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Disordered binding regions (DBRs), which are embedded within intrinsically disordered proteins or 
regions (IDPs or IDRs), enable IDPs or IDRs to mediate multiple protein-protein interactions. DBR-
protein complexes were collected from the Protein Data Bank for which two or more DBRs having 
different amino acid sequences bind to the same (100% sequence identical) globular protein partner, a 
type of interaction herein called many-to-one binding. Two distinct binding profiles were identified:
independent and overlapping. For the overlapping binding profiles, the distinct DBRs interact by means 
of almost identical binding sites (herein called “similar”), or the binding sites contain both common and 
divergent interaction residues (herein called “intersecting”).  Further analysis of the sequence and 
structural differences among these three groups indicate how IDP flexibility allows different segments 
to adjust to similar, intersecting, and independent binding pockets.   

Keywords: Molecular recognition feature; linear motif; disordered binding fragment; binding site.  

1.  Introduction 

High throughput methods have enabled determinations of the protein interactome [1]. While most 
proteins bind to just one or a very few partners, some proteins, called hubs, bind to many partners. 
The deletion of the hubs is typically more deleterious than the deletion of non-hubs [2]. 
Additionally, hubs are inferred to have features that facilitate both their connections to multiple 
nodes and also their ability to establish new connections [3]. In [4], the following question was 
raised: what is the special feature that enables protein hubs to bind to multiple partners and to 
readily bind to new partners?  This special feature was proposed to be intrinsically disordered 
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protein regions (IDRs) [5,6]. This proposal was based on prior work showing that IDRs enable 
binding to multiple partners [7,8]. Subsequently, both hub proteins and their binding partners were 
observed to be enriched in disorder [9–10]. These concepts have been supported by many 
additional studies [11–17].  
     Two IDR-based mechanisms have been suggested for enabling hub proteins to interact with 
multiple partners: (1) one disordered binding region (DBR) associates with many structured 
partners (one-to-many binding); and (2) many different DBRs associate with one structured 
partner (many-to-one binding) [5].  
     The one-to-many and many-to-one mechanisms are particularly well illustrated by two 
proteins, p53 and 14-3-3, respectively [6].  The p53 molecule uses its IDRs to interact with more 
than 100 partners, each DBR of p53 has one-to-many interactions with multiple partners by 
adopting different conformations [6,18,19].  The structured 14-3-3 has many-to-one interactions 
with more than 200 different IDRs, which bind to a common area on 14-3-3’s surface, but with 
many of these IDRs lacking a common motif. These observations and further experiments showed 
the importance of IDRs for the binding of these multiple partners to 14-3-3 [20, 21].    
     Many additional examples of both one-to-many and many-to-one interactions have been 
assembled through data mining the Protein Data Bank (PDB) [22];  twenty-three of these one-to-
many binding complexes were found to show similar results as observed for p53, namely that 
MoRFs binding to similarly-folded, low sequence identity proteins tended to fold the same way 
upon binding, that MoRFs binding to differently folded proteins tended to fold differently upon 
binding, and that post-translational modifications were frequently associated with DBRs found to 
fold differently upon binding to different proteins [22].  
     Our focus here is on identifying and characterizing additional many-to-one complexes. In 
addition to 14-3-3, many other protein-protein interactions are also mediated by the same many-to-
one binding mechanism. Well known examples include DBRs that interact with SH3, SH2, PDZ 
and WW domains [56–58]. However, the true extent and diversity of DBR-mediated interactions 
is mostly unknown. The main goal here is to enlarge the number of many-to-one examples. 
     We examined the binding profiles of the many-to-one sets and performed structural analyses on 
the DBRs. Two general binding profiles were found: (1) independent, where two or more DBRs 
bind to completely independent sites; and (2) overlapping, where two or more DBRs bind to 
overlapping sites.  For various pairs of DBRs, binding site overlap was observed to range from 
highly similar to minimally intersecting.  
     Two new measures, one focusing on the DBR and one focusing on the partner, have been 
developed to provide quantitative estimates of the degree of similarity for two non-identical DBRs 
binding to the same partner.  The first measure is the amount of spatial superposition of the two 
non-identical DBRs when bound to their common partner, which is expressed as a volume overlap 
ratio (VOR). The second measure is the degree to which the two non-identical DBRs cover the 
same surface area upon binding to their common partner, which is expressed as the root-mean-
square change in accessible surface area (RMS�ASA) of the partner upon binding by one MoRF 
as compared to the other.  For a group of MoRF pairs, as two non-identical DBRs become more 
similar in their binding to their common partner, the VOR value tends towards 1 while the 
RMS�ASA value tends towards 0.  
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     The detailed findings and results regarding the many-to-one binding diversity in protein 
disorder are described in the following sections, thus leading to a better understanding of MoRF-
domain network biology and regulatory mechanisms based on IDRs.  The large ranges observed 
for both the VOR and the RMS�ASA values indicate that non-identical MoRF pairs can bind to 
common partners using quite dissimilar sets of local interactions.  These results have important 
implications for the characteristics of protein-protein interaction networks and for their evolution 
from prior networks.

2.  Results

2.1.  Many-to-one binding datasets 

The procedure to collect our many-to-one binding dataset involves identifying DBRs bound to 
globular partners from PDB.  The criteria for identifying DBRs are similar to those used in 
previous work [22,23] and essentially involve searching PDB for short peptides, 5 to 25 residues 
long, found in association with globular protein partners.  These peptides are expected to be 
mostly DBRs because, with very rare exceptions, such peptides are too short to form 
independently folded globular domains.  Indeed, our previous work revealed that DBR peptides 
are found for essentially all of the examples identified by this approach [22].   
     The steps used to create a many-to-one binding dataset, called Dataset_384 are shown in Table 
1. The rationale for each step is given in the footnotes to Table 1.  
Table 1. Dataset Construction 

Dataset_384 DBRs/Part. Clusters Average DBRs
per cluster

Initial DBR dataset (5-25) a 8084
DBR dataset with biological interaction (>400Å2) b 7064
Partner dataset with sequence length (>40) c 6835
Partner dataset mapped to UniProt sequence database 4612
Partner dataset with overlapped region in mapping d 4368 514 8.5
Partner dataset without 100% sequence identity in DBRs 2081 384 5.4
aDBRs with 5 to 25 residues are the focus of this study  
b400 Å2 cutoff was set to filter out the spurious interactions caused by crystal contacts 
cBinding partners of DBRs are supposed to be globular proteins having more than 40 residues to fold into a certain 
conformation.  
dPartners having one or more overlapping residues with each other. 

A cluster is defined as one protein with two or more PDB structures showing the given protein 
in association with two or more DBRs.  The DBRs in these structures might or might not have 
identical sequences. As shown in Table 1, initially 514 clusters were found.  When the 
requirement was added that only clusters with non-identical DBRs are counted, the number of 
clusters dropped to 384.  Finally as shown in Table 1, the 384 clusters contained an overall 
average of 5.4 DBRs/cluster.     
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protein regions (IDRs) [5,6]. This proposal was based on prior work showing that IDRs enable 
binding to multiple partners [7,8]. Subsequently, both hub proteins and their binding partners were 
observed to be enriched in disorder [9–10]. These concepts have been supported by many 
additional studies [11–17].  
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than 100 partners, each DBR of p53 has one-to-many interactions with multiple partners by 
adopting different conformations [6,18,19].  The structured 14-3-3 has many-to-one interactions 
with more than 200 different IDRs, which bind to a common area on 14-3-3’s surface, but with 
many of these IDRs lacking a common motif. These observations and further experiments showed 
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     Many additional examples of both one-to-many and many-to-one interactions have been 
assembled through data mining the Protein Data Bank (PDB) [22];  twenty-three of these one-to-
many binding complexes were found to show similar results as observed for p53, namely that 
MoRFs binding to similarly-folded, low sequence identity proteins tended to fold the same way 
upon binding, that MoRFs binding to differently folded proteins tended to fold differently upon 
binding, and that post-translational modifications were frequently associated with DBRs found to 
fold differently upon binding to different proteins [22].  
     Our focus here is on identifying and characterizing additional many-to-one complexes. In 
addition to 14-3-3, many other protein-protein interactions are also mediated by the same many-to-
one binding mechanism. Well known examples include DBRs that interact with SH3, SH2, PDZ 
and WW domains [56–58]. However, the true extent and diversity of DBR-mediated interactions 
is mostly unknown. The main goal here is to enlarge the number of many-to-one examples. 
     We examined the binding profiles of the many-to-one sets and performed structural analyses on 
the DBRs. Two general binding profiles were found: (1) independent, where two or more DBRs 
bind to completely independent sites; and (2) overlapping, where two or more DBRs bind to 
overlapping sites.  For various pairs of DBRs, binding site overlap was observed to range from 
highly similar to minimally intersecting.  
     Two new measures, one focusing on the DBR and one focusing on the partner, have been 
developed to provide quantitative estimates of the degree of similarity for two non-identical DBRs 
binding to the same partner.  The first measure is the amount of spatial superposition of the two 
non-identical DBRs when bound to their common partner, which is expressed as a volume overlap 
ratio (VOR). The second measure is the degree to which the two non-identical DBRs cover the 
same surface area upon binding to their common partner, which is expressed as the root-mean-
square change in accessible surface area (RMS�ASA) of the partner upon binding by one MoRF 
as compared to the other.  For a group of MoRF pairs, as two non-identical DBRs become more 
similar in their binding to their common partner, the VOR value tends towards 1 while the 
RMS�ASA value tends towards 0.  
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2.2.  Many-to-one binding profiles: independent and overlapping  

Visual inspection of Dataset_384 revealed two main binding profiles that describe many-to-one 
interactions. MoRF binding sites are located on separated parts of the partner surface 
(independent) or both common and distinct parts of the partner surface (overlapping).  
Independent binding sites are entirely separated, whereas the overlapping binding sites can range 
from very little overlap (intersecting) to almost complete overlap (similar).   
     Independent binding sites on the same partner often arise by having two or more different 
DBRs from the same polypeptide chain.  Examples of this phenomenon include UPF2 that uses 
two DBRs to bind to two independent locations on UPF1 [27], Ste5 that uses two DBRs to bind to 
two independent locations on Fus3 [28], and phosphatase inhibitor 2 that uses two DBRs and one 
highly extended, mostly helical disordered domain [26] to bind to three different locations on 
phosphatase 1 [29].   
 Here the focus is on many-to-one binding for which the two different DBRs exhibit at least 
one residue of overlap. Two methods were developed for quantifying the extent of interface 
overlap (see Methods): the VOR and the RMS�ASA.  Briefly, the VOR value quantifies the 
extent to which two DBRs occupy the same space when bound to the same partner, where a value 
of 1 indicates that the smaller MoRF is completely contained in the larger, and where a value of 0 
indicates that the two DBRs are completely separated when bound.  The RMS�ASA value 
quantifies the extent to which the two DBRs bury the same surface area when bound to the same 
partner, where a value of 0 indicates that the two DBRs bind to exactly the same location on the 
partner. 
     For simplicity, we determined the VOR of DBRs pair-by-pair.  Neglecting the independent 
binding pairs, the pairwise VOR distribution follows a normal-like distribution (Figure 1).  

Fig. 1. Histograms of VORs calculated for each pair of DBRs in each many-to-one cluster of Dataset_160.  Results 
from three different VOR calculations are based on different sets of atoms: all atoms (blue), backbone atoms + Cβ

(green), or backbone atoms only (red). Independent binding pairs are not included here. 

     The VORs were calculated in three different ways using various set of atoms, including all 
atoms, backbone + Cβ or only backbone. Two-sample Kolmogorov-Smirnov tests [66] were 
performed to examine whether the VORs calculated by different approaches have the same 
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distribution at 5% significance level. The results show that the VOR calculations for which all 
atoms are included exhibit significant differences from the calculations for which backbone only 
or backbone + Cβ are included, with p-values of 1.42x10-68, and 6.23x10-72, respectively. Similar 
distributions are found for VOR calculations carried over only backbone atoms, with and without 
Cβ atoms, with a p-value of 0.070. These results suggest that side chain identity and/or 
conformational differences have a critical effect on the VOR calculations. Since the volume of the 
side chains can account for a large portion of the volume of a protein this is to be expected. 

2.3  Comparing VOR (with backbone only) and RMSΔASA Values 

Comparison of the VOR and RMSΔASA with each other (Figure 2A, next page) shows a negative 
correlation, indicating as expected, highly overlapping DBRs tend to bind to the same residues on 
the partner, and less overlapping DBRs tend to bind to different residues on the partner. The 
Pearson correlation coefficient between the RMSΔASA and the VOR is -0.66 indicating a 
significant trend. 
   The excessive data scatter was explored by examining several representative examples of ribbon 
structures of pairs of DBRs bound in each case to the same partner (Figure 2A). In general we 
found two competing effects: the amount of close overlap between the MoRF pairs and the region 
of the structural partner they cover. Generally speaking if the MoRF pair’s VOR is high then they 
cover similar regions on the structural partner’s surface and have small RMSΔASA. However, 
since the VOR measures the overlap of the smaller MORF within the larger one, in some cases 
one MoRF has additional residues that interact with a distinct part of the structural partner’s 
surface. This region may cause relatively high RMSΔASA values even for pairs with a high VOR. 
Similarly, low VOR and relatively low RMSΔASA can be observed for overlapping DBRs with 
the same binding site but different sequences, which results in non-overlapping backbone 
volumes.  
     To further understand the relationship between the VOR and the RMSΔASA we examined the 
special case of myelin basic protein (MBP) bound to HLA-DR2A (PDB ID 1ZGL) The DBR of 
MBP is in 93 pairs in a single DBR cluster (cluster ID 57).  MBP has three chains with different 
residues with defined density, which makes each unique in our dataset, in the asymmetric unit of 
this structure, chains C, F, and I, each with 33, 31, and 29 pairs, respectively. Due to the slightly 
different sequences and the large number of HLA-DR2A partners, MBP/HLA-DR2A has the most 
pairs of any protein in our database.  
     The data pertaining to MBP/HLA-DR2A pairs shows several trends (Figure 2B). The first is 
that three groups of points appear in the plot, we label these A, B, and C as shown. The three 
groups contain points from different chains; hence they are not simply due to the three separate 
chains appearing in our database. Rather, the three clusters represent different scenarios of 
interaction pair similarity. In general, group C is composed of comparisons between the different 
MoRF chains of MBP in 1ZGL. The difference between groups A and B however is less trivial.  
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from three different VOR calculations are based on different sets of atoms: all atoms (blue), backbone atoms + Cβ

(green), or backbone atoms only (red). Independent binding pairs are not included here. 

     The VORs were calculated in three different ways using various set of atoms, including all 
atoms, backbone + Cβ or only backbone. Two-sample Kolmogorov-Smirnov tests [66] were 
performed to examine whether the VORs calculated by different approaches have the same 
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distribution at 5% significance level. The results show that the VOR calculations for which all 
atoms are included exhibit significant differences from the calculations for which backbone only 
or backbone + Cβ are included, with p-values of 1.42x10-68, and 6.23x10-72, respectively. Similar 
distributions are found for VOR calculations carried over only backbone atoms, with and without 
Cβ atoms, with a p-value of 0.070. These results suggest that side chain identity and/or 
conformational differences have a critical effect on the VOR calculations. Since the volume of the 
side chains can account for a large portion of the volume of a protein this is to be expected. 

2.3  Comparing VOR (with backbone only) and RMSΔASA Values 

Comparison of the VOR and RMSΔASA with each other (Figure 2A, next page) shows a negative 
correlation, indicating as expected, highly overlapping DBRs tend to bind to the same residues on 
the partner, and less overlapping DBRs tend to bind to different residues on the partner. The 
Pearson correlation coefficient between the RMSΔASA and the VOR is -0.66 indicating a 
significant trend. 
   The excessive data scatter was explored by examining several representative examples of ribbon 
structures of pairs of DBRs bound in each case to the same partner (Figure 2A). In general we 
found two competing effects: the amount of close overlap between the MoRF pairs and the region 
of the structural partner they cover. Generally speaking if the MoRF pair’s VOR is high then they 
cover similar regions on the structural partner’s surface and have small RMSΔASA. However, 
since the VOR measures the overlap of the smaller MORF within the larger one, in some cases 
one MoRF has additional residues that interact with a distinct part of the structural partner’s 
surface. This region may cause relatively high RMSΔASA values even for pairs with a high VOR. 
Similarly, low VOR and relatively low RMSΔASA can be observed for overlapping DBRs with 
the same binding site but different sequences, which results in non-overlapping backbone 
volumes.  
     To further understand the relationship between the VOR and the RMSΔASA we examined the 
special case of myelin basic protein (MBP) bound to HLA-DR2A (PDB ID 1ZGL) The DBR of 
MBP is in 93 pairs in a single DBR cluster (cluster ID 57).  MBP has three chains with different 
residues with defined density, which makes each unique in our dataset, in the asymmetric unit of 
this structure, chains C, F, and I, each with 33, 31, and 29 pairs, respectively. Due to the slightly 
different sequences and the large number of HLA-DR2A partners, MBP/HLA-DR2A has the most 
pairs of any protein in our database.  
     The data pertaining to MBP/HLA-DR2A pairs shows several trends (Figure 2B). The first is 
that three groups of points appear in the plot, we label these A, B, and C as shown. The three 
groups contain points from different chains; hence they are not simply due to the three separate 
chains appearing in our database. Rather, the three clusters represent different scenarios of 
interaction pair similarity. In general, group C is composed of comparisons between the different 
MoRF chains of MBP in 1ZGL. The difference between groups A and B however is less trivial.  
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2B

Fig. 2. Comparison of partner interface surface differences with MoRF chain overlap. (A) Plot of RMSΔASA versus 
backbone VOR for Dataset_160, with representative cartoons showing partners (green ribbons) and MoRF pairs (red 
and blue sticks) for various points in the plot. Arrows and black circles indicate the locations of these structure pairs in 
the plot. (B) Plot of RMSΔASA versus backbone VOR for an example cluster, the HLA-DR2A cluster (cluster ID 57).  
Representative cartoons showing partners (green ribbons) and MoRF pairs (sticks with other colors) for each labeled 
group of pairs (groups A, B, and C) show the main differences between the three groups. Actual points on plot where 
representative cartoons were made are marked with a black circle. 

Group A is composed of MoRF pairs that differ in both volume overlap and area of 
interaction. Group B is composed of MoRF pairs whose backbones overlap for only about half 
their volume, however, they still interact with the same area of their HLA-DR2A.  The reason that 
group A differs in area of interaction is exemplified by an example pair structure (Figure 2B, right 
most structure). In this structure, one MoRF partner has extra tail residues (Figure 2B, yellow 
structure). 

While this additional tail does not affect the value of the VOR, it does significantly increase 
the ASA difference, since for one partner in the pair there is no buried surface area in that region 
at all. In this way, distinctions between the RMSΔASA and the VOR can be used to distinguish 
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group of pairs (groups A, B, and C) show the main differences between the three groups. Actual points on plot where 
representative cartoons were made are marked with a black circle. 

Group A is composed of MoRF pairs that differ in both volume overlap and area of 
interaction. Group B is composed of MoRF pairs whose backbones overlap for only about half 
their volume, however, they still interact with the same area of their HLA-DR2A.  The reason that 
group A differs in area of interaction is exemplified by an example pair structure (Figure 2B, right 
most structure). In this structure, one MoRF partner has extra tail residues (Figure 2B, yellow 
structure). 

While this additional tail does not affect the value of the VOR, it does significantly increase 
the ASA difference, since for one partner in the pair there is no buried surface area in that region 
at all. In this way, distinctions between the RMSΔASA and the VOR can be used to distinguish 
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various physical, chemical, and biological features of the DBRs. Finally, note that there is a 
baseline change in RMSΔASA that results from random variations.  An approximation for the 
baseline value for this particular case can be obtained from cluster C with a value of about 5 A2. 

2.3.  Selected many-to-one case studies 

Several representative pairs of complexes with different binding profiles in peptide-protein 
interactions and protein-protein interactions are presented here (Figure 3).  In addition, an example 
of reverse sequence binding, termed a retro-DBR is presented. 

Figure 3. Examples of similar, 
intersecting, and independent 
binding sites.  Structures are 
rendered with aligned partners 
(light blue ribbons) and each 
MoRF (different color ribbons). 
Examples of similar binding 
sites are (A) WD repeat protein 
5 (cluster ID 160) and (B) TNF 
receptor associated factor 3 
(cluster ID 136). Examples of 
intersecting binding sites are (C) 
proteinase K (cluster ID 52) and 
(D) α-bungarotoxin (cluster ID 
8).  Examples of independent 
binding sites are (E) 
chymotrypsin (cluster ID 17) 
and (F) focal adhesion kinase 1 
(cluster ID 36).  The PDB 
structures that make up each of 
these clusters are: WD repeat 
protein 5 (cluster ID 160) PDB 
IDs 2H13, 2H6Q, 2H6N, 2H6K, 
and 2O9K; TNF receptor 
associated factor 3 (cluster ID 
136) PDB IDs 1CZY, 1QSC, 
1D0A, 1D00, 1D01, 1D0J, 
1CA9, and 1CA9; proteinase K 
(cluster ID 52) PDB IDs 1BJR, 
2HPZ, 2HD4, 2DUJ, 1P7W, 
3PRK, 1PFG, 1P7V, 1PJ8, and 
2PQ2; α-bungarotoxin (cluster 
ID 8) PDB IDs 1HAA, 1HC9, 

1ABT, 1KL8, 1LJZ, 1HOY, 1RGJ, 1BXP, and 1IDG; chymotrypsin (cluster ID 17) PDB IDs 1GHA, 
1CHO, 1AB9, 1YPH, 3GCT, and 1GMD; and focal adhesion kinase 1 (cluster ID 36) PDB IDs 3B71, 
3B71, 1OW8, 1OW7, and 1OW6. 

    For the nonimmune-related subset, example clusters for all three many-to-one binding profiles –
similar, intersecting, and independent – are illustrated (Figure 3A/3B, Figure 3C/3D, and Figure 
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3E/3F, respectively).  Examples for similar binding profiles are five DBRs bound to an overlapped 
sites on WD repeat protein 5 (Figure 3A) and 11 DBRs with 42% sequence identity bound to  
highly overlapped sites on TNF receptor associated factor 3 (Figure 3B). For intersecting binding 
profiles, examples are 10 distinct DBRs with 26% sequence identity bound to intersecting sites on 
proteinase K (Figure 3C) and 10 DBRs with 56% sequence identity bound to intersecting sites on 
alpha-bungarotoxin (Figure 3D). Finally, for independent binding profiles two different patterns of 
DBRs bind to two regions of chymotrypsin independently (Figure 3E) and two patterns of DBRs 
bind to two regions of focal adhesion kinase 1 independently (Figure 3F).  

3.  Discussion 

The independent and overlapping binding profiles we observed in the many-to-one dataset 
provides a novel look at structured binding sites with binding diversity like 14-3-3.  This dataset 
demonstrates that many-to-one domains are common, rather than just curiosities.  Furthermore, the 
increase in identified clusters between dataset_160 and dataset_384 indicate that limited coverage 
of protein-peptide complexes in PDB is the primary limitation in the identification of many-to-one 
domains.  These observations suggest that many-to-one domains, in combination with one-to-
many DBRs [22], are a prevalent mechanism by which IDPs act as and enable PPI hubs.   
     Our results contribute to a better understanding of the role of DBRs that may serve as protein 
interaction hubs. Exploring the diverse binding partners of our collected MoRF sets and the 
corresponding complex conformations provide a Rosetta stone for interpretation of the underlying 
biological mechanisms and evolutional aptness. The importance and indispensability of hub 
proteins is apparent as they appear to evolve more slowly and are more likely to be vital for 
survival. Given their importance, many human disease-associated proteins related to cancer, 
diabetes, autoimmune disease, neurodegenerative disease and cardiovascular disease are found to 
have predicted DBRs as we expect. These DBRs associate with other structured partners and may 
be considered as promising druggable interactions [31]. Since IDPs have high tendency to 
participate directly in large numbers of pairwise protein-protein interactions, these promiscuous 
protein interactions are usually toxic when overexpressed; they are dosage sensitive. This is in 
contrast to a knockout or knockdown model, indicating there is something special about the excess 
participation specifically in pairwise interactions [32].  
     In terms of characterizing the nature of many-to-one binding, it is a challenge to quantitatively 
categorize overlapping binding sites into similar and intersecting subgroups.  VOR calculations 
seems most useful compared to other methods such as RMSD measure of DBRs, sequence 
similarity of DBRs and structure alignment score of the MoRF-domain complexes.  By the VOR 
measure, these results indicate that most overlapping sites occupy the majority of the same space 
on their partner, with only a few overlapping sites have very small VOR.  These data shows that 
many-to-one domains with overlapping sites tend to use the same volume at their surface for
MoRF binding.  Since competitive binding is an important mechanism of cross-talk in cellular 
signaling, this suggests that high overlap may be required for mutually exclusive MoRF binding. 
There are many more ideas to test on the many-to-one binding dataset. For example, the structures 
of MoRF pairs with different VORs will be examined for the pairwise secondary structure profiles 
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various physical, chemical, and biological features of the DBRs. Finally, note that there is a 
baseline change in RMSΔASA that results from random variations.  An approximation for the 
baseline value for this particular case can be obtained from cluster C with a value of about 5 A2. 

2.3.  Selected many-to-one case studies 

Several representative pairs of complexes with different binding profiles in peptide-protein 
interactions and protein-protein interactions are presented here (Figure 3).  In addition, an example 
of reverse sequence binding, termed a retro-DBR is presented. 

Figure 3. Examples of similar, 
intersecting, and independent 
binding sites.  Structures are 
rendered with aligned partners 
(light blue ribbons) and each 
MoRF (different color ribbons). 
Examples of similar binding 
sites are (A) WD repeat protein 
5 (cluster ID 160) and (B) TNF 
receptor associated factor 3 
(cluster ID 136). Examples of 
intersecting binding sites are (C) 
proteinase K (cluster ID 52) and 
(D) α-bungarotoxin (cluster ID 
8).  Examples of independent 
binding sites are (E) 
chymotrypsin (cluster ID 17) 
and (F) focal adhesion kinase 1 
(cluster ID 36).  The PDB 
structures that make up each of 
these clusters are: WD repeat 
protein 5 (cluster ID 160) PDB 
IDs 2H13, 2H6Q, 2H6N, 2H6K, 
and 2O9K; TNF receptor 
associated factor 3 (cluster ID 
136) PDB IDs 1CZY, 1QSC, 
1D0A, 1D00, 1D01, 1D0J, 
1CA9, and 1CA9; proteinase K 
(cluster ID 52) PDB IDs 1BJR, 
2HPZ, 2HD4, 2DUJ, 1P7W, 
3PRK, 1PFG, 1P7V, 1PJ8, and 
2PQ2; α-bungarotoxin (cluster 
ID 8) PDB IDs 1HAA, 1HC9, 

1ABT, 1KL8, 1LJZ, 1HOY, 1RGJ, 1BXP, and 1IDG; chymotrypsin (cluster ID 17) PDB IDs 1GHA, 
1CHO, 1AB9, 1YPH, 3GCT, and 1GMD; and focal adhesion kinase 1 (cluster ID 36) PDB IDs 3B71, 
3B71, 1OW8, 1OW7, and 1OW6. 

    For the nonimmune-related subset, example clusters for all three many-to-one binding profiles –
similar, intersecting, and independent – are illustrated (Figure 3A/3B, Figure 3C/3D, and Figure 
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3E/3F, respectively).  Examples for similar binding profiles are five DBRs bound to an overlapped 
sites on WD repeat protein 5 (Figure 3A) and 11 DBRs with 42% sequence identity bound to  
highly overlapped sites on TNF receptor associated factor 3 (Figure 3B). For intersecting binding 
profiles, examples are 10 distinct DBRs with 26% sequence identity bound to intersecting sites on 
proteinase K (Figure 3C) and 10 DBRs with 56% sequence identity bound to intersecting sites on 
alpha-bungarotoxin (Figure 3D). Finally, for independent binding profiles two different patterns of 
DBRs bind to two regions of chymotrypsin independently (Figure 3E) and two patterns of DBRs 
bind to two regions of focal adhesion kinase 1 independently (Figure 3F).  

3.  Discussion 

The independent and overlapping binding profiles we observed in the many-to-one dataset 
provides a novel look at structured binding sites with binding diversity like 14-3-3.  This dataset 
demonstrates that many-to-one domains are common, rather than just curiosities.  Furthermore, the 
increase in identified clusters between dataset_160 and dataset_384 indicate that limited coverage 
of protein-peptide complexes in PDB is the primary limitation in the identification of many-to-one 
domains.  These observations suggest that many-to-one domains, in combination with one-to-
many DBRs [22], are a prevalent mechanism by which IDPs act as and enable PPI hubs.   
     Our results contribute to a better understanding of the role of DBRs that may serve as protein 
interaction hubs. Exploring the diverse binding partners of our collected MoRF sets and the 
corresponding complex conformations provide a Rosetta stone for interpretation of the underlying 
biological mechanisms and evolutional aptness. The importance and indispensability of hub 
proteins is apparent as they appear to evolve more slowly and are more likely to be vital for 
survival. Given their importance, many human disease-associated proteins related to cancer, 
diabetes, autoimmune disease, neurodegenerative disease and cardiovascular disease are found to 
have predicted DBRs as we expect. These DBRs associate with other structured partners and may 
be considered as promising druggable interactions [31]. Since IDPs have high tendency to 
participate directly in large numbers of pairwise protein-protein interactions, these promiscuous 
protein interactions are usually toxic when overexpressed; they are dosage sensitive. This is in 
contrast to a knockout or knockdown model, indicating there is something special about the excess 
participation specifically in pairwise interactions [32].  
     In terms of characterizing the nature of many-to-one binding, it is a challenge to quantitatively 
categorize overlapping binding sites into similar and intersecting subgroups.  VOR calculations 
seems most useful compared to other methods such as RMSD measure of DBRs, sequence 
similarity of DBRs and structure alignment score of the MoRF-domain complexes.  By the VOR 
measure, these results indicate that most overlapping sites occupy the majority of the same space 
on their partner, with only a few overlapping sites have very small VOR.  These data shows that 
many-to-one domains with overlapping sites tend to use the same volume at their surface for
MoRF binding.  Since competitive binding is an important mechanism of cross-talk in cellular 
signaling, this suggests that high overlap may be required for mutually exclusive MoRF binding. 
There are many more ideas to test on the many-to-one binding dataset. For example, the structures 
of MoRF pairs with different VORs will be examined for the pairwise secondary structure profiles 
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within different VOR groups (e.g. similar and intersecting). As another example, we have 
observed post-translation modifications (PTMs) and alternatively spliced events (ASEs) with 
regard to the DBRs in our one-to-many set and proposed that the three major players (DBRs, 
PTMs and ASEs) contribute significantly to the highly complex protein interaction networks in 
eukaryote cells [22].  However, establishing a more systematically computational approach is 
necessary to validate our hypothesis.  Our many-to-one set is also a good resource for tracking 
possible mutation compensation in between MoRF and its partners which may lead to new 
concepts with regard to the structural basis of protein interaction networks.  

4.  Materials and Methods 

4.1.  Dataset preparation 

PDB entries released before June 19, 2012 were used to collect many-to-one binding complexes 
(Dataset_384). Dataset_160 is a subset of Dataset_384 constructed in 2008 with the same 
searching criteria. The average MoRFs per cluster in Dataset_160 and Dataset_384 are similar (5.7 
comparing to 5.4 per cluster). Protein chains with 5 to 25 visible residues in crystallographic 
electron density maps binding to other globular protein chains with minimum 40 residues are the 
disorder-order complexes we studied here. A cutoff interface size of 400 Å2 was set to exclude 
non-biological interactions due to crystal packing[33]. To cluster partner sequences, the Fasta 
program was used to align the sequence of each partner to the UniProt sequence database to 
identify the source sequence. Complexes with partners with overlapping mapped source sequences 
were clustered together. Only identical DBRs (100% sequence identity) within each cluster were 
removed to keep all possible DBRs and their interaction patterns with the same partner in the data 
set.

4.2.  MoRF sequence similarity 

Sequence identity calculations in this study are based on the structure alignments. The sequence 
identities of DBRs within many-to-one clusters were obtained from PRALINE multiple sequence 
alignment server [34]. The transposed coordinates and multiple structure alignments were 
generated by MultiProt algorithm [35] using the complex structures including both MoRF and 
partner.  

4.3.  MoRF interface similarity 

Two measures of interface similarity are used to compare the binding of two different DBRs to the 
same partner: VOR and root-mean-squared buried surface area (RMSΔASA).  Both measures 
quantify the similarity of binding sites for a pair of DBRs, MoRFi and MoRFj, from the same 
many-to-one binding cluster.  The VOR measures the extent to which two DBRs occupy the same 
space when bound to a common partner, and the RMSΔASA measures the extent to which two 
DBRs interact with the same residues of a common partner. 
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     The VOR between DBRi and DBRj was calculated by first aligning the structures of the DBR-
partner complexes then applying the formula:   

where Vi and Vj are the volume of DBRi and DBRj, respectively and Vij is the volume of  the 
union of DBRi and DBRj.  Volumes were calculated by setting a 0.1 Angstrom grid in space and 
counting the number of grid cubes that contain atomic coordinates. The union volume was 
calculated by counting grid cubes that contain coordinates from both structures. This 
normalization was selected so that the value of the VOR would be between zero and one. Note that 
by this choice the VOR measures the amount of overlap the smaller of the two DBRs has with the 
larger.  PERL source and Linux executables used to calculate the VOR are available from 
Research and Information Systems, LLC at http://www.mamiris.com.   

The RMSΔASA was calculated as the RMSD between the ΔASA profiles of the MoRF partner 
from the two MoRF-partner complexes.  The ΔASA profiles were calculated by taking the 
difference between ASA calculated for the partner without and with the MoRF.  ASAs were 
calculated with DSSP.  Given two ΔASA profiles, ΔASAi for the partner of MoRFi and ΔASAj 
for the partner of MoRFj, then 

where is the kth position of profile ΔASAx, N is the number of positions that are non-
zero in either the ΔASAi or ΔASAj profiles, and k are the indexes of the N non-zero positions. 
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within different VOR groups (e.g. similar and intersecting). As another example, we have 
observed post-translation modifications (PTMs) and alternatively spliced events (ASEs) with 
regard to the DBRs in our one-to-many set and proposed that the three major players (DBRs, 
PTMs and ASEs) contribute significantly to the highly complex protein interaction networks in 
eukaryote cells [22].  However, establishing a more systematically computational approach is 
necessary to validate our hypothesis.  Our many-to-one set is also a good resource for tracking 
possible mutation compensation in between MoRF and its partners which may lead to new 
concepts with regard to the structural basis of protein interaction networks.  

4.  Materials and Methods 

4.1.  Dataset preparation 

PDB entries released before June 19, 2012 were used to collect many-to-one binding complexes 
(Dataset_384). Dataset_160 is a subset of Dataset_384 constructed in 2008 with the same 
searching criteria. The average MoRFs per cluster in Dataset_160 and Dataset_384 are similar (5.7 
comparing to 5.4 per cluster). Protein chains with 5 to 25 visible residues in crystallographic 
electron density maps binding to other globular protein chains with minimum 40 residues are the 
disorder-order complexes we studied here. A cutoff interface size of 400 Å2 was set to exclude 
non-biological interactions due to crystal packing[33]. To cluster partner sequences, the Fasta 
program was used to align the sequence of each partner to the UniProt sequence database to 
identify the source sequence. Complexes with partners with overlapping mapped source sequences 
were clustered together. Only identical DBRs (100% sequence identity) within each cluster were 
removed to keep all possible DBRs and their interaction patterns with the same partner in the data 
set.

4.2.  MoRF sequence similarity 

Sequence identity calculations in this study are based on the structure alignments. The sequence 
identities of DBRs within many-to-one clusters were obtained from PRALINE multiple sequence 
alignment server [34]. The transposed coordinates and multiple structure alignments were 
generated by MultiProt algorithm [35] using the complex structures including both MoRF and 
partner.  

4.3.  MoRF interface similarity 

Two measures of interface similarity are used to compare the binding of two different DBRs to the 
same partner: VOR and root-mean-squared buried surface area (RMSΔASA).  Both measures 
quantify the similarity of binding sites for a pair of DBRs, MoRFi and MoRFj, from the same 
many-to-one binding cluster.  The VOR measures the extent to which two DBRs occupy the same 
space when bound to a common partner, and the RMSΔASA measures the extent to which two 
DBRs interact with the same residues of a common partner. 
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     The VOR between DBRi and DBRj was calculated by first aligning the structures of the DBR-
partner complexes then applying the formula:   

where Vi and Vj are the volume of DBRi and DBRj, respectively and Vij is the volume of  the 
union of DBRi and DBRj.  Volumes were calculated by setting a 0.1 Angstrom grid in space and 
counting the number of grid cubes that contain atomic coordinates. The union volume was 
calculated by counting grid cubes that contain coordinates from both structures. This 
normalization was selected so that the value of the VOR would be between zero and one. Note that 
by this choice the VOR measures the amount of overlap the smaller of the two DBRs has with the 
larger.  PERL source and Linux executables used to calculate the VOR are available from 
Research and Information Systems, LLC at http://www.mamiris.com.   

The RMSΔASA was calculated as the RMSD between the ΔASA profiles of the MoRF partner 
from the two MoRF-partner complexes.  The ΔASA profiles were calculated by taking the 
difference between ASA calculated for the partner without and with the MoRF.  ASAs were 
calculated with DSSP.  Given two ΔASA profiles, ΔASAi for the partner of MoRFi and ΔASAj 
for the partner of MoRFj, then 

where is the kth position of profile ΔASAx, N is the number of positions that are non-
zero in either the ΔASAi or ΔASAj profiles, and k are the indexes of the N non-zero positions. 
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Intrinsically disorder regions (IDRs) lack a stable structure, yet perform biological functions. The 
functions of IDRs include mediating interactions with other molecules, including proteins, DNA, or 
RNA and entropic functions, including domain linkers. Computational predictors provide residue-
level indications of function for disordered proteins, which contrasts with the need to functionally 
annotate the thousands of experimentally and computationally discovered IDRs. In this work, we 
investigate the feasibility of using residue-level prediction methods for region-level function 
predictions. For an initial examination of the multiple function region-level prediction problem, we 
constructed a dataset of (likely) single function IDRs in proteins that are dissimilar to the training 
datasets of the residue-level function predictors. We find that available residue-level prediction 
methods are only modestly useful in predicting multiple region-level functions. Classification is 
enhanced by simultaneous use of multiple residue-level function predictions and is further improved 
by inclusion of amino acids content extracted from the protein sequence. We conclude that 
multifunction prediction for IDRs is feasible and benefits from the results produced by current 
residue-level function predictors, however, it has to accommodate inaccuracy in functional 
annotations. 

Keywords: Intrinsically disordered proteins; Protein function; Protein-protein interactions; Protein-
DNA interactions; Protein-RNA interactions; Linker regions. 

1.  Introduction 

Intrinsically disordered regions (IDRs) in proteins lack a stable three-dimension structure under 
physiological conditions, instead existing as ensembles of conformations [1-3]. Despite this lack of 
structure, IDRs perform many and varied biological functions using mechanisms distinct from the 
mechanisms of structured proteins [4]. Further, estimates suggest that IDRs are extremely common 
in nature, with 25 to 40% of eukaryotic proteins containing IDRs [5-7]. While IDRs are common, 
only a small number are annotated with biological functions. For example, the DisProt database [8], 
which curates known IDRs and their functions, contains only 803 proteins. This lack of data is 
compounded by the difficulty of using structure-based homology techniques to transfer annotations 
to uncharacterized proteins; extremely high identity is required for IDRs homology (>80% identity) 
[9] relative to that used for structured proteins (e.g. >30% identity). This calls for computational 
methods for both locating IDRs and, just as importantly, determining their functions. 

Prediction of disorder-associated functions is still in its infancy [10]. The first disorder function 
to gain popularity as a prediction target was protein-binding functions and several predictors for this 
have been developed to date [11-18]. Other functions have been slow to follow; we are only aware 
of one method for the prediction of DNA-binding and RNA-binding and another for predicting 
linkers [19]. The need for disorder-specific function prediction has been demonstrated; they are 
complementary to the predictions for the same type of function for structured regions [13].  
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