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Pharmacogenetics, the genetic influence on the interpersonal variability in drug response, has enabled
tailored pharmacotherapy and emerging ‘personalized medicine.’ Although oncology spearheaded the
clinical implementation of personalized medicine, other specialties are rapidly catching up. In anesthesia,
classical examples of genetically mediated idiosyncratic reactions have been long known (e.g., malignant
hyperthermia and prolonged apnea after succinylcholine). The last two decades have witnessed an ex-
panding body of pharmacogenetic evidence in anesthesia. This review highlights some of the prominent
pharmacogenetic associations studied in anesthesia and pain management, with special focus on pediatric
anesthesia.
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Pharmacogenetics – use of patients’ genetic information to guide drug therapy, is emerging as a major component
of personalized medicine and targeted interventions. Completion of the human genome project has allowed for an
increasing number of drug–gene pairs to be characterized. Over 300 drugs now contain pharmacogenetic infor-
mation on their labels and nearly 100 drugs have dosing guidelines based on pharmacogenetics. Pharmacogenetics
in anesthesia and pain medicine is a growing field with an expanding body of actionable evidence. This review is
a hypothetical case-based discussion of the latest evidence in the field of pharmacogenetics in pediatric anesthesia
and pain.

Case A
29-year-old Mrs A is an otherwise healthy female who is postoperative day 1 (POD 1) after Cesarean section that
was performed due to obstetric reasons. Her male neonate was born at 38 weeks of gestation with Appearance,
Pulse, Grimace, Activity and Respiration (APGAR) scores 8/10 and 9/10 at 1 and 5 min, respectively, after
birth. He started breast feeding 6 h after birth. On POD 1, the neonate was lethargic and dusky with oxygen
saturation of 75% and respiratory rate of 15 breaths/min, and he was gradually becoming bradycardic. He was
immediately intubated and mechanically ventilated, and his vital signs returned to normal. A retrospective chart
analysis revealed that Mrs A had been receiving postoperative codeine, which was immediately discontinued. The
neonate was gradually weaned from the ventilator and eventually extubated later the same day. He was observed in
the neonatal intensive care unit for 24 h and then was transferred to the step-down unit. A blood sample was taken
from the mother for assessment of opioid levels and genetic testing.

Case B
B is a 5-year-old male with recurrent sore throats impacting his school attendance. He previously had bilateral
ear tubes placed. Due to increased clinic visits for sore throats, the pediatrician referred B to the otolaryngologist,
recommending an adenotonsillectomy. Mother reported that B snored at night, which she felt impaired his sleep
quality and school performance. On the day of surgery, B had a mask induction with sevoflurane. Intravenous
access was obtained and he was intubated without difficulty after propofol administration. Intraoperatively, he
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Table 1. CYP450 2D6 phenotypes and clinical implications.
Phenotype Definition Allele Activity

score
Implications CPIC recommendation

Prodrug Active drug

PM Very low to no
activity

*3 *4 *5 *6 *9 0 Activation Response Inactivation
Response, toxicity

Avoid codeine. Preferably avoid
tramadol, oxy/hydrocodone. Use
morphine/non-opioids

IM Low normal activity *10 *17 *41 0.5 ↓Activation
↓Response

↓Inactivation
↑Response, toxicity

Label-recommended dosing of
codeine, tramadol; monitor for
response

EM Wild-type (normal
activity)

*1 *2 *33 *35 1–2 ↔Activation
↔Response

↔Inactivation
↔Response

Label-recommended dosing of
codeine, tramadol

UM Increased activity Duplication of
functional alleles

�2 Activation
Response, toxicity

Inactivation
Response

Avoid codeine. Preferably avoid
tramadol, oxy/ hydrocodone. Use
morphine/non-opioids

CPIC: Clinical Pharmacogenetics Implementation Consortium; EM: Extensive metabolizer; IM: Intermediate metabolizer; PM: Poor metabolizer; UM: Ultrarapid metabolizer.

received morphine (100 μg/kg), ondansetron and dexamethasone. Ketorolac was administered at the completion
of the case. He was stable in the postanesthesia care unit, where scheduled oral acetaminophen was initiated. He
also received two doses of 50 μg/kg morphine. After resuming clear fluid intake and demonstrating adequate pain
control, he was discharged home later that day. Scheduled acetaminophen and tramadol were prescribed for home
use as necessary. In the early morning of the next day, the mother noticed that B was unresponsive and immediately
took him to the emergency department where he was pronounced dead.

Discussion: opioids
The vast majority of pharmacogenetic studies in anesthesia relate to the variation in response to opioid medications.
This should be expected, as opioids still comprise the major component of perioperative analgesia and can cause
serious life-threatening adverse effects. The US FDA and Clinical Pharmacogenetics Implementation Consortium
(CPIC) that have issued genetics-based opioid guidelines and usage warnings. In particular, variability in handling
of codeine and tramadol has been well characterized.

Patients A and B described here represent cases of CYP2D6 polymorphism leading to ultrarapid metabolizer
phenotype – culminating in opioid intoxication. Similar cases have been reported in the literature [1,2]. The CYP450
enzyme family is responsible for the Phase I metabolism of many drugs [3]. Many opioids are substrates of CYP450
enzymes for inactivation before they undergo Phase II conjugation and elimination [4]. CYP450 enzymes are also
essential for bioactivation of less active prodrugs such as codeine and tramadol to their active metabolites [5].

Codeine is a weak opioid placed in the second step of WHO analgesic ladder for cancer pain. This opioid
was commonly used in pediatrics as it is relatively inexpensive and was assumed to be safe. Reports of respiratory
depression (RD) and fatalities following codeine administration in children and breast-fed neonates of mothers
on codeine have led to questions of its safety [2,6–10]. Codeine itself is a prodrug of its major active metabolite
morphine, with a 200-fold lower affinity to μ-opioid receptor (MOR) compared with morphine [11]. About 80%
of codeine undergoes Phase II conjugation to inactive glucuronide, which is renally excreted [12]. A smaller portion
undergoes N-demethylation to form the inactive metabolite norcodeine. Only 5–10% of the administered codeine
undergoes O-demethylation via CYP2D6 to form its active metabolite morphine [12].

The CYP2D6 gene is subject to extensive polymorphism. Over 100 different alleles have been described in various
ethno-geographic groups, leading to a wide range of variation in the enzyme activity [13]. For ease of management,
four classes have been described depending on the phenotype (Table 1). These include poor metabolizers (PM; 5–
10% prevalence), extensive metabolizers (EM), intermediate metabolizers (IM) and ultrarapid metabolizers (UM;
1–2% prevalence) [14,15]. An activity score is assigned to each allele in the diplotype as follows: 0 = nonfunctional,
0.5 = decreased function and 1 = a fully functional allele [16]. PMs show extremely low analgesic response, while
UMs have high blood levels of active metabolite leading to potentially fatal RD. This is especially true in pediatric
patients where the margin of error is small. Risk factors like prematurity, age (<1-year old), underweight, obstructive
sleep apnea (OSA) and developmental delay predispose children to opioid-induced RD [17].

The CPIC assigns levels from A through D for gene/drug combinations and has issued level A recommendations
for codeine-CYP2D6. This indicates that genetic information should be used to change prescription of the drug [18].
It recommends avoiding codeine use in those with UM and PM phenotypes and suggests use of viable alternatives [19].
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Other alternative oral opioids that belong in the second step of WHO pain ladder include tramadol, low-dose
oxycodone and hydrocodone. Given that tramadol, oxycodone and hydrocodone are CYP2D6 metabolites, they
might not be the viable alternatives to be used in UM or PMs. This means a step down to non-steroidal anti-
inflammatory drugs (NSAIDs) or a step up to morphine in those with a PM or UM phenotype.

Tramadol, similar to codeine is a less active prodrug. It has low affinity to MOR but exerts some analgesic action
via serotonin and norepinephrine reuptake inhibition [11,20]. While a major portion of tramadol is inactivated
by N-demethylation, a small portion is converted by CYP2D6 to its active metabolite O-desmethyltramadol [21].
As it uses a similar activation pathway as codeine, CYP2D6 polymorphisms influence tramadol response in a
similar manner. The CPIC also assigns level A prescribing recommendations for tramadol [19]. Similarly, the Dutch
Pharmacogenetics Working Group guidelines for tramadol states to choose alternative analgesic agents for UM and
PM individuals [22]. If that is not feasible, PMs should be monitored for analgesic response and possibly receive an
increased dose in case of inadequate analgesia. If an alternative analgesic is not feasible for UMs, tramadol could be
started at 40% of the recommended dose with close monitoring for adverse effects.

RD has been reported in children-receiving tramadol [1,23], leading the FDA to issue restrictions on the use
of tramadol (as well as codeine) in children [24]. Codeine and tramadol are now contraindicated in patients less
than 12 years of age, and less than 18 years of age following adenotonsillectomy. The agency also warns against
prescription of codeine and tramadol in children between 12 and 18 years of age with obesity, OSA or severe lung
disease. A strengthened warning recommends against breast feeding in mothers taking codeine or tramadol due to
the risk of RD in breast-fed infants. Following the FDA warning, codeine was removed from the drug formularies
in many pediatric hospitals. A recent review by Fortenberry et al. suggested alternating doses of acetaminophen and
ibuprofen in most pediatric patients, which could be stepped up to hydrocodone or oxycodone if necessary [25].

Oxycodone and hydrocodone are semisynthetic opioids with intrinsic analgesic activity. They are metabo-
lized through similar pathways as codeine. Oxycodone is N-demethylated to the inactive noroxycodone and O-
demethylated by CYP2D6 to active metabolites oxymorphone and noroxymorphone [26]. Similarly, hydrocodone
is metabolized to norhydrocodone and active hydromorphone [4]. The MOR affinities for oxymorphone and
hydromorphone are 40- and 10- to 33-fold greater, respectively, than the respective parent drugs [27]. Since the
parent drugs are active on their own, CYP2D6 polymorphisms exert less influence on response to oxycodone
and hydrocodone. However, mortality has been reported after oxycodone due to genetic factors [28]. Given that
possibility, oxycodone or hydrocodone are not ideal alternatives to codeine (especially when UM or PM status has
been established). Oxycodone-CYP2D6 drug–gene pair holds CPIC level A evidence (genetic information should
be used to change prescribing of affected drug), but genetics-based dosing guidelines are not yet available.

Polymorphisms have been described in other CYP450 genes involved in opioid metabolism including CYP3A4,
CYP3A5 and CYP2B6. CYP3A4 is the enzyme responsible for N-demethylation and inactivation of codeine,
oxycodone and hydrocodone [4]. Fentanyl undergoes N-dealkylation by CYP3A4 and CYP3A5 enzymes. Decreased
activity alleles have been described in these enzymes (CYP3A4*22, CYP3A5*3) that may increase plasma fentanyl
levels, although evidence is inconclusive [29,30]. The CYP3A4*1G allele has been associated with decreased fentanyl
elimination and low fentanyl consumption [31]. On the other hand, the CYP3A5*1 allele causes greater fentanyl
elimination and higher-dose requirements compared with general population [32]. Alfentanil and sufentanil responses
are also subject to CYP3A4 and CYP3A5 polymorphisms [33,34]. Many other CYP3A4 and CYP3A5 polymorphisms
have been described, although their mean allelic frequency is extremely low and they lack clinical evidence.

Methadone is inactivated by CYP2B6, and metabolized by other minor pathways through CYP3A4 and
CYP2D6 [4,35]. The CYP2B6*6 allele is associated with low hepatic expression and activity [14]. Homozygotes
of this allele may suffer from excessive sedation and QT prolongation after methadone administration. On the
other hand, CYP2B6*4 is associated with increased methadone elimination and low plasma levels [35]. Further
research is needed on pharmacogenetics of methadone to develop clinical guidelines.

Morphine is the prototypical opioid widely used for acute perioperative pain as well as chronic pain in cancer and
non-cancer patients. Morphine undergoes Phase II metabolism via enzymes in the uridine glucuronosyl transferase
family, especially UGT2B7 [4]. The major metabolite morphine-3-glucuronide (M3G) has no analgesic activity
but has neuroexcitatory effects [36]. The minor metabolite morphine-6-glucuronide (M6G) has similar affinity to
MOR as morphine and contributes significantly to its analgesic efficacy. There are also other pathways (UGT1A1
and UGT1A8) involved in formation of M6G [37]. SNPs have been described in UGT2B7. SNP 802C>T was
demonstrated in vitro to decrease transcription of the enzyme, but clinical studies were inconclusive to associate
UGT2B7 polymorphisms with morphine response [38]. A study in the Japanese population demonstrated lower
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incidence of adverse effects associated with oral morphine in carriers of the UGT2B7*2 allele compared with
wild-type alleles [39]. Intronic variants in the promoter regions and genetic variability in UGT1A1 and UGT1A8
likely cause the difficulty in definitively associating polymorphisms with the morphine response.

Pharmacokinetic variations in opioid response can also be caused by changes in transport proteins such as
P-glycoproteins. These include ATP-Binding Cassette family members ABCB1 and ABCC3 – also known as
multidrug resistance proteins – and organic cation transport protein 1 (OCT1). ABCB1 is an efflux protein present
at the blood–brain barrier and intestinal mucosa. Many opioids including morphine, methadone and fentanyl form
substrates of ABCB1 [40]. The ABCB1 gene is located on chromosome 7. A number of SNPs have been reported
with low mean allelic frequencies – the most frequent variants being 3435C>T, 1236C>T and 2677G>T/A [41].
These are in strong linkage disequilibrium, meaning that they are often inherited together and the response resulting
from one variant is often influenced by others. Therefore, studying only one variant is often misleading. In the case
of 3435C>T, homozygous T/T genotype is associated with very low expression of the ABCB1 (both intestinal
and blood–brain barrier). This results in greater levels of opioids in cerebrospinal fluid with improved analgesia,
lower dose requirements and more susceptibility to side effects [42]. While studies relating 3435TT to opioid dose
requirements have been inconsistent, this variant has been associated with increased risk of nausea and vomiting [43].
Children with GA and GG genotypes of ABCB1 rs9282564 are at higher risk of RD [44]. The ABCC3 protein in
hepatocytes serves as an efflux transporter for morphine metabolites M3G and M6G into the blood stream [45]. The
ABCC3 SNP 211C>T has been associated with decreased expression of the protein [46], and 211C/T or 211T/T
genotypes result in lower plasma levels of M3G and M6G [47].

The OCT1 is a hepatocyte transport protein responsible for uptake of drugs like morphine. It is coded by
SLC22A1, a highly polymorphic gene [48]. Loss of function variants of SLC22A1 (*2, *3, *4, *5 and *6) have
been characterized for elimination of morphine and the active metabolite of tramadol (O-desmethyl tramadol) [49].
Patients with these polymorphisms show high plasma concentrations of these metabolites [50]. The SLC22A1
variants are less frequent in African–Americans (AA) compared with Caucasians; therefore, opioid-induced RD is
less common in the AA population [47]. Concurrent SLC22A1 variants and CYP2D6 UM phenotype will compound
the problem of RD after codeine administration [51]. Despite the promising scientific premises with the variants
affecting transport proteins, strong evidences are still lacking to suggest a clinical implementation.

The genetics of opioid pharmacodynamics are also currently being explored, with special focus on OPRM1,
COMT and KCNJ6. The OPRM1 gene (encoding the MOR) lies on chromosome 6. A polymorphism for OPRM1,
118A>G, leads to reduced MOR signal transduction, increased affinity to endogenous opioids and resistance to
exogenously administered opioids [52]. The clinical effects of homozygous state (118GG) are unclear, as some studies
have demonstrated greater opioid requirements and less opioid-related adverse events, while others have shown
no difference in opioid consumption compared with the wild-type allele [30,53]. A meta-analysis revealed a weak
association between OPRM1 variants and lower incidence of opioid adverse events and greater dose requirements [54].

Notably, greater opioid dose requirements do not automatically imply resistance to opioid adverse effects. Genetic
variants may have differential effects on opioid requirements and susceptibility to opioid adverse effects [55,56]. Reyes-
Gibby et al. studied combined effects of OPRM1 and COMT variants in chronic cancer pain patients and found
that carriers of the OPRM1 A118G and COMT Met/Met haplotype required the lowest morphine dose to achieve
pain relief [57]. Another study found that heterozygotes for both of the gene variants required significantly lower
morphine doses and also experienced lower incidence of opioid adverse events compared with homozygotes [58].
Ruano and Kost [59] described three phenotype classes based on OPRM1 SNPs in terms of sensitivity to opioids
and likelihood of developing opioid dependence. These included: functional OPRM1 (AA homozygous: 64%
frequency), subnormal OPRM1 (AG heterozygous: 32% frequency) and dysfunctional OPRM1 (GG homozygous:
4% frequency). Presence of at least one G allele lowers the pain threshold, decreases sensitivity to opioids, increases
opioid consumption and increases opioid dependence [59,60]. Similarly, three phenotype classes were described based
on CYP2D6 status: CYP2D6 functional (neither CYP2D6 allele is null or ultrarapid: 60% frequency), CYP2D6
subnormal (one CYP2D6 allele is null, the other normal: 30% frequency) and CYP2D6 dysfunctional (both
CYP2D6 alleles are null, or at least one is ultra-rapid: 10% frequency). The authors used functional status of both
CYP2D6 and OPRM1 and their relative population frequencies to create three categories and nine subcategories of
various combinations and recommended clinical action (Figure 1).

The COMT gene codes for catechol-O-methyl transferase, which plays an important role in regulating MOR –
thus influencing pain perception and opioid response. The COMT variant 472G>A has been linked to reduced
COMT activity resulting in greater MOR expression and lower Met-enkephalin concentration. This has clinically
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Figure 1. Functional classes for opioid management using CYP2D6 and OPRM1.
Adapted with permission from [59].

been related to lower opioid requirements and fewer opioid side effects. Three functional haplotypes of 472G>A
have been identified (low, average and high pain sensitivity) [61], but the phenotypical characters of these classes
have been inconsistent across studies [62]. The GIRK2 is a downstream signaling effector of MOR. It is coded by
the KCNJ6 gene. Polymorphisms of KCNJ6 (1250G>A and 1032A>G) may affect opioid response; however, the
evidence is sparse and inconclusive [63]. Polymorphisms of the OPRD1 gene, coding for delta-opioid receptor, have
also been described [64]. Table 2 provides an overview of significant genetic variants relevant to anesthesia providers.

Currently in anesthesia practice, the only opioid drug–gene combinations with actionable guidelines are the
CYP2D6 substrate drugs (Figure 2). More randomized controlled trials in this domain are emerging, which is
encouraging. Smith et al. demonstrated the benefits of CYP2D6 genotype-guided pain management compared
with conventional management in patients visiting the pain clinic [65]. The composite pain score was significantly
lower in the CYP2D6-guided group, especially for IM/PM patients.

Case C
C is a 7-year-old female who presented on emergency with lower abdominal pain, vomiting, diarrhea and fever.
Acute appendicitis was diagnosed, and intravenous fluids and an antibiotic were given in the emergency department.
She was transferred to the operating room for emergency laparoscopic appendectomy. Rapid sequence induction was
performed, including propofol and succinylcholine followed by tracheal intubation. She was placed on ventilator
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Table 2. Overview of genetic variants relevant for anesthesiologists.
Genes associated with anesthesia
relevant medications and conditions

Genotypes and clinical implications

Opiods

CYP450 2D6 (CYP2D6) PMs
– Extremely low analgesic response with codeine, tramadol

UMs
– Fatal respiratory depression with codeine, tramadol

CYP450 3A4 3A5 (CYP3A4, 3A5) CYP3A4*22, CYP3A5*3 alleles – decreased elimination, greater plasma fentanyl levels

CYP3A4*1G allele – decreased fentanyl elimination and low consumption

CYP3A5*1 allele – greater fentanyl elimination and higher dose requirements

CYP450 2B6 (CYP2B6) CYP2B6*6 allele – homozygotes, excessive sedation and QT prolongation after methadone

CYP2B6*4 allele – increased elimination and low plasma levels of methadone

UDP (UGT2B7) UGT2B7*2 allele – lower incidence of adverse effects with oral morphine

ABC (ABCB1, ABCB3) ABCB1 SNPs
– 3435C�T, homozygous T/T – greater levels of opioids in CSF
– 3435TT – increased risk of nausea and vomiting
– GA and GG genotypes of rs9282564 are at higher risk of respiratory depression

ABCC3 SNPs
– 211C�T – decreased expression of the protein
– 211C/T or 211T/T genotypes – lower plasma levels of M3G and M6G

ABCC3 SNPs
– 211C�T – decreased expression of the protein
– 211C/T or 211T/T genotypes – lower plasma levels of M3G and M6G

OCT1 hepatocyte transport protein
(SLC22A1)

SLC22A1 Loss of function variants (*2, *3, *4, *5, *6)
– High plasma concentration of morphine and the active metabolite of tramadol

μ-opioid receptor (OPRM1) Polymorphism 118A�G
– Increased affinity to endogenous opioids
– Resistance to exogenously administered opioids

COMT Polymorphism 472G�A
– Lower opioid requirements and fewer opioid side effects

GIRK2 (KCNJ6) Polymorphisms of KCNJ6 (1250G�A and 1032A�G)
– May affect opioid response

Succinylcholine

BChE gene BChE deficiency– K variant
– 30% reduction in enzyme activity
– Fluoride-resistant variant – 60% reduction in enzyme activity
– Atypical dibucaine-resistant variant – 70% reduction in enzyme activity
– Silent variant – 100% reduction in enzyme activity, may experience up to 3–4 h of apnea after succinylcholine

Malignant hyperhermia

RYR1 300 genetic variants of RYR1 on chromosome 19

CACNA1S, STAC3 genes influence skeletal muscle calcium metabolism (inconclusive)

PONV

Variants of genes coding for receptors
(5HTR3A, B, CHRM3, DRD2)

5HTR3A and 5HTR3B genes (encoding 5-HT3 receptors), CHRM3 gene (encoding M3 muscarinic cholinergic receptor)
and DRD2 gene (encoding dopamine D2 receptor)

CYP2D6 UMs – poor response to ondansetron

Transport protein genes (ABCB1, OCT1) Polymorphisms increase PONV risk

CHRM3 (coding for muscarinic cholinergic receptor) and KCNB2 (coding for voltage-gated potassium channel)
associated with increased PONV risk

Benzodiazepines

GABAA receptor (GABRA1) GABRA1 gene polymorphisms influence benzodiazepine sensitivity

CYP450 (CYP3A4, 1C9) Polymorphisms in CYP3A4 affect clearance of midazolam

Polymorphisms in CYP2C19 affect clearance of diazepam

Propofol

UDP (UGT1A9) Affects propofol glucuronidation

CYP2B6 Affects propofol dose requirements

Etomidate

GABAA receptor Polymorphisms in genes coding for GABAA receptor influence efficacy

CSF: Cerebrospinal fluid; NSAID: Nonsteroidal anti-inflammatory drug; PM: Poor metabolizer; PONV: Postoperative nausea and vomiting; UM: Ultrarapid metabolizer.

60 Pharmacogenomics (2020) 21(1) future science group



Personalized pediatric anesthesia & pain management: problem-based review Review

Table 2. Overview of genetic variants relevant for anesthesiologists (cont.).
Genes associated with anesthesia
relevant medications and conditions

Genotypes and clinical implications

Ketamine

CYP2B6 CYP2B6*6 was found to decrease enzyme activity in vitro; inconclusive clinical evidence

Dexmedetomidine

Alpha2 adrenergic receptors (ADRA2A) ADRA2A polymorphism has been linked to variability in response

Inhalational agents

GSTP1 Variants implicated in sevoflurane-induced hepatotoxicity

GABAA receptor (GABRA1) Polymorphisms in genes coding for GABAA receptor are associated with emergence agitation after sevoflurane

MC1R Variants in MC1R gene – greater desflurane dose requirements

5,10-methylenetetrahydrofolate
reductase

Gene mutation reduces enzyme activity; neurological injury after nitrous oxide exposure

NSAIDs

CYP450 (CYP2C9) – CYP2C8*3, CYP2C9*2, CYP2C9*3 – decreased activity and clearance of Ibuprofen
– CYP2C9*3 decreased function polymorphism – lower pain scores after celecoxib
– Maximum plasma concentrations of celecoxib are seen in CYP2C9 PMs (homozygous *3/*3)

GSTP1 Polymorphisms – susceptibility to acetaminophen-induced hepatic injury

Local anesthetics

Sodium channel (SCN9A) N395K mutation – increased resistance to lidocaine binding on sodium channels

TRPV1 Point mutation – lidocaine resistance

MC1R Variants in MC1R – reduce lidocaine efficacy

CYP450 (CYP3A4, CYP1A2) CYP3A4
– Not fully mature at birth
– Increase toxicity with lidocaine and bupivacaine in infants younger than 6 months

CYP1A2
– Not fully mature at birth
– Increase toxicity with ropivacaine in infants younger than 6 months

CSF: Cerebrospinal fluid; NSAID: Nonsteroidal anti-inflammatory drug; PM: Poor metabolizer; PONV: Postoperative nausea and vomiting; UM: Ultrarapid metabolizer.

and given fentanyl and ondansetron. Postoperatively, the anesthesiologist noticed that the patient had no respiratory
effort. Peripheral nerve stimulation with train-of-four recorded on a twitch monitor demonstrated decreased twitch
with no fade. Blood was drawn for estimation of pseudocholinesterase and the patient was transferred to the
intensive care unit to be placed on ventilator. Within 3 h, she began triggering the ventilator. Following extubation
within the next hour, she was transferred to the step-down unit.

Discussion: neuromuscular blockers
There are several case reports of prolonged paralysis after succinylcholine due to pseudocholinesterase defi-
ciency [66,67]. Succinylcholine is a rapid, short-acting depolarizing neuromuscular blocker (NMB) that is rapidly
hydrolysed in plasma by pseudocholinesterase (also known as butyrylcholinesterase; BChE). Deficiency of BChE is
rare and results in prolonged paralysis after exposure to succinylcholine or mivacurium – a non-depolarizing NMB
metabolized by BChE. The BChE enzyme is produced in the liver, but present in all cells except erythryocytes [68].
Whole-body levels of BChE exceed that of acetylcholinesterase [69].

The BChE gene is located on chromosome 3 and BChE deficiency is inherited as an autosomal recessive trait [68].
Many genetic variants have been described. The wild-type (normal function) variant accounts for 98% of the
population; however, about 1.5% of people display the Kalow (‘K’) variant associated with 30% reduction in
enzyme activity [70]. Other variants are extremely rare, including the atypical-dibucaine-resistant variant [71,72],
fluoride-resistant variant [73] and silent variant [74] associated with 70, 60 and 100% reductions in BChE activity,
respectively. Patients with the silent variant may experience up to 3–4 h of apnea after succinylcholine. The
prevalence of the rare silent-type homozygote variant is 1:100,000 [75]. Certain populations like the Inuit Eskimo
population and the Vysya population of India have shown prevalence as high as 1:25 [74,75]. The frequency of
the Leu307Pro substitution seen in the silent-type BChE deficiency is 4000-fold greater in the Vysya population
compared with other populations [74].
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Risk factors: OSA, obesity,
Past history of opioid adverse
events/resistance, positive
family history

CYP2D6 IM/EMCYP2D6 PM CYP2D6 UM

Mild pain: scheduled
acetaminophen, PRN NSAIDS

Moderate pain: scheduled
acetaminophen, PRN morphine,
PRN NSAIDs, consider regional

Severe pain: scheduled
acetaminophen, PRN dilaudid,
fentanyl, morphine, consider
regional, consider adjuvants

PONV: granisetron, ondansetron
may require close monitoring for
adverse effects: QT prolongation,
constipation, headache, may 
require lower dose

Mild pain: scheduled
acetaminophen, PRN NSAIDS

Moderate pain: scheduled
acetaminophen, PRN codeine,
tramadol, oxycodone, hydrocodone
(monitor for response in IM),
morphine, consider regional

Severe pain: scheduled
acetaminophen, PRN dilaudid,
fentanyl, morphine, consider
regional, consider adjuvants

PONV: ondansetron, granisetron, 
standard dosing

Mild pain: scheduled
acetaminophen, PRN NSAIDS

Moderate pain: scheduled
acetaminophen, PRN morphine, 
PRN NSAIDs, consider regional

Severe pain: scheduled
acetaminophen, PRN dilaudid,
Fentanyl, morphine, consider
regional, consider adjuvants

PONV: granisetron; other classes 
of antiemetics

CYP2D6 genotyping

Figure 2. Pharmacogenetics guided perioperative management pathway: CYP2D6.
EM: Extensive metabolizers; IM: Intermediate metabolizers; NSAID: Nonsteroidal anti-inflammatory drug; OSA: Obstructive sleep apnea;
PM: Poor metabolizer; UM: Ultrarapid metabolizer.

Although genetic testing is available for BChE deficiency, the most commonly used assays include inhibition
tests (using dibucaine or fluoride to quantify activity) and plasma cholinesterase levels [71,73]. Acquired causes
of BChE deficiency such as hepatic or renal disease, pregnancy, burns and malignancy should be ruled out
before lab testing [68]. Drugs and toxins like echothiophate, organophosphates, cyclophosphamide, physostigmine,
neostigmine, oral contraceptives and metoclopramide can also inhibit BChE [68]. Treatment with whole blood
and fresh frozen plasma have been described for prolonged apnea after succinylcholine administration in BChE
deficiency [76,77]. However, patients are typically allowed to recover spontaneously with ventilatory support. BChE
deficiency is also associated with poor metabolism of ester group local anesthetics such as chloroprocaine or cocaine,
leading to toxicity [78].

Other NMBs such as mivacurium and rocuronium may have prolonged activity due to enzyme deficiencies.
Mivacurium is a non-depolarizing muscle relaxant metabolized by BChE. The duration of action may be prolonged
from the usual 25–30 min to about 300 min in homozygotes with BChE deficiency [79,80]. Genetic variants in
hepatocellular uptake protein OATP1A2 are known to influence biliary elimination of rocuronium [81].

Case D
D is an 8-year-old female who was previously healthy but presented with a supracondylar humeral fracture after
falling. She was placed nil per os before surgery. On preanesthetic evaluation, D’s father mentioned that his
father (D’s grandfather) had died after anesthetic exposure. He and his two siblings had been tested for malignant
hyperthermia (MH), and his sister (D’s aunt) was MH susceptible. He remembers that she was given a ‘special
kind of anesthetic’ for her laparoscopic cholecystectomy, and she had no anesthetic complications. He could not
recall any details of the MH testing or the anesthesia that his sister had received. He personally had no anesthetic
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exposures, and this was D’s first exposure to anesthesia. The anesthesiologist planned an intravenous induction
with propofol, laryngeal mask airway, and a total intravenous anesthetic with propofol and remifentanil. The
intraoperative and postoperative periods were uneventful, and D was discharged home after 1 day of observation
in the surgical unit.

Discussion: MH
MH is a rare (1 in 15,000 anesthetics in children) [82,83], often fatal, idiopathic reaction to volatile anesthetics
and succinylcholine. There have been numerous isolated case reports of both successfully managed as well as fatal
instances of MH [84–86]. Exposure to a triggering agent causes sustained opening of ryanodine receptor 1 (RYR1)
calcium channels on sarcoplasmic reticulum, resulting in elevated calcium ion release and sustained contraction.
Patients display sustained skeletal muscle contraction, ATP depletion, rigidity, excessive heat production and muscle
breakdown [87]. About 300 genetic variants of RYR1 on chromosome 19 have been described, with varying levels of
clinical significance [87]. The prevalence of pathogenic RYR1 variants in MH susceptible individuals documented in
various studies varies from 23 to 86% depending on the method used and the population studied [88–92]. Apart from
RYR1, variants have been described in CACNA1S, STAC3 and other genes that influence skeletal muscle calcium
metabolism, however, their causative role in MH is unclear [93,94]. But only about 50% of the MH susceptible
individuals carry potentially pathogenic variants in the known MH-associated genes [95].

Recent advancements in technology and cost–effectiveness of next-generation sequencing have enabled genetic
testing to be a viable first-line diagnostic test for patients or relatives of patients suspected to have MH [95].
The European Malignant Hyperthermia group has published diagnostic guidelines for MH susceptibility, which
includes genetic and functional characterization of relevant RYR1 and CACNA1S variants [96]. But the in vitro
caffeine-halothane contracture test still remains the gold standard to confirm MH susceptibility, since not all
genetic variants have been characterized, [97].

Case E
E is an 11-year-old female presented for dental restoration under general anesthesia, as her dental surgeon felt that it
was beyond the scope of what could be done in the office setting. E’s surgical history included adenotonsillectomy at
7 years of age and appendicectomy at 10 years of age. Her parents recalled that she experienced severe postoperative
nausea and vomiting (PONV) following both of the previous surgeries. She also had severe pain – unresponsive
to tramadol – after her adenotonsillectomy. An emergency physician had prescribed a different medication that
provided good pain relief. They also recalled that a genetic test had been performed during her appendectomy stay,
and the doctor had mentioned that E was a ‘poor metabolizer’. E’s maternal family also had history of PONV.
E received a preoperative scopolamine patch, intravenous induction with propofol, endotracheal intubation, total
intravenous anesthetic with propofol and remifentanil, dexamethasone, granisetron and generous intravenous
crystalloid administration. Postoperative promethazine was available; she did not require any rescue medication for
PONV during her postoperative recovery.

Discussion: antiemetics
PONV is a relatively common anesthetic concern with a general incidence of 30%, which could be as high
as 80% in high-risk individuals [98]. PONV risk factors may be patient related (female gender, positive family
history, motion sickness) or surgery related (strabismus surgery) or anesthesia related (postoperative opioid use,
use of volatile anesthetics). In addition to these factors, certain genetic variants have been described to increase
PONV risk. The pathophysiology of PONV involves a number of neural pathways including serotonin (5-
hydroxytryptamine 3 receptor; 5-HT3), dopamine (D2 and D3 receptors), histamine and neurokinin. All of these
pathways may be utilized for pharmacological intervention of PONV. Enhanced susceptibility to PONV has been
linked to the following genetic variants: polymorphic variants in 5HTR3A and 5HTR3B genes (encoding 5-HT3

receptors), CHRM3 gene (encoding M3 muscarinic cholinergic receptor) and DRD2 gene (encoding dopamine
D2 receptor) [99–101]. The most commonly used class of drugs for PONV prophylaxis and treatment is the 5-HT3

receptor antagonist class including ondansetron, granisetron, tropisetron and others. CYP450 enzymes – CYP2D6,
CYP3A4 and CYP1A2 – are involved in the metabolism of ondansetron to its inactive metabolites [102], with most
activity conferred by CYP2D6. Previous studies have demonstrated that CYP2D6 UMs show a poor response to
ondansetron compared with EM or IM phenotypes [103–105]. CPIC guidelines, therefore, recommend granisetron
as an alternative to ondansetron for CYP2D6 UMs since granisetron is not a CYP2D6 substrate [105]. Tropisetron
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– which is also metabolized by CYP2D6 – would not be a viable alternative to ondansetron [106]. Finally, variable
response to 5HT3 antagonists is also associated with polymorphisms in transport protein genes like ABCB1 and
OCT1 [107,108]. Other genes identified to be associated with increased PONV risk include CHRM3 (coding for
muscarinic cholinergic receptor) and KCNB2 (coding for voltage-gated potassium channel) [100,109].

Sedative, hypnotics & volatile agents
Benzodiazepines, acting through GABAA receptors, are used for anxiolysis and sedation in the perioperative period.
A polymorphism in GABRA1 gene (encoding GABAA receptor) has been shown to influence benzodiazepine
sensitivity [110]. Benzodiazepines are metabolized by CYP450 enzymes; midazolam is hydrolyzed by CYP3A4 and
CYP3A5 enzymes, while diazepam is a CYP2C19 substrate. Polymorphisms in CYP enzymes, therefore, can affect
their clearance. This has been demonstrated with CYP3A4 for midazolam and CYP2C19 for diazepam [111,112].

Propofol is an intravenous anesthetic agent with substantial variation in interindividual response, and it is mainly
eliminated via glucuronidation by UGT1A9. It also undergoes hydroxylation mediated by CYP2B6 and CYP2C9.
Polymorphisms of UGT1A9 have been known to affect propofol glucuronidation [113]. There have been studies on
CYP2B6 variants and their influence on propofol dose requirements, but no conclusive association between genetic
factors and the variability in propofol dose or adverse events has been established [114,115]. Since propofol acts via
GABAA receptors, the impact of polymorphisms of GABRE (encoding the GABAA receptor subunit epsilon) have
also been investigated, with inconclusive results [116]. The GABAA receptor is also used by another intravenous
anesthetic, etomidate. Polymorphisms in genes coding for GABAA receptor subunits have been known to influence
etomidate efficacy [117]. No published studies, however, have associated genetic factors with etomidate-induced
adrenal suppression [83].

Ketamine acts by blocking N-methyl-D-aspartate receptors in brain and spinal cord. It is metabolized by CYP2B6
and CYP3A4 [118]. The variant CYP2B6*6 was found to decrease enzyme activity in vitro, but it did not significantly
affect metabolism and clearance of low-dose ketamine [119].

Dexmedetomidine is a centrally acting α2 adrenergic receptor agonist. Dexmedetomidine is metabolized via glu-
curonidation and CYP2A6 hydroxylation pathways. CYP2A6 variants have shown no association with dexmedeto-
midine response [120]. On the other hand, ADRA2A polymorphism affecting α2 adrenergic receptors has been linked
to variability in dexmedetomidine response [121].

Currently used volatile agents like sevoflurane and desflurane are primarily eliminated unchanged through the
lungs, although a minor portion is hepatically metabolized by CYP450 enzymes [122]. Certain variants of GSTP1 gene
(encoding glutathione S-transferase) have been implicated in sevoflurane-induced hepatotoxicity – an extremely
rare complication with sevoflurane [123]. Inhalational anesthetic agents act via a different site on the GABAA

receptor, and polymorphisms in GABA receptor genes are associated with emergence agitation after sevoflurane
administration [124]. Variants in MC1R gene (encoding the melanocortin-1 receptor) have been implicated in greater
desflurane dose requirements [125].

Nitrous oxide is uncommonly used now; however, this agent can inhibit vitamin B12-dependent enzymes such
as methionine synthase through oxidation of cobalt. In one case report, an infant sustained neurological injury and
death after nitrous oxide exposure [126]. Postmortem examination revealed a mutation in the gene coding for 5,
10-methylenetetrahydrofolate reductase with decreased enzyme activity [127]. Exposure to nitrous oxide in addition
to this enzyme deficiency resulted in fatal neurological injury.

NSAIDs & acetaminophen
Nonselective cyclooxygenase (COX) inhibitors (e.g., diclofenac and ibuprofen) undergo CYP450 enzyme-mediated
Phase I metabolism followed by hepatic glucuronide conjugation. Polymorphisms CYP2C8*3, CYP2C9*2 and
CYP2C9*3 are associated with decreased activity and lower ibuprofen clearance [128]. A higher incidence of gastric
bleeding has also been shown in carriers of CYP2C9*3 [129].

Celecoxib is a COX-2 selective inhibitor metabolized by CYP2C9 [130]. The decreased function polymorphism
CYP2C9*3 is associated with lower pain scores after celecoxib administration [131]. Maximum plasma concentrations
are seen in CYP2C9 PMs (homozygous *3/*3) compared with EMs (*1/*1) or IMs (heterozygous *1/*3) [132].
The drug label for celecoxib includes an FDA-issued warning for use in CYP2C9 PMs – recommending reducing
the dose by 50% or using an alternate drug [133].

Acetaminophen is the most commonly used analgesic agent. It undergoes CYP450-mediated oxidation in the
liver to form the reactive metabolite N-acetyl para-benzoquinone imine (NAPQI) [134]. CYP3A4, CYP1A2 and
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CYP2E1 are the main enzymes involved [135]. NAPQI undergoes glutathione conjugation [134], and depletion
of glutathione leads to accumulation of toxic NAPQI and oxidative injury to hepatocytes [136]. Polymorphisms
causing decreased activity of glutathione transferase can cause susceptibility to acetaminophen induced hepatic
injury [137]. Other acetaminophen metabolic pathways include glucuronidation and sulfation, to some extent [134].
Glucuronidation is absent in fetal livers and newborns, where acetaminophen is mainly eliminated via sulfation [138].

Local anesthetics
Local anesthetics act by blocking sodium channels, and variants in sodium channel genes may reduce the activity
of these agents. The N395K mutation on SCN9A gene has been shown to increase resistance to lidocaine binding
on NaV1.7 channels [139]. Sodium channel mutations have also been implicated in local anesthetic cardiac toxicity.
Lidocaine also acts on the TRPA1 and TRPV1 vanilloid receptors [140]. A TRPV1 point mutation led to lidocaine
resistance in mice [140]. There is also evidence that variants in MC1R (encoding melanocortin-1 receptor) reduce
lidocaine efficacy [141]. Lidocaine and bupivacaine are metabolized by CYP3A4, and ropivacaine is metabolized by
CYP1A2. These enzymes are not fully mature at birth [142], and this may help to explain the increased toxicity of
amide local anesthetics in infants younger than 6 months.

Challenges & implications for pharmacogenetics research in pediatric anesthesia
As our discussion reveals, pharmacogenetics research has been heterogenous with inconsistent results across studies.
Pharmacogenetics is a science of outliers [143] attempting to study the thin tails on each side of the bell-shaped
curve. Therefore, sample size has a significant impact on the results, and large enough study population and robust
study design are of paramount importance. The allelic frequency of polymorphisms can significantly vary across
ethnicities, meaning that results can vary based on ethnicity of the chosen study population. The substantial linkage
disequilibrium of multiple SNPs on a gene (both exonic as well as intronic regions) could lead to false conclusions
when only one variant is closely examined (candidate gene approach). Gene–gene interactions (e.g., CYP2D6 UM
and Loss of function OCT1) could also modify responses. Studies on interaction between COMT and OPRM1
variants provide another good example for gene–gene interaction [144]. Concurrent medications (enzyme inducers
or inhibitors) can further complicate the picture. For instance, strong CYP2D6 inhibitors like fluoxetine, paroxetine
and bupropion may mimic a PM phenotype irrespective of the CYP2D6 allele [27].

Developmental pharmacogenetics, or the dynamic variation in gene expression and the resulting enzyme activity
at various stages of development is another important consideration in pediatric anesthesia. For example, the
predominant prenatal CYP enzyme is CYP2C19, but this transitions to CYP2C9 after birth. Levels of CYP2C9
are similar to adults between 1 and 6 months or after puberty, but exceed adult levels at 3–10 years of age [145,146].
Adult levels of CYP2C19 are reached at 10 years of age [147]. Similarly, CYP2D6 activity is about 1–5% of the
adult levels at birth and adult levels are seen at about 10 years of age [148]. Thus, all neonates, especially less than
2 weeks of age, essentially belong to the PM phenotype. A similar phenomenon is observed with CYP2E1 and
CYP3A4 [149–151]. UGT2B7 is negligible in fetal liver and it takes over 6 months to reach adult activity [152,153].

In short, research to uncover clinically actionable pharmacogenetic interactions requires a ‘birds-eye view’ –
considering all influential variables. Solutions to this problem include ‘genome-wide association studies’ and the
‘gene-signature’ approach. In a study by Biesiada et al. [154], the researchers examined multiple SNPs of a panel of
genes including ABCB1, COMT, OPRM1, FAAH, UGT2B7, ADRB2, GCH1, TRPA1, DRD2, ANKK1, MC1R
along with other demographic factors like sex, race, age and OSA to create a predictive model for morphine-
induced RD. They were able to identify a low RD risk cluster and high RD risk cluster, with a number of
subclusters under them, forming a continuum of gradually increasing RD risk. The relative risk for RD frequency
was significantly higher (up to nearly fourfold difference) in the high-risk cluster versus the low-risk cluster. Thus,
risk stratification using a model that takes into account all genetic and non-genetic factors is a vital step in the right
direction. Validating genotype–phenotype associations is also important, as this will impact the decision-making
process of drug and dose selection to improve clinical practice safety and efficiency. Proteomic, transcriptomic and
metabolomic information should be integrated with genetic discoveries and bioinformatics [83]. Much work in this
field remains to be done – starting from gathering evidence. Incorporation of these models into machine-learning
algorithms and clinical decision support tools will ultimately lead the treating clinician to implement ‘personalized
medicine’ in routine clinical practice.
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Future directions
Knowledge of genetic influences on drug response is rapidly expanding. Clinical guidelines for select actionable
drug–gene pairs are being released by organizations like the CPIC (https://cpicpgx.org/guidelines/), the Dutch
Pharmacogenetics Working Group (www.knmp.nl/), the Canadian Pharmacogenomics Network for Drug Safety
(CPNDS; http://cpnds.ubc.ca/) and the European Medicines Agency-Pharmacogenomics Working Party (EMA-
PgWP; www.ema.europa.eu/en). Online databases like the Pharmacogenetics Knowledge Base (PharmGKB) serve
as an integrated source of pharmacogenetic information from a multitude of sources (www.pharmgkb.org/). Despite
this growing knowledge base on the pharmacogenetics of anesthetic medications, actionable drug–gene pairs still
remain very few and clinical implementation may be challenging.

The NIH-funded Implementing GeNomics In pracTicE (IGNITE) working group supports the development
and investigation of genomic medicine practice models to enhance implementation into routine clinical prac-
tice [155]. The IGNITE group promotes multicenter collaboration with the ultimate goal of advancing pharmaco-
genetic practice. As economic constraints are an important barrier, IGNITE aims to provide evidence to support
reimbursement for testing and broaden clinical implementation.

A recently published multisite investigation of clinical implementation of CYP2D6 genotyping to guide drug
therapy described various roadblocks including lack of stakeholder support, gene complexity and phenotype
assignment [156]. Implementation is also hampered by limited provider awareness of the resource availability and the
clinical actionability of the knowledge [157]. Technical issues include difficulty in including information in electronic
health records due to the complexity of the genetic information, variable phenotype assignment and drug–drug–gene
interaction causing phenoconversion. Logistical issues like limited availability of personnel and support staff and
difficulty in building a sustainable reimbursement model pose a challenge to implementation. At the time of writing,
a large multicentric prospective randomized controlled trial is underway (Indiana Genomics Implementation; an
Opportunity for the Underserved; INGEnIous) [158] to assess implementation of pharmacogenetics guided therapy
with a planned sample size of 6000 participants. This would provide insight into the cost and clinical outcome
benefits of integrating pharmacogenetics into clinical practice. Eadon et al. have described a model for the formation
of a pharmacogenomics consultation service at a safety-net hospital serving low-income, uninsured and vulnerable
population, addressing concerns of adjudication, credentialing and funding [159].

Conclusion
Our knowledge of pharmacogenetics related to anesthetic agents is expanding. Widespread acceptance of person-
alized medicine is on the horizon. As we accumulate evidence from large studies on clinical implementation, we
will learn how to overcome challenges to integration and produce actionable clinical pharmacogenetic guidelines
for anesthetic drugs.

Financial & competing interests disclosure

Funding support was provided by the Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA

and NIH R01 HD089458 (Principal Investigator: S Sadhasivam) and R21 HD094311 (Principal Investigator: S Sadhasivam). The

authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial

conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria,

stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

66 Pharmacogenomics (2020) 21(1) future science group

https://cpicpgx.org/guidelines/
https://www.knmp.nl/
http://cpnds.ubc.ca/
https://www.ema.europa.eu/en
https://www.pharmgkb.org/


Personalized pediatric anesthesia & pain management: problem-based review Review

Executive summary

Pharmacogenetics in anesthesia & analgesia
• An expanding knowledge base in pharmacogenetics has paved way for personalized medicine in the field of

anesthesia and pain medicine.
• Recent clinical research on genetic variations in opioid response has led to the characterization of a number of

drug–gene pairs, the most actionable among them being CYP2D6 polymorphism affecting responses of codeine
and tramadol.

• The Clinical Pharmacogenetics Implementation Consortium has published guidelines for opioid therapy including
avoiding codeine and tramadol, and possibly avoiding hydrocodone and oxycodone for optimal efficacy and
safety in those with poor metabolizer and ultrarapid metabolizer CYP2D6 phenotypes respectfully.

• OPRM1 polymorphism affecting opioid analgesia and adverse effects have also been well studied and is being
actionable.

• Pseudocholinesterase deficiency causing prolonged apnea after succinylcholine is a rare, but well-recognized
pharmacogenetic disorder. High-risk populations with greater prevalence of pseudocholinesterase deficiency
have been identified.

• Malignant hyperthermia (MH) is a rare, fatal, genetically mediated reaction to inhaled anesthetics and
succinylcholine. MH susceptibility variants have been identified in genes like RYR1, CACNA1S, STAC3 that are
involved in skeletal muscle calcium metabolism. As the penetrance with the known variants are low and there
may be a number of other uncharacterized variants, currently skeletal muscle biopsy and caffeine-halothane
contracture test is still the gold standard to identify MH susceptible individuals.

• Genetic variants causing increased risk for postoperative nausea and vomiting have been identified. CYP2D6
ultrarapid metabolizers have been shown to respond poorly to ondansetron therapy.

• CYP2C9 polymorphism has been shown to influence nonsteroidal anti-inflammatory drug metabolism, certain
variants have been shown to increase the risk of nonsteroidal anti-inflammatory drug-related adverse events.

• Genetic variants influencing response to sedative, hypnotics and local anesthetics have been documented. But
the evidence is inconclusive.

Future directions
• Future direction includes large multicenter studies with robust methodology, using mult-igene signature,

genome wide association approaches, inclusion of proteomic, transcriptomic, metabolomic information and
randomized trials to analyze the cost–effectiveness, identify and address road blocks for clinical implementation.

• Machine learning and clinical decision support tools integrated with electronic health records are essential for
analysis of complex genetic data and personalizing drug therapy to have a broader impact.
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