given by λi if
i < n and 0 if i ≥ n. Then the time to reaching state n
will be the sum of the time in each state from 0 to n− 1
the waiting time at each stage will be independent and
exponentially distributed (See Figure X).

In the case when λ = λi = λj for all i, j < n we call such
a distribution an Erlang distribution. This distribution is
particularly easy to work with because of its very simple
formula. The derivation of this distribution can be proven
using a stopping time on a Poisson point process with
intensity λ. For completeness we list it now in the following
theorem.

Theorem 4.5. Let Xt ∈ {0, 1} be an Erlang random
process with X0 = 0, then

Pr(Xt = 1) = 1−
n−1∑
i=0

(λt)ie−λt

i!
.

For this model, all people develop cancer almost surely;
however, we no longer have independence of stages as we
cannot go to stage three if we have not arrived yet at stage
two.

4.4 Asymptotic properties of the three
models

Up to this point, there has been little concern expressed
in the literature about the “correct” model. This is likely
due to the fact that for small time intervals, all three
models we have discussed are compatible with the same
power law (possibly with appropriate substitution of con-
stants). Therefore, all three models work equally well in
providing useful descriptive statistics. However, as cancer
surveillance and screening has improved, there has been a
push to examine cancer in the elderly. This question was
left open by Armitage and Doll who stated that “whether
[the power law] persists in old age is conjecture” [1]. Thus
the asymptotic properties for large values of time of the
incidence (or hazard function) of these models may be an
important distinguishing point as pointed out in [2]. The
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following theorem describes the limiting behaviour of all
three models.

Theorem 4.6. Let hw(t) be the hazard function for a
Weibull random process, let hm(t) be the hazard function
for a max-exponential process which must occur in a spe-
cific order, and let hs(t) be the hazard function for the
sum of independent exponential random variables with the
same rate parameter (that is, the hazard function of an
Erlang random process). Then the following hold:

lim
t→∞

hw(t) = ∞,

lim
t→∞

hm(t) = 0,

0 < lim
t→∞

hs(t) = k < ∞.

It is worth noting that even with though the large
asymptotic behaviour of these models is qualitatively very
different, none of them provide a good fit for existing data
on cancer in the elderly (see, for example [2, 24] among
others).

Armitage and Doll’s work is important not only for
the history of mathematical oncology, but also for the
wider history of biomathematics. In this paper we have
examined the logical and historical context of the model.
Our hope is that examinations of this type will be of
interest to both historians of science and modern day
modelers.

5 Conclusion

The landmark 1954 paper by Armitage and Doll can be
seen as the start of mathematical epidemiology of cancer
specifically and noncommunicable diseases in general. To
this day, their pioneering approach is still the backbone of
mathematical oncology. In this paper, we have recounted
the historical and biological context of their mathematical
assumptions in hopes that it might shed some light on the
model itself. From this type of project we see, not only
that mathematics can help shed light on biologically moti-
vated patterns in data, but also that careful mathematical
derivation can help us create all new biological hypotheses.
Hypotheses such as: could there be multiple sets of stages
that could lead to cancer? Or, is it possible to reverse
a precarcinogenic stage? In this case, mathematics and
biology make for compelling mates.
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Mathematical Appendix

In this appendix we derive certain theorems from the main
paper.

Proof of Theorem 3.3. Let Pri(τ < T ) be the probability
that every stage in set i has activated by time T. Then
we find that

Pri(τ < T ) =

|Si|∏
j=1

(1− eλj ).

Thus if there is a unique set of stages the theorem clearly
holds. If there are m sets of stages, we find that activation
of between stages are independent events. Thus

Pr(τ < T ) = 1−
m∏
i=1

(1− Pri(τ < T ))

= 1−
m∏
i=1

1−
|Si|∏
j=1

(1− eλj )


=

m∏
i=1

1−

|Si|∏
j=1

λi

 t|Si| + o(t|Si|+1)


=

max
i≤m

{Si}∑
j=min

i≤m
{|Si|}

( ∑
Si,|Si|=n

|Si|∏
j=1

λi

)
tn + o(tn+1)

=

 ∑
Si,|Si|=min

i≤m
|Si|

|Si|∏
j=1

λi

 tn + o(tn+1).

Proof of Theorem 4.4. Since there are n independent ex-
ponential random variables then the joint cumulative prob-
ability function is the product of the individual probability
functions. Thus we see that Pr(τ < T ) =

∏n
i=1(1−e−λit).

However there are n! possible orders in which changes can
occur thus fixing an order gives us that the probability
that all these changes occur by time T is order is given
by Pr(τ < T ) = 1

n!

∏n
i=1(1− e−λit).

Proof of Theorem 4.5. We view the Erlang random pro-
cess as a stopping time on a Poisson point process
Pλ
t ∈ {0, 1, 2, 3, ...} where we define a Random variable

τ = min{T |PT ≥ n}. Then we note that Xt = 0 if t < τ
and Xt = 1 if t ≥ τ. Note then that

Pr(Xt = 1) = Pr(τ < t)

= Pr(Pt ≥ n)

= 1− Pr(Pt < n)

= 1−
n−1∑
i=0

(λt)ie−λt

i!
.
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Proof of Theorem 4.6. Let hw(t) be the hazard function
for a Weibull random process, let hm(t) be the hazard
function for a max-exponential process which must occur
in a specific order, and let hs(t) be the hazard function for
an Erlang random process. Then, we have the following:

• Of course hw(t) = atn−1 thus proving the results.

• We now show that limt→∞ hm(t) = 0. Recall that the
ordered max-exponential distribution model of cancer
follows an improper probability distribution (see the
Remark in Section 4.2). From this, it follows that the
survivor function approaches a positive number for
large values of time. Meanwhile, the probability den-
sity function in the numerator of the hazard function
still approaches 0, so the hazard function approaches
0 as well.

• Perhaps the easiest explanation for the fact that 0 <
limt→∞ hs(t) = k < ∞ is that if we are waiting to
make n steps and we have not yet made them after
a very large amount of time then we are probably
waiting to take the last step. Thus our function
asymptotically approaches the risk function for an
exponential random variable.

Calling the parameters of the Erlang random process
λ (the rate), and k (the shape), the hazard function
is given by

hs(t) =
fs(t)

Ss(t)
=

λkxk−1e−λx

(k−1)!

k−1∑
n=0

e−λx(λx)n

n!

= λr,

where

r =

1
(k−1)! (λx)

k−1

k−1∑
n=0

1
n! (λx)

n

.

Then, r is a ratio of polynomials of x which are both
of order k − 1, and thus

lim
t→∞

hs(t) = λ lim
t→∞

r = c,

a constant. Since the rate parameter λ of an Erlang
process is necessarily greater than zero,

0 < lim
t→∞

hs(t) = c < ∞.
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Mathématique, Cracovie, 6:93–116.

[20] Frechet, M. (1951). A statistical distribution function
of wide applicability. Journal of Applied Mechanics,
18:293–297.

[21] Kleinbaum, D.G. and Klein, M. (1996). Survival
analysis. Springer.

[22] Rittera, G., Wilson R., Pompeia, F., and Burmistrova,
D. (2003). The multistage model of cancer develop-
ment: some implications. Toxicology and Industrial
Health, 19:125–145.

[23] Tsodikov, A.D., Ibrahim, J.G., and Yakovlev, A.Y.
(2003). Estimating cure rates from survival data: an
alternative to two-component mixture models. J. Am.
Stat. Assoc., 98:1063–1078.

[24] Tsodikov, A.D., Ibrahim, J.G., and Yakovlev, A.Y.
(2009). A generalized beta model for the age distribu-
tion of cancers: application to pancreatic and kidney
cancer. Cancer Inform., doi: 10.4137/CIN.S3050.

www.sporajournal.org 2022 Volume 8(1) page 15

https://doi.org/10.4137/CIN.S3050
http://www.sporajournal.org

	An Axiomatic and Contextual Review of the Armitage and Doll Model of Carcinogenesis
	Recommended Citation

	An Axiomatic and Contextual Review of the Armitage and Doll Model of Carcinogenesis
	Cover Page Footnote
	Authors

	Introduction
	=Nordling's Work: A Prelude to the Armitage and Doll Model
	Data analysis methodology
	Biological hypothesis
	Specificity of the phenomena that Nordling wished to explain
	Mathematical transparency

	=Historical Context of the Armitage and Doll Assumptions
	Cancer is the result of several discrete changes
	Changes are irreversible
	Unique order of changes
	Mortality is a good indicator for cancer incidence
	Changes occur independently

	Armitage and Doll Models  of Carcinogenesis
	Weibull random process
	Max of exponential random variables
	Sum of exponential random variables
	Asymptotic properties of the three models

	Conclusion

