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Gene expression signatures of target tissues in type 1 
diabetes, lupus erythematosus, multiple sclerosis, 
and rheumatoid arthritis
F. Szymczak1,2*, M. L. Colli1*†, M. J. Mamula3, C. Evans-Molina4, D. L. Eizirik1,5†

Autoimmune diseases are typically studied with a focus on the immune system, and less attention is paid to 
responses of target tissues exposed to the immune assault. We presently evaluated, based on available RNA 
sequencing data, whether inflammation induces similar molecular signatures at the target tissues in type 1 diabetes, 
systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. We identified confluent signatures, 
many related to interferon signaling, indicating pathways that may be targeted for therapy, and observed a high 
(>80%) expression of candidate genes for the different diseases at the target tissue level. These observations 
suggest that future research on autoimmune diseases should focus on both the immune system and the target tissues, 
and on their dialog. Discovering similar disease-specific signatures may allow the identification of key pathways 
that could be targeted for therapy, including the repurposing of drugs already in clinical use for other diseases.

INTRODUCTION
The incidence of autoimmune diseases is increasing on a worldwide 
basis, and the prevalence of some of the most severe autoimmune 
diseases, i.e., type 1 diabetes (T1D), systemic lupus erythematosus 
(SLE), multiple sclerosis (MS), and rheumatoid arthritis (RA), has 
reached levels of prevalence ranging from 0.5 to 5% in different 
regions of the world (1). There is no cure for these autoimmune 
diseases, which are characterized by the activation of the immune 
system against self-antigens. This is, in most cases, orchestrated by 
autoreactive B and T cells that trigger and drive tissue destruction in 
the context of local inflammation (2–5). While the immune targets 
of T1D, SLE, MS, and RA are distinct, they share several similar 
elements, including common variants that pattern disease risk, local 
inflammation with contribution by innate immunity, and down-
stream mechanisms mediating target tissue damage. In addition, 
disease courses are characterized by periods of aggressive auto-
immune assaults followed by periods of decreased inflammation 
and partial recovery of the affected tissues (3, 6–11). Endoplasmic 
reticulum stress (12–15), reactive oxygen species (16–19), and 
inflammatory cytokines, such as interleukin-1 (IL-1) and inter-
ferons (IFNs), are also shared mediators of tissue damage in these 
pathologies (20–23).

Despite these common features, autoimmune disorders are tra-
ditionally studied independently and with a focus on the immune 
system rather than on the target tissues. There is increasing evidence 
that the target tissues of these diseases are not innocent bystanders 
of the autoimmune attack but participate in a deleterious dialog 
with the immune system that contributes to their own demise, as 
shown by our group and others in the case of T1D [reviewed in 
(3, 24, 25)]. Furthermore, in T1D, several of the risk genes for 
the disease seem to act at the target tissue level—in this case, pan-

creatic  cells—regulating the responses to “danger” signals, the dialog 
with the immune system, and apoptosis (20, 25, 26). Against this 
background, we hypothesize that key inflammation-induced mech-
anisms, potentially shared between T1D, SLE, MS, and RA, may 
drive similar molecular signatures at the target tissue level. Dis-
covering these similar (or, in some cases, divergent) disease-specific 
signatures may allow the identification of key pathways that could 
be targeted for therapy, including the repurposing of drugs already 
in clinical use for other diseases.

To test this hypothesis, we obtained RNA sequencing (RNA-seq) 
datasets from pancreatic  cells from controls or individuals affected 
by T1D (27), from kidney cells from controls or individuals affects by 
SLE (28), from optic chiasm from controls or individuals affected 
by MS (29), and from joint tissue from controls or individuals 
affected by RA (30). In some cases, we also compared these datasets 
against our own datasets of cytokine-treated human  cells (31). 
These unique data were mined to identify similar and dissimilar 
gene signatures and to search for drugs that may potentially revert 
the observed signatures. Furthermore, we searched for the expres-
sion of candidate genes for the different autoimmune diseases at the 
target tissue level and the signaling pathways downstream of these 
candidate genes.

These studies indicate major common gene expression changes 
at the target tissues of the four autoimmune disease evaluated, many 
of them downstream of types I and II IFNs, and massive expression 
of candidate genes (>80% in all cases). These findings support the 
importance of studying the target tissue of autoimmune diseases, in 
dialog with the immune system, to better understand the genetics 
and natural history of these devastating diseases.

RESULTS
Metadata and global gene expression in the target tissues 
of different autoimmune diseases
The metadata of the tissue donors evaluated in the present analysis 
are shown in Table 1. The number of samples is proportional to the 
accessibility of the target tissues, with the highest number of sam-
ples available for joint tissue in RA. The age and sex of the patients 
reflect the natural history of the different diseases, with younger 
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patients in the T1D group and a higher proportion of female patients 
in the MS and SLE groups. Sex information was obtained from the 
original metadata and, when not available, was inferred using chro-
mosomal marker information present in the transcriptome (see 
Materials and Methods). Of note, while some of the samples used 
for RNA-seq were obtained following fluorescence-activated cell 
sorting (FACS) purification (e.g., pancreatic  cells) (27), other samples 
comprised a mixture of target cells and infiltrating immune cells. 
Determination of the leukocyte marker CD45 expression in the dif-
ferent samples indicated a trend for higher presence of immune-
derived cells among samples obtained in T1D, MS, and RA, but not 
in SLE (table S1). This contribution by immune cells was, however, 
modest. For instance, while in the  cell preparation the number of 
transcripts per million (TPM) for CD45  in the patient group was 
16.4 (mean), the TPM values for the following  cell markers were 
as follows: INS (Insulin), 125.359; Sodium/potassium-transporting 
ATPase gamma chain (FXYD2a), 65; GCK (Glucokinase), 20; 
Homeobox protein Nkx-2.2 (NKX2-2), 28; Synaptotagmin 4 (SYT4), 
36; Neurogenic Differenciation 1 (NEUROD1), 27; Homeobox pro-
tein Nkx-6.1 (NKX6-1), 27; and MAF BZIP Transcription Factor B 
(MAFB), 23, indicating that the observed responses are driven, at 
least in part, by the constitutive cells of the target tissues. Of note, 
proinflammatory cytokines decrease the expression of several of 
the  cell markers (3, 20, 32) described above.

In the T1D and SLE datasets, but not in the MS and RA ones, 
there was a trend for more up-regulated than down-regulated genes 
in the target tissues, which was particularly marked in the T1D 
dataset, with more than twofold higher number of up-regulated 
genes as compared with the down-regulated ones (Fig. 1A). Of note, 
because of a statistically significant difference in the age of patients 
with RA and their respective controls, we have included age as an 
independent variable when determining the differentially expressed 
genes in the joint tissue samples (see Materials and Methods).

Analysis of the gene patterns in target tissues 
of autoimmune diseases indicates up-regulation of  
IFN-related pathways
Enrichment analysis of these disease-modified genes (Fig. 1, B to E) 
indicated similarities and differences between the different autoimmune 
diseases. Thus, both T1D and SLE have several up-regulated IFN-
related pathways among the top up-regulated ones (Fig. 1, B and C); 
IFN pathways were also detected as enriched for MS and RA, but 
not among the 20 top ones [e.g., MS: IFN- signaling normalized 

enrichment score (NES) = 2.26 (P adj. < 0.007); RA, IFN- signaling 
NES = 2.64 (P adj. < 0.004)]. This similar enrichment in IFN-related 
genes can also explain the appearance of SLE as the top up-regulated 
pathway in T1D (Fig. 1B). Up-regulated pathways related to antigen 
presentation or antigen-related activation of immune cells were present 
for the four diseases (Fig. 1, B to E), in line with their autoimmune 
nature, while complement cascades were preeminent in MS (Fig. 1D) 
and RA (Fig. 1E), but less so in T1D and SLE. To evaluate whether 
these observed IFN-induced signatures originate, at least in part, 
from nonimmune cells in the target tissues, we reanalyzed available 
single-cell(sc)/nucleus(sn)–RNA-seq data focusing on nonimmune 
cells in affected tissues in T1D [pancreatic  cells (33)], SLE [kidney 
epithelial cells (34)], MS [brain neurons (35)], and RA [synovial fi-
broblasts (36)] (fig. S1A), confirming that there is a significant IFN 
signature in the target of the four autoimmune diseases as measured 
by an IFN response score, defined as the average expression of known 
IFN-stimulated genes (ISGs; see Materials and Methods) (34, 37).

The down-regulated pathways tended to be more disease specific 
and related to the dysfunction of the target organ. Thus, for T1D, 
there was down-regulation of pathways involved in “integration of 
energy metabolism,” a key step for insulin release, and in “regulation 
of gene expression in  cells,” which reflects the down-regulation of 
several transcription factors (TFs) critical for the maintenance of  
cell phenotype and function (e.g., PDX1 and MAFA) (38) (Fig. 1B), 
while in RA, there was a decrease in collagen chain trimerization, an 
important step for proper collagen folding (Fig. 1E) (39). Moreover, 
down-regulation of pathways involved in lipid metabolism was en-
riched in MS samples (Fig. 1D). Supporting that, disruption of lipid 
metabolism in oligodendrocytes compromises the lipid-rich myelin 
production/regeneration, a hallmark of MS, both in in vitro studies 
(40) and in samples obtained from individuals with MS (41).

Gene set enrichment analysis (GSEA) of the sc/sn–RNA-seq 
data of nonimmune cells from the four autoimmune diseases (fig. 
S1, B to E) confirmed several up-regulated pathways in common, 
including IFN signaling (present for all diseases, although not always 
among the top 20 shown), T1D (which appears in three of the four 
diseases), allograft rejection, etc. As observed in the bulk RNA-seq 
analysis, there were less similarities between diseases regarding the 
down-regulated pathways.

We also analyzed the intersection between significantly up- and 
down-regulated genes of the bulk RNA-seq of the four diseases using 
another criterion, namely, considering genes as significantly modi-
fied if they presented a false discovery rate <0.10 without a fold change 

Table 1. Summary of the metadata for the RNA-seq samples of the four autoimmune diseases. RNA-seq data from four studies of target tissues in 
autoimmune diseases were retrieved from the Gene Expression Omnibus (GEO) portal (https://ncbi.nlm.nih.gov/geo/), reanalyzed, and quantified with Salmon 
using GENCODE 31 as the reference. N/A, data nonavailable. For the sex column: M, male; F, female. 

Disease Target tissue
Samples (n) Age (mean ± SD) Sex (n)

Source
Patients Controls Patients Controls Patients Controls

T1D Pancreatic  
 cells 4 12 20.3 ± 5.6 16.1 ± 5.8 3 M/1 F 8 M/4 F GSE121863 (27)

SLE Kidney cells 20 7 ~40 N/A 2 M/18 F* 7 F* GSE98422 (28)

MS Optic chiasm 5 5 56.2 57.6 5 F* 5 F* GSE100297 (29)

RA Joint tissue 57 28 55.9 ± 16.7 35.2 ± 16.2 33 F/24 M 14 F/14 M GSE89408 (30)

 *Predicted using genes expressed in Y chromosome and XIST gene.

https://www.ncbi.nlm.nih.gov/geo/
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threshold (fig. S2, A and B). This showed a higher similarity among 
up- than down-regulated genes, but there were few genes in com-
mon between the four diseases. On the basis of a hypergeometric 
test to search for gene set enrichment for the cases where there were 
>50 genes in common between two and three diseases, we identified 
IFN signaling, antigen processing, and presentation and cytokine 
signaling, among others. It was, however, difficult to find common 
pathways among the down-regulated genes. A limitation of this ap-
proach is that we can only analyze genes that pass a fixed statistical 
cutoff, which makes the results very susceptible to the number of 
samples studied, as presently observed for the higher intersection 
between RA (a disease with a much higher number of samples) and 
the other autoimmune diseases. This type of analysis must thus 

be redone as more samples become available for the different 
diseases.

To obtain more detailed information on the (dis)similarities 
between the different autoimmune diseases, avoiding the pitfalls 
mentioned above for threshold-based analysis, we performed the 
rank-rank hypergeometric overlap (RRHO) analysis (Fig. 2) (42), 
a genome-wide approach that compares two equally ranked data-
sets using a threshold-free algorithm (see Materials and Methods). 
The main similarities between the diseases were observed among 
up-regulated genes, while there was no major intersection of com-
monly down-regulated genes between datasets (Fig. 2). This finding 
is in line with the above-described observation that down-regulated 
genes tended to be target-tissue related (Fig. 1, B to E).  cells in 

Direction

Up-regulated

Down-regulated

REGULATION OF GENE EXPRESSION IN BETA CELLS (14/21)
HSF1 ACTIVATION (20/26)

CILIUM ASSEMBLY (77/196)
RESPONSE TO METAL IONS (7/11)

CYTOSOLIC TRNA AMINOACYLATION (15/24)
ATTENUATION PHASE (15/23)

DEFECTS IN BIOTIN BTN METABOLISM (7/8)
INTRAFLAGELLAR TRANSPORT (23/52)

TRNA AMINOACYLATION (22/42)
BIOTIN TRANSPORT AND METABOLISM (7/11)

METALLOTHIONEINS BIND METALS (6/8)
INTEGRATION OF ENERGY METABOLISM (44/100)

VALINE LEUCINE AND ISOLEUCINE DEGRADATION (18/44)
HSP90 CHAPERONE CYCLE (22/51)

RIBOSOME (55/86)
HEME BIOSYNTHESIS (8/10)

CARGO TRAFFICKING TO THE PERICILIARY MEMBRANE (22/50)
CREB1 PHOSPHORYLATION (5/11)

TP53 REGULATES METABOLIC GENES (38/83)
DEFECTS IN VITAMIN AND COFACTOR METABOLISM (11/21)

INTEGRIN CELL SURFACE INTERACTIONS (45/80)
ECM RECEPTOR INTERACTION (46/81)

TYPE I DIABETES MELLITUS (19/32)
CELL ADHESION MOLECULES CAMS (47/118)

TRANSCRIPTIONAL REGULATION OF GRANULOPOIESIS (36/73)
CELL SURFACE INTERACTIONS AT THE VASCULAR WALL (50/121)

INTERLEUKIN 10 SIGNALING (23/35)
INTERFERON SIGNALING (65/182)

ANTIGEN PROCESSING AND PRESENTATION (26/57)
ALLOGRAFT REJECTION (20/25)

AUTOIMMUNE THYROID DISEASE (20/29)
INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION (26/37)

GRAFT VERSUS HOST DISEASE (20/26)
HEMATOPOIETIC CELL LINEAGE (46/71)

INTERFERON ALPHA BETA SIGNALING (33/56)
CYTOKINE CYTOKINE RECEPTOR INTERACTION (101/183)

IMMUNOREGULATORY INTERACTIONS BETWEEN LYMPHOID AND NON-LYMPHOID CELL (61/101)
INTERFERON GAMMA SIGNALING (46/87)

LEISHMANIA INFECTION (40/62)
SYSTEMIC LUPUS ERYTHEMATOSUS (63/105)

−2 −1 0 1 2 3
Normalized enrichment score

RIBOSOME (76/86)
NONSENSE MEDIATED DECAY NMD INDEPENDENT OF THE EXON JUNCTION (77/94)

EUKARYOTIC TRANSLATION INITIATION (83/118)
SRP DEPENDENT COTRANSLATIONAL PROTEIN TARGETING TO MEMBRANE (76/111)

SELENOAMINO ACID METABOLISM (79/116)
NONSENSE MEDIATED DECAY NMD (78/114)

INFLUENZA INFECTION (81/153)
REGULATION OF EXPRESSION OF SLITS AND ROBOS (79/164)

ACTIVATION OF THE MRNA UPON BINDING OF THE CAP BINDING COMPLEX (37/59)
SENESCENCE ASSOCIATED SECRETORY PHENOTYPE SASP (24/75)

SIGNALING BY ROBO RECEPTORS (89/209)
RRNA PROCESSING IN THE NUCLEUS AND CYTOSOL (84/191)

PRC2 METHYLATES HISTONES AND DNA (13/41)
DEPURINATION (13/34)

NUCLEAR RECEPTOR TRANSCRIPTION PATHWAY (9/50)
RRNA PROCESSING (85/203)
DNA METHYLATION (12/33)
MEIOTIC SYNAPSIS (17/53)

ESTROGEN DEPENDENT GENE EXPRESSION (28/115)
ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE RRNA EXPRESSION (14/44)

FORMATION OF TUBULIN FOLDING INTERMEDIATES BY CCT TRIC (15/23)
TRNA AMINOACYLATION (25/42)

GLUTATHIONE SYNTHESIS AND RECYCLING (9/12)
CHONDROITIN SULFATE BIOSYNTHESIS (7/18)

KERATAN SULFATE DEGRADATION (8/12)
DISEASES ASSOCIATED WITH N GLYCOSYLATION OF PROTEINS (12/17)

COPII MEDIATED VESICLE TRANSPORT (33/66)
CARGO CONCENTRATION IN THE ER (21/31)

GOLGI TO ER RETROGRADE TRANSPORT (63/125)
ALPHA LINOLENIC OMEGA3 AND LINOLEIC OMEGA6 ACID METABOLISM (5/12)

ANTIVIRAL MECHANISM BY IFN STIMULATED GENES (38/81)
DISEASES ASSOCIATED WITH GLYCOSAMINOGLYCAN METABOLISM (20/38)

ANTIGEN PRESENTATION (16/25)
COPI DEPENDENT GOLGI TO ER RETROGRADE TRAFFIC (51/92)

COPI MEDIATED ANTEROGRADE TRANSPORT (54/94)
NF KB ACTIVATION (6/12)

TRANSPORT TO THE GOLGI AND SUBSEQUENT MODIFICATION (89/172)
INTERFERON SIGNALING (69/181)

ER TO GOLGI ANTEROGRADE TRANSPORT (78/145)
INTERFERON ALPHA BETA SIGNALING (35/56)

−3 −2 −1 0 1 2
Normalized enrichment score

CHOLESTEROL BIOSYNTHESIS (18/24)
ACTIVATION OF GENE EXPRESSION BY SREBF SREBP (19/42)

STEROID BIOSYNTHESIS (10/16)
MISCELLANEOUS TRANSPORT AND BINDING EVENTS (9/24)

UNBLOCKING OF NMDA RECEPTORS GLUTAMATE (9/21)
RAS ACTIVATION (6/20)

HEME BIOSYNTHESIS (6/11)
REGULATION OF CHOLESTEROL BIOSYNTHESIS BY SREBP SREBF (20/55)

PROTEIN PROTEIN INTERACTIONS AT SYNAPSES (19/87)
COMPLEMENT AND COAGULATION CASCADES (34/58)

FC EPSILON RECEPTOR FCERI SIGNALING (55/162)
SIGNALING BY THE B CELL RECEPTOR BCR (56/142)

FCGAMMA RECEPTOR FCGR DEPENDENT PHAGOCYTOSIS (42/121)
CELL SURFACE INTERACTIONS AT THE VASCULAR WALL (65/159)

IMMUNOREGULATORY INTERACTIONS BETWEEN LYMPHOID AND NON-LYMPHOID CELL (72/147)
FCERI MEDIATED CAPLUS2 MOBILIZATION (32/64)

REGULATION OF ACTIN DYNAMICS FOR PHAGOCYTIC CUP FORMATION (41/96)
FCERI MEDIATED NF KB ACTIVATION (46/112)

ANTIGEN ACTIVATES B CELL RECEPTOR BCR (38/64)
FCERI MEDIATED MAPK ACTIVATION (32/65)

ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION (32/49)
BINDING AND UPTAKE OF LIGANDS BY SCAVENGER RECEPTORS (46/75)

CD22 MEDIATED BCR REGULATION (34/39)
FCGR ACTIVATION (35/48)

SCAVENGING OF HEME FROM PLASMA (35/48)
ROLE OF PHOSPHOLIPIDS IN PHAGOCYTOSIS (36/61)

INITIAL TRIGGERING OF COMPLEMENT (47/56)
CREATION OF C4 AND C2 ACTIVATORS (41/48)

COMPLEMENT CASCADE (54/83)

−2 0 2
Normalized enrichment score
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OLFACTORY TRANSDUCTION (40/81)
COLLAGEN CHAIN TRIMERIZATION (25/41)

NCAM SIGNALING FOR NEURITE OUT GROWTH (29/53)
OLFACTORY SIGNALING PATHWAY (37/79)

NCAM1 INTERACTIONS (18/32)
NUCLEAR RECEPTOR TRANSCRIPTION PATHWAY (23/44)
PROTEIN PROTEIN INTERACTIONS AT SYNAPSES (34/72)
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INITIAL TRIGGERING OF COMPLEMENT (46/62)
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Fig. 1. Overview of the number of differentially expressed genes and the signaling pathways activated in the target tissues of four autoimmune diseases. 
(A) Number of protein-coding genes differentially expressed in four autoimmune diseases. Each RNA-seq data set was quantified with Salmon using GENCODE 31 as the 
reference. Differential expression was assessed with DESeq2. The numbers within the bars represent the protein-coding genes with |fold change| >1.5 and an adjusted 
P value <0.05. RNA-seq sample numbers (n) are as follows: T1D (n = 4 for patients, n = 10 for controls), SLE (n = 20 for patients, n = 7 for controls), MS (n = 5 for patients, n = 
5 for controls), and RA (n = 56 for patients, n = 28 for controls). Results for the RA samples were adjusted by age as an independent variable. (B to E) Gene set enrichment 
analysis (GSEA) of T1D (B), SLE (C), MS (D), and RA (E) target tissues. After quantification using Salmon and differential expression with DESeq2, genes were ranked accord-
ing to their fold change. Then, the fGSEA algorithm (76) was used along with the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases to deter-
mine significantly modified pathways. Bars in red and blue represent, respectively, a positive and negative enrichment in the associated pathway. The x axis shows the 
normalized enrichment score (NES) of the fGSEA analysis, and the y axis the enriched pathways. The numbers at the end of the signaling pathway names represent, 
respectively, (i) the number of genes present in the leading edge of the GSEA analysis and (ii) the total number of genes present in the gene set.
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T1D, in particular, showed a strong correlation with regard to up-
regulated genes with SLE, RA, and MS (Fig. 2). The functional en-
richment analysis of these up-regulated overlapping pathways 
showed concordance for both types I and II IFN signaling for nearly 
all disease pairs (Fig. 3). Pathways related to neutrophil degranula-
tion were highly up-regulated when comparing MS against T1D 
(Fig. 3B), SLE (Fig. 3D), or RA (Fig. 3F); this pathway also appeared 
highly in common between T1D and RA (Fig. 3C).

We next investigated the potential TFs controlling the observed 
interdisease similarities. For this purpose, we evaluated the enrichment 
of TF binding site motifs in the promoter region of up-regulated 
genes from the pairwise analysis of autoimmune diseases (fig. S3). 
In line with the predominance of IFN-related pathways observed in 
Fig. 3, there was a high prevalence of common binding site motifs 
for IFN-induced TFs, including IFN-stimulated response element 
(ISRE), IFN regulatory factor 1 (IRF1), and IRF2, particularly when 
comparing T1D versus SLE (fig. S3A) and T1D versus RA (fig. 
S3C). To examine whether these TFs are expressed by constitutive cells 
of the target tissues, we have reevaluated the TF expression in non-
immune cells present in sc/sn–RNA-seq of the target tissues from the four 
autoimmune diseases. Since the presently available methods for sc/
sn–RNA-seq only detect on average 1000 to 5000 genes per cell (43), 
which is 75 to 80% lower than the total number of genes identified 
by bulk cell RNA-seq (>20,000 genes), we selected for this analysis the 
top 10 TFs presenting the highest expression in the affected target tissues. 
By this approach, we observed that the majority of these TFs are ex-
pressed by nonimmune cells from the target tissues (fig. S3G). In agree-
ment with this observation, we have previously shown that exposure of 
the human  cell line EndoC-H1 to INF leads to the activation of several 
of the same TFs identified, including signal transducer and activator 
of transcription 1 (STAT1), STAT2, STAT3, IRF1, and IRF9 (31, 48).

To assess whether a putative in vivo type I IFN signaling in the 
context of different autoimmune diseases activates similar pathways 
in the target tissues, we compared gene expression of primary human 
islets (31) and skin keratinocytes (44) exposed in vitro to IFN- for 

8 and 6 hours, respectively (fig. S4). There were approximately 40% 
differentially expressed genes in common between these two tissues 
(fig. S4A), leading to the induction of pathways such as IFN signal-
ing and antigen presentation/processing (fig. S4B) that were similar 
to the pathways observed in target tissues from patients affected by 
T1D (Fig. 1B and fig. S5) or SLE (Fig. 1C and fig. S5).

It is noteworthy that when comparing SLE versus T1D and SLE 
versus RA (Fig. 2, A and B), there were a large number of genes 
up-regulated in one disease but down-regulated in the other. A more 
detailed analysis of these oppositely regulated genes (fig. S6) indi-
cated that neutrophil degranulation and signaling by RHO GTPases 
(guanosine triphosphatases) were among the most enriched gene sets. 
A similar observation was made regarding SLE versus RA, where 
neutrophil degranulation was also the most represented gene set. 
This apparent disagreement between genes regulating neutrophil 
degranulation in SLE and other autoimmune diseases may reflect 
the presence of two distinct populations of neutrophils in patients 
with SLE that have functional differences in pathways controlling 
chemotaxis, phagocytosis, and degranulation (45). Other dissimilarities 
include the anti-inflammatory IL-10 signaling and groups related to 
the regulation of the dialog between immune and resident cells, such 
as “immunoregulatory interaction between a lymphoid and non-
lymphoid cell” and “PD-1 (programmed cell death protein 1) signaling.”

The availability of the above-described datasets allowed us to 
mine the overlapping genes in the target tissues of the different au-
toimmune diseases to search for common therapeutic targets, with 
the potential to find drugs to be repurposed (Fig. 4). As a proof of 
concept, we identified dihydrofolate reductase inhibitors as a po-
tential therapeutic target for several pairs of autoimmune diseases 
(Fig. 4, B to D and F), and methotrexate, a member of this class, is 
already routinely used for the treatment of different autoimmune 
diseases, including RA (46) and SLE (47). Bromodomain inhibitors 
were also observed as common perturbagens between T1D and SLE 
(Fig. 4A) and SLE versus RA (Fig. 4E). This is in line with our recent 
observations that two of these bromodomain inhibitors, JQ1 and 
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I-BET-151, protect human  cells against the deleterious effects of 
IFN- (31). There were additional interesting candidates, some 
with a profile covering multiple diseases, such as phosphoinositide 
3-kinase (PI3K) (T1D versus SLE, SLE versus RA, and MS versus RA) 
and janus kinase (JAK) inhibitors (SLE versus RA and MS versus RA), 
while others acting on specific pairs of diseases, namely, bile acids 
(T1D versus MS) and fibroblast growth factor receptor (FGFR) in-
hibitors (SLE versus MS) (Fig. 4). Of note, clinical trials are currently 
evaluating the effects of the bile acid tauroursodeoxycholic acid 
(TUDCA) in patients with recent-onset T1D (ClinicalTrials.gov, 
NCT02218619) and MS (ClinicalTrials.gov, NCT03423121).

Expression of candidate genes for the different autoimmune 
diseases at the target tissue level
We have previously shown that isolated human pancreatic islets ex-
press a large number of risk genes for T1D (20, 24, 26, 48), and we 

presently examined whether this is also the case for the target tis-
sues in other autoimmune diseases (table S2). Confirming our pre-
vious findings, 81% of risk genes for T1D were expressed in human 
 cells; similar findings were observed for the target tissues for SLE 
(92%), MS (83%), and RA (88%). The autoimmune assault changed 
the expression of >65% of these candidate genes for joint tissue RA 
(table S2), but the number of disease-induced and significantly 
modified genes was much smaller for the other autoimmune diseases, 
probably because of limited statistical power associated to the num-
ber of samples analyzed (>80 samples studied in the case of RA and 
between 10 and 27 for the other diseases). The list of risk genes ex-
pressed in the target tissues is available in data file S1. An overview 
of these candidate genes and their coexpression in different auto-
immune diseases is provided in Fig. 5. Genes related to antigen pre-
sentation [human lymphocyte antigen (HLA)–DQB1 and HLA-DRB1] 
and to type I IFN signaling (TYK2) are present in all target tissues 
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for the four autoimmune diseases. Reactome (49) analysis of risk 
genes in T1D (data file S2) identified ILs and IFN signaling as 
important pathways. IFN signaling also appears pro-eminently for 
kidney tissue in SLE, optic chiasm in MS, and joint tissue in RA (data file 
S2), but there are also clusters related to defense against the autoimmune 
assault, including PD-1 (for all diseases) and IL-10 signaling (for SLE 
and MS only); PD-1–PDL1 (programmed death ligand 1) is probably 
also an important defense mechanism of human  cells in T1D (50).

To evaluate whether the observed candidate genes are expressed 
in nonimmune cells from the target tissues studied, we have used a 
similar approach as done for the TF analysis (fig. S3G) and revised 
sc/sn–RNA-seq data from nonimmune cells in affected tissues in T1D 
(33), SLE [kidney epithelial cells (34)], MS [brain neurons (35)], and 
RA [synovial fibroblasts (36)]. This confirmed that >80% of the top 
50 risk genes are expressed by the target cells (fig. S1, F to I). Of 
note, the present limitations of the sc–RNA-seq method regarding 
the number of genes detected (commented upon above) may explain 
why less candidate genes are observed in single cells (fig. S1, F to I) 
than in whole tissue or FACS-sorted bulk cells (data file S1).

DISCUSSION
In the present study, we tested the hypothesis that target tissues 
from four different autoimmune diseases, namely, T1D, SLE, MS, 
and RA, engage in a “dialog” with the invading immune cells that 
leaves “molecular footprints.” These footprints may share simi-
larities, as local inflammation is a common outcome of these dis-
eases, and point to common mechanisms that can be targeted by 
therapy.

The analysis of the gene expression patterns of the target tissues 
in the different diseases showed up-regulation of type I and II IFN–
related pathways, which is in line with observations made in the 
peripheral blood of individuals with T1D (51), SLE (52, 53), MS (54), 
and RA (55). These descriptive similarities were confirmed by com-
paring the ranking of the up-regulated genes via RRHO, a method 
that allows the comparison between differentially expressed genes 
in control and diseased tissue from two different diseases, outlining 
the similarities and/or dissimilarities between the modified genes in 
both diseases. Here, we observed clear but different degrees of over-
lap between the diseases mostly regarding the up-regulated expression 
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patterns. In support of the robustness of the present findings, these 
similarities were present despite the fact that the original RNA-
seq data were obtained by different research teams, using different 
extraction and sequencing processes, and that there were major 
differences between the studies regarding age and sex of the pa-
tients and respective controls (many of these differences were inher-
ent to the diseases studied, e.g., SLE is more common in females).

The observed similarities in pathway activation between target 
tissues were translated into the identification of several classes of 
drugs that could potentially be used to treat more than one autoimmune 
disease (Fig. 4). Among them, JAK inhibitors, which act down-
stream of the types I and II IFN receptors by blocking activation of 
the kinases JAK1 and JAK2, are of particular interest. These inhibi-
tors were recently approved for the treatment of RA (56) and had 
promising results in a phase 2 clinical trial of patients with SLE (57). 
In line with this, JAK inhibitors prevent the proinflammatory and 
proapoptotic effects of IFN- on human pancreatic  cells (31) and 
revert established insulitis in diabetes-prone NOD (nonobese dia-
betic) mice (58). Another class of drugs presently identified for po-
tential use in several autoimmune diseases are the PI3K inhibitors. 
These drugs target a family of lipid kinases that phosphorylate 
phosphoinositides from cell membranes, modulating cellular pro-
cesses such as cell growth, metabolism, and immune responses. In 
agreement with our analysis, inhibitors of the PI3K isoforms  and 
 have beneficial effects in animal models of MS (59), SLE (60), and 
RA (61). PI3K inhibitors, however, may have opposite effects on 
different tissues. Thus, PI3K inhibitors exacerbate inflammatory 
responses in the airways and gut, tissues often exposed to pathogens, 
leading to severe cases of pneumonitis and colitis (62). This indicates 
that selection of potential new therapeutic agents needs to consider 
also the specific characteristics of the target tissue(s). This is in 
agreement with our present observations of tissue-specific down-
regulated pathways in different diseases, such as pathways related to 
maintenance of the  cell phenotype in T1D, or down-regulation of 
pathways involved in collagen folding in joint tissues from RA.

There have been previous attempts to perform individual drug 
repurposing on these pathologies [e.g., (63, 64)]. Our present study 
attempts to expand this approach, potentially leading to drug re-
purposing for multiple autoimmune diseases, for instance, in the 
case of JAK inhibitors. Repurposing already-studied drugs provides 
the benefits of having their pharmacodynamic and pharmacokinetic 
profiles already well studied, which considerably reduces the bench-
to-bedside time frame (65), and helping the treating physicians to 
survey for previously detected side effects.

More than 80% of candidate genes for which a single-nucleotide 
polymorphism (SNP)–trait link has been deemed significant are ex-
pressed in the target tissues of the different autoimmune diseases 
studied. This is in line with our previous observations in T1D 
(20, 26, 48), where these candidate genes probably regulate  cell 
responses to “danger signals,” such as viral infections, and the signal 
transduction of type I IFNs (23). The fact that similar observations 
are now made in the target tissues of SLE, MS, and RA (present 
data) suggests that future studies in these diseases should also con-
sider the impact of candidate genes acting at the target tissue level. 
Of note, and to detect eQTL (Expression quantitative trait loci) in 
target tissues, it may be necessary to expose them to relevant stimuli, 
such as proinflammatory cytokines in the case of T1D (26).

The present observations, showing the expression of candidate 
genes in the target tissues of autoimmune diseases, may contribute 
to explain why certain people have different innate immune responses 
at the tissue level to seemingly similar triggers (such as viral infec-
tions or other danger signals), leading to different outcomes, e.g., 
progressive tissue damage or resolution of inflammation and return 
to homeostasis. For instance, diverse polymorphisms in candidate 
genes for T1D may contribute to disease at the  cell level by regu-
lating antiviral responses, innate immunity, activation of apoptosis, 
and, at least for a few of them,  cell phenotype (24, 25, 66).

The candidate genes presently observed as overlapping between 
target tissues of two or more diseases are mostly related to inflam-
matory mediators, particularly the signal transduction of IFNs, sug-
gesting that similarities between these diseases are dependent, at least 
in part, on the genetically mediated regulation of local immune re-
sponses. These findings may have therapeutic implications. For 
instance, one of the candidate genes in common between all the 
four autoimmune diseases is TYK2, a key component of the JAK-
STAT signaling pathway. TYK2 inhibitors are already in phase 3 
clinical trial for another autoimmune disease, psoriasis (67), and 
two different TYK inhibitors protect human  cells against the del-
eterious effects of IFN- (68). Targeting IFN pathways at an early 
step of its signal transduction may not be, however, a sufficiently 
specific approach, and the role of IFNs may vary according to the 
stage of disease and the genetic background of the affected individuals. 
The success of IFN-blocking therapies in human SLE and other 
rheumatic diseases remains to be proven (69).

The data generated in the present study contribute to a better 
understanding of the communication between the immune system 
and the target tissues in T1D, SLE, MS, and RA, and strengthen the 
putative implication of the target tissues in these autoimmune dis-
eases. These findings also indicate a role for similar candidate genes 
expressed in target tissues of two or more diseases and indicate po-
tential new therapeutic agents to target key similar pathways. As a 
whole, these observations suggest that future research on the genetics 
and pathogenesis of autoimmune diseases should focus on both the 
immune system and their target tissues and on their dialog.
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Fig. 5. Venn diagrams of risk genes expressed in the target tissues of the four 
autoimmune diseases shows shared candidate genes among them. Venn dia-
gram representing risk genes identified in GWAS studies in target tissues for T1D, 
SLE, MS, and RA. For each disease, the risk genes were extracted from the GWAS 
Catalog (www.ebi.ac.uk/gwas/) and selected as described in Materials and Meth-
ods. In brief, each list was curated according to their relationship to the disease, 
and only genes with a P value <0.5 × 10−8 for their SNP-trait relationship were kept. 
Last, an intersection between the four lists was performed and represented as a 
Venn diagram. Numbers in the diagram represent the numbers of genes present in 
each subgroup, and genes overlapping between diseases are displayed by their 
HGNC symbols. A gene was considered as expressed if it presents a mean TPM > 
0.5 in either the patient or control group. N/A, not applicable (no gene in common).
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Limitations
The study’s first limitation relates to the scarcity of RNA-seq data 
for target tissues in autoimmune diseases, particularly in the cases 
where these tissues are difficult to access, such as in T1D or MS. This 
decreases the power of the analysis and may bias the data in favor of 
diseases where a larger number of samples were available (e.g., RA). 
Another issue is the stage of the disease, as the impact of the im-
mune system on the target tissues may differ in the early and late 
phases of the disease [for instance, in the case of T1D, innate rather 
than adaptive immunity may have a major role at earlier stages 
(3, 25, 70)]. Unfortunately, and because of the scarcity of samples 
in, for instance, T1D or MS, this stage issue is difficult to address. It 
is noteworthy that despite these limitations, it was still possible to 
obtain clear conclusions from the available data.

Another potential limitation is that immune cells are present in 
the target tissue preparations analyzed (although there was a statis-
tically significant increase in the expression of the immune marker 
CD45 only in T1D and RA), which may affect the gene expression 
pathways described above. The facts that (i) an IFN signature is 
present in nonimmune cells of the diseased tissues analyzed and 
these nonimmune cells express several candidate genes for the dis-
eases studied (fig. S1); (ii) at least in the case of a pure human  cell 
line, EndoC-H1 cells, exposure to IFN- induces a gene signature 
that is similar to that observed in  cells obtained from patients af-
fected by T1D (31); and (iii) histological analysis of pancreatic islets 
from patients with T1D show expression of HLA class I (ABC) (71), 
HLA-E (31), PDL1 (50), CXCL10 (72), and STAT1 (71) in pancreat-
ic  cells, taken as a whole, suggest that at least part of the observed 
gene signatures originate from the target tissues and cannot be ex-
plained by the immune infiltration alone. Future follow-up studies 
based on direct histological staining of the specific cells involved are 
required to define the exact contribution of immune and nonim-
mune cells in the affected target tissues.

MATERIALS AND METHODS
Target tissue bulk RNA-seq processing and analysis
For each dataset, control and patient target tissue gene expressions 
were quantified using Salmon version 0.13.2 (73) with parameters 
“--seqBias –gcBias --validateMappings.” GENCODE version 31 
(GRCh38) (74) was chosen as the reference genome and has been 
indexed with the default k-mer values. Differential expression was 
performed with DESeq2 version 1.24.0 (75). For each gene included 
in DESeq2’s model, a log2 fold change was computed and a Wald 
test statistic was assessed with a P value and an adjusted P value. In 
this study, we consider a gene as differentially expressed when |fold 
change| >1.50 and adjusted P value <0.05. Since there was a statisti-
cal difference in the age between patients with RA and controls, for 
this particular dataset, we have taken age as an independent variable 
in the general linear model performed by DESeq2. To introduce age 
as a confounding factor in the analysis, we performed a binning on 
the ages and assigned each donor a group, respectively: 10 to 29, 30 
to 49, 50 to 69, and >70 years old. All the other parameters of the 
DESeq2 analysis were the same as for the others target tissues.

sc/sn–RNA-seq processing and analysis
We have obtained the expression matrices containing the processed 
reads from transcriptome studies of the following target tissues: (i) 
sc–RNA-seq from cryo-banked islets obtained from three donors 

with T1D and three controls matched for body mass index, age, sex, 
and storage time, performed using the SmartSeq-2 protocol as de-
scribed in (33) and accessible under the Gene Expression Omnibus 
(GEO) number GSE124742; (ii) sc–RNA-seq from kidney biopsies 
from 24 patients with LN and 10 control samples acquired from 
living donor kidney biopsies using a modified CEL-Seq2 protocol as 
described in (34) and accessible in the ImmPort repository (acces-
sion code SDY997); (iii) sc–RNA-seq from snap-frozen brain tissue 
blocks obtained at autopsies from 10 patients with MS (1 primary 
progressive MS, 9 secondary progressive MS) and 9 nonaffected in-
dividuals processed using the 10x Genomics Single-Cell 3′ system 
as described in (35) and accessible on Sequence Read Archive (SRA; 
accession number PRJNA544731); and (iv) sc–RNA-seq of synovial 
tissues from ultrasound-guided biopsies or joint replacements of 
36 patients with RA and 15 patients with osteoarthritis, as reference 
controls, using the CEL-Seq2 protocol as described in (34) and 
available at ImmPort (accession code SDY998). After that, we nor-
malized the gene expression levels by transforming the counts to 
log2(CPM + 1) (counts per million).

For the purpose of reproducibility, we have kept the same cell 
identity classification defined in the original sc/sn–RNA-seq study 
(33–36). To represent nonimmune cells on the target tissues, we have 
selected (i) in T1D, the  cells isolated from pancreatic islets; (ii) in 
SLE, all the kidney epithelial cells from the kidney biopsy; (iii) in MS, 
all the cells from different clusters of brain neurons; and (iv) in RA, 
all the cells from the fibroblast clusters of joint synovial tissues.

Sex determination
For most, but not all, target tissues, sex information was available in 
the metadata on the GEO website. To compensate for this lack of 
information, we inferred the sex based on the expression of 40 genes 
exclusively coded on the Y chromosome and the female-expressed 
XIST (X-inactive specific transcript) (data file S1). We created a ma-
chine learning model on the basis of a linear discriminant analysis 
algorithm that we trained on the expression of both controls and 
patient expression matrices in RA. The training was supervised 
with the sex described in the metadata as the desired outcome. We 
then tried our model to predict the sex of patients on different target 
tissues (i.e., T1D and MS) where the outcome was known, accord-
ing to their metadata, which provided only one prediction different 
from the expected outcome (96% accuracy). This allowed us to esti-
mate the sex ratio in the studies missing this information in the 
available metadata.

Risk genes
Risk genes associated with each disease were identified using genome-
wide association study (GWAS) catalog (www.ebi.ac.uk/gwas/; con-
sulted January 2020). The candidate genes were selected on the basis 
of the following criteria: (i) T1D, SLE, MA, and RA as the disease/
trait evaluated by the study; (ii) a P value of <0.5 × 10−8 for the lead 
SNP; (iii) selecting the reported genes linked to the lead SNP 
described by the original study; and (iv) expression of the reported 
genes in the target tissue (TPM > 0.5). An overlap between the 
four lists of genes was then performed and represented as a Venn 
diagram.

ISG score
To evaluate for the presence of types I and II IFN signatures on the 
target tissues of the four autoimmune diseases, we have calculated 
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for each cell from the sc/sn–RNA-seq an ISG score. This ISG score 
was calculated as the average expression of known ISGs listed on 
data file S1. The statistical difference between groups was deter-
mined using a two-tailed Mann-Whitney U test.

RRHO analysis
To compare the genomic signatures of the target tissues of the four 
autoimmune diseases, we used an RRHO (42) mapping, an unbiased 
method to uncover the concordances and discordances between 
two similarly ranked lists. Briefly, for a pair of diseases, the full list 
of genes is ranked according to their fold change from the most 
down-regulated to the most up-regulated gene. Then, an inter-
section of shared genes is performed, and the analysis of the rank-
ing order of genes is performed with a hypergeometric test.

The visual output of this analysis is an RRHO level map (Fig. 2A), 
where the hypergeometric P value for enrichment of k overlapping 
genes is calculated for all possible threshold pairs for each experi-
ment, generating a matrix where the indices are the current rank in 
each experiment. P values for each test are then log transformed and 
reported on a heatmap to display the degrees of similarities accord-
ing to four quadrants representing the concordance or the 
discordance in gene ranking in the two differential expression 
analysis (e.g., up-regulated in one disease and down-regulated in 
the other).

Functional enrichment analysis
The functional enrichment analysis was based on results from the 
differential expression analysis. Genes from bulk RNA-seq data were pre-
ranked according to the Wald test statistic of the differential expres-
sion results from DESeq2. For sc/sn–RNA-seq data, we filtered out 
genes that were expressed in less than 10% of all cells to minimize 
the dropout impact on the overall gene expression. The remaining 
genes were then preranked according to the log2 fold change of the 
differential expression results from DESeq2. We used fGSEA (76) 
along with the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(77) and Reactome (49) databases as the references to determine which 
pathways were positively or negatively enriched in the target tissue 
of each disease. Default parameters were used, except for the num-
ber of permutations (10,000) for the most accurate P values. For bulk 
RNA-seq data, results with an adjusted P value <0.05 (Benjamini-
Hochberg correction) were then sorted according to their NES. For 
sc/sn–RNA-seq data, results with an adjusted P value <0.15 
(Benjamini-Hochberg correction) were then sorted according to 
their NES.

To determine the functional enrichment in genes up-regulated 
in pairs of diseases, we used a hypergeometric test included in the 
clusterProfiler package (78) on the genes overlapping significantly 
in the RRHO mapping. The Reactome (49) database was used as the 
reference for the gene sets. Default parameters were used, and 
P values were adjusted with the Benjamini-Hochberg correction.

Venn diagrams
Genes differentially expressed with an adjusted P value <0.10 
(Benjamini-Hochberg correction) were selected. The gene lists of all 
diseases were then overlapped and represented as a Venn diagram 
of up- or down-regulated genes. In case of an overlap of >50 genes, the 
gene list was processed using a hypergeometric test with the Reactome 
database as the reference. Defaults parameters were used, and P values 
were adjusted with the Benjamini-Hochberg correction.

TF binding site analysis
Motif discovery for TF binding site in the promoter regions of 
up-regulated genes was done using the script findMotifs.pl from the 
HOMER (79) tools suite with parameters “-start -2000 -end 2000.” 
The promoter regions were considered as ±2000 base pairs from the 
gene transcription start site. Known TF binding site motifs uncov-
ered and included in the study have a P value <0.05.

Therapeutic target identification
For each RRHO analysis result, we picked the top 150 up-regulated 
genes shared between two diseases and processed this list with the 
Connectivity Map dataset (80) using the cloud-based CLUE software 
platform (https://clue.io). This allowed us to query the database for 
compounds that are driving down the input genomic signatures, 
revealing potential drugs that could be repurposed to treat one or 
more diseases. We focused then on perturbagen classes that dis-
played a negative median tau score and retained as potential drug 
candidates only classes with a median tau score <−80.

Statistical analysis
TPM values are given according to their means ± SD. Results con-
sidered as significant in this study have a P value (or an adjusted 
P value when applicable) <0.05. For gene expression, we considered 
that a gene is differentially expressed if |fold change| >1.5 and ad-
justed P value <0.05, unless explicitly stated.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/2/eabd7600/DC1

View/request a protocol for this paper from Bio-protocol.
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