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ABSTRACT 
 

This paper presents an adaptive Kriging based method to perform uncertainty quantification (UQ) of the 

photoelectron sheath and dust levitation on the lunar surface. The objective of this study is to identify the upper 

and lower bounds of the electric potential and that of dust levitation height, given the intervals of model 

parameters in the 1-D photoelectron sheath model. To improve the calculation efficiency, we employ the widely 

used adaptive Kriging method (AKM). A task-oriented learning function and a stopping criterion are developed to 

train the Kriging model and customize the AKM. Experiment analysis shows that the proposed AKM is both accurate 

and efficient. 
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1. INTRODUCTION 
 

The Moon is directly exposed to solar radiation and solar wind plasma (drifting protons 

and electrons) lacking an atmosphere and a global magnetic field. Consequently, the lunar 

surface is electrically charged by the bombardment of solar wind plasma and 

emission/collection of photoelectrons. Near the illuminated lunar surface, the plasma sheath is 

dominated by photoelectrons, thus usually referred to as “photoelectron sheath”. Additionally, 

dust grains on the lunar surface may get charged and levitated from the surface under the 

influence of the electric field within the plasma sheath as well as gravity. This work is motivated 

by the high computational cost associated with uncertainty quantification (UQ) analysis of 

plasma simulations using high-fidelity kinetic models such as particle-in-cell (PIC). The main 

quantities of interest (QoI) of this study is the vertical structure of the photoelectron sheath 

and its effects on levitation of dust grains with different sizes and electric charges. 

Both the electric potential (𝜙𝜙) and the electric field (𝐸𝐸) on lunar surface are determined 

by many parameters, such as solar wind drifting velocity (𝑣𝑣d), electron temperature (𝑇𝑇e), 

photoelectron temperature (𝑇𝑇p), density of ions at infinity (𝑛𝑛i,∞), and density of photoelectrons 

(𝑛𝑛p), etc. Due to uncertain factors in lunar environment, the electric potential, electric field, and 

the dust levitation height, etc., are also uncertain. While many sources uncertainty may exist, 

they are generally categorized as either aleatory or epistemic. Uncertainties are characterized 

as epistemic, if the modeler sees a possibility to reduce them by gathering more data or by 

refining models. Uncertainties are categorized as aleatory if the modeler does not foresee the 

possibility of reducing them [1]. An example of the aleatory uncertainty in lunar environment is 

the solar wind parameters, and an example of the epistemic uncertainty is the photoelectron 
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temperature which is obtained by limited measurement data from Apollo missions. For lunar 

landing missions, one needs to take into consideration the uncertainties of the electrostatic and 

dust environment near the lunar surface. For example, the upper and lower bounds of the 

electric field and dust grain levitation heights in the photoelectron sheath should be considered 

when determining whether it is safe for a certain area to land a spacecraft. 

 Determining the bounds of the electric potential, electric field, and dust levitation height, 

however, is computationally expensive, because the particle-based kinetic models such as 

particle-in-cell simulations are time-consuming to evaluate. To address this issue, we develop 

an adaptive Kriging method (AKM) which can determine those bounds with a small number of 

calculations of the model. It is straightforward to train and obtain an accurate Kriging model [2] 

to replace the actual model and then calculate the bounds with the model.  However, it is not 

necessary for the Kriging model to be accurate everywhere in its input space, because it will 

need more training samples and hence decrease the efficiency. Since the objective is to 

determine those bounds, we only need the Kriging model to be partially accurate near the 

regions of interest, as long as it can help find those bounds accurately. This way, we can save 

more computational efforts. To this end, we develop a task-oriented learning function and a 

stopping criterion to adaptively train the Kriging model. We start with an analytic model for the 

1-D photoelectron sheath near the lunar surface [3, 4]. This model is computationally cheap 

and hence the accurate results can be obtained by brute force. With the accurate results, we 

can test the accuracy of the proposed method. It is noted here that the ultimate application of 

this method is not the simple 1-D problem presented in this work, but more complicated or 

computationally expensive models such as 3-D fully kinetic particle-in-cell plasma simulations. 
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The rest of this paper is organized as follows. Section 2 presents the 1-D photoelectron 

sheath and dust levitation problem on lunar surface, as well as the 1-D analytic model. Section 

3 briefly introduces the Kriging method and general AKM. Section 4 presents the proposed 

AKM.  Section 5 presents the results. Conclusions are given in Section 6. 

 

2. PROBLEM STATEMENT 
 

2.1. 1-D Photoelectron Sheath Model on the Lunar Surface 
 

We employ the recently derived 1-D photoelectron sheath model for the lunar surface 

[3, 4]. As given in detail in [3, 4], there are three types of electric potential profiles [3-6] in the 

photoelectron sheath: Type A, Type B, and Type C, as shown in Fig. 1, where 𝜙𝜙 is the electric 

potential and 𝑍𝑍 is the vertical coordinate. In this study, we focus on Type C sheath profile as it is 

expected at the polar regions of the Moon, where the next lunar landing mission will likely 

occur.  

Both the electrical potential 𝜙𝜙 and corresponding electric field 𝐸𝐸 are functions of 𝑍𝑍 with 

a series of parameters 𝐏𝐏 = �𝑣𝑣d,𝑇𝑇e,𝑇𝑇p,𝑛𝑛i,∞,𝑛𝑛p�. To obtain 𝜙𝜙(𝑍𝑍;𝐏𝐏) and 𝐸𝐸(𝑍𝑍;𝐏𝐏), we need to 

solve an ordinary differential equation (ODE) [3].  Once the potential profile 𝜙𝜙 is obtained, it is 

straightforward to calculate electric field 𝐸𝐸 by 

 𝐸𝐸(𝑍𝑍;𝐏𝐏) = −
d𝜙𝜙(𝑍𝑍;𝐏𝐏)

d𝑍𝑍
 (1) 

A typical Type C sample curve of 𝐸𝐸(𝑍𝑍;𝐏𝐏) is shown in Fig. 2. Note that both 𝜙𝜙 and 𝐸𝐸 

converge to zero at large values of 𝑍𝑍 where it is used as the electric potential reference (zero 

potential and zero field). 
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2.2. Dust Levitation 
 

Subjected to the electric field force, a charged dust on lunar surface may be levitated [7, 

8]. Above the lunar surface, there is a position where the upward electric field force balances 

the downward gravity [4]. This position is referred to as equilibrium levitation height, denoted 

as 𝑍𝑍∗. 𝑍𝑍∗ can be solved through the following equation of static equilibrium of a charged dust in 

an electric field: 

 𝑞𝑞𝐸𝐸(𝑍𝑍;𝐏𝐏) = 𝑚𝑚𝑚𝑚 (2) 

where 𝑞𝑞 is the dust charge, 𝑚𝑚 is the mass of the dust, and 𝑚𝑚 = 1.62 m/s2 is the gravity 

acceleration on lunar surface [9]. With the assumption of spherical dust grains, 𝑚𝑚 is given by 

 𝑚𝑚 =
4
3
𝜋𝜋𝑟𝑟3𝜌𝜌 (3) 

where 𝑟𝑟 is the radius of the lunar dust grain, and 𝜌𝜌 = 1.8 g/cm3 is the mass density of dust 

grains [10]. 

For simplicity, Eq. (2) is rewritten as 

 𝐸𝐸(𝑍𝑍;𝐏𝐏) = 𝑤𝑤 (4) 

where 𝑤𝑤 = 𝑚𝑚𝑚𝑚/𝑞𝑞. Once both 𝐸𝐸(𝑍𝑍;𝐏𝐏) and 𝑤𝑤 have been given or determined, a root-finding 

scheme is employed to solve Eq. (4) for 𝑍𝑍∗. Fig. 3 shows an example of how to obtain 𝑍𝑍∗ 

graphically.  

 

2.3. Objective 
 

Due to the lack of information, it is almost impossible to obtain the distribution 

functions of 𝐏𝐏. The bounds of 𝐏𝐏, however, are much easier to obtain. In some work designs on 
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lunar surface, we need to determine the bounds of 𝜙𝜙(𝑍𝑍;𝐏𝐏) and/or 𝐸𝐸(𝑍𝑍;𝐏𝐏), given the bounds 

of 𝐏𝐏. In this study, all the parameters in 𝐏𝐏 are modeled as interval variables, whose domain is 

denoted as Ω. For a given realization 𝐩𝐩 of 𝐏𝐏, both 𝜙𝜙(𝑍𝑍;𝐩𝐩) and 𝐸𝐸(𝑍𝑍;𝐩𝐩),𝑍𝑍 ∈ [𝑍𝑍min,𝑍𝑍max] are 

obtained by solving the ODE.  

The upper bound 𝜙𝜙(𝑍𝑍) of the electric potential is defined as 

 𝜙𝜙(𝑧𝑧) = max
𝐩𝐩∈Ω

𝜙𝜙(𝑧𝑧;𝐩𝐩) (5) 

where 𝑧𝑧 is a given value of variable 𝑍𝑍. Note that the entire upper bound curve 𝜙𝜙(𝑍𝑍) is not 

necessarily determined by a specific 𝐩𝐩. In other words, at different values of 𝑧𝑧, 𝜙𝜙(𝑧𝑧) may be 

determined by different realizations of 𝐏𝐏. Similarly, the lower bound 𝜙𝜙(𝑍𝑍) of the electric 

potential, the upper bound 𝐸𝐸(𝑍𝑍) of the electric field, and the lower bound 𝐸𝐸(𝑍𝑍) are defined as 

 𝜙𝜙(𝑧𝑧) = min
𝐩𝐩∈Ω

𝜙𝜙(𝑧𝑧;𝐩𝐩) (6) 

 𝐸𝐸(𝑧𝑧) = max
𝐩𝐩∈Ω

𝐸𝐸(𝑧𝑧;𝐩𝐩) (7) 

 𝐸𝐸(𝑧𝑧) = min
𝐩𝐩∈Ω

𝐸𝐸(𝑧𝑧;𝐩𝐩) (8) 

Since 𝐏𝐏 are modeled as interval variables and the intervals (lower and upper bounds) of 

output are desired, we in fact cope with interval propagation problems in this work. The most 

straightforward method to determine 𝜙𝜙(𝑍𝑍),𝜙𝜙(𝑍𝑍), 𝐸𝐸(𝑍𝑍) and 𝐸𝐸(𝑍𝑍) is through Monte Carlo 

Simulation (MCS) [11] in the following steps. First, evenly generate a large number 𝑁𝑁MCS of 

samples of 𝐏𝐏. For convenience, we denote those samples as 𝐩𝐩MCS. Second, obtain 

corresponding 𝑁𝑁MCS samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏) and 𝐸𝐸(𝑍𝑍;𝐏𝐏) by solving the ODE 𝑁𝑁MCS times. Finally, 

calculate 𝜙𝜙(𝑍𝑍),𝜙𝜙(𝑍𝑍), 𝐸𝐸(𝑍𝑍) and 𝐸𝐸(𝑍𝑍) using the 𝑁𝑁MCS samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏) and 𝐸𝐸(𝑍𝑍;𝐏𝐏): 
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 𝜙𝜙(𝑧𝑧) = max
𝐩𝐩∈𝐩𝐩MCS

𝜙𝜙(𝑧𝑧;𝐩𝐩) (9) 

 𝜙𝜙(𝑧𝑧) = min
𝐩𝐩∈𝐩𝐩MCS

𝜙𝜙(𝑧𝑧;𝐩𝐩) (10) 

 𝐸𝐸(𝑧𝑧) = max
𝐩𝐩∈𝐩𝐩MCS

𝐸𝐸(𝑧𝑧;𝐩𝐩) (11) 

 𝐸𝐸(𝑧𝑧) = min
𝐩𝐩∈𝐩𝐩MCS

𝐸𝐸(𝑧𝑧;𝐩𝐩) (12) 

However, this method is too expensive or even unaffordable. One reason is that solving 

the ODE a large number 𝑁𝑁MCS of times is time-consuming, even when the analytic solution to 

the ODE is available for the 1-D problem. Another reason is that there is no analytic solution to 

complex 2-D or 3-D problems where kinetic particle-in-cell simulations are usually employed to 

solve the electrostatic field through Poisson’s equation. 

The objective of this study is to develop a method to determine 𝜙𝜙(𝑍𝑍), 𝜙𝜙(𝑍𝑍), 𝐸𝐸(𝑍𝑍) and 

𝐸𝐸(𝑍𝑍) accurately and then calculate 𝑍𝑍∗ of dust grains. It is noted here that the ultimate 

application of this method is not the relatively simple 1-D problem presented in this work, but 

more complicated or computationally expensive models such as 3-D fully kinetic particle-in-cell 

plasma simulations. For computationally expensive models, evaluating the model consumes the 

majority of computational resource, so we will use the number 𝑁𝑁ODE of ODEs that we need to 

solve as a measure of the computational cost. 

 

3. INTRODUCTION TO KRIGING MODEL AND AKM 
 

Before presenting the proposed method, we briefly introduce the Kriging model [12, 13] 

and AKM [13-28], on which the proposed method is based. 
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3.1. Overview of Kriging Model 
 

Kriging model makes regression to a black-box function (BBF) using a training sample 

set, or a design of experiment (DoE). The main idea of Kriging is to treat the BBF as a realization 

of a Gaussian random field indexed by the input variables of the BBF. The theoretical 

foundation of Kriging model is exactly the Bayesian inference [29] . From the perspective of 

Bayesian interface, a prior Gaussian random field is trained by the DoE and hence a posterior 

Gaussian random field is generated. Then the mean value function, also indexed by the input 

variables of the BBF, of the posterior random field is the Kriging prediction to the BBF. Besides, 

the variance function, also indexed by the input variables of the BBF, of the posterior random 

field quantifies the local prediction uncertainty or prediction error.  

The randomness, or uncertainty, of the posterior random field mainly comes from the 

fact that only a limit number of samples of the BBF are used to train the prior random field. In 

other words, only part of the information of the BBF is available, and the missing part of 

information leads to the epistemic uncertainty in the random field. Generally, the more training 

samples we use, the less epistemic uncertainty will result and with stronger confidence will we 

predict the BBF. 

 

3.2. Formulation for Kriging Model 
 

A simple yet widely used prior random field is the stationary Gaussian random field 

given by 

 𝐾𝐾(𝐗𝐗) = 𝜇𝜇 + 𝜂𝜂(𝐗𝐗; 𝜉𝜉2,𝛉𝛉) (13) 
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where 𝜇𝜇 is an unknown parameter representing the mean value of the random field 𝐾𝐾(𝐗𝐗) and 

𝜂𝜂(𝐗𝐗; 𝜉𝜉2,𝜃𝜃) is a zero-mean stationary Gaussian random field indexed by 𝐗𝐗, the input variables of 

a BBF 𝑘𝑘(𝐗𝐗). Both the variance parameter 𝜉𝜉2 and correlation parameters 𝛉𝛉 of 𝜂𝜂(𝐗𝐗; 𝜉𝜉2,𝛉𝛉) are 

unknown. The parameters 𝜇𝜇, 𝜉𝜉2 and 𝛉𝛉 fully define the prior random field 𝐾𝐾(𝐗𝐗). A DoE, or a 

training sample set, of 𝑘𝑘(𝐗𝐗) is used to train 𝐾𝐾(𝐗𝐗) and then determine those parameters. 

The correlation function 𝐶𝐶�𝐱𝐱(𝑖𝑖),𝐱𝐱(𝑗𝑗)� of 𝜂𝜂(𝐗𝐗; 𝜉𝜉2,𝛉𝛉) is given by 

 𝐶𝐶�𝐱𝐱(𝑖𝑖), 𝐱𝐱(𝑗𝑗)� = 𝜉𝜉2𝑅𝑅�𝐱𝐱(𝑖𝑖),𝐱𝐱(𝑗𝑗);𝛉𝛉� (14) 

where 𝑅𝑅�𝐱𝐱(𝑖𝑖),𝐱𝐱(𝑗𝑗);𝛉𝛉� is the correlation coefficient function of 𝜂𝜂(𝐗𝐗; 𝜉𝜉2,𝛉𝛉) at two points 𝐱𝐱(𝑖𝑖) and  

𝐱𝐱(𝑗𝑗) of 𝐗𝐗. There are many models for 𝑅𝑅�𝐱𝐱(𝑖𝑖), 𝐱𝐱(𝑗𝑗);𝛉𝛉�. A widely used model is known as the 

Gaussian model, or squared exponential model, given by 

 𝑅𝑅�𝐱𝐱(𝑖𝑖),𝐱𝐱(𝑗𝑗);𝛉𝛉� = � exp �−𝜃𝜃𝑑𝑑 �𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗)�
2
�

𝐷𝐷

𝑑𝑑=1

 (15) 

where 𝐷𝐷 is the dimension of 𝐗𝐗, 𝑥𝑥𝑑𝑑
(𝑖𝑖) is the 𝑑𝑑th component of 𝐱𝐱(𝑖𝑖), and 𝜃𝜃𝑑𝑑 is the 𝑑𝑑th component 

of 𝛉𝛉. 

For a BBF 𝑘𝑘(𝐗𝐗), the Kriging model predicts 𝑘𝑘(𝐱𝐱) as 𝑘𝑘�(𝐱𝐱), which is a normal variable 

whose mean value and variance are 𝑘𝑘�(𝐱𝐱) and 𝜎𝜎2(𝐱𝐱), respectively. Note that 𝜎𝜎2(𝐱𝐱) is also 

termed as mean squared error (MSE). Generally, 𝑘𝑘�(𝐱𝐱) is regarded as the deterministic 

prediction to 𝑘𝑘(𝐱𝐱), since a deterministic prediction is usually needed. 𝜎𝜎2(𝐱𝐱) measures the 

prediction uncertainty, or prediction error, and therefore we can validate a Kriging model 

simply using 𝑘𝑘�(𝐱𝐱) and 𝜎𝜎2(𝐱𝐱) without employing traditional validation methods, such as the 

cross validation [30]. Because of this advantage, many algorithms have been proposed to 

adaptively train a Kriging model for expensive BBFs [14-27, 31-36]. When sufficient training 
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samples have been used for training, 𝜎𝜎2(𝐱𝐱) converges to 0 and the normal variable 𝑘𝑘�(𝐱𝐱) 

degenerates to a deterministic value, i.e., the exact value of 𝑘𝑘(𝐱𝐱). 

 

3.3. An Example of Kriging Model 
 

Fig. 4 shows a 1-D example of Kriging model. In total five initial training samples are 

used to train the Kriging. The vertical distance between 𝑘𝑘�(𝑥𝑥) ± 𝜎𝜎(𝑥𝑥) graphically quantify the 

prediction error at 𝑥𝑥. The larger the distance, the larger the prediction error. On interval [0, 2], 

the training samples are denser than that on [2, 10]. Consequently, the prediction error is 

smaller on [0, 2] than that on [2, 10]. It is noted that the prediction error is not only dependent 

on the density of the training samples but also the nonlinearity of the BBF. With the prediction 

error shown in Fig. 4, it is obvious that in order to improve the prediction accuracy, we need to 

add training samples somewhere near 𝑥𝑥 = 4 and 𝑥𝑥 = 8. Fig. 5 shows the updated Kriging 

model with one more training sample added at 𝑥𝑥 = 8. The overall prediction accuracy is 

improved significantly. 

 

3.4. AKM 
 

The main idea of AKM is to adaptively add training samples to update the Kriging model 

iteratively until an expected accuracy is achieved. Fig. 6 shows a brief flowchart of AKM. The 

QoI is what we aim to calculate, such as 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍). Since the QoI is calculated through the 

Kriging model instead of the BBF itself, there is an inevitable error caused by the Kriging model. 

The error metric is used to measure the error. The stopping criterion, which is based on the 
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error metric, is used to determine when to stop adding training samples. Once the error of QoI 

is sufficiently small, it is reasonable to return the QoI and stop the algorithm. If the error is large 

in an iteration, we must add one or more training samples to update the Kriging model. How to 

determine new training samples is the task of the learning function. A good learning function 

should be robust and lead to a high convergence rate. 

Given a specific engineering problem, the key of employing an AKM is to make good use 

of all available information, such as the features of the BBF and QoI, and then design a 

customized or task-oriented error metric, stopping criterion and learning function. 

In the UQ community, a great number of AKMs have been developed to solve varies 

kinds of problems, such as reliability analysis [15, 17-24, 26, 31-33, 36], robustness analysis [14], 

sensitivity analysis [34], robust design [25, 35], and reliability-based design [16, 27], etc. 

 

4. THE PROPOSED METHOD 
 

In this section, we present detailed procedures of calculating 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍). Similar 

procedures can also apply to calculate 𝐸𝐸(𝑍𝑍) and 𝐸𝐸(𝑍𝑍). 

 

4.1. Overview of the Proposed Method 
 

 The main idea of the proposed method is to employ the framework of AKM and 

customize it to calculate 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) (as well as 𝐸𝐸(𝑍𝑍) and 𝐸𝐸(𝑍𝑍)). Fig. 7 shows the brief 

flowchart of the proposed method. In Step 1, we evenly generate 𝑁𝑁in initial samples of 𝐏𝐏. 

Generally, 𝑁𝑁in is much smaller than 𝑁𝑁MCS. Details of this step will be given in Subsection 4.2. In 
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Step 2, the ODE (1-D Poisson’s equation) is solved 𝑁𝑁in times, with the 𝑁𝑁in samples of 𝐏𝐏, to 

obtain 𝑁𝑁in samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏). In Step 3, the samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏) are used to build a Kriging 

model 𝜙𝜙�(𝑍𝑍;𝐏𝐏). Both 𝑍𝑍 and 𝐏𝐏 are treated as input variables so the dimension of 𝜙𝜙�(𝑍𝑍;𝐏𝐏) is 1 +

5 = 6 . In Step 4, 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) are estimated through 

 𝜙𝜙(𝑧𝑧) = max
𝐩𝐩∈𝐩𝐩MCS

𝜙𝜙�(𝑧𝑧;𝐩𝐩) (16) 

 𝜙𝜙(𝑧𝑧) = min
𝐩𝐩∈𝐩𝐩MCS

𝜙𝜙�(𝑧𝑧;𝐩𝐩) (17) 

In Step 5, an error metric is developed to measure the error of 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) estimated by Eq. 

(16) and Eq. (17). Step 6 is about a stopping criterion. Details about Steps 5 and 6 will be given 

in Subsection 4.4. The learning function involved in Step 7 will be given in Subsection 4.3. The 

implementation of the proposed method will be given in Subsection 4.5. 

There are two significant differences between most existing AKMs and the proposed 

method. First, the former aims at estimating a constant value, such as the structural reliability 

and robustness, while the latter aims at estimating two functions, i.e., 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍). Second, 

when given a specific value of input, the output of the BBFs involved in the former methods is a 

single value. However, in this work, with a given realization 𝐩𝐩 of 𝐏𝐏, the output of solving the 

ODE is a function 𝜙𝜙(𝑍𝑍;𝐩𝐩). With those differences, we cannot use the existing error metrics, 

stopping criteria or learning functions. Instead, we take into consideration those differences 

and design a new error metric, stopping criterion and learning function to fit the problem. This 

is the main contribution of the proposed algorithm. 
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4.2. Candidate Samples and Initial Training Samples 
 

For numerical computation, we need to evenly discretize Ω into a few points. Suppose 

𝑃𝑃𝑖𝑖, the 𝑖𝑖th component of 𝐏𝐏, is discretized into 𝑁𝑁𝑖𝑖 points, then Ω will be discretized into in total 

𝑁𝑁𝑃𝑃 = ∏ 𝑁𝑁𝑖𝑖5
𝑖𝑖=1  points. For convenience, we denote the set of those points as 𝐩𝐩MCS. Similarly, 𝑍𝑍 

is discretized into 𝑁𝑁𝑍𝑍 points (denoted as 𝐳𝐳MCS) in its range [𝑍𝑍min,𝑍𝑍max].Theoretically, any 𝐩𝐩 ∈ Ω 

could be selected as a training sample for 𝜙𝜙�(𝑍𝑍;𝐏𝐏). However, we do not want any two training 

samples to be clustering together, because we use the exact interpolation in Kriging and 

clustered training samples may impact the training and the convergence rate of the proposed 

AKM. Therefore, we only select training samples of 𝐏𝐏 from 𝐩𝐩MCS and call 𝐩𝐩MCS candidate 

samples or candidate points.  

The 𝑁𝑁in initial training samples 𝐩𝐩in of 𝐏𝐏 are selected such that they are distributed in Ω 

as even as possible. Commonly used sampling methods include random sampling, Latin 

hypercube sampling and Hammersley sampling [37]. In this study, we employ the Hammersley 

sampling method because it has better uniformity properties over a multidimensional space 

[38]. The Hammersley sampling method firstly generates initial training samples in a 5-

dimensional hypercube [0,1]5 and then they are mapped into Ω to get the initial training 

samples of 𝐏𝐏. Note that the five dimensions of the hypercube are assumed to be independent, 

with the assumption that all variables in 𝐏𝐏 are independent. Those initial training samples, 

however, are not necessarily among 𝐩𝐩MCS, so we need to round them to the nearest ones in 

𝐩𝐩MCS. Since the components of 𝐏𝐏 do not necessarily share the same dimension unit, the 

distances which we use to find the nearest samples should be normalized. For example, the 
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distance 𝑑𝑑 between a sample 𝐩𝐩(h) generated by Hammersley and a candidate sample 𝐩𝐩(c) in 

𝐩𝐩MCS is given by 

 𝑑𝑑�𝐩𝐩(h),𝐩𝐩(c)� = ���
𝑝𝑝𝑖𝑖

(ℎ) − 𝑝𝑝𝑖𝑖
(𝑐𝑐)

𝑃𝑃𝑖𝑖,max − 𝑃𝑃𝑖𝑖,min
�
25

𝑖𝑖=1

 (18) 

where 𝑝𝑝𝑖𝑖
(ℎ) is the 𝑖𝑖th component of 𝐩𝐩(h), 𝑝𝑝𝑖𝑖

(𝑐𝑐) is the 𝑖𝑖th component of 𝐩𝐩(c), 𝑃𝑃𝑖𝑖,max is the maximal 

value of 𝑃𝑃𝑖𝑖  which is the  𝑖𝑖th component of 𝐏𝐏, and 𝑃𝑃𝑖𝑖,min is the minimal value of 𝑃𝑃𝑖𝑖. Then 𝐩𝐩(h) is 

rounded to 𝐩𝐩∗ = arg min
𝐩𝐩∈𝐩𝐩MCS

𝑑𝑑�𝐩𝐩(h),𝐩𝐩(c)�. When all the initial training samples generated by 

Hammersley have been rounded to the nearest ones in 𝐩𝐩MCS, we get the initial training sample 

set 𝐩𝐩in ⊂ 𝐩𝐩MCS of 𝐏𝐏. 

Solving the ODE 𝑁𝑁in times, each with a sample in 𝐩𝐩in, we get 𝑁𝑁in samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏). 

Note that each sample of 𝜙𝜙(𝑍𝑍;𝐏𝐏) has 𝑁𝑁𝑍𝑍 points, since we discretized 𝑍𝑍 into 𝑁𝑁𝑍𝑍 points. Then we 

have 𝑁𝑁𝑍𝑍𝑁𝑁in input training points 𝐳𝐳MCS × 𝐩𝐩in. Except the 𝑁𝑁in points at 𝑍𝑍max, we select the other 

(𝑁𝑁𝑍𝑍 − 1)𝑁𝑁in points to form the first part of input training sample set of 𝜙𝜙�(𝑍𝑍;𝐏𝐏). We denote 

those (𝑁𝑁𝑍𝑍 − 1)𝑁𝑁in input training points as 𝐱𝐱inp1, where superscript inp of 𝐱𝐱 represents input, 

and the superscript 1 means that 𝐱𝐱inp1 is only the first part of the entire input training sample 

set. The other part 𝐱𝐱inp2 is given below. 

Since for any 𝐩𝐩 ∈ 𝐩𝐩MCS, it is known that 𝜙𝜙(𝑍𝑍max;𝐩𝐩) ≡ 0 (Fig. 1), theoretically we also 

need to add all the 𝑁𝑁𝑃𝑃 points 𝑍𝑍max × 𝐩𝐩MCS as input training samples so that we make good use 

of all known information. However, it is not practical to do so. For example, if 𝑁𝑁𝑖𝑖 = 10, 𝑖𝑖 =

1,2, … ,5, we need to add 𝑁𝑁𝑃𝑃 = 105 points as input training samples. So many training samples 

will make 𝜙𝜙�(𝑍𝑍;𝐏𝐏) complex, expensive and not accurate, losing its expected properties. To 
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balance the need to add them and the drawback of adding all of them, we add part of them. 

Specifically, we evenly generate 𝑁𝑁𝑃𝑃′  samples 𝐩𝐩′ of 𝐏𝐏 using procedures similar to what we used 

to generate 𝐩𝐩in. Then 𝐱𝐱inp2 is given by 

 𝐱𝐱inp2 = {(𝑍𝑍max,𝐩𝐩)|𝐩𝐩 ∈ 𝐩𝐩′} (19) 

The input training sample set 𝐱𝐱inp = 𝐱𝐱inp1 ⋃ 𝐱𝐱inp2. Denote the corresponding electric potential 

𝜙𝜙 at 𝐱𝐱inp as 𝛟𝛟out. The input-output training sample pairs �𝐱𝐱inp,𝛟𝛟out�  are used to build the 

initial 𝜙𝜙�(𝑍𝑍;𝐏𝐏). More training samples will be added to update 𝜙𝜙�(𝑍𝑍;𝐏𝐏) later. 

 

4.3. Learning Function 
 

Generally, the initial Kriging model is not accurate enough to get 𝜙𝜙(𝑍𝑍) or 𝜙𝜙(𝑍𝑍) 

accurately through Eq. (5) and Eq. (6). To improve the accuracy of 𝜙𝜙�(𝑍𝑍;𝐏𝐏) and hence of 𝜙𝜙(𝑍𝑍) 

and 𝜙𝜙(𝑍𝑍), we need to add training samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏) to refine 𝜙𝜙�(𝑍𝑍;𝐏𝐏). A learning function is 

used to determine which sample of 𝐏𝐏, and hence of 𝜙𝜙(𝑍𝑍;𝐏𝐏), should be added. 

In our previous work [3], we used the learning function given by 

 𝐩𝐩(next) = arg max
𝐩𝐩∈𝐩𝐩MCS

� �
𝜎𝜎(𝑧𝑧;𝐩𝐩)
 𝜙𝜙�(𝑧𝑧;𝐩𝐩)

�
𝑧𝑧∈𝐳𝐳MCS

 (20) 

where 𝐩𝐩(next) is the next to-be-added sample of 𝐏𝐏, 𝜙𝜙�(𝑧𝑧;𝐩𝐩) is the predicted value of 𝜙𝜙(𝑧𝑧;𝐩𝐩) by 

the Kriging model 𝜙𝜙�(𝑍𝑍;𝐏𝐏), and 𝜎𝜎(𝑧𝑧;𝐩𝐩) is the standard deviation of the prediction. Both 𝜙𝜙�(𝑧𝑧;𝐩𝐩) 

and 𝜎𝜎(𝑧𝑧;𝐩𝐩) are calculated by the Kriging toolbox. 𝜎𝜎�𝑧𝑧
(𝑗𝑗);𝐩𝐩�

𝜙𝜙��𝑧𝑧(𝑗𝑗);𝐩𝐩�
 is the deviation coefficient of the 

prediction at (𝑧𝑧;𝐩𝐩), and thus the learning function in Eq. (20) determines the training sample 
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𝐩𝐩(next) at which the summation of the absolute deviation coefficients of the predictions along 𝑍𝑍 

coordinate is maximal. The summation ∑ �𝜎𝜎(𝑧𝑧;𝐩𝐩)
 𝜙𝜙�(𝑧𝑧;𝐩𝐩)�𝑧𝑧∈𝑧𝑧MCS  measures the overall prediction error at 

𝐩𝐩. Adding a sample of 𝜙𝜙(𝑍𝑍;𝐏𝐏) at 𝐩𝐩 to update 𝜙𝜙�(𝑍𝑍;𝐏𝐏) will let ∑ �𝜎𝜎(𝑧𝑧;𝐩𝐩)
 𝜙𝜙�(𝑧𝑧;𝐩𝐩)�𝑧𝑧∈𝑧𝑧MCS  become zero, and 

therefore adding a sample of 𝜙𝜙(𝑍𝑍;𝐏𝐏) at 𝐩𝐩(next) to update 𝜙𝜙�(𝑍𝑍;𝐏𝐏) will decrease the overall 

prediction error of 𝜙𝜙(𝑍𝑍;𝐏𝐏) by the largest extent. This is the basic mechanism of the learning 

function in Eq. (20). 

However, we do not necessarily need 𝜙𝜙�(𝑍𝑍;𝐏𝐏) to be overall accurate. Since the objective 

is to estimate 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) accurately and efficiently, we only need 𝜙𝜙�(𝑍𝑍;𝐏𝐏) to be partially or 

locally accurate enough so that it can help estimate  𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) accurately. With this idea, 

we can further improve the efficiency of updating 𝜙𝜙�(𝑍𝑍;𝐏𝐏) by adding training samples more 

skillfully. 

A widely used learning function in an AKM which aims at calculating extreme values is 

the expected improvement function [28]. The expected improvement function  𝜉𝜉(𝑧𝑧,𝐩𝐩) of 𝜙𝜙(𝑧𝑧) 

is given by 

 

𝜉𝜉(𝑧𝑧,𝐩𝐩) = �𝜙𝜙�(𝑧𝑧;𝐩𝐩) −  𝜙𝜙(𝑧𝑧)�Φ�
𝜙𝜙�(𝑧𝑧;𝐩𝐩) − 𝜙𝜙(𝑧𝑧)

𝜎𝜎(𝑧𝑧;𝐩𝐩) �

+ 𝜎𝜎(𝑧𝑧;𝐩𝐩)φ�
𝜙𝜙�(𝑧𝑧;𝐩𝐩) − 𝜙𝜙(𝑧𝑧)

𝜎𝜎(𝑧𝑧;𝐩𝐩) � 

(21) 

where Φ(∙) and φ(∙) are the cumulative distribution function and probability density function 

of the standard Gaussian variable, respectively. A simple explanation to the expected 

improvement function 𝜉𝜉(𝑧𝑧,𝐩𝐩) is that if we added a training point at (𝑧𝑧,𝐩𝐩), we could expect to 

improve current 𝜙𝜙(𝑧𝑧) to 𝜙𝜙(𝑧𝑧)+ 𝜉𝜉(𝑧𝑧,𝐩𝐩), with an improvement rate of 𝜉𝜉(𝑧𝑧,𝐩𝐩)/𝜙𝜙(𝑧𝑧). If the 
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objective is to estimate 𝜙𝜙(𝑧𝑧), which is a maximal value, instead of 𝜙𝜙(𝑍𝑍), which is an entire 

function, we can determine the next training sample 𝐩𝐩(next) of 𝐏𝐏 using the learning function 

given by 

 𝐩𝐩(next) = arg max
𝐩𝐩∈𝐩𝐩MCS

�𝜉𝜉(𝑧𝑧,𝐩𝐩)/𝜙𝜙(𝑧𝑧)� (22) 

However, since the objective is to determine the entire function 𝜙𝜙(𝑍𝑍) and one ODE 

solution has 𝑁𝑁𝑍𝑍 training points, we must have a learning function which aims at improving the 

calculation accuracy of the entire function 𝜙𝜙(𝑍𝑍). Therefore, we propose a learning function 

given by 

 𝐩𝐩(next) = arg max
𝐩𝐩∈𝐩𝐩MCS

� �𝜉𝜉(𝑧𝑧,𝐩𝐩)/𝜙𝜙(𝑧𝑧)�
𝑧𝑧∈𝐳𝐳MCS

 (23) 

where we sum up the absolute values of the improvement rate. This learning function means 

that if we added a training sample 𝜙𝜙�𝑍𝑍;𝐩𝐩(next)�, which has 𝑁𝑁𝑍𝑍 points, to update 𝜙𝜙�(𝑍𝑍;𝐏𝐏), we 

could expect to get the best improvement of 𝜙𝜙(𝑍𝑍). 

Similarly, the expected improvement function 𝜉𝜉(𝑧𝑧,𝐩𝐩) of 𝜙𝜙(𝑧𝑧) is given by 

 

𝜉𝜉(𝑧𝑧,𝐩𝐩) = � 𝜙𝜙(𝑧𝑧) − 𝜙𝜙�(𝑧𝑧;𝐩𝐩)�Φ�
𝜙𝜙(𝑧𝑧) − 𝜙𝜙�(𝑧𝑧;𝐩𝐩)

𝜎𝜎(𝑧𝑧;𝐩𝐩) �

+ 𝜎𝜎(𝑧𝑧;𝐩𝐩)φ�
𝜙𝜙(𝑧𝑧) − 𝜙𝜙�(𝑧𝑧;𝐩𝐩)

𝜎𝜎(𝑧𝑧;𝐩𝐩) � 

(24) 

To estimate  𝜙𝜙(𝑍𝑍), we also propose a learning function given by 

 𝐩𝐩(next) = arg max
𝐩𝐩∈𝐩𝐩MCS

� �𝜉𝜉(𝑧𝑧,𝐩𝐩)/ 𝜙𝜙(𝑧𝑧)�
𝑧𝑧∈𝐳𝐳MCS

 (25) 
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In order to estimate both 𝜙𝜙(𝑍𝑍) and  𝜙𝜙(𝑍𝑍) simultaneously, we combine Eq. (23) and Eq. (25) to 

propose a learning function given by 

 𝐩𝐩(next) = arg max � max
𝐩𝐩∈𝐩𝐩MCS

� �
𝜉𝜉(𝑧𝑧,𝐩𝐩)
𝜙𝜙(𝑧𝑧)

�
𝑧𝑧∈𝐳𝐳MCS

, max
𝐩𝐩∈𝐩𝐩MCS

� �
𝜉𝜉(𝑧𝑧,𝐩𝐩)
 𝜙𝜙(𝑧𝑧) �

𝑧𝑧∈𝐳𝐳MCS

� (26) 

Once 𝐩𝐩(next) has been determined, we solve the ODE to numerically get a function 

𝜙𝜙�𝑍𝑍;𝐩𝐩(next)�, from which we get (𝑁𝑁𝑍𝑍 − 1) points (the remaining one at 𝑍𝑍max, where 𝜙𝜙 ≡ 0, is 

excluded) and add them into �𝐱𝐱inp,𝛟𝛟out� to enrich the training samples. 

 

4.4. Error Metric and Stopping Criterion 
 

Since Eq. (16) and Eq. (17) cannot obtain absolutely accurate 𝜙𝜙(𝑍𝑍) and  𝜙𝜙(𝑍𝑍) due to the 

prediction error of 𝜙𝜙�(𝑍𝑍;𝐏𝐏), we need an error metric to measure the error of currently 

estimated 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍). Since �𝜉𝜉(𝑧𝑧,𝐩𝐩)
𝜙𝜙(𝑧𝑧)

� measures the absolute expected improvement rate of 

𝜙𝜙(𝑧𝑧), if �𝜉𝜉(𝑧𝑧,𝐩𝐩)
𝜙𝜙(𝑧𝑧)

� is small for any 𝑧𝑧 ∈ 𝐳𝐳MCS and 𝐩𝐩 ∈ 𝐩𝐩MCS, 𝜙𝜙(𝑍𝑍) is expected to sufficiently 

accurate. Therefore, we propose to use max
𝑧𝑧∈𝐳𝐳MCS,𝐩𝐩∈𝐩𝐩MCS

 �𝜉𝜉(𝑧𝑧,𝐩𝐩)
𝜙𝜙(𝑧𝑧)

� to quantify the error of 𝜙𝜙(𝑍𝑍). 

Similarly, max
𝑧𝑧∈𝐳𝐳MCS,𝐩𝐩∈𝐩𝐩MCS

 �
𝜉𝜉(𝑧𝑧,𝐩𝐩)

 𝜙𝜙(𝑧𝑧) � is used to quantify the error of 𝜙𝜙(𝑍𝑍). Combining both, we have 

the error metric 𝛤𝛤, which measures the error of both 𝜙𝜙(𝑍𝑍) and  𝜙𝜙(𝑍𝑍), given by 

 𝛤𝛤 = max � max
𝑧𝑧∈𝐳𝐳MCS,𝐩𝐩∈𝐩𝐩MCS

 �
𝜉𝜉(𝑧𝑧,𝐩𝐩)
𝜙𝜙(𝑧𝑧)

� , max
𝑧𝑧∈𝐳𝐳MCS,𝐩𝐩∈𝐩𝐩MCS

 �
𝜉𝜉(𝑧𝑧,𝐩𝐩)
 𝜙𝜙(𝑧𝑧) �� (27) 
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Once 𝛤𝛤 is small enough, the estimated  𝜙𝜙(𝑍𝑍) and  𝜙𝜙(𝑍𝑍) are expected to be sufficiently 

accurate. Therefore, the stopping criterion shown in Fig. 7 is defined as 

 𝛤𝛤 < 𝛾𝛾 (28) 

where 𝛾𝛾 is a threshold that controls the efficiency and accuracy of the proposed AKM. Generally 

speaking, a smaller 𝛾𝛾 will lead to higher accuracy but lower efficiency. 

 

4.5. Implementation 
 

As shown in Fig. 1, 𝜙𝜙(𝑍𝑍;𝐏𝐏) approaches zero when 𝑍𝑍 takes large value. As a result, 𝜙𝜙(𝑧𝑧) 

and 𝜙𝜙(𝑧𝑧) in Eq. (26) and Eq. (27) are likely to take very small values close to zero. It leads to the 

singularity of the calculation of Eq. (26) and Eq. (27), doing harm to the robustness of the 

proposed algorithm. To solve this issue, we translate all training samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏) simply by 

adding a negative constant ϵ. This way, the translated 𝜙𝜙(𝑍𝑍;𝐏𝐏) will never approach zero and the 

singularity issue is evitable. Trained by the translated samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏), the Kriging model 

𝜙𝜙�(𝑍𝑍;𝐏𝐏) will also lead to the translation of 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍). We can translate 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) 

back simply by subtracting ϵ from them. Note that there is no rigorous theory to quantify how ϵ 

affect the properties of the proposed AKM. We suggest determining ϵ using 

 ϵ = mean�𝜙𝜙(0;𝐩𝐩)�𝐩𝐩 ∈ 𝐩𝐩in� (29) 

where mean(∙) represents mean value. 

Based on all the procedures given above, we generate the pseudo codes of the 

proposed AKM given in Algorithm 1.  
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4.6. Validation discussion 
 

Theoretically, it is vital to validate the Kriging model to make sure that it has been 

trained accurately. An explicit validation, however, is not involved in the proposed AKM. There 

are two main reasons. First, the adaptive training focuses on the accuracy of QoI instead of the 

accuracy of the Kriging model. Once there is an indication that the accuracy of QoI in current 

training iteration is sufficient, i.e., the stopping criterion in Eq. (27) is satisfied, the algorithm 

stops adding more training samples, no matter the Kriging model is globally accurate or not. As 

a result, when the algorithm has converged, it is very likely that the Kriging model is accurate 

only on some subdomains but not accurate on other domains. Therefore, it is not suitable to do 

explicit cross validation. Second, the error metric 𝛤𝛤 can measure the accuracy of QoI, and 

therefore we in fact do validation implicitly. As long as the accuracy of QoI is sufficient, it does 

not matter if the Kriging model is or not accurate on the entire domain. 

 

5. RESULTS 
 

In this section, we illustrate the proposed AKM. MCS is used to solve the same problems 

with brute force. Results by MCS are treated as standard to verify the proposed AKM. We build 

the Kriging model and calculate the Kriging predictions using the DACE toolbox [39]. The 

anisotropic Gaussian kernel is used. 

 

5.1. Sheath Profile 
 



Journal of Verification, Validation and Uncertainty Quantification 
 

22 
 

We consider the 1-D photoelectron sheath problem discussed in Section 2. The sun 

elevation angle is given as 9 degrees. The maximal and minimal values of 𝐏𝐏 =

�𝑣𝑣d,𝑇𝑇e,𝑇𝑇p,𝑛𝑛i,∞,𝑛𝑛p� are given in Table 1. We use both MCS and the proposed AKM to estimate 

𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍). The values of all involved parameters are given in Table 2.  

The domain Ω of 𝐏𝐏 is discretized into 𝑁𝑁𝑃𝑃 = 55 points, which are assembled into 𝐩𝐩MCS.  

The 𝑁𝑁in = 5 samples in hypercube space [0,1]5, generated by Hammersley sampling method, 

are given in Table 3. Then the 5 samples are mapped into Ω, as given in Table 4. Rounding the 5 

samples in Ω to the nearest ones in 𝐩𝐩MCS, we get the initial samples 𝐩𝐩in of 𝐏𝐏, as given in Table 

5. Solving the ODE five times, each with a sample in 𝐩𝐩in, we get five samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏) as 

shown in Fig. 8. 

Each sample of 𝜙𝜙(𝑍𝑍;𝐏𝐏) contains 𝑁𝑁𝑍𝑍 = 50 numerical points. Excluding the five points at 

𝑍𝑍max, we have 𝑁𝑁𝑍𝑍𝑁𝑁in − 5 = 245 training points in � 𝐱𝐱inp1,𝛟𝛟out1�. With Hammersley sampling 

method, we generate 𝑁𝑁𝑃𝑃′ = 100 samples of 𝐏𝐏 and hence 100 training points in �𝐱𝐱inp2,𝛟𝛟out2�. 

Note that all points in �𝐱𝐱inp2,𝛟𝛟out2� have 𝑍𝑍 = 𝑍𝑍max and 𝜙𝜙 = 0. Combining � 𝐱𝐱inp1,𝛟𝛟out1� and 

�𝐱𝐱inp2,𝛟𝛟out2�, we have 345 training points in �𝐱𝐱inp,𝛟𝛟out�. To do the translation mentioned in 

Subsection 4.5, we update 𝛟𝛟out simply by 𝛟𝛟out = 𝛟𝛟out + ϵ , where ϵ = −6.97 V is obtained 

with Eq. (29). With the updated �𝐱𝐱inp,𝛟𝛟out�, we build an initial Kriging model and then 

estimate 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) through Eq. (16) and Eq. (17). Finally, we translate  𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) 

back by 𝜙𝜙(𝑍𝑍) = 𝜙𝜙(𝑍𝑍) − ϵ and 𝜙𝜙(𝑍𝑍) = 𝜙𝜙(𝑍𝑍) − ϵ. Fig. 9 shows the  𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) estimated 

by both MCS and the proposed AKM (with the initial Kriging model). It shows that the initial 

Kriging model is not able to predict 𝜙𝜙(𝑍𝑍) or 𝜙𝜙(𝑍𝑍) with sufficient accuracy.  
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To improve the accuracy, the proposed method indicates adding a sample at 𝐩𝐩(next) =

(514800,13.2, 2.2,9.57, 57.6). With the 𝐩𝐩(next), we solve the ODE and get a new sample of 

𝜙𝜙(𝑍𝑍;𝐏𝐏). This sample contains 𝑁𝑁𝑍𝑍 = 50 numerical points. We translate all the numerical points 

and add them, excluding the one at 𝑍𝑍max, to update �𝐱𝐱inp,𝛟𝛟out�. The reason why we abandon 

the point at 𝑍𝑍max is that there are already enough points at 𝑍𝑍max in �𝐱𝐱inp2,𝛟𝛟out2�. With the 

updated �𝐱𝐱inp,𝛟𝛟out�, we build a new 𝜙𝜙�(𝑍𝑍;𝐏𝐏). With the new 𝜙𝜙�(𝑍𝑍;𝐏𝐏) another 𝐩𝐩(next) is 

indicated. With similar procedures, more and more samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏) are added to refine 

𝜙𝜙�(𝑍𝑍;𝐏𝐏) until the stopping criterion given in Eq. (28) is satisfied.  

The final estimation of  𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) is shown in Fig. 10. It shows that the proposed 

AKM can estimate 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) very accurately. 16 more samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏) have been 

added to refine 𝜙𝜙�(𝑍𝑍;𝐏𝐏), and therefore in total 𝑁𝑁ODE = 𝑁𝑁in + 16 = 21 ODE solutions are 

needed. Compared to 𝑁𝑁𝑃𝑃 = 3,125 ODE solutions needed in MCS, the proposed method is very 

efficient. 

 

5.2. Dust Levitation 
 

In this example, we still consider the same 1-D photoelectron sheath problem in 

Subsection 5.1, but the objective is to estimate 𝐸𝐸(𝑍𝑍) and 𝐸𝐸(𝑍𝑍) and then calculate the dust 

levitation height. The values of all involved parameters are given in Table 6. 

The procedures used to estimate 𝐸𝐸(𝑍𝑍) and 𝐸𝐸(𝑍𝑍) are almost the same as that used to 

estimate  𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍). The only difference is that the samples of 𝐸𝐸(𝑍𝑍;𝐏𝐏) instead of 𝜙𝜙(𝑍𝑍;𝐏𝐏) 

are used. The final estimation of 𝐸𝐸(𝑍𝑍) and 𝐸𝐸(𝑍𝑍) is shown in Fig. 11. It shows that the proposed 
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AKM method is very accurate. As for the efficiency, the proposed method needs only 𝑁𝑁ODE =

𝑁𝑁in + 18 = 23 ODE solutions. Compared to 𝑁𝑁𝑃𝑃 = 3,125 ODE solutions needed in MCS, the 

proposed method is very efficient. 

When the upper and lower bounds of the electric field have been determined, we can 

use the them to determine the levitation heights of the dust grains. Assuming there are two 

types of dust grains, A and B, in the electric field. The relevant parameters of the grains are 

given in Table 7, where e = 1.062 × 10−19C is the electric charge of an electron. The dust 

levitation heights are shown in Fig. 12 and given in Table 8. Due to the uncertainty of 𝐏𝐏, the 

levitation heights of both A and B are also uncertain. The levitation height of A may be any 

value in the interval [0 m, 9.33 m], which is estimated by the proposed method. The interval 

determined by MCS is [0 m, 9.26 m]. It shows that the proposed method can estimate the 

levitation height of Grain A with sufficient accuracy. Similar conclusion applies to the levitation 

height of Grain B. 

Given any dust grain with known 𝑤𝑤 value, we can easily determine its levitation height 

interval using the method shown in Fig. 12. This will help to evaluate the risk or damage caused 

by the levitated dust grains for lunar exploration missions. 

 

6. CONCLUSIONS 
 

We presented an adaptive Kriging based method to perform UQ analysis of the 1-D 

photoelectron sheath and dust levitation on the lunar surface. A recently derived 1-D 

photoelectron sheath model was used as the high-fidelity physics-based model and the black-

box function. Adaptive Kriging method, with a task-oriented learning function and stopping 
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criterion, was utilized to improve the efficiency in calculating the upper and lower bounds of 

electric potential as well as dust levitation height, given the intervals of model parameters. 

Experiment analysis shows that the proposed AKM method is both accurate and efficient. 

Current and ongoing efforts are focused on building adaptive Kriging model for 2-D and 3-D 

kinetic particle simulations of lunar plasma/dust environment and perform UQ analysis. 

 

ACKNOWLEDGMENT 
 

We would like to acknowledge the support from NASA-Missouri Space Grant 

Consortium through NASA-EPSCoR Missouri and NSF-CMMI #1923799. 

 

REFERENCES 
 

[1] Der Kiureghian, A., and Ditlevsen, O., 2009, "Aleatory or epistemic? Does it matter?," 
Structural safety, 31(2), pp. 105-112. 
[2] Williams, C. K., and Rasmussen, C. E., 2006, Gaussian processes for machine learning, MIT 
Press Cambridge, MA. 
[3] Zhao, J., Wei, X., Hu, Z., He, X., Han, D., Hu, Z., and Du, X., "Photoelectron Sheath near the 
Lunar Surface: Fully Kinetic Modeling and Uncertainty Quantification Analysis," Proc. AIAA 
Scitech 2020 Forum, p. 1548. 
[4] Zhao, J., Wei, X., Du, X., He, X., and Han, D., 2020, "Photoelectron Sheath on the Lunar 
Surface: Analytic Solutions and Fully-Kinetic Particle-in-Cell Simulations for Maxwellian and 
Kappa Distributions,",submitted. 
[5] Nitter, T., Havnes, O., and Melandsø, F., 1998, "Levitation and dynamics of charged dust in 
the photoelectron sheath above surfaces in space," Journal of Geophysical Research: Space 
Physics, 103(A4), pp. 6605-6620. 
[6] Fu, J. H., 1971, "Surface potential of a photoemitting plate," Journal of Geophysical 
Research, 76(10), pp. 2506-2509. 
[7] Poppe, A., and Horányi, M., 2010, "Simulations of the photoelectron sheath and dust 
levitation on the lunar surface," Journal of Geophysical Research: Space Physics, 115(A8). 
[8] Wang, J., He, X., and Cao, Y., 2008, "Modeling electrostatic levitation of dust particles on 
lunar surface," IEEE transactions on plasma science, 36(5), pp. 2459-2466. 
[9] Hirt, C., and Featherstone, W., 2012, "A 1.5 km-resolution gravity field model of the Moon," 
Earth and Planetary Science Letters, 329, pp. 22-30. 



Journal of Verification, Validation and Uncertainty Quantification 
 

26 
 

[10] Snelling, A. A., and Rush, D. E., 1993, "Moon dust and the age of the solar system," 
Creation Ex Nihilo Technical Journal, 7(1), pp. 2-42. 
[11] Mooney, C. Z., 1997, Monte carlo simulation, Sage Publications, Thousand Oaks. 
[12] Rasmussen, C. E., 2004, "Gaussian processes in machine learning," Advanced lectures on 
machine learning, Springer, pp. 63-71. 
[13] Jeong, S., Murayama, M., and Yamamoto, K., 2005, "Efficient optimization design method 
using kriging model," Journal of aircraft, 42(2), pp. 413-420. 
[14] Wei, X., and Du, X., 2020, "Robustness Metric for Robust Design Optimization Under 
Time-and Space-Dependent Uncertainty Through Metamodeling," Journal of Mechanical 
Design, 142(3). 
[15] Shi, Y., Lu, Z., Xu, L., and Chen, S., 2019, "An adaptive multiple-Kriging-surrogate method 
for time-dependent reliability analysis," Applied Mathematical Modelling, 70, pp. 545-571. 
[16] Moustapha, M., and Sudret, B., 2019, "Surrogate-assisted reliability-based design 
optimization: a survey and a unified modular framework," Structural and Multidisciplinary 
Optimization, pp. 1-20. 
[17] Yun, W., Zhenzhou, L., Zhou, Y., and Jiang, X., 2018, AK-SYSi: an improved adaptive 
Kriging model for system reliability analysis with multiple failure modes by a refined U learning 
function. 
[18] Sun, Z., Wang, J., Li, R., and Tong, C., 2017, "LIF: A new Kriging based learning function 
and its application to structural reliability analysis," Reliability Engineering & System Safety, 
157, pp. 152-165. 
[19] Ma, J., Ren, Z., Zhao, G., Zhang, Y., and Koh, C.-S., 2017, A New Reliability Analysis 
Method Combining Adaptive Kriging With Weight Index Monte Carlo Simulation. 
[20] Zhu, Z., and Du, X., "A System Reliability Method With Dependent Kriging Predictions," 
Proc. ASME 2016 International Design Engineering Technical Conferences and Computers and 
Information in Engineering Conference, p. V02BT03A043. 
[21] Zhu, Z., and Du, X., 2016, "Reliability analysis with Monte Carlo simulation and dependent 
Kriging predictions," Journal of Mechanical Design, 138(12), p. 121403. 
[22] Hu, Z., and Mahadevan, S., 2016, "A single-loop kriging surrogate modeling for time-
dependent reliability analysis," Journal of Mechanical Design, 138(6), p. 061406. 
[23] Zhang, L., Lu, Z., and Wang, P., 2015, "Efficient structural reliability analysis method 
based on advanced Kriging model," Applied Mathematical Modelling, 39(2), pp. 781-793. 
[24] Lv, Z., Lu, Z., and Wang, P., 2015, "A new learning function for Kriging and its 
applications to solve reliability problems in engineering," Computers & Mathematics with 
Applications, 70(5), pp. 1182-1197. 
[25] Cheng, J., Liu, Z., Wu, Z., Li, X., and Tan, J., 2015, "Robust optimization of structural 
dynamic characteristics based on adaptive Kriging model and CNSGA," Structural and 
Multidisciplinary Optimization, 51(2), pp. 423-437. 
[26] Echard, B., Gayton, N., and Lemaire, M., 2011, "AK-MCS: an active learning reliability 
method combining Kriging and Monte Carlo simulation," Structural Safety, 33(2), pp. 145-154. 
[27] Dubourg, V., Sudret, B., and Bourinet, J.-M., 2011, "Reliability-based design optimization 
using kriging surrogates and subset simulation," Structural and Multidisciplinary Optimization, 
44(5), pp. 673-690. 
[28] Jones, D. R., Schonlau, M., and Welch, W. J., 1998, "Efficient global optimization of 
expensive black-box functions," Journal of Global Optimization, 13(4), pp. 455-492. 



Journal of Verification, Validation and Uncertainty Quantification 
 

27 
 

[29] Box, G. E., and Tiao, G. C., 2011, Bayesian inference in statistical analysis, John Wiley & 
Sons. 
[30] Browne, M. W., 2000, "Cross-validation methods," Journal of mathematical psychology, 
44(1), pp. 108-132. 
[31] Huang, X., Chen, J., and Zhu, H., 2016, "Assessing small failure probabilities by AK–SS: 
An active learning method combining Kriging and Subset Simulation," Structural Safety, 59, pp. 
86-95. 
[32] Wen, Z., Pei, H., Liu, H., and Yue, Z., 2016, "A Sequential Kriging reliability analysis 
method with characteristics of adaptive sampling regions and parallelizability," Reliability 
Engineering & System Safety, 153, pp. 170-179. 
[33] Yu, Z., Sun, Z., Wang, J., and Chai, X., 2018, A new Kriging-based DoE strategy and its 
application to structural reliability analysis. 
[34] Cheng, K., Lu, Z., Ling, C., Zhou, S. J. S., and Optimization, M., 2020, "Surrogate-assisted 
global sensitivity analysis: an overview," pp. 1-27. 
[35] Zhou, H., Zhou, Q., Liu, C., and Zhou, T., 2018, "A kriging metamodel-assisted robust 
optimization method based on a reverse model," Engineering Optimization, 50(2), pp. 253-272. 
[36] Wu, H., Zhu, Z., and Du, X., 2020, "System Reliability Analysis With Autocorrelated 
Kriging Predictions," Journal of Mechanical Design, 142(10). 
[37] Chen, W., Tsui, K.-L., Allen, J. K., and Mistree, F., 1995, "Integration of the response 
surface methodology with the compromise decision support problem in developing a general 
robust design procedure," ASME Design Engineering Technical Conference, pp. 485-492. 
[38] Hosder, S., Walters, R., and Balch, M., 2007, "Efficient sampling for non-intrusive 
polynomial chaos applications with multiple uncertain input variables," Proc. 48th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 
1939. 
[39] Lophaven, S. N., Nielsen, H. B., and Søndergaard, J., 2002, Aspects of the matlab toolbox 
DACE, Citeseer, Technical University of Denmark. 

 

 



Journal of Verification, Validation and Uncertainty Quantification 
 

28 
 

Figure Captions List 

Fig. 1 Three types of sheath potential profiles in the analytic 1-D photoelectron 

sheath model [2] 

Fig. 2 A typical Type C sample of 𝐸𝐸(𝑍𝑍;𝐏𝐏) 

Fig. 3 Method to solve for the equilibrium height of dust levitation 

Fig. 4 Original Kriging model: Prediction error is large near 𝑥𝑥 = 4 and  𝑥𝑥 = 8 

Fig. 5 Updated Kriging model with one more training sample added at 𝑥𝑥 = 8: 

Overall prediction accuracy is improved significantly 

Fig. 6 Brief flowchart of AKM 

Fig. 7 Brief flowchart of the proposed method 

Fig. 8 Initial samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏) 

Fig. 9 Results by initial Kriging model: Predicted electric potential bounds are not 

accurate 

Fig. 10 Final result: Predicted electric potential bounds are accurate 

Fig. 11 Final result: Predicted electric field bounds are accurate 

Fig. 12 Dust levitation heights: The electric field bounds determines the dust 

levitation heights 
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Fig. 1: Three types of sheath potential profiles in the analytic 1-D photoelectron sheath 

model [2] 
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Fig. 2: A typical Type C sample of 𝐸𝐸(𝑍𝑍;𝐏𝐏) 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Verification, Validation and Uncertainty Quantification 
 

31 
 

 

Fig. 3: Method to solve for the equilibrium height of dust levitation 
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Fig. 4: Original Kriging model: Prediction error is large near 𝑥𝑥 = 4 and  𝑥𝑥 = 8 
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Fig. 5: Updated Kriging model with one more training sample added at 𝑥𝑥 = 8: Overall 

prediction accuracy is improved significantly 
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Fig. 6: Brief flowchart of AKM 
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Fig. 7: Brief flowchart of the proposed method 
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Fig. 8: Initial samples of 𝜙𝜙(𝑍𝑍;𝐏𝐏) 
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Fig. 9: Results by initial Kriging model: Predicted electric potential bounds are not 

accurate 
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Fig. 10: Final result: Predicted electric potential bounds are accurate 
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Fig. 11: Final result: Predicted electric field bounds are accurate 
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Fig. 12: Dust levitation heights: The electric field bounds determines the dust levitation 

heights 
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Table Caption List 

 

Algorithm 1 Pseudo codes of the proposed method 

Table 1 Variables of uncertainty 

Table 2 Parameter values 

Table 3 Samples generated by Hammersley sampling method 

Table 4 Samples mapped into Ω 

Table 5 Initial samples of 𝐏𝐏 

Table 6 Parameter values 

Table 7 Parameters of Grains A and B 

Table 8 Dust levitation heights: The proposed AKM obtained accurate levitation 

heights 
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Algorithm 1: Pseudo codes of the proposed method 

Row Pseudo codes 
1 Evenly discretize Ω into 𝑁𝑁𝑃𝑃 points 𝐩𝐩MCS. 
2 Evenly discretize interval [𝑍𝑍min,𝑍𝑍max] into 𝑁𝑁𝑍𝑍 points 𝐳𝐳MCS. 
3 Generate 𝑁𝑁in samples 𝐩𝐩in of 𝐏𝐏 with procedures given in Subsection 4.2. 

4 
Solve ODE 𝑁𝑁in  times to get 𝑁𝑁in  samples 𝜙𝜙(𝑍𝑍;𝐩𝐩),𝐩𝐩 ∈ 𝐩𝐩in  of 𝜙𝜙(𝑍𝑍;𝐏𝐏) ; 
Calculate 𝜖𝜖 with Eq. (29); 𝑁𝑁ODE = 𝑁𝑁in. 

5 Determine �𝐱𝐱inp,𝛟𝛟out� with procedures given in Subsection 4.2; 𝛟𝛟out =
𝛟𝛟out + 𝜖𝜖. 

6 WHILE TRUE DO 
7 Build Kriging model 𝜙𝜙(𝑍𝑍;𝐏𝐏) using �𝐱𝐱inp,𝛟𝛟out�. 

8 
Calculate 𝜙𝜙(𝑍𝑍) and 𝜙𝜙(𝑍𝑍) with Eq. (16) and Eq. (17); 𝜙𝜙(𝑍𝑍) = 𝜙𝜙(𝑍𝑍)− ϵ; 
𝜙𝜙(𝑍𝑍) = 𝜙𝜙(𝑍𝑍)− ϵ.   

9 Calculate 𝛤𝛤 with Eq. (27). 
10 IF (𝛤𝛤 ≥ 𝛾𝛾) DO 
11 Solve Eq. (20) for 𝐩𝐩(next); 𝑁𝑁ODE = 𝑁𝑁ODE + 1. 

12 
Solve ODE to get a new sample 𝜙𝜙�𝑍𝑍;𝐩𝐩(next)� ; 𝜙𝜙�𝑍𝑍;𝐩𝐩(next)� =
𝜙𝜙�𝑍𝑍;𝐩𝐩(next)� + ϵ; All points of 𝜙𝜙�𝑍𝑍;𝐩𝐩(next)�  excluding the one at 𝑍𝑍max 
are added into �𝐱𝐱inp,𝛟𝛟out�. 

13 ELSE 
14 BREAK WHILE 
15 END IF 
16 END WHILE  
17 RETURN  𝜙𝜙(𝑍𝑍), 𝜙𝜙(𝑍𝑍), and 𝑁𝑁ODE. 
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Table 1: Variables of uncertainty 

Variables 𝑣𝑣d(m/s) 𝑇𝑇e(eV) 𝑇𝑇p(eV)  𝑛𝑛i,∞( cm−3) 𝑛𝑛p( cm−3) 
Minimum 421,200 10.8 1.8 7.83 57.6 
Maximum 414,800 13.2 2.2 9.57 70.4 
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Table 2: Parameter values 

Parameters 𝑁𝑁1~𝑁𝑁5 𝑁𝑁𝑃𝑃 𝑁𝑁in 𝑁𝑁𝑃𝑃′  𝑁𝑁𝑍𝑍 𝛾𝛾 
Values 5 55 5 100 50 0.01 
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Table 3: Samples generated by Hammersley sampling method 

Sample 
number 

Dimension 
1 

Dimension 
2 

Dimension 
3 

Dimension 
4 

Dimension 
5 

1 0 0.5000 0.3333 0.2000 0.1429 
2 0.2 0.2500 0.6667 0.4000 0.2857 
3 0.4 0.7500 0.1111 0.6000 0.4286 
4 0.6 0.1250 0.4444 0.8000 0.5714 
5 0.8 0.6250 0.7778 0.0400 0.7143 
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Table 4: Samples mapped into Ω 

Sample 
number 𝑣𝑣d(m/s) 𝑇𝑇e(eV) 𝑇𝑇p(eV)  𝑛𝑛i,∞( cm−3) 𝑛𝑛p( cm−3) 

1 421,200 12.0000 1.9333 8.1780 59.4286 
2 439,920 11.4000 2.0667 8.5260 61.2571 
3 458,640 12.6000 1.8444 8.8740 63.0857 
4 477,360 11.1000 1.9778 9.2220 64.9143 
5 496,080 12.3000 2.1111 7.8996 66.7429 
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Table 5: Initial samples of 𝐏𝐏 

Sample 
number 𝑣𝑣d(m/s) 𝑇𝑇e(eV) 𝑇𝑇p(eV)  𝑛𝑛i,∞( cm−3) 𝑛𝑛p( cm−3) 

1 421,200 12.0000 1.9000 8.2650 60.8000 
2 444,600 11.4000 2.1000 8.7000 60.8000 
3 468,000 12.6000 1.8000 8.7000 64.0000 
4 468,000 11.4000 2.0000 9.1350 64.0000 
5 491,400 12.0000 2.1000 7.8300 67.2000 
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Table 6: Parameter values 

Parameters 𝑁𝑁1~𝑁𝑁5 𝑁𝑁𝑃𝑃 𝑁𝑁in 𝑁𝑁𝑃𝑃′  𝑁𝑁𝑍𝑍 𝛾𝛾 
Values 5 55 5 100 50 0.01 
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Table 7: Parameters of Grains A and B 

Grains 𝑟𝑟 (μm) 𝑚𝑚 (g) 𝑞𝑞/e 𝑤𝑤 (V/m) 
A 0.5 1.5268 × 10−12 50,000 −0.4658 
B 0.3 3.2979 × 10−13 45,000 −0.1118 
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Table 8: Dust levitation heights: The proposed AKM obtained accurate levitation heights 

Grains AKM MCS Relative error 
(%) 

A 
𝑍𝑍min∗ (m) 0.00 0.00 0.0 

𝑍𝑍max∗ (m) 9.33 9.26 0.8 

B 
𝑍𝑍min∗ (m) 10.88 11.00 −1.1 

𝑍𝑍max∗ (m) 25.55 25.55 0.0 
 


