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Abstract

Purpose—To propose a highly-accelerated, high-resolution dynamic contrast-enhanced MRI 

(DCE-MRI) technique called GRASP-Pro (Golden-angle RAdial Sparse Parallel imaging with 

imProved performance) through a joint sparsity and self-calibrating explicit subspace-constraint 

with automated selection of contrast phases.

Methods—GRASP-Pro reconstruction enforces a combination of self-calibrating explicit low-

rank subspace-constraint and temporal sparsity constraint. The temporal basis used to construct 

subspace is estimated from an intermediate reconstruction using the low-resolution portion of 

radial k-space, which eliminates the need for generating the basis using auxiliary data or a physical 

signal model. A convolutional neural network was trained to generate the contrast enhancement 

curve in the artery, from which clinically-relevant contrast phases are automatically selected for 

evaluation. The performance of GRASP-Pro was demonstrated for high spatiotemporal resolution 

DCE-MRI of the prostate and was compared against standard GRASP in terms of overall image 

quality, image sharpness, and residual streaks/noise level.

Results—Compared to GRASP, GRASP-Pro was able to reconstruct dynamic images with 

enhanced sharpness, less residual streaks/noise and finer delineation of the prostate without 

prolonging reconstruction time. The image quality improvement reaches statistical significance 

(P<0.05) in all the assessment categories. The neural network successfully generated contrast 

enhancement curves in the artery, and corresponding peak enhancement indexes correlated well 

with that from the manual selection.
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Conclusion—GRASP-Pro is a promising method for rapid and continuous DCE-MRI. It enables 

superior reconstruction performance over standard GRASP and allows reliable generation of artery 

enhancement curve to guide the selection of desired contrast phases for improving the efficiency 

of GRASP MRI workflow.
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INTRODUCTION

The combination of compressed sensing with golden-angle radial imaging has gained 

substantial interest in recent years and has facilitated many imaging applications with 

encouraging clinical performance. On the one hand, the golden-angle radial rotation scheme 

(1) enables continuous and motion-robust data acquisitions, allows flexible data sorting and 

retrospective selection of temporal resolution, and can eliminate the need for breath holding 

(2–4). On the other hand, the inherent incoherent undersampling property of radial imaging 

can be explored in sparsity-based reconstruction to achieve highly-accelerated data 

acquisitions (5). With a synergistic combination of multicoil compressed sensing and 

golden-angle radial sampling, a continuous free-breathing imaging method called GRASP 

(Golden-angle Radial Sparse Parallel) MRI was developed (6), and it has been extensively 

evaluated in a variety of oncological imaging applications in a clinical environment (7).

After the initial development of GRASP, several novel approaches have been presented in 

connection with this imaging framework for improved performance. For example, a tiny 

golden-angle rotation scheme was designed to mitigate eddy current effects caused by large 

gradient jumps in standard golden-angle imaging (8), and it has demonstrated better image 

quality in several cardiac MRI studies (9–11). A method of reconstructing golden-angle 

radial images with extra motion dimensions, called XD-GRASP (GRASP imaging with 

eXtra Dimensions) (12), has been proposed as a new way of handling respiratory motion, 

with superior imaging performance to standard motion-averaged reconstruction (13). Such 

an imaging and reconstruction strategy is not limited to the management of motion and can 

also be explored to generate new information of potential clinical value (14,15), or to 

address other unwanted effects such as contrast blurring in 3D fast spin-echo MRI (16). In a 

more recent study, GRASP has also been extended to a further optimized framework called 

RACER-GRASP (Respiratory-weighted, Aortic Contrast Enhancement-guided and coil-

unstReaking GRASP) (17) for improved dynamic contrast-enhanced MRI (DCE-MRI) of 

the liver, which enables contrast enhancement curve-guided data sorting, reduced motion 

blurring, and less residual streaking artifacts. Moreover, the self-calibrating GeneRalized 

autocalibrating partial parallel acquisition Operator Gridding (GROG), previously proposed 

as an alternative algorithm to standard gridding in non-Cartesian MRI reconstruction (18), 

has been combined with GRASP to eliminate the need of gridding and re-gridding during 

iterative reconstruction for faster reconstruction speed (19).

Despite past efforts for optimizing the GRASP framework, its reconstruction algorithm has 

largely remained the same since its initial development. In most situations, a first-order finite 
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differences operation is employed along the dynamic dimension as a temporal total variation 

(TV) constraint. As a result, the reconstruction quality of GRASP can be relatively poor at 

high acceleration rates. This is one of the main reasons why clinical GRASP images are 

currently reconstructed with a relatively low temporal resolution (e.g., 15–20 seconds/image 

volume) for qualitative multiphase evaluation only (7). Meanwhile, at high temporal 

resolutions, a reconstructed GRASP image-series can contain a large number of dynamic 

frames, making it difficult for radiologists to choose their desired contrast phases for clinical 

diagnosis. Therefore, additional developments are needed to further improve the acceleration 

capabilities and the overall pipeline of GRASP, which can provide better image quality at 

high acceleration rates with higher resolution and can optimize the usefulness of GRASP in 

clinical environment.

Inspired by many accelerated dynamic MRI studies with low-rank subspace modeling 

(16,20–34), the first contribution of this work was to optimize the GRASP framework with 

improved reconstruction performance through an additional explicit subspace constraint that 

is tailored to take advantage of the unique sampling geometry of radial imaging. 

Specifically, we aim to extend the previous subspace-constrained methods to incorporate a 

new self-calibrating subspace-constraint component and to combine this reconstruction 

framework with radial sampling. The temporal basis used to generate a subspace for 

enforcing an explicit low-rank constraint is directly estimated from undersampled radial data 

without using a physical signal model or acquiring additional training data. The second 

contribution of this work was to apply a convolutional neural network that is trained to guide 

the selection of clinically-relevant contrast phases based on an automatically generated 

contrast enhancement curve in the artery. In the following sections, existing subspace-

constrained reconstruction methods are briefly summarized first, followed by the description 

of our proposed new method, called GRASP-Pro (GRASP MRI with imProved 

performance). The new method was then applied for high resolution DCE-MRI of the 

prostate and was compared to standard GRASP.

METHODS

Subspace-Constrained Dynamic Image Reconstruction: A Brief Summary of Existing 
Works

The low-rank model has been extensively studies in MRI reconstruction to exploit the strong 

spatiotemporal correlations in dynamic imaging for accelerated data acquisitions (35). 

Generally, there are different ways of exploiting the low-rank structure, for example, through 

an implicit low-rank constraint or an explicit low-rank constraint. An easy way to enforce 

implicit low-rank constraint is to use a nuclear norm that leads to a convex optimization 

problem (36). Other more advanced methods, such as the k-t SLR technique (37,38), can 

enforce an implicit low-rank constraint with a Schatten-norm (in a non-convex form) for 

better reconstruction performance, and the reconstruction enables joint recovery of low-rank 

model basis and model coefficients. Despite its increased flexibility and robustness in basis 

estimation, it has been shown that k-t SLR suffers from heavy computation burden and 

memory requirements (25), which poses challenges in clinical translation. An alternative 

way of exploiting the low-rank model is to enforce an explicit low-rank constraint in a so-

Feng et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



called subspace, based on the fact that a dynamic image series can be represented in a lower 

dimensional subspace if the corresponding temporal basis is pre-known. Compared to 

reconstruction enforcing an implicit low-rank constraint without generating subspace, 

explicit subspace modeling leads to reduced degrees of freedom and thus improved 

reconstruction performance, as well as greatly increased reconstruction speed (25,35). For 

example, a prior study showed that enforcing an explicit low-rank constraint can be more 

effective and more efficient compared to k-t SLR (25). This type of methods, referred to as 

explicit subspace-constraint, or explicit subspace-modeling, will be the primary focus for the 

subsequent discussion.

Based on the way of estimating the temporal basis, existing reconstruction techniques 

enforcing an explicit subspace low-rank constraint can roughly be divided into two 

categories, either model-driven subspace estimation or data-driven subspace estimation. For 

the model-driven approach, the temporal basis is typically estimated using a physical signal 

model. For example, a T1 or T2 relaxation model with additional B1 and/or B0 

considerations can be used to generate an ensemble of possible signal curves covering a 

range of to-be-estimated parameters, from which a temporal basis can be generated using 

principal component analysis (PCA) or singular value decomposition (SVD). Several novel 

approaches belonging to this category have shown great promise in accelerated MR 

parameter mapping or MR fingerprinting (21,24,31,33) and contrast-resolved 3D FSE 

imaging (16). However, in certain dynamic imaging applications, such as cine imaging or 

DCE-MRI, a signal model may not be available, or it is not sufficient to accurately represent 

the temporal signal evolution. In this case, estimating the temporal basis from auxiliary 

training data that are acquired separately or within the low-resolution k-space region 

(referred to as the data-driven approach) can be more reliable. This type of methods has been 

demonstrated for cardiac MRI (25,26,32,39), MR spectroscopic imaging (MRSI) (27,30), 

speech imaging (29), MR parameter mapping (23,28) and DCE-MRI (22,34,39). 

Nevertheless, despite improved robustness in capturing underlying dynamics, these methods 

usually require acquisition of additional auxiliary data, or modification of sampling 

trajectories to incorporate a fully-sampled low-resolution region for estimating the basis, 

thus limiting achievable acceleration rates.

GRASP-Pro: Self-Calibrating Subspace-Constrained Reconstruction for Dynamic Radial 
MRI

Radial sampling offers a unique sampling geometry where the undersampling rate is much 

lower around the central k-space region, as shown in Figure 1a. Therefore, even at high 

acceleration rates, a low spatial resolution dynamic image-series can still be reliably 

reconstructed with conventional sparse reconstruction, such as standard GRASP. This 

reconstructed image-series, despite reduced spatial resolution, can still provide sufficient 

temporal information for estimating a temporal basis to represent the full-resolution image-

series in a low-dimensional subspace (25). Figure 1b shows a representative fully sampled 

radial prostate image with corresponding down-sampled images at different spatial 

resolution/matrix size. Here, the full-resolution matrix size is denoted as NxN and the low-

resolution matrix size is denoted as LxL. In this specific example representing our target 

application in this study, N=448 and L=128, 96, and 32. It can be observed that the general 
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image content can still be recognized down to a matrix size of 96×96. Figure 2a shows the 

gridding and GRASP reconstruction at a resolution of 96×96 with only 10 consecutive 

spokes in each dynamic frame (L=96). In this example, the number of dynamic frames, 

denoted as T, is 175. The low-resolution GRASP reconstruction using GROG (19) can be 

performed by solving:

mL = arg min
mL

1
2‖EmL − WLyL‖2

2 + λ SmL 1 [1]

Equation 1 aims to reconstruct a low-resolution dynamic image-series mL ∈ CT × L^2
 (e.g., 

L=96, T=175) in which each row represents a concatenated dynamic image frame and each 

column represents the time dimension for a given pixel. yL is the sorted low-resolution 

dynamic k-space shifted to a Cartesian grid using GROG, WL is corresponding GROG 

weighting function for compensating varying sampling density (19). E = WLFC is the 

encoding operator incorporating coil sensitivities (C) calculated at this resolution, Fourier 

transform (F) and the GROG weighting function (WL). S represents the sparsifying 

transform and is selected as first-order finite differences along the dynamic dimension to 

minimize temporal TV in the image space with a regularization parameter λ. Low-resolution 

GRASP reconstruction successfully removed streaking artifacts with good temporal fidelity, 

as shown in Figure 2b comparing the normalized signal-time curves in the femoral artery 

(yellow arrow in the image) between GRASP and gridding reconstructions, Here, the signal-

time curve from the gridding images is used as a reference to assess temporal fidelity, as 

recommended in the original GRASP study (6).

After the intermediate reconstruction step, an orthonormal basis can then be generated from 

the reconstructed low-resolution dynamic image-series using PCA:

mL = UVL [2]

where U ∈ CT × T is the basis and VL ∈ CT × L^2
 represents the associated coefficients to 

represent the low-resolution image-series under U. Corresponding singular values, shown in 

Figure 2c, indicate that the image-series has a low rank and can be represented by only the 

first K dominant basis components (e.g., 5 in the example according to the decaying pattern 

of singular values, referred to as principal components, or PCs) without losing important 

information (16,20), such that:

UVL ≈ UKVLK [3]

where UK ∈ CT × K, VLK ∈ CK × L^2
, and K << T. This preliminary investigation indicates 

that for radial imaging, a temporal basis can be obtained from the low-resolution k-space 
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following a standard GRASP reconstruction for subsequent subspace modeling, thus 

eliminating the need for a physical signal model or additional training data. This observation 

is further demonstrated in supporting Figure S1 (Supporting Information), where using a 

basis estimated from low-resolution GRASP images, an undersampled full-resolution image-

series (a) can be compressed to a low-dimensional sparse subspace with only 4–5 PCs 

significant components (b).

Following the basis estimation, GRASP-Pro reconstruction can be performed by solving:

VK = arg min
VK

1
2‖E(UKVK) − Wy‖2

2 + λ S(UKVK) 1 [4]

where y is the sorted full-resolution dynamic k-space shifted to a Cartesian grid using 

GROG and UK is the pre-estimated basis with K PCs. Equation 4 aims to solve 

VK ∈ CK × N^2
, the coefficients in subspace to represent the full-resolution image-series 

under UK. Once VK is reconstructed, the to-be-reconstructed fully-resolution dynamic 

images m ∈ CT × N2
 can be computed as UKVK. Comparing Equation 4 with Equation 1, it 

can be seen that GRASP-Pro extends the standard GRASP reconstruction through an 

additional explicit self-calibrating subspace-constraint to exploit joint low-rank and temporal 

sparse structures, where the temporal basis is estimated from an intermediate GRASP 

reconstruction. A flowchart of the GRASP-Pro reconstruction is summarized in Figure 3.

Pre-Optimization of Reconstruction Protocol

It has been observed in Figure 1 that a matrix size of 96×96 can be a good option to perform 

the intermediate reconstruction for generating the basis. However, another two questions 

needed to be answered prior to implementing the GRASP-Pro reconstruction included: 1) 

what is a good number of K in Equation 4, and 2) can we estimate a temporal basis from 

low-resolution gridding images without running GRASP? This section addresses these 

questions by investigating the modeling error and compression power using compressed 

images generated from different pre-estimated basis on a sample undersampled radial DCE 

dataset (matrix size=448×448, voxel size=1.07×1.07mm2, 175 frames, 10 connective spokes 

each frame). Here, compressed images are defined as full-resolution images generated from 

subspace by keeping only the first K dominant PCs. As an example, shown in supporting 

Figure S1 (Supporting Information), a dataset has a matrix size of 448×448×175 (a), and if 

only the first 5 dominant PCs are kept in the temporal basis, the original images can be 

transferred to a low-dimensional subspace with a size of 448×448×5 (b). The “compressed 

images” (448×448×175) is then generated from this reduced subspace using the same 5 PCs 

(c).

The Size of Subspace—In the first step, we investigated the influence of K on 

corresponding compressed images in three datasets. The normalized signal-time profile of 

the right femoral artery (yellow arrow in Figure 4) was used for validating temporal fidelity, 

because contrast enhancement in the artery has a sharp signal uptake that can be used to test 
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a reconstruction task. The gridding images, despite streaking artifacts, still represented the 

true underlying temporal evolution and was thus used as a comparison reference (6). The 

temporal basis was estimated from a low-resolution GRASP reconstruction with a matrix 

size of 96×96. As seen in Figure 4 for one example, a small number of PCs (e.g., 2 PCs) 

presented clean image appearances but failed to produce an accurate temporal profile, while 

too many PCs (e.g., 16 PCs) led to residual streaking artifacts as seen from the temporal 

profile. 5 PCs was found to provide a good performance between the compression power 

and the modeling error, and this finding correlated well with the observation of the singular 

value decay in Figure 2c. It was further confirmed that 5 PCs were able to represent the low-

resolution GRASP images with a root mean square error (RMSE) lower than 0.2% in the 

three testing datasets.

Is the Intermediate GRASP Reconstruction Necessary?—In the second step, we 

examined the influence of temporal basis estimated from both GRASP reconstruction and 

gridding reconstruction with a matrix size of 96×96, referred to as Sub 96-GRASP and Sub 

96-Gridding, respectively. The dominant 5 PCs were kept in the temporal basis for 

generating compressed images for both reconstructions. Compared with Sub 96-GRASP, 

Sub 96-Gridding failed to maintain temporal fidelity and showed noted streaking artifacts in 

the compressed images, as shown in Figure 5. Moreover, we further evaluated compressed 

images using a basis estimated from a low-resolution gridding reconstruction with a matrix 

size of 6×6, referred to as Sub 6-Gridding. Here, 10 spokes satisfy the Nyquist sampling rate 

(40) and thus are considered as fully sampling for a 6×6 image. Sub 6-Gridding showed 

even worse performance, potentially due to substantial loss of image information at such a 

low spatial resolution. These preliminary results validated that the intermediate low-

resolution GRASP reconstruction is an essential step for generating accurate temporal basis 

in the proposed GRASP-Pro reconstruction.

Datasets

This study was approved by IRB and was HIPAA-compliant. MR raw data from twenty-two 

male patients were retrospectively collected, and written informed consent was waived per 

IRB approval. Each dataset was acquired on a clinical 3T MR scanner (MAGNETOM 

Prisma, Siemens Healthineers, Germany) in transverse orientation using a prototype fat-

saturated 3D stack-of-stars golden-angle radial imaging sequence. Imaging parameters 

included: TR/TE = 4.12/1.96 ms, matrix size = 224×224×(21–26), in-plane field of view 

(FOV) = 240×240 mm2, voxel size = 1.07×1.07×3.0 mm3, flip angle = 12°. 1755 spokes 

were acquired for each partition, and the average scan time was 197.45 ± 12.51 seconds. A 

full-dose of contrast agent (Gadavist, Bayer Healthcare) was injected at a rate of 2 ml/sec.

Image Reconstruction

For each dataset, k-space were first compressed to 8 virtual channels (41) and GROG was 

then performed to shift the radial data onto a Cartesian grid for subsequent iterative 

reconstruction (19). Coil sensitivity maps were estimated from a static 3D image volume 

reconstructed using all the acquired spokes using the adaptive combination approach (42). 

Both standard GRASP and GRASP-Pro reconstructions were performed after grouping 10 

consecutive spokes into one dynamic frame, resulting in a temporal resolution of ~1–1.2 
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seconds/volume. Following the previously optimized protocol, the temporal basis used in 

GRASP-Pro was estimated from an intermediate low-resolution (96×96) GRASP 

reconstruction and the first 5 PCs were used to construct the subspace. The regularization 

parameter was empirically selected by a body radiologist (H.C.) with 11 years post-

fellowship clinical experience. Specifically, the radiologist compared reconstructed images 

series with a range of regularization weights in three datasets, and the value that achieved the 

best visual balance between the image quality and temporal fidelity was selected as the 

regularization parameter. Here, the temporal fidelity was assessed in a region of interest 

(ROI) placed on the femoral artery and was assessed using gridding images as a reference, 

as described in (6). The parameter was selected separately for GRASP and GRASP-Pro and 

was fixed for all the datasets. All the reconstructions were implemented in MATLAB 

(Mathworks, MA) in a server equipped with 512 GB RAM and one 24-GB NVIDIA GPU 

card using a non-linear conjugate gradient algorithm, and the number of iterations (a total of 

24 iterations, including 3 out loops and 8 inner iterations each) was set the same for GRASP 

and GRASP-Pro. To speed up the computational process, the iterative reconstruction was 

performed in GPU using the MATLAB function “gpuArray” and the reconstruction was 

performed slice by slice.

Learning-Based Contrast Phase Selection

Deep learning was used to provide automatic detection of artery regions in the reconstructed 

images, from which an artery contrast enhancement curve can be obtained to guide the 

selection of desired contrast phases for clinical use. Specifically, a convolutional encoder-

decoder (CED) network (43) (supporting Figure S2, Supporting Information), previously 

shown for accurate and efficient multi-tissue segmentation (43–45), was trained to segment 

the femoral arteries in the prostate images. The images and segmentation masks used for 

training were obtained on 7 additional prostate datasets (different from the 22 data used for 

image reconstruction, with IRB approval for waived written informed consent) acquired with 

the same protocol. The 7 datasets were reconstructed as 3D static volumes combining all the 

acquired spokes, and the training was performed using the central 12 slices containing both 

the right and left femoral arteries. Manual labeling of the femoral arteries was performed by 

an observer (Q.W.) with 10 years of imaging research experience. The network training was 

performed using a multiple-class cross-entry loss and using a Stochastic Gradient Descent 

(SGD) algorithm with a learning rate of 0.01 and a total of 50 epochs for ensuring training 

convergence. The trained network was then applied to automatically segment both the right 

and left femoral arteries on a delayed phase from the GRASP-Pro reconstruction. After 

segmenting the arteries, an ensemble of contrast enhancement curves, each from one 

detected artery ROI, were generated for each dataset. A clustering algorithm, as described in 

(17) for details, was applied to generate a single artery contrast enhancement curve from the 

ensemble. Based on this contrast curve and the corresponding peak artery enhancement 

index, one pre-contrast phase (30 seconds before the peak artery enhancement), one early-

arterial phase (15 seconds after the peak artery enhancement), one late-arterial phases (45 

seconds after the peak artery enhancement) and one delayed phase (90 seconds after the 

peak artery enhancement) were automatically selected.
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Image Evaluation

The automatically selected dynamic phases (44 pre-contrast phase images, 88 early and late 

arterial phase images and 44 delayed phase images) from both the GRASP and GRASP-Pro 

results were randomized and pooled together for visual image quality assessment. Two 

board-certified abdominal radiologists (C.H. and A.T., with 3 years and 1 year of post-

fellowship clinical experience, respectively), who were blinded to the reconstruction 

schemes, scored the overall image quality, the sharpness of prostatic capsule and the overall 

streaking artifact/noise level of each case. A 4-point Likert-type scale was used for the 

scoring (46): overall image quality: 4=good, 3=adequate, 2=borderline, 1=non-diagnostic; 

sharpness of prostatic capsule: 4=good, 3=adequate, 2=partially seen, 1=not seen; overall 

artifact/noise level: 4=none, 3=mild, 2=significant, 1= unreadable. The reported scores were 

averaged over the two readers and were represented by the mean ± standard deviation. A 

non-parametric paired two-tailed Wilcoxon signed-rank test was performed for statistical 

assessment, with a P-value less than 0.05 indicating statistical significance.

To evaluate the accuracy of the automatic artery segmentation, the femoral arteries on all the 

22 prostate datasets were also manually segmented (the central 12 slices). The dynamic time 

point/index where the artery contrast enhancement reaches its peak was obtained from both 

the manually-generated curves and the automatically-generated curves for each dataset. 

Linear regression was used to assess the correlation between the manually-identified and 

automatically-identified peak indexes. Note that the purpose of generating artery 

enhancement curve is to identify its peak enhancement position mimicking the bolus timing 

in clinical DCE-MRI, so that clinically-relevant contrast phases can be automatically 

selected as described above.

RESULTS

The mean reconstruction time for GRASP and GRASP-Pro was 30.79±2.30 minutes and 

30.33±2.38 minutes, respectively. Figure 6a shows a prostate case comparing gridding 

images, compressed images with 5 PCs and GRASP-Pro. The compressed images already 

have fewer streaking artifacts than gridding images but suffer from image blurring and 

residual streaks (yellow arrow), GRASP-Pro further refined image details with improved 

delineation of the prostate, muscle and small vessels. Figure 6b shows normalized signal-

time curves from the right femoral artery, suggesting good temporal fidelity of the GRASP-

Pro reconstruction with respect to the gridding reference.

Figure 7 and Figure 8 show the comparison of GRASP with GRASP-Pro in two prostate 

cases, together with corresponding normalized signal-time curves in the right femoral artery 

and an ROI inside the prostate (red circle). Compared to standard GRASP reconstruction, 

GRASP-Pro produced similar temporal behavior but achieved enhanced image sharpness 

(yellow arrows), less noise/artifacts (green arrows), and better overall delineation of the 

prostate tissue in different contrast phases. The comparison of GRASP and GRASP-Pro in 

two additional patients is shown in supporting Figure S3 (Supporting Information), where 

GRASP-Pro shows similar improvement in image quality over standard GRASP. The visual 

image quality scores averaged from all the patient datasets over the two readers are 

summarized in Table 1. While GRASP yielded adequate image quality in different contrast 
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phases (average score around 3), GRASP-Pro achieved further improved overall image 

quality, the sharpness of the prostate and less streaks/noise (average score around 3.9), with 

statistical significance (P<0.05) reached in all the assessment categories.

Figure 9a compares the automatic selection and manual selection of the right femoral 

arteries in three prostate cases. The trained CED network was able to successfully identify 

the arteries, so that a contrast enhancement curve can be automatically generated to guide 

the selection of desired contrast phases. Figure 9b shows the plot of linear correlation 

between the peak enhancement indexes obtained from the automatically-generated and 

manually-generated contrast enhancement curves, with an R-square of 0.996 indicating an 

excellent correlation between the manual selection and the deep learning-based automatic 

phase selection.

Supporting Figure S4 (Supporting Information) assesses the influence of varying 

regularization parameter λ on GRASP-Pro reconstruction. Specifically, we tested whether 

the temporal sparsity constraint is needed in GRASP-Pro by setting the parameter as zero. 

As can be seen from the supporting figure, GRASP-Pro reconstruction without temporal TV 

constraint (λ=0) suffered from residual noise, particularly in the arterial phase. On the other 

side, a high λ generated temporal blurring due to over-regularization as in standard 

compressed sensing reconstruction.

Supporting Figure S5 (Supporting Information) compares a delayed contrast phase from 

GRASP-Pro reconstruction (175 dynamic frames) with 5 PCs, 16 PCs and 175 PCs. Here, 

subspace is not generated if all the 175 PCs are kept for reconstruction. The results suggest 

that GRASP-Pro with 5 PCs achieved the best image quality among the three 

reconstructions. GRASP-Pro with 16 PCs suffered from certain loss of fine details as 

indicated by the yellow arrow. Without an explicit subspace constraint, GRASP-Pro with 

175 PCs suffered from poorer overall image quality, image sharpness and the delineation of 

the prostate tissue.

Supporting Figure S6 (Supporting Information) compares four GRASP-Pro reconstructions 

in which the matrix size for the intermediate low-resolution GRASP reconstruction was set 

as 6, 32, 96 and 128, indicated as GRASP-Pro Sub 6 to Sub 128. It can be seen that GRASP-

Pro Sub 128 achieved comparable image quality and temporal behavior compared to 

GRASP-Pro Sub 96. GRASP-Pro Sub 6 failed to reconstruct temporal information correctly 

and GRASP-Pro Sub 32 suffered from certain fluctuation in temporal signal profile. Overall, 

GRASP-Pro Sub 96 achieved a good balance between computation burden and 

reconstruction performance.

DISCUSSION

In this work, we presented a new rapid dynamic radial imaging approach called GRASP-

Pro, which enables high spatiotemporal resolution DCE-MRI. Compared to the original 

GRASP technique, GRASP-Pro incorporates an additional self-calibrating explicit subspace 

constraint to achieve improved reconstruction performance. Different from MR parameter 

mapping or MR fingerprinting that can rely on Bloch equations to represent the signal 
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evolution correctly, the pharmacokinetic model in DCE-MRI has many uncertainties, and the 

development of more robust and accurate models for perfusion MRI is still an open question 

(47). Therefore, it can be more reliable to estimate a basis from the acquired data itself for 

subsequent subspace representation. Compared to prior subspace-based reconstruction 

approaches, the construction of subspace in GRASP-Pro takes advantage of the unique 

sampling geometry of radial imaging, which estimates a temporal basis from an intermediate 

iterative reconstruction performed on the central radial k-space, thus eliminating the need for 

a physical signal model or additional training data that may require extra scan time and may 

limit acceleration capabilities. As a result, the capture of underlying dynamics is more 

reliable and there is no need to modify existing sampling trajectories to acquire extra 

auxiliary data. Given that GRASP has already been translated for routine clinical use (48), 

the improved image quality provided by GRASP-Pro could achieve a better clinical impact, 

representing a valuable step to further improve the utility and usefulness of GRASP in 

diagnostic care. In addition, the incorporation of a convolutional neural network can improve 

the overall efficiency of current clinical GRASP workflow, making GRASP-Pro an 

optimized solution for rapid DCE-MRI.

Methods for estimating temporal basis from acquired data have been reported before. For 

example, k-t SLR (37,38) aims to jointly estimate a temporal basis with spectral 

regularization and reconstruct undersampled dynamic images exploiting low-rank and 

sparsity structures. Thus, it does not require additional training data or signal model for 

estimating a temporal basis and does not require the selection of low-resolution matrix size 

as in GRASP-Pro. However, there are a few key distinctions between k-t SLR and GRASP-

Pro. First, k-t SLR enforces a low-rank constraint implicitly through the nuclear norm or 

Schatten-norm without generating a subspace, while GRASP-Pro enforces a low-rank 

constraint explicitly through the construction of a low-dimensional subspace. As described 

and validated in (25), enforcing a low-rank subspace-constraint explicitly has advantages in 

both imaging performance and computational efficiency. Specifically, the explicit constraint 

with subspace modeling (as in GRASP-Pro) has fewer degrees of freedom than the implicit 

constraint (as in k-t SLR), and thus the low-rank structure can be enforced more strongly to 

achieve better reconstruction quality (25). In addition, GRASP-Pro uses an intermediate step 

to pre-estimat temporal subspace, leading to reduced computational burden without 

performing the computation-intensive singular value decomposition (SVD) operation during 

the reconstruction process, thus enabling much faster reconstruction speed than k-t SLR. 

Moreover, k-t SLR requires selection of two regularization parameters for the implicit low-

rank constraint and the sparsity constraint, respectively. GRASP-Pro, on the other hand, 

requires only one regularization parameter, making the selection process and the 

implementation easier.

A proper selection of the number of PCs is important to balance compression power, 

modeling error and sensitivity to noise (16,25,39) in GRASP-Pro and other subspace-

constraint reconstruction methods. Insufficient basis components can yield temporal blurring 

(Figure 4), while excessive basis components may introduce residual noise/artifacts 

(supporting Figure S5, supporting information). Similar to prior subspace-based 

reconstruction studies, the number of PCs in this work (K=5) was empirically selected based 
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on i) the observation of the decaying pattern of singular value (Figure 2c) and ii) further 

evaluation on the so-called compressed images to assess temporal fidelity as shown in 

Figure 4. It is understandable and expected that this parameter will need to be re-selected for 

other types of applications where the underlying dynamics are different. As pointed out in 

(25), current subspace-based reconstruction methods typically rely on empirical selection of 

this parameter, and it is still an open question on how to automate this process across 

different applications with different underlying dynamics. However, a joint subspace low-

rank and sparsity constraint can achieve improved robustness to the choice of this parameter 

(25).

In this study, we confirmed that the intermediate GRASP reconstruction is necessary for 

GRASP-Pro (Figure 5), and this does not prolong overall reconstruction time due to reduced 

matrix size in the intermediate reconstruction step. This reconstruction strategy can be 

particularly useful given the fact that at high acceleration rates, it is challenging to acquire a 

fully sampled low-resolution k-space region for estimating a temporal basis. The matrix size 

for the intermediate GRASP reconstruction was visually selected as 96×96 in this study to 

balance reconstruction quality and computational burden. A smaller matrix size may lead to 

suboptimal estimation of temporal basis and thus poor representation of the full-resolution 

images with the estimated basis (supporting Figure S6, supporting information). On the 

other hand, a larger matrix size prolongs overall reconstruction time and the performance of 

the intermediate GRASP reconstruction may be reduced due to higher undersampling factor.

A temporal TV constraint has been found to be effective in reconstructing undersampled 

dynamic images (49) and it has been routinely performed in standard GRASP 

reconstruction. Since images are already constrained to a low-dimensional subspace with 

low-rank modeling in GRASP-Pro, we assessed whether the additional TV constraint is 

necessary. From supporting Figure S4 (Supporting Information), it was found that although 

the TV constraint in GRASP-Pro has less influence in delayed phases, it indeed suppresses 

more artifacts/noise in the arterial phase, where the baseline signal-to-noise ratio (SNR) is 

relatively lower. It should be noted that the arterial phase is usually the most important part 

in DCE-MRI and thus this improvement is clinically significant. This finding also correlates 

well with prior observations in other studies, in which a combination of low-rank and 

sparsity constraints achieved better performance than either of them alone (28). However, as 

in other constrained reconstruction approaches, the use of temporal sparsity constraint 

requires selection of a regularization weight and this parameter is expected to be re-selected 

for different applications.

In GRASP-Pro, a neural network was trained to identify the arteries in the images, from 

which an artery enhancement curve can be automatically generated to guide the selection of 

desired contrast phases for clinical use based on the peak artery enhancement index. This 

component would be necessary in improving the efficiency of routine clinical workflow, 

given that over 100 dynamic frames can be generated in GRASP-Pro (e.g., 175 frames in 

this study) and thus manual selection of desired contrast phases (e.g., an arterial phase) can 

be cumbersome and time-consuming. Moreover, the deep learning-based artery selection 

does not rely on specific contrast enhancement pattern (17). As a result, this will be useful in 

DCE-MRI irrespective of contrast agent, dose, and volume, such as hepatobiliary contrast 
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agents Eovist that does not have a quick and sharp first pass dynamics. More importantly, 

the automatic segmentation of the artery could also be used to guide the generation of an 

arterial input function (AIF), which may facilitate automated perfusion image analysis, as 

shown in (50) for some preliminary results.

In this study, the GRASP-Pro has been demonstrated for DCE-MRI of the prostate where 

motion is generally not a major problem. The technique can be applied to other static organs 

such as the brain, neck or breast. However, the application of GRASP-Pro to moving organs, 

such as the liver or the lung, will require further optimization, given that respiratory motion 

is patient-dependent and thus the optimal number of PCs (K) needed in GRASP-Pro may 

vary from patient to patient. The motion management strategies proposed in the XD-GRASP 

(12) and RACER-GRASP (17) techniques could be further incorporated into GRASP-Pro to 

handle respiratory motion, but this will require additional investigation and will be explored 

in future work.

There are a few limitations in this study that warrant discussion. First, we did not compare 

different sparsity constraints. This was because a temporal TV constraint has been optimized 

and has been shown as an effective sparsity constraint in standard GRASP; and thus, for a 

fair comparison, we kept it identical in GRASP-Pro. Second, since an intermediate GRASP 

reconstruction is needed to generate a temporal basis, the maximum acceleration rate in 

GRASP-Pro can be limited by this reconstruction setting in order to ensure good 

reconstruction results in the intermediate step. In this work, 10 spokes per frame was 

empirically selected to allow a good fit into the available GPU memory, and reconstruction 

with a temporal resolution up to ~1 second per volume was demonstrated. Third, due to the 

limited number of datasets, our deep learning network for identifying the femoral arteries 

was trained on seven additional cases only. As can be seen from Figure 9, the performance 

of automatic segmentation of the artery varies from case to case. However, since the purpose 

of artery segmentation is only to obtain the peak artery enhancement timing, or the dynamic 

frame index, so that clinically relevant contrast phases can be selected automatically, a 

perfect segmentation of the artery with a high-level of precision is not required. Besides, we 

have applied a clustering algorithm (17) to further ensure the accuracy of generating contrast 

enhancement curves in the artery. Fourth, the GRASP-Pro reconstruction was performed 

slice by slice due to limited GPU memory. Additional optimization, such as parallelization 

of the reconstruction algorithm, will be important to further reduce reconstruction time for 

the translation of GRASP-Pro into the clinic.

CONCLUSION

GRASP-Pro has been shown as a promising tool for rapid and continuous DCE-MRI. 

Through the combination of a self-calibrating explicit subspace constraint and a temporal 

sparsity constraint, GRASP-Pro further pushes the acceleration rate and temporal resolution 

beyond what standard GRASP can achieve. GRASP-Pro also enables automatic selection of 

desired contrast phases that are clinically-relevant, and thus it is expected to further improve 

the overall efficiency and the clinical utility of GRASP in oncological applications.
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Figure 1. 
(a) The unique sampling geometry of golden-angle radial sampling enables direct estimation 

of a temporal basis from the acquired data. Since the center of k-space (red region) is less 

undersampled than the periphery, a low spatial resolution dynamic image-series can be 

reconstructed from the low-resolution portion of the radial k-space even at high acceleration 

rates for estimation of the basis. (b) A fully-resolution prostate image (matrix 

size=448×448) with corresponding down-sampled images at different matrix sizes. Despite 

reduced resolution, general image content can still be visualized down to a matrix size of 

96×96.
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Figure 2. 
(a) The low-resolution radial image-series can be reconstructed with standard GRASP even 

at high acceleration rates. This image-series provides full temporal information from which 

a temporal basis can be estimated to represent the fully-resolution images in a low-

dimensional subspace. (b) Using gridding images as a reference, normalized signal-time 

curves from the right femoral artery (yellow arrow in the image) show good temporal 

fidelity of GRASP reconstruction at this low resolution. (c) Fast-decaying singular values 

corresponding to the low-resolution GRASP images, suggesting that the reconstructed 

image-series has low rank and can be represented by only a few dominant basis components.
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Figure 3. 
The flowchart of GRASP-Pro reconstruction. As an intermediate step, standard GRASP 

reconstruction is performed on the low-resolution portion of the sorted radial k-space. From 

the reconstructed low-resolution dynamic image-series (mL), a temporal basis is estimated, 

and the first dominant K basis components are kept (UK). At the second step, GRASP-Pro is 

then performed on the sorted full-resolution radial k-space incorporating the pre-estimated 

basis (UK) to reconstruct VK, the coefficients to represent the fully-resolution image-series 

under UK. Once VK is reconstructed, the final images m is then computed as UKVK.
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Figure 4. 
Full-resolution gridding images (10 spokes each time frame) and corresponding compressed 

images generated from a different number of principal components (PCs) (a) and 

corresponding normalized signal-time profiles from the right femoral artery (b). 2 PCs 

generates noted temporal blurring, while 16 PCs yields residual artifacts/noise. 5 PCs were 

found to achieve a good balance between the compression power and the modeling error in 

this application.
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Figure 5. 
(a) Full-resolution gridding images (10 spokes each time frame) and corresponding 

compressed images generated using basis estimated from low-resolution GRASP 

reconstruction (matrix size=96×96: Sub 96-GRASP) and gridding reconstruction (matrix 

size=96×96: Sub 96-gridding; matrix size=6×6: Sub 6-gridding). (b) Corresponding 

normalized signal-time profiles from the right femoral artery. Both Sub 96-gridding and Sub 

6-gridding fail to produce reliable compressed images. Note that 10 spokes represent 

Nyquist sampling (fully sampling) for a 6×6 image.
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Figure 6. 
(a) Comparison of gridding images with corresponding compressed images and GRASP-Pro 

images at different contrast phases. Compressed images, generated back from subspace with 

5 PCs, have a reduced level of streaking artifacts, and GRASP-Pro further refines the 

dynamic images with reduced streaks and enhanced image sharpness. The yellow arrow 

indicates the residual streaking artifacts in the compressed images that was removed in 

GRASP-Pro. (b) Corresponding normalized signal-time profiles in the right femoral artery 

showing good temporal fidelity using gridding images as a reference.
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Figure 7. 
Comparison of GRASP and GRASP-Pro reconstruction in one prostate patient dataset. 

GRASP-Pro produced cleaner images, improved sharpness, and the overall delineation of 

the prostate in different contrast phases.
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Figure 8. 
Comparison of GRASP and GRASP-Pro reconstruction in another prostate patient dataset. 

Similar as in Figure 7, GRASP-Pro produced cleaner images, improved sharpness, and the 

overall delineation of the prostate in different contrast phases.
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Figure 9. 
(a) Comparison of manually segmentation and deep learning-based automatic segmentation 

of the right femoral artery in three prostate cases. Automatic segmentation could find the 

artery, although the performance varied from case to case. (b) The plot of linear correlation 

between the peak enhancement indexes obtained from automatically-generated and 

manually-generated contrast enhancement curves in the femoral arteries, suggesting that the 

network can guide the selection of desired contrast phases.
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Table 1:

Visual image quality comparison between standard GRASP and GRASP-Pro for different contrast phases. The 

pre-contrast phase was selected at 30 seconds before the peak artery enhancement; the early arterial phase was 

selected at 15 seconds after the peak artery enhancement; the late arterial phase was selected at 45 seconds 

after the peak artery enhancement; and the delayed phase was selected at 90 seconds after the peak artery 

enhancement. GRASP-Pro achieved systematic improvement in all assessment categories and statistical 

significance was reached in all categories.

Overall Image Quality Sharpness of Prostatic Capsule Streaking Artifact /Noise Level

Pre-Contrast Phase
GRASP 2.91±0.20 2.79±0.25 2.91±0.20

GRASP-Pro 3.82±0.33
‡

3.67±0.40
‡

3.82±0.33
‡

Early Arterial Phase
GRASP 3.02±0.11 3.21±0.25 3.02±0.11

GRASP-Pro 3.98±0.11
‡

3.98±0.11
‡

3.98±0.11
‡

Late Arterial Phase
GRASP 2.98±0.11 2.98±0.11 2.96±0.15

GRASP-Pro 3.96±0.15
‡

3.96±0.15
‡

3.93±0.18
‡

Delayed Phase
GRASP 3.00±0.00 3.00±0.00 3.00±0.00

GRASP-Pro 4.00±0.00
‡

4.00±0.00
‡

4.00±0.00
‡

The scoring criteria were as follows: For the overall image quality: 4=good, 3=adequate, 2=borderline, 1=non-diagnostic.

For the sharpness of prostatic capsule: 4=good, 3=adequate, 2=partially seen, 1=not seen.

For the streaking artifact/noise level: 4=none, 3=mild, 2=significant, 1= unreadable.

‡
: The difference between GRASP-Pro and GRASP was statistically significant
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