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SUMMARY

Phenotypic and functional plasticity of brain immune cells contribute to brain tissue homeostasis 

and disease. Immune cell plasticity is profoundly influenced by tissue microenvironment cues and 

systemic factors. Aging and gut microbiota dysbiosis that reshape brain immune cell plasticity and 

homeostasis has not been fully delineated. Using Cellular Indexing of Transcriptomes and 

Epitopes by sequencing (CITE-seq), we analyze compositional and transcriptional changes of the 

brain immune landscape in response to aging and gut dysbiosis. Discordance between canonical 

surface-marker-defined immune cell types and their transcriptomes suggest transcriptional 

plasticity among immune cells. Ly6C+ monocytes predominate a pro-inflammatory signature in 

the aged brain, while innate lymphoid cells (ILCs) shift toward an ILC2-like profile. Aging 

increases ILC-like cells expressing a T memory stemness (Tscm) signature, which is reduced 

through antibiotics-induced gut dysbiosis. Systemic changes due to aging and gut dysbiosis 

increase propensity for neuroinflammation, providing insights into gut dysbiosis in age-related 

neurological diseases.
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Graphical Abstract

In Brief

Golomb et al. perform cellular indexing of transcriptomes and epitopes by sequencing on immune 

cells from the brains of young and aged female mice with and without antibiotics-induced gut 

dysbiosis. Single-cell analyses reveal transcriptional plasticity of canonically identified monocytes 

and innate lymphoid cells in the aged brain.

INTRODUCTION

The level of immune privilege within the steady-state brain varies depending on age and 

neurological health (Mrdjen et al., 2018). The compositional and transcriptional 

heterogeneity of brain-resident and peripherally derived immune cells in the central nervous 

system (CNS) enables a highly dynamic and plastic immune milieu to maintain CNS 

homeostasis. Dysregulation of such homeostasis significantly contributes to age-related 

neurodegenerative diseases, neuroinflammation, and brain tumors (Dulken et al., 2019; 

Keren-Shaul et al., 2017; Mrdjen et al., 2018; Quail and Joyce, 2017; Tabula Muris 

Consortium, 2020; Ximerakis et al., 2019).

Aging contributes to the decline of tissue and immune system functionality and leads to 

natural perturbations of microbial composition, namely, gut microbiota dysbiosis (gut 

dysbiosis), which is believed to contribute to systemic inflammation (Franceschi et al., 2018; 
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Langille et al., 2014; Levy et al., 2017; O’Toole and Jeffery, 2015; Thaiss et al., 2016). The 

gut microbiota engages in crosstalk with both innate and adaptive immune systems through 

either direct engagement of the mucosal innate immune system or commensal-derived 

metabolites (Belkaid and Hand, 2014). Gut dysbiosis significantly alters circulating 

metabolites and plasma cytokine composition, leading to dysregulation of the peripheral 

immune system (Arpaia et al., 2013; Bachem et al., 2019; Lehallier et al., 2019). Dysbiosis 

also indirectly regulates CNS immunity and neuroinflammation through microbiota-derived 

signaling molecules (Dinan and Cryan, 2017; Erny et al., 2015; Ma et al., 2019; Sampson et 

al., 2016).

Maintaining homeostasis of CNS immunity under systemic change requires CNS-resident 

and infiltrating immune cells to execute functional plasticity in response to both 

microenvironmental and systemic stimuli, such as aging and dysbiosis. Age-associated 

compositional and transcriptional shifting of various CNS-resident immune cells, such as 

microglia and border-associated macrophages (BAMs), and peripheral immune cells have 

been observed (Dulken et al., 2019; Mrdjen et al., 2018; Ximerakis et al., 2019). However, 

the age-related immune plasticity of peripherally derived brain infiltrating innate immune 

cells, such as Ly6C+ monocytes and innate lymphoid cells (ILCs), have not been fully 

delineated.

Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) enables 

comprehensive single-cell immunophenotyping by connecting canonical immune cell 

lineage identity to the cellular transcriptional status. Here, we mapped brain immune cell 

plasticity in response to systemic perturbations of aging and gut dysbiosis. Using CITE-seq, 

our study characterizes the compositional and transcriptional plasticity of brain immunity, 

exemplified in the transcriptional changes among inflammatory/patrolling Ly6C+ monocytes 

and CNS-associated ILCs. Revealing such immune cell plasticity during aging and gut 

dysbiosis sheds light on critical components governing brain immunity in aging and the 

onset of age-related neurodegenerative disease.

RESULTS

CITE-Seq Delineates the Global Immune Cell Diversity in the Brain

To explore dynamics of the brain immune cell landscape in response to systemic changes 

imposed by aging and gut dysbiosis, we isolated whole brains from 12 young adult (13 

weeks old, human equivalent ~20 years old) and 12 aged (73 weeks old, human equivalent 

~56 years old) female mice for CITE-seq analysis (Figure 1A). Antibiotics-treated (ABX) 

and control groups received an antibiotic cocktail (metronidazole 0.25 g/L, vancomycin 1 

g/L, neomycin 1 g/L, and ampicillin 0.5 g/L) or vehicle by oral gavage daily for 3 weeks to 

induce gut microbiota depletion, respectively. This cocktail was adapted from previous 

studies evaluating gut-brain and gut-cancer dynamics (Buchta Rosean et al., 2019; Erny et 

al., 2015). After 3 weeks of treatment, fecal samples were processed for 16S analysis, and 

brains were collected, digested, and enriched for immune cells. The immune cells were 

stained with a panel of 31 antibodies (Table S1) before 10X Genomics Chromium Single 

Cell Gene Expression analysis. The anti-bacterial efficacy of the ABX treatment strategy as 

well as naturally occurring gut dysbiosis in aged animals was confirmed by Illumina 
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sequencing of the 16S rRNA V3-V4 regions of microbial DNA extracted from fecal pellets. 

16S sequencing revealed that ABX treatment caused significant shifting in bacterial phyla 

composition and reduction in alpha diversity measured by Shannon’s diversity index, with 

the exception of one young control replicate with relatively low alpha diversity (Figures S1A 

and S1B). With ABX treatment, young and aged mice shifted from Bacteroidetes and 

Firmicutes being the predominant bacterial phyla, respectively, to an enrichment of 

Proteobacteria (Figure S1A).

To analyze the transcriptional similarities and profiles among the immune cells, single cells 

were clustered using a principal-component analysis (PCA)-based approach and projected 

by Uniform Manifold Approximation and Projection (UMAP) onto a two-dimensional plot 

(Figure 1B left). Clustering revealed 11 transcriptionally distinct clusters of cells present in 

all samples. Gene signatures for each cell cluster were generated by differential gene 

expression analyses to comparing one cluster to the other clusters in the dataset (Figure 1C; 

Table S2). CITE-seq enabled a joint analysis in which we performed traditional canonical 

surface-marker-based gating using CITE-seq antibodies (Figure S1C) followed by projection 

of the canonically identified cell (Cell-ID) distribution on the transcriptome-based UMAP 

plot (Figure 1B, right). Canonically identified cells segregated into different clusters that 

were generally mutually exclusive; however, it was noted that there was increased 

heterogeneity among the peripherally derived lymphoid and myeloid populations (dashed 

lines a and b) (Figure 1B, right; Figure S2A). The majority (72%) of brain immune cells 

consisted of CNS-native microglia (CD45Low,CD11b+,CD38Low,MHC-IILow, 

Tmem119+,Mrc1−). BAMs made up 3.9% of all collected immune cells (Table S3). BAMs 

were distinguished from microglia by expression of CD38, MHC-II, and Mrc1 and lack of 

Tmem119 expression (Mrdjen et al., 2018).

Peripherally derived CD45Hi innate and adaptive immune cells were present at lower 

frequencies (24%) among all of the collected leukocytes but exhibited variability in 

lymphoid and myeloid subset proportions among the four conditions (Figure 1D; Table S3). 

Peripherally derived CD45Hi immune cells were segregated into lymphoid and myeloid 

categories. There was more variable shifting among B cells (between young control and 

young ABX), CD8+ T cells (between young and aged), and ILCs (across all groups). 

Compared to young controls, young ABX mice had slightly increased frequency of B cells 

within the lymphoid compartment, from 2.6% in young control to 4.3% in young ABX. B 

cells were relatively stable in maintaining the RNA cluster 5 gene signature (Cd79a, Ly6d, 

and Iglc2) but displayed ABX-associated dispersion into other transcriptional clusters 

(clusters 1, 3, 4, and 11). Dispersion away from the main cluster was apparent by the slight 

decrease in Cell-ID B cell abundance within RNA cluster 5 (young control: 75%, young 

ABX: 68%, aged control: 68%, aged ABX: 54%) (Table S3).

T cells identified by CD3 surface protein expression and Thy1+/Itga2+/Klrb1- mRNA 

expression (Figure S1C) were further segregated into CD4+ T cells (1.7% of leukocytes) and 

CD8+ T cells (5.7% of leukocytes) (Table S3). Consistent with previous reports, there was 

increased frequency of CD8+ T cells in aged control (8.3%) and aged ABX (11%) compared 

to young control (1.6%) and young ABX (1.6%) mice (Dulken et al., 2019) (Figure 1D; 

Table S3). We explored the age-dependent transcriptional differences in the CD8+ T cell 
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population using gene set variation analysis (GSVA) (Hänzelmann et al., 2013). CD8+ T 

cells in aged mice were enriched in gene pathway components associated with immune cell 

chemotaxis (Figure 1E; Table S4). CD8+ T cells from aged mice overexpressed Ly6a 
(average log fold change [FC] = 0.646, adjusted p < 0.05), a stem cell marker, and Dusp2 
(average log FC = 0.639, adjusted p = 5.89E-05) (Figure 1F; Table S2). The upregulation of 

numerous ribosomal proteins (Rpl38, Rpl37, Rpl39) as well as Dusp2 (Figure S2B; Table 

S2) in the CD8+ T cells suggests they are actively proliferating or expanding within the aged 

brain (Dulken et al., 2019; Lang and Raffi, 2019; Zhou et al., 2015). Young and aged mice 

with gut dysbiosis did not experience further changes in the expression of these genes 

(Figure S2C; Table S2), suggesting the observed phenotype is primarily age dependent.

CD45Hi peripherally derived innate myeloid cells were segregated from lymphoid cells on 

the basis of Itga2 and Thy1 expression (Figure S1C). Ly6C+ myeloid cells, largely present in 

RNA clusters 1, 3, 4, and 6, globally expressed Ifitm3, Lgals3, and Vim (Figures 1B and 1C; 

Table S2). Ly6C+ cells were further segregated into three subpopulations typically described 

as (1) Ly6CHigh monocytes (3.1% of leukocytes, expressing Plac8, Fn1, and S100a4), (2) 

Ly6CLow patrolling monocytes (4.9% of leukocytes, expressing H2-Aa, H2-Eb1, and Cd74), 

and (3) Ly6C+Ly6G+ neutrophils (2.5% of leukocytes, expressing S100a9, S100a8, Retnlg, 

and Lcn2) (Figure 1C; Table S2 and S3). Among these myeloid cells, there was an age-

associated shift of neutrophil frequency; however, neutrophils did not exhibit obvious signs 

of plasticity in the aging or gut dysbiosis contexts by maintaining the RNA cluster 4 gene 

signature (S100a9, S100a8, and Retnlg) (young control: 99%, young ABX: 98%, aged 

control: 98%, aged ABX: 98%) (Figure 1C; Table S3). In comparison to aged control and 

aged ABX mice, there was an increased frequency of Ly6CHigh and reduced abundance of 

Ly6CLow cells in the aged ABX group (Figure 1D; Table S3).

Aged Brain Is Enriched for Inflammation-Prone Brain-Resident Myeloid Cells

We identified two major CD45LoCD11b+ CNS native myeloid cell types—microglia (72% 

of leukocytes, expressing Cx3cr1, Tmem119, P2ry12, Hexb, and Cst3) and BAMs (3.9% of 

leukocytes, expressing Cd74, Apoe, H2-Aa, H2-Ab1, and Mrc1) (Table S3). Cell-ID 

microglia segregated into two transcriptionally distinct clusters (RNA clusters 0 and 1) 

(Figures 2A and 2B) but predominantly expressed the RNA cluster 0 gene signature. 

However, there was increased frequency of microglia within the RNA cluster 1 signature in 

the aged control (15%) and even higher in aged ABX (17%) in contrast to young control 

(11%) and young ABX (10%) (Figure 2B, top; Table S3). Compared to RNA cluster 0, 

cluster 1 was enriched with gene pathways involved in MHC-II protein binding, dendritic 

cell interaction, and macrophage cytokine production, suggesting microglia with the cluster 

1 signature are in a more pro-inflammatory state (Figure 2B, bottom; Table S4). This is 

further supported with upregulation of mitochondrial genes (e.g., mt-Co3) and decreased 

expression of microglia homeostatic genes (e.g., Trem2, Cst3, and Hexb) (Figure 2C). The 

slight increase of cluster 1 microglia in both the aged brain and aged ABX groups implies 

gut dysbiosis may increase the propensity for neuroinflammatory development in the aged 

brain.
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Cell-ID BAMs were predominantly present in RNA clusters 3 and 8 (Figures 2D and 2E). 

BAMs with the RNA cluster 3 gene profile from the aged control and aged ABX were in 

higher proportion (70% and 75%, respectively) compared to BAMs with RNA cluster 8 gene 

profile (23% and 20%, respectively). On the other hand, BAMs in young control and young 

ABX groups were split ~60% to 40% between RNA cluster 3 and 8 gene profiles, 

respectively (Figure 2E, top). Compared to RNA cluster 8, cluster 3 was enriched for gene 

pathways involved in MHC-II protein complex assembly and antigen peptide binding, which 

resembles a transcriptional profile described for disease-associated BAMs (Jordão et al., 

2019) (Figure 2E, bottom; Table S4). Marker genes for cluster 3 (Cd74, H2-Aa, and H2-
Ab1) further support MHC-II pathway enrichment and potential antigen presentation activity 

of BAMs (Figure 2F; Table S2). The increased proportion of BAMs with the “disease-

associated” signature in aged mice suggests that BAMs in the aged CNS shift transcriptional 

status to adapt to an inflammation-prone CNS environment during aging.

Innate Ly6CHigh Monocytes Show Microenvironment-Dependent Plasticity in Aged Brain

Monocytes with high Ly6C surface protein expression (Ly6CHigh) are categorized as innate 

pro-inflammatory responders. Upon recruitment to sites of injury or infection, these cells 

often mature into inflammatory macrophages, secrete pro-inflammatory cytokines, and 

cause T cell activation but consequently elicit tissue degradation (Yang et al., 2014). 

Compared to CNS-native myeloid cells, we observed relatively increased transcriptional 

plasticity among the Ly6C+ compartment in response to aging (Figure 3A). In young mice, 

Cell-ID Ly6CHigh cells largely centered around RNA cluster 6 core signature (Figure 3A, 

left), but in aged control and aged ABX mice these cells exhibited a more diverse 

transcriptome status by spreading across several RNA clusters (Figure 3A, right). Such 

transcriptional heterogeneity suggests a plastic nature of this cell type in response to the 

aging process and gut dysbiosis. Cell-ID Ly6CHigh cells were subsetted and re-clustered into 

four transcriptionally distinct subclusters that varied in frequency between young and aged 

(Figure 3B, top). Subcluster 0 expressed inflammatory genes, including Ifitm3, Lyz2, and 

Cxcl2, and subcluster 3 expressed proliferation markers Mki67 and Top2a (Figure 3B, 

bottom; Table S2). In aged mice, there was an increased frequency of Ly6CHigh subcluster 1 

and emergence of subcluster 2 with high expression of Cstg, Mpo, and Elane (Figure 3B, 

bottom). RNA velocity analysis of the re-clustered Ly6CHigh cells based on RNA splicing 

showed a prevalent continuous pattern of cell velocity vector field arrows connecting 

subclusters, which suggested the subclusters are closely related with potentially continuous 

cellular statuses (Figure S2D). Trajectory inference analysis using Slingshot through the 

Dyno package indicated that Ly6CHigh subclusters shift from subcluster 3 (as the root) 

toward subclusters 0 and 1, ending at subcluster 2 (Figure 3C, top). The trajectory analysis 

infers a transcriptional level relationship of dynamic cellular processes (Saelens et al., 2019). 

Ly6CHigh subcluster 3 had a prominent proliferative signature marked by expression of 

Mki67, anti-apoptotic gene, Birc5, and DNA and nucleosome structural genes (Top2a, 

Hist1h1b, H2afz) (Figure 3B, bottom). Ly6CHigh subcluster 0 had a pro-inflammatory 

signature marked by expression of interferon response genes (Ifitm3, Lyz, Ifi27l2a, Ccl6, 

Cxcl2, and Il1b) (Figures 3B and 3C, heatmaps). There was also a significant increase of 

subcluster 1 and subcluster 2 cells in the aged mouse brain. Subcluster 2 appeared unique to 

the aged brain with higher expression of MPO, which is associated with Alzheimer disease 
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(Gellhaar et al., 2017; Giri et al., 2017). Ly6CHigh subcluster 1 was enriched for MHC-II 

complex pathways, while Ly6CHigh subcluster 2 was enriched for both MHC-II and 

neutrophil-mediated cytotoxicity, indicating that Ly6CHigh monocytes may experience 

transcriptional plasticity in response to an inflamed environment in the aged CNS (Figure 

3D; Figure S2E; Table S4). A tailored query for age-related gene set variance in the 

Ly6CHigh population revealed that some aging brain and Alzheimer disease gene sets were 

dysregulated in aged Ly6CHigh cells compared to young (Figure S2F). Some of the overall 

changes in enrichment of these gene sets were attributed to Ly6CHigh subcluster 1, which 

was in higher abundance in aged mice (Figure 3B; Table S4). Evaluating covariance among 

bacterial families and Ly6CHigh subtype gene expression in young and aged mice revealed 

that the Oscillospiraceae family positively correlated with Ly6CHigh cells derived from aged 

mice and expression of Ctsf, Serpine2, Arhgap5, Tmem119, and Crybb1 (Figures 3E, PCA, 

and 3F, correlation plot, p < 0.01). Interestingly, these genes were highly expressed in 

Ly6CHigh subcluster 1 in the trajectory analysis, suggesting a positive correlation between 

the Oscillospiraceae family and Ly6CHigh cells undergoing differentiation or transcriptional 

shifting in the aged mouse brain, potentially promoting the emergence of subcluster 2 

(Figures 3C, heatmap, and 3F). Re-clustering and subcluster proportion analyses in young 

and aged mice compared to their ABX-treated counterparts revealed minimal shifting of the 

Ly6CHigh population due to gut dysbiosis (Figure S2G). This suggests that the Ly6CHigh 

plasticity is more greatly affected by age-dependent changes.

Aged Brain Increases Ly6CLow Patrolling Monocyte Plasticity

Similar to Ly6CHigh monocytes, we explored the plastic nature of 

Cx3cr1HighCCR2−Ly6CLow (Ly6CLow) monocytes, which are an anti-inflammatory immune 

population that patrol within the lumen of blood vessels and promote tissue repair (Auffray 

et al., 2009). In relation to neurodegenerative disease, Ly6CLow monocytes are reported to be 

recruited to inflammation in the brain by vascular amyloid-beta (Aβ) microaggregates 

(Thériault et al., 2015). Upon recruitment, Ly6CLow monocytes perform tissue repair by 

internalizing and transporting Aβ microaggregates from the brain tissue into circulating 

blood (Michaud et al., 2013). As natural eliminators of Aβ from brain tissue, Ly6CLow 

immune cells serve an important role in maintaining brain tissue integrity in patients with 

Alzheimer disease (Saresella et al., 2014).

The Cell-ID Ly6CLow population exhibited a shifted transcriptional program associated with 

aging. At the RNA transcriptome level, Ly6C+ monocytes were most abundant in RNA 

cluster 3, marked by expression of MHC-II genes (Cd74, H2-Ab1, and H2-Aa), Lyz2, and 

Cxcl2 (Figures 1C and 4A, left). Visualization of Cell-ID Ly6CLow cells on the 

transcriptome-based UMAP revealed that these cells spread into varying transcriptional 

signatures and dispersion was increased in both the aged control and aged ABX conditions 

(Figure 4A, right). Re-clustering of these cells revealed six distinct subclusters (Figure 4B, 

top left). Only aged brains had Ly6CLow cells with the subcluster 5 signature and had a 

higher abundance of subcluster 1 (Figure 4B, top right). Young and aged mice with gut 

dysbiosis did not exhibit significant shifting in Ly6CLow subclusters in comparison to their 

counterparts with intact microbiomes (Figure S3A).
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Ly6CLow subclusters 1 and 5 had overlapping marker genes and shared high levels of 

mitochondrial gene expression (mt-Atp6, mt-Co2, and mt-Co3) (Figure 4B, bottom; Table 

S2). Trajectory inference analysis and RNA velocity analysis projected the ordering of the 

Ly6CLow subcluster shifting in transcriptional signature to the next cellular status (Figures 

4C and S3B). Slingshot analysis predicted subcluster 4 as the root, marked by high levels of 

cytotoxic genes (Gzma and Gzmb), and that these cells shifted into closely related 

subclusters 1 and 5 (Figures 4B, bottom, and 4C, top). With highly expressed mitochondrial 

genes (e.g., mt-Co3), subclusters 1 and 5 seemingly serve as a transitory state before further 

evolving into subcluster 2, wherein the cells then branch into either subclusters 0 or 3 

(Figure 4C). Ly6CLow subcluster 2 had overlapping marker genes with subclusters 0 and 3 

with a high expression of Cd74 and Lyz2, suggesting that this cluster serves as a transition 

state between differentiation into either subcluster 0 or 3 transcriptomic profiles (Figure 4B, 

bottom). Subcluster 0 was marked by expression of MHC-II genes (H2-Aa, H2-Ab1, and 

Cd74), suggesting that these cells upregulated antigen presentation possibly due to increased 

phagocytosis in response to tissue damage (Figure 4B, bottom). Subcluster 3 showed a 

differentiated signature with high Ace and Cebpb expression (Figures 4B, bottom, and 4C, 

top). Marked expression of Cebpb and Ace in subcluster 3 suggests that these Ly6CLow cells 

are actively differentiating into mature monocytes (Mildner et al., 2017; Shen et al., 2014). 

The increased proportion of subclusters 1 and 5 in the aged brain suggests that Ly6C+ cells 

have an increased active differentiation and response to the microenvironment changes. 

Distinct from subcluster 1, subcluster 5 had high expression of Il7r and Nfkb1, suggesting 

that these cells may be responding to increased neuroinflammation in the aged brain and 

could be involved in regulating a T cell response (Al-Mossawi et al., 2019) (Figure 4B, 

bottom). Both subclusters 1 and 5 were enriched for pathways involved in microglia cell 

migration, which may be indicative of more general macrophage migration toward sites of 

injury and response to inflammatory stimuli (Figure 4D; Table S4). Notably, subcluster 1 

was also enriched for gene pathways in amyloid-beta clearance (Figure 4D), which have 

been observed in CNS phagocytic cells in response to neuroinflammation and Alzheimer 

disease (Saresella et al., 2014; Thériault et al., 2015). Integrative analysis with our 16S 

rRNA microbiota data and CITE-seq data identified that Ly6CLow subclusters from aged 

mice positively correlated with the Rickenellaceae, Enterococcaceae, and Lachnospiraceae 
families (Figure 4E, PCA analysis). mt-Co3 expression, which was correlated with aged 

Ly6CLow subclusters and the aforementioned bacterial families, was also highly expressed in 

Ly6CLow subclusters 1 and 5 on the trajectory heatmap (Figures 4C, 4E, and 4F). With 

Ly6CLow subclusters 1 and 5 having increased abundance in the aged mice, these data 

suggest that the Rickenellaceae, Enterococcaceae, and Lachnospiraceae families are 

potentially correlated with Ly6CLow differentiation in the aged mouse brain.

CNS Innate Lymphoid Cell Plasticity Reflects Chronic Neuroinflammation in the Aged 
Brain

ILCs originate from the same lymphoid progenitor as B and T lymphocytes but lack antigen-

specific receptors and play important regulatory functions in organ-specific immunity 

(Colonna, 2018). The plasticity among ILC subtypes in peripheral tissues has become 

increasingly appreciated (Bal et al., 2020; Colonna, 2018), and recent studies have started to 

demonstrate the role of ILCs in CNS diseases and neuroinflammation (Kwong et al., 2017; 
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Romero-Suárez et al., 2019). How ILCs respond to systemic factors, such as aging and gut 

dysbiosis, has not been thoroughly investigated. To begin to delineate the plastic nature of 

ILCs derived from CNS tissue, we distinguished Cell-ID ILCs (ILC-like cells) from T cells 

by CD117 surface expression (CD117+) and low CD3 surface expression (Figure S1C, ILC 

Gating). ILC-like cells made up 2.5% of the total leukocytes we sequenced and 

predominantly exhibited transcriptome signatures of RNA-based clusters 7 and 9 (Figure 

5A, left; Table S3). We observed increased dispersion of ILC-like cells into several RNA-

based clusters (Figure 5A, right). Interestingly, there was elevated dispersion of ILC-like 

cells from the aged control group into RNA cluster 3, primarily representing a CD8+ T cell-

like transcriptome signature. This was not observed in the aged ABX group indicating that 

gut microbiota-immune signaling may mediate ILC transcriptome plasticity within the aged 

brain.

To further discern the nature of ILC plasticity, we subsetted and re-clustered the ILC-like 

cells based on their individual transcriptomes (Figure 5B). We first focused on ILC-like cells 

from young and aged brains and found that they segregated into four transcriptionally 

distinct clusters (Figure 5B, top left). Aged ILC-like cells had significantly higher 

proportions of subclusters 0 and 1 (Figure 5B, top right). Using previously described ILC 

subtype marker genes, we identified ILC and lymphoid subtypes present among the ILC-like 

subclusters (Bal et al., 2020; Colonna, 2018; Gury-BenAri et al., 2016). Subcluster 0 was 

marked by a higher expression of Gata3, Il1rl1, Itgae, and Areg, resembling the ILC2 

subtype (Figures 5B, bottom, 5C; Table S2). Interestingly, subcluster 1 cells did not express 

previously defined ILC subtype marker genes. Instead, they showed a T cell-like signature 

with expression of Cd3e, Cd8a, Tcf7, and Trac (Figures 5B, bottom, and 5C; Table S2). Of 

note, this T cell-like subcluster had significantly lower CD3 surface expression and negative 

to low expression levels of Cd8a and Cd3e relative to canonical T cells (Figure S1C, ILC 

gating; S4A). We also noted that most of Cd3e+ or Cd5+ cells lacked expression of Tbx21 
(T-bet), an ILC marker gene (Colonna, 2018) (Figure S3C). The ILC T cell-like subcluster 1 

expressed T memory stem cells (Tscm) marker genes (Tcf7, Cxcr3, and Ly6a) (Gattinoni et 

al., 2017), T memory cell transcription factor, Eomes (Figure 5B, bottom; Table S2), and 

brain-resident memory T cell marker Ccl5 (Knox et al., 2014; Steinbach et al., 2019) (Figure 

S3D). Compared to the other ILC subclusters, the Tscm-like cells were also enriched with T 

helper, interleukin-17 (IL-17), and T-cytotoxic pathways (Figure 5D; Table S4). Subclusters 

2 and 3 had some overlapping expression of natural killer (NK)-like genes (Klrb1c, Klrk1, 

and Ncr1) (Figure 5C; Table S2). However, a higher expression of T-bet transcription factor, 

Tbx21, in subcluster 2 indicates this cluster resembled an ILC1 status, whereas expression of 

Eomes in subcluster 3 designates an NK-like status (Bal et al., 2020; Romero-Suárez et al., 

2019). There were no cells expressing the ILC3 marker gene Rorc (Figure 5B, bottom). 

Lack of ILC3s in the CNS has previously been observed (Romero-Suárez et al., 2019). Next, 

we used RNA velocity (Figure S3E) and slingshot trajectory analyses to order the cellular 

states and assign a potential inter-lineage transition path of the ILC-like subclusters. Based 

on cell velocity analysis and Slingshot trajectory, subcluster 3 with the NK-like 

transcriptome was assigned as the cell type of origin and appears to shift into the closely 

related subcluster 2 (ILC1). From there, differentiation was projected to split into subcluster 

1 with Tscm-like signature and subcluster 0 (ILC2) (Figures 5E and 5F). The trajectory 
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projections indicated potential transdifferentiation of NK-like cells into ILC1s, which then 

branched into either ILC2 or brain-resident Tscm-like cells in the aged brain (Figure 5B, 

indicated by arrows). The enrichment of ILC2 and Tscm-like cells suggests an increased 

prevalence of type 2/chronic inflammatory response occurring in the aged brain tissue 

environment (Steinbach et al., 2019; Zaiss et al., 2015).

Single-cell Regulatory Network Interference and Clustering (SCENIC) analysis identified 

that the Eomes transcription factor recognition motif and regulon activity was enriched in 

the Tscm-like ILCs (subcluster 1) (average Log FC 0.056, adjusted p = 4.60 × 10−11) and 

partially in ILC1/NK clusters (subclusters 2 and 3) (Aibar et al., 2017) (Figure S3F; Table 

S2). Compared to young, the ILC1 subcluster in aged mice was enriched for Eomes (average 

Log FC 0.027, adjusted p = 0.007) (Figure S3G; Table S2). Eomes is an important 

transcription factor in the differentiation of lymphoid cells including CD8+ T cell memory 

and effector subtypes as well as NK cells (Intlekofer et al., 2005; Romero-Suárez et al., 

2019; Shimizu et al., 2019). These findings and our result suggest that Eomes transcription 

factor activity may potentially drive the shifting of ILC1/NK-like cells to Tscm-like cells in 

the aged mouse brain, as observed in our trajectory analysis (Figure 5F). Integrative analysis 

of 16S rRNA microbiota composition data with ILCs from young and aged mice showed 

positive correlation for Lachnospiraceae and Rikenellaceae bacterial families with the Tscm-

like and ILC2 subclusters, which were most abundant in aged mice (Figure S3H). Marker 

genes for ILC1 and NK-like cells (subclusters 2 and 3), Ncr1 and Tyrobp, were positively 

correlated with the young mice and negatively correlated with the Lachnospiraceae and 

Rikenellaceae bacterial families (Figures S3H and S3I). The emergence of Tscm-like and 

ILC2 subtypes in aged mice may be associated with age-associated shifting of the 

microbiome composition.

ABX Treatment Alters ILC Plasticity Pattern in Aged Mice but Not in Young Mice

Peripheral ILCs are known to have the ability to recognize both self and pathogenic 

molecules and respond to systemic cues, for example, gut dysbiosis (Bal et al., 2020; 

Colonna, 2018; Gury-BenAri et al., 2016). Upon gut dysbiosis, intestinal ILCs underwent 

extensive epigenetic and transcriptional changes, which led to the expansion of ILC3s in 

either germ-free or ABX-treated mice (Gury-BenAri et al., 2016). To further investigate the 

impact of ABX treatment on CNS-derived ILC transcriptome plasticity, we re-clustered 

ILC-like cells from the young control versus young ABX and aged control versus aged ABX 

groupings. For both young and aged groups, the ILC-like cells separated into three 

transcriptionally distinct clusters (Figure 6A, left). ABX treatment led to a significant 

decrease in the frequency of subcluster 1 only in aged mice, while subcluster distributions in 

young mice with gut dysbiosis remained relatively stable (Figure 6A, right). Subcluster 2 

resembled the ILC1 signature (Ncr1, Tbx21, and Gzma), while subcluster 0 resembled 

ILC2s with the expression of Hes1, Areg, and Gata3 (Figure 6B; Table S2). Subcluster 1 

closely mirrored the Tscm-like cluster previously described in the aged control mice 

expressing Ly6a, Cd8a, and Cxcr3 (Figure 6B; Table S2). Slingshot analysis ordered the 

subclusters and projected differentiation similarly to ILC-like cells compared between young 

and aged mice, with the ILC1 subcluster projected to differentiate and split into the Tscm-

like cells and ILC2s (Figures 6C and 6D). Of note, while ABX treatment prevented the 

Golomb et al. Page 10

Cell Rep. Author manuscript; available in PMC 2020 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transdifferentiation path from ILC1 to Tscm-like cells in the aged brain microenvironment, 

ABX treatment had no impact on Cell-ID CD8+ T cells at both compositional and 

transcriptional levels (Figures S4B–S4D), highlighting the unique identity of Tscm-like cells 

in the aged brain. While potential transdifferentiation between ILC1 and Tscm-like cells in 

the aged brain requires further functional validation, our data provide evidence that ILC 

plasticity associated with gut microbiota depletion is not restricted to intestinal ILCs but 

affects ILCs found in the brain as well.

ABX-Associated ILC Plasticity Is Not Fully Induced in Intestinal Tissue

Intestinal ILC subtype diversity is controlled through constant signaling from gut 

microbiota, suggesting that changes in ILC subtype frequencies observed in the aged brain 

may be initiated at the intestinal tissue in close proximity to the gut dysbiosis (Gury-BenAri 

et al., 2016). We conducted CITE-seq on gut-derived immune cells from aged mice to 

investigate the possible correlation between gut and brain ILCs. Aged mice were fed vehicle 

or ABX cocktail in an identical manner and timing as previously described (Figure 1A). At 

the completion of ABX or vehicle treatment, we collected and enriched for CD45+ small 

intestinal immune cells for single-cell isolation and sequencing (10X Genomics) as 

previously described. Gut ILCs were identified by a gating strategy similar to that which we 

used for brain ILCs (Figure S5A). Gut ILCs were re-clustered and separated into seven 

transcriptome-based subclusters (Figures S5B and S5C). We identified canonical ILC1, 

ILC2, and ILC3 subtypes (Bal et al., 2020; Colonna, 2018; Gury-BenAri et al., 2016) 

(Figures S5B, right dotplot, and S5C). Subcluster 2 of the gut-derived ILCs resembled the 

Tscm-like signature similar to CNS-derived ILCs (Gattinoni et al., 2017) (Figure S5C; Table 

S2). Fewer ILCs were present in the gut of aged ABX mice compared to aged control, and 

gut-derived Tscm-like ILCs were only slightly decreased in the aged ABX (16%) compared 

to aged control (21%) (Figure S5D; Table S3). While the decreasing trend in Tscm-like ILCs 

remained detectable in gut tissue, the reduction in Tscm frequency was not nearly as stark in 

the gut as observed in the brain. ILC subcluster 2 (Tscm cluster) largely overlapped with 

ILC1 and ILC2 subclusters on the Slingshot trajectory analysis plot, suggesting that, in the 

gut tissue, the Tscm-like cells had more transcriptional overlap and similarity with ILC1 and 

ILC2 cells (Figure S5E). The significant decrease of Tscm-like cells in the CNS compartment 

is unlikely to be explained in full by the slight compositional and transcriptional changes 

happening in the gut tissue.

DISCUSSION

Canonical identity of immune cells is traditionally defined by surface protein expression, 

whereas the functional status in response to stimuli is often well defined by transcriptional 

signature (Papalexi and Satija, 2018). CITE-seq was developed as a multi-modal sequencing 

tool to track transcriptional changes happening within a specific cell type by directly 

coupling surface marker expression with single-cell transcriptome profiling (Stoeckius et al., 

2017). Using CITE-seq, we examined the transcriptional plasticity of canonically identified 

immune cells in the brain in response to the systemic influence of aging and gut dysbiosis.
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Compositional changes among the CNS-resident immune populations in response to aging 

and neuroinflammation have been observed (Mrdjen et al., 2018). Aged mice had increased 

frequency of MHC-II+CCR2− BAMs and microglia that expressed higher levels of 

phagocytosis-associated surface markers (Mrdjen et al., 2018). Small subsets of chemokine-

enriched inflammatory microglia have also been discovered in the aged mouse brain 

(Hammond et al., 2019). Although microglia and BAM transcriptomes in our study were 

relatively stable and less plastic compared to monocytes and ILCs, consistent with the above 

observations, CNS-resident cells were shifted toward a pro-inflammatory and antigen 

presentation program under the influence of aging, and marginally so by gut dysbiosis 

(Figures 2B and 2E). We suspect that such shifting of microglia and BAMs toward a pro-

inflammatory profile is reflective of a more inflamed environment within the aged brain 

(Erickson and Banks, 2019; Plaza-Zabala et al., 2017).

ILC-like cells displayed transcriptional plasticity in response to both aging and gut dysbiosis 

stimuli (Figures 5A, 5B, and 6A). Peripheral ILCs mirrored the T helper cell signature and 

can mediate induction and resolution of inflammation as well as maintain tissue homeostasis 

and mucosal barriers (Bal et al., 2020; Colonna, 2018; Derecki et al., 2019). Compared to 

young mice, ILC-like cells in aged mice were shifted into ILC2 and T.scm-like subtypes 

(Figure 5B). With high expression of amphiregulin (AREG), ILC2s may be critical in 

type-2-mediated resistance and tolerance to maintain tissue integrity following damage or in 

chronically inflamed environments, such as the aged brain (Zaiss et al., 2015) (Figure 5C). 

CNS-associated ILCs have also played a role in guiding T cell CNS infiltration and 

engagement in response to neuroinflammation (Kwong et al., 2017). ILC shifting toward 

ILC2 subtypes within the aged brain potentially regulates the CD8+ T cell infiltration in the 

aged brain observed in our study (Figure 1D) as well as in recent reports (Dulken et al., 

2019; Mrdjen et al., 2018).

In the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple 

sclerosis, CNS-derived ILC1s and NK cell transcriptional programs were controlled through 

the Eomes and T-bet transcription factors in response to the CNS inflamed environment 

(Romero-Suárez et al., 2019). Age-associated neuroinflammation may drive Eomes+ NK/

ILC1s to differentiate into the Tscm-like cells dominated by the Eomes regulon (Figure S3F), 

a phenomenon that may not occur in the young non-inflamed brain. The molecular 

underpinning of the significant reduction of the Tscm-like population in aged mice with gut 

dysbiosis still remains elusive, as differential regulon activity analysis did not reveal 

significant changes in Eomes or T-bet activity in ILCs between aged control and aged ABX 

mice and was not fully explained by shifting occurring within gut tissue (Figure S5). The 

functional significance of the Tscm-like ILCs in the aging brain and how their plasticity is 

influenced by dysbiosis in the aged tissue environment warrant further research.

Last, our ABX cocktail included absorbable ABX, which raises questions regarding the 

relative contributions of the altered microbiota versus direct effects of ABX on immune cells 

(Clarke et al., 2010; Erny et al., 2017). In addition to understanding the effects of ABX in a 

given scientific research study, it is pertinent that the physiological impact is clear prior to 

clinical use. With widespread use of ABX in the clinic, particularly in older populations, it is 

a relevant area of study that warrants further investigation.
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In summary, our study provides a holistic map of the brain immune plasticity in response to 

aging and gut dysbiosis. The molecular characterization of the impact of aging on both 

innate and adaptive immune systems in the brain will guide further mechanistic studies on 

age-associated neuroinflammation and neurological diseases.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Siyuan Zhang (szhang8@nd.edu).

Materials Availability—This study did not generate unique reagents.

Data and Code Availability—The accession number for the CITE-seq data reported in 

this paper is GEO: GSE148127. The accession number for the 16S gut microbiome data 

reported in this paper is GEO: GSE160628. All other data and code used to analyze data are 

available upon reasonable request for Lead Contact/corresponding author.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal studies were performed ethically and in compliance with IACUC protocol 

approved by the University of Notre Dame IACUC committee. C57BL/6 (000664/Black 6) 

mice were purchased from Jackson Lab (Ben Harbor, ME). Mice were acclimated and 

randomized within age groups for two weeks in the Friemann Life Science Center (FLSC) at 

the University of Notre Dame prior to experimental use. All mice used in the study were 

females at either 10 weeks or 70 weeks of age.

METHOD DETAILS

Gut Microbiota Dysbiosis and ABX Treatment Strategy—8-week old and 68-week 

old SPF C57BL/6 female were acclimated in the animal facility for 2 weeks and randomized 

within age groups to normalize the gut microbiota. 10-week and 70-week old female mice 

were assigned to either vehicle or antibiotics (ABX) treatment groups. The ABX groups 

received an ABX cocktail containing metronidazole (MedChem Express, 0.25 g/L), 

vancomycin hydrochloride (BioVision, 1 g/L), neomycin sulfate (VWR, 1 g/L), and 

ampicillin sodium salt (Sigma, 0.5 g/L) which was dissolved into grape flavored Kool-Aid 

water as a vehicle. Initially, the ABX or vehicle was delivered in the cage water bottles and 

by oral gavage every other day to all mice for the first week of treatment. Then, all mice in 

the study received vehicle in cage water bottles and received oral gavage of either vehicle or 

ABX cocktail twice daily for an additional two weeks of treatment. Mice were weighed 

every 3–4 days during treatment to check that healthy body weight was maintained. Fresh 

ABX cocktail was prepared every 3 days for oral gavage. Water bottles were refreshed every 

3–4 days to ensure mice received active antibiotics each dose. Mouse fecal samples were 

collected on day 0 and day 21 (endpoint) of treatment for 16S analysis. After ABX 

pretreatment was completed, mice were sacrificed to collect brain tissue for 10X Genomics 

Chromium Single Cell Gene Expression analysis. All animal studies were performed 
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ethically and in accordance with the IACUC protocol approved by the University of Notre 

Dame IACUC committee.

16S rRNA sequencing and analysis—Mouse fecal DNA extraction was performed 

using the ZymoBIOMICS DNA Miniprep Kit (Cat# D4300). 16S V3/V4 region 

amplification, sample indexing and library preparation were performed following the 

Illumina 16S Metagenomic Sequencing Library Preparation (PN 15044223 Rev. B). 

Amplicons were indexed using the Nextera XT Index Kit (FC-131-1096). Libraries were 

submitted to the University of Notre Dame Genomics & Bioinformatics Core Facility 

(GBCF) for Illumina sequencing. GBCF normalized and multiplexed the libraries into a 

single pool prior to validation by Qubit High-Sensitivity dsDNA, Agilent Bioanalyzer DNA 

7500 Chip, and Kapa Illumina Library Quantification qPCR analyses. The final library 

(8.5pM) and PhiX (0.7pM) were sequenced on the MiSeq System using MiSeq V2 500 

cycle kit (250-PE with 8-bp dual indexing). Base calling and demultiplexing were performed 

by MiSeq Controller Software. After quality control filtering; a total of 2,734,528 reads were 

processed with an average of 171,159 reads per sample. We used the Divisive Amplicon 

Denoising Algorithm version 2 (DADA2) R package to analyze the 16S amplicon reads and 

construct the operational taxonomic units (OTUs). This package incorporates a quality-

aware model of Illumina amplicon errors to improve the identification of real variants and 

minimize false positives (Callahan et al., 2016). DADA2 utilizes the Silva taxonomic 

database: http://doi.org/10.5281/zenodo.3986799.

Tissue collection and single cell preparation—For CITE-seq brain tissue collection, 

mice were anesthetized with isoflurane and transcardially perfused with cold 1x PBS. Cells 

were isolated from mouse brain tissue by digesting the brains into single cell suspensions 

and then enriched from other neural cells by density gradient centrifugation as follows: 

Brains from mice transcardially perfused with 1x PBS were extracted, minced with scissors 

and triturated with a P1000 micropipette. The resulting brain tissue slurry was centrifuged at 

300 g for 2 minutes. The supernatant was removed and the pellet resuspended and processed 

as directed by the Multi-tissue Dissociation Kit I (Miltenyi Biotec, 130-110-201). Brains 

were enzymatically digested into a single cell suspension by rotating at 37°C for 

approximately 25 minutes with trituration halfway through incubation. The resulting cell 

suspension was strained through a 100 μm cell filter as needed, diluted in 1x HBSS, and 

centrifuged at 300 g for 10 minutes. The resulting supernatant was discarded and the pellet 

resuspended in 3mL 70% Percoll (GE Healthcare, 17-0891-02). The Percoll gradient and 

density layering were prepared (from bottom to top: 70%, 37%, 30%). Density gradient 

centrifugation was performed for 20 minutes at 2000rpm with no break. Mononucleated 

cells were isolated from the buffy layer between the interface of the clear Percoll and red-

colored Percoll. Following washing in 1x HBSS, the resultant cell suspension was processed 

as required for CITE-seq.

For isolation of lymphocytes from the mouse small intestinal tissue, we adapted a tissue 

digestion procedure as previously published (Couter and Surana, 2016). Briefly, mice were 

anesthetized with isoflurane and transcardially perfused with cold 1X PBS. The small 

intestine was transected from the stomach and peritoneum while teasing away mesenteric fat 
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until reaching the juncture of the cecum and large intestine. The small intestine was cut into 

1 inch segments and Peyer’s patches were removed. Tissue was turned inside out using 

forceps to cannulate the tissue and fecal matter was washed away with cold media 

containing 10% fetal bovine serum (FBS). Next, epithelial cells were extracted from the 

tissue segments through vigorous shaking in media (1.6% FBS, 5% (w/v) dithiothreitol 

(DTT) and 1 mM EDTA). Tissue segments were passed over a gauze filter to remove 

intraepithelial lymphocytes. Tissue segments were then minced with scissors, triturated with 

a P1000 micropipette and vigorously shaken in a digestion buffer containing Dispase II 

(Sigma-Aldrich, D4693) (0.5 mg/mL) and Collagenase IV (Thermo Fisher Scientific, 

17104019) (1.5 mg/mL) to dissociate remaining tissue from immune cells. After digestion, 

the suspension was filtered through a 40 mm cell strainer and washed with media containing 

10% FBS. The isolated cells were then enriched for CD45+ immune cells using CD45 

Microbeads (Miltenyi Biotec, 130-052-301) before being subjected to CITE-seq analysis.

CITE-seq antibodies and cell staining—Following gradient centrifugation for brain 

immune cells or CD45+ enrichment for gut immune cells, samples were prepared for 10X 

Genomics Chromium Single Cell Gene Expression analysis as described in the CITE-seq 

and cell hashing protocol on the CITE-seq website (https://citeseq.files.wordpress.com/

2019/02/cite-seq_and_hashing_protocol_190213.pdf). Briefly, samples were blocked by 

incubation with TruStain fcX in a 50 μL cell staining buffer for 20 minutes on ice. Following 

the blocking step, samples were stained with Total-seq antibodies purchased from 

BioLegend: CCR2/CD192 (SA203G11, 150625), CD117/c-kit (2B8, 105843), CD11c 

(N418, 117355), CD172a/SIRPɑ (P84, 144033), CD38 (90, 102733), CD44 (IM7, 103045), 

CD45R/B220 (RA3-6B2, 103263), CD8a (53-6.7, 10073), CD90.1 (OX-7, 202547), Cx3cr1 

(SA011F11, 149041), F4/80 (BM8, 123153), I-A/I-E (M5/114.15.2, 107653), Ly6C (HK1.4, 

128047), Ly6G (1A8, 127655), NK1.1 (PK136, 108755), PD-1 (RMP1-30, 109123), PD-L1 

(MIH6, 153604), CD169/Siglec-1 (3D6.112, 142425), Siglec-H (551, 129615), TMEM119 

(A16075D, 853303), XCR1 (Zet, 148227), CD24 (M1/69, 101841), CD103 (2E7, 121437), 

CD64 (X54-5/7.1, 139325), CD83 (Michel-19, 121519), CD45 (30-F11, 103159), Cd11b 

(M1/70,101265), CD86 (GL-1, 105047), CD3 (17-A2, 100251), CD4 (RM4-5,100569), and 

CD25 (PC61, 102055). For gut immune cell CITE-seq, in addition to the antibodies listed 

above the following Total-seq antibodies purchased from BioLegend were also included in 

the cocktail: CD335 (29A1.4, 137633) and CD127 (A7R34, 135045). Additionally, each 

sample was stained with one unique hashing antibody purchased from BioLegend: HTO1 

(M1/42; 30-F11, 155801), HTO2 (M1/42; 30-F11, 155803), HTO3 (M1/42; 30-F11, 

155805), HTO4 (M1/42; 30-F11, 155807), HTO5 (M1/42; 30-F11, 155809), HTO6(M1/42; 

30-F11, 155811), HTO7(M1/42; 30-F11, 155813), HTO8 (M1/42; 30-F11, 155815). After 

25 minutes of staining, samples were washed 4 times prior to delivering the prepared 

samples to the University of Notre Dame Genomics & Bioinformatics Core Facility (GBCF) 

for 10X Genomics Chromium Single Cell Gene Expression analysis.

CITE-seq Library Preparation and Illumina sequencing—For CITE-seq 

experiments, GBCF prepared cells for 10X Genomics Chromium single cell capture. cDNA 

libraries were prepared according to the standard CITE-seq (https://

citeseq.files.wordpress.com/2019/02/cite-seq_and_hashing_protocol_190213.pdf) and 10x 
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Genomics standard protocols. Kits necessary for library preparation included Chromium 

Single Cell 3′ Library and Gel Bead Kit v3 (10x Genomics, PN-10000092); Chromium 

Next GEM Single Cell 3′ GEM Library and Gel Bead Kit v3.1 (10x Genomics, 

PN-1000121); Chromium Chip B Single Cell Kit (10x Genomics, PN-1000074); Chromium 

i7 Multiplex Kit (10x Genomics, PN-120262). Primers required for library preparation 

include:

ADT_TruSeq_i7_UDI01 - 

CAAGCAGAAGACGGCATACGAGAACCGCGGGTGACTGGAGTTCCTTGGCA

CCCGAGAATTCCA

ADT_TruSeq_i7_UDI02 - 

CAAGCAGAAGACGGCATACGAGGGTTATAAGTGACTGGAGTTCCTTGGCAC

CCGAGAATTCCA

HTO_Nextera_i7_UDP01 - 

CAAGCAGAAGACGGCATACGAGATCGCTCAGTGTGACTGGAGTTCAGACG

TGTGC

HTO_Nextera_i7_UDP04 - 

CAAGCAGAAGACGGCATACGAGATCTTATGGAGTGACTGGAGTTCAGACGT

GTGC

HTO-N701 - 

CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTCAGACGT

GTGC

HTO-N702 - 

CAAGCAGAAGACGGCATACGAGATCTAGTACGGTGACTGGAGTTCAGACGT

GTGC

ADT-RPI-1 - 

CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCCTTGGCAC

CCGAGAATTCCA

ADT-RPI-2 - 

CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCCTTGGCAC

CCGAGAATTCCA

Libraries (cDNA-, ADT-, and HTO-derived) were validated by Qubit High Sensitivity ds 

DNA and Agilent Bioanalyzer DNA High-Sensitivity Chip analyses. After which, libraries 

were submitted to Indiana University School of Medicine Center for Medical Genomics for 

multiplexing into a single pool and Illumina sequencing. The multiplex pool contained 

cDNA library, ADT-derived library, and HTO-derived library by molarity as reported by 

Agilent TapeStation System to achieve final reads ~50,000–70,000 cDNA reads/cells, 

~3,000–5,000 ADT reads/cells and ~2,000 HTO reads/cell. The final library pool was 

sequenced on the NovaSeq6000 System using NovaSeq XP kit and NovaSeq S2 flow cell 

(100 cycle) kit (Read1 26-bp, Read2 91-bp and Index1 8-bp). The raw base sequence calls 

were demultiplexed into sample-specific cDNA, ADT and HTO FASTQ files with 

bcl2fastq2 Conversion Software v2.20 through Cell-Ranger V3.1.0.
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QUANTIFICATION AND STATISTICAL ANALYSIS

CITE-seq analysis and statistical analysis—Raw FASTQ files were processed using 

the Cellranger V3.1.0 software package (10X genomics Inc.) for RNA expression matrix and 

CITE antibody counts matrix. The data from young and aged generated from two GEM 

wells were combined using a cellranger aggr pipeline (10X genomics Inc.). Cells were 

sequenced to comparable sequencing depths (50,084–69,026 reads/cell) and had a similar 

median unique molecular identifier (UMI) count and median gene number in all conditions. 

We performed most filtering/normalization/scaling and dimensional reduction, clustering, 

and differential expression analyses using the R Studio and R package Seurat_3.1.1 (Ihaka 

and Gentleman, 1996; Satija et al., 2015). Filtering, normalizing and demultiplexing at the 

cell and gene levels resulted in a final set of 22,278 cells with 1,128–3,515 cells per sample. 

After pre-filtering and quality control based on minimum gene and cell observance 

frequency cut-offs, SCTransform function was applied to normalize and scale the data. 

Dimensionality reduction by principal component analysis and UMAP embedding was 

performed for cell cluster visualization. Cells were demultiplexed to their original sample 

groups using the Cell Hashing tags (HTOs). Gene expression was analyzed by Wilcoxon 

rank sum test unless otherwise noted in figure legend. The trajectory inference (TI) analysis 

was conducted using the Dyno package (https://dynverse.org/) (Saelens et al., 2019). The 

most appropriate method (Slingshot) was selected based on Dyno recommendations. RNA 

velocity was performed based on a previous publication (http://velocyto.org/) (La Manno et 

al., 2018). When conducting TI analysis, we also cross-referenced with RNA velocity 

analysis results to ensure biological meaningful interpretations. SCENIC analysis was 

performed on subsets of innate lymphoid cells as described here: https://

rawcdn.githack.com/aertslab/SCENIC/0a4c96ed8d930edd8868f07428090f9dae264705/

inst/doc/SCENIC_Running.html

We conducted this analysis as previously described (Aibar et al., 2017; Davie et al., 2018). 

Briefly, a gene regulatory network (GRN) is first built by identifying potential targets for 

transcription factors (TF) based on co-expression. Next, potential direct-binding targets 

(regulons) are selected through a DNA-motif analysis. Network activity is then analyzed for 

each individual cell by calculating area under the curve (AUC).

Gating Strategy—Canonical cell gating was performed as described previously (Mrdjen 

et al., 2018) and shown in Figure S2 based on the CITE-antibody reads, and in instances 

when a CITE antibody was not available or the reads were not clear, RNA reads for 

particular markers were used as a substitute and/or a filter to increase confidence. Briefly, 

CD45 expression level was used to segregate brain-resident (CD45Low) and peripherally-

derived (CD45High) immune cells. CD45Low immune cells were further segregated on the 

basis of CD38, MHC-II, Tmem119, and Mrc1 into microglia (CD38-,MHC-II-/Low/

Tmem119+,Mrc1−/Low) or BAM (CD38+,MHC-II+Tmem119−,Mrc1+). Within the 

CD45High peripheral immune populations, B cells were first identified on the basis of high 

CD45R-B220 and Cd19 expression. The remaining CD45High cells were segregated into 

potential NK and T cell populations or BMDM populations based on moderate to high or 

low expression of Thy1 (pan t cell marker) and Itga2 (highly expressed in T cells and NK 

cells), respectively. From the Thy1+Itga2+ population, NK cells were identified on the basis 
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of Klrb1 positivity, ILCs were identified based on CD3-CD117+, and T cell subsets were 

identified based on CD3+ and CD4+ or CD8+. The potential BMDM population was filtered 

to exclude cells with low CD11b and Itgam expression and then gated based on Ly6C and 

Ly6G expression to identify Ly6CLow/NegLy6G- patrolling monocytes, Ly6CHighLy6G- 

inflammatory monocytes, and Ly6C+Ly6G+ neutrophils. We verified the accuracy of the 

gating by examining the RNA expression of CNS native myeloid marker genes; Tmem119, 

and Mrc1 and BMDM-specific genes; Itga2, Thy1, and Itgam in the identified cell 

populations.

Integrative gene expression and microbiota analysis—Integrated analysis 

evaluating correlations between gut microbiota composition and cluster specific gene 

expression changes were analyzed by following a specific workflow that uses sparse 

Canonical Correlation Analysis (sparse CCA) (https://f1000research.com/articles/5-1492/

v2). Differentially expressed genes (only with adj p value < 0.05) of a given Cell-ID type 

(i.e., Ly6CHigh) between young mice (3 samples) and aged mice (3 samples) were compared 

with their respective host microbial operational taxonomic units (OTUs). OTU tables were 

filtered to remove rare taxa. OTU tables only include taxa that have a minimum of 4 reads 

and have constant read counts across 6 samples. Sparse CCA analysis was performed based 

on the best sparsity penalties value selected through CCA.permute() provided in the PMA R 

package. The sparse CCA result reflecting the selected feature’s ability to best explain 

covariation was used as input to further PCA analysis. The PCA result was then presented as 

PCA triplots. The CCA result was also analyzed using Spearman correlation using the 

cor.test() function with two-sided alternative hypothesis. Representative gene-taxa 

correlations were visualized using the corrplots R package, where the strength of the 

correlation is indicated by the color scale bar.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• CNS native immune cells exhibit age-associated inflammatory qualities

• Ly6C+ monocytes display transcriptional plasticity in the aged mouse brain

• Innate lymphoid cell plasticity reflects age-associated chronic 

neuroinflammation

• Gut dysbiosis affects innate lymphoid cell plasticity only in aged mice
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Figure 1. CITE-Seq Delineates the Global Immune Cell Diversity in the Brain
(A) Schematic of experimental approach.

(B) Single cells projected onto UMAP with cells color coded by transcriptional cluster ID 

(left). UMAP clustering as in left plot with cells color coded by canonical Cell-ID (right). 

Dashed circle (a) on peripheral lymphoid cell populations and dashed circle (b) on non-

microglia myeloid cells are shown.

(C) Heatmap of top differentially expressed genes (DEGs) per transcriptional cluster.

(D) Stacked bar charts of peripheral lymphoid cells (top) and peripheral myeloid cells 

(bottom) frequencies (n = 3 biological replicates per group).

(E) Volcano plot of differentially enriched gene pathways (DEGPs) in CD8+ T cells between 

aged and young.

(F) Violin plots of Ly6a and Dusp2 expression in CD8+ T cells in young and aged (n = 3 

biological replicates per group).

All plots were derived from pooling three biological replicates per experimental condition. 

Data in (E) and (F) were analyzed by Wilcoxon rank-sum test. Also see Tables S1, S2, S3 

and S4.
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Figure 2. Aged Brain Is Enriched for Inflammation-Prone Brain-Resident Myeloid Cells
(A) UMAP clustering as in Figure 1B with Cell-ID microglia colored in pink (top) and with 

Cell-ID microglia colored by transcriptional clusters (bottom).

(B) Stacked bar charts of Cell-ID microglia frequencies within transcriptional clusters (n = 3 

biological replicates per group) (top). Volcano plot of DEGPs between RNA cluster 1 and 

RNA cluster 0 (bottom) is shown.

(C) Heatmap with top 40 DEGs in Cell-ID microglia.

(D) UMAP clustering as in Figure 1B with Cell-ID BAMs in blue (top) and with Cell-ID 

BAMs colored by transcriptional cluster ID (bottom).

(E) Stacked bar charts of Cell-ID BAMs frequencies within transcriptional clusters (n = 3 

biological replicates per group) (top). Volcano plot of DEGPs between RNA cluster 3 and 

RNA cluster 8 (bottom) is shown.

(F) Heatmap with top 26 DEGs in Cell-ID BAMs.

All plots were derived from pooling three biological replicates per experimental condition. 

Data in (B) and (E) were analyzed by Wilcoxon rank-sum test. Also see Tables S2, S3, and 

S4.
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Figure 3. Innate Ly6CHigh Monocytes Show Microenvironment-Dependent Plasticity in Aged 
Brain
(A) UMAP clustering as in Figure 1B with RNA cluster 6 in turquoise (left) and with Cell-

ID Ly6CHigh darkened (right, split by conditions).

(B) Re-clustered young and aged Ly6CHigh cells on UMAP (top left) and stacked bar charts 

of cluster frequencies (n = 3 biological replicates per group) (top right) and heatmap of 

Ly6CHigh subcluster DEGs (bottom).

(C) Trajectory of Ly6CHigh subclusters overlaid with indicated genes (top). Heatmap of 

trajectory DEGs in cluster ordering (bottom). Ordering is denoted by arrows at the bottom.

(D) Volcano plot of DEGPs in Ly6CHigh subcluster 2 versus all other Ly6CHigh subclusters.
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(E) PCA triplot of sparse canonical correlation analysis (CCA) of microbiota families and 

Ly6CHigh DEGs in young and aged. Dots represent cells from aged and triangles represent 

cells from young. Ly6CHigh subclusters are represented by different colors. Gene names are 

in green and OTUs are in pink.

(F) Gene-microbial family correlation plot. Red indicates positive and blue indicates 

negative correlation. All correlations have corr.test p < 0.01.

All plots were derived from pooling three biological replicates per experimental condition. 

Data in (D) were analyzed by Wilcoxon rank-sum test. Also see Tables S2, S3, and S4.
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Figure 4. Aged Brain Increases Ly6CLow Patrolling Monocyte Plasticity
(A) UMAP clustering as in Figure 1B with RNA cluster 3 in green (left) and with Cell-ID 

Ly6CLow darkened (right, split by conditions).

(B) Re-clustered young and aged Ly6CLow cells on UMAP (top left) and stacked bar charts 

of cluster frequencies (n = 3 biological replicates per group) (top right). Heatmap of 

Ly6CLow subcluster DEGs (bottom) is shown.

(C) Trajectory of Ly6CLow subclusters overlaid with indicated genes (top). Heatmap of 

trajectory DEGs in cluster ordering (bottom) is shown. Ordering is denoted by arrows at the 

bottom.

(D) Volcano plot of DEGPs in Ly6CLow subcluster 1 versus all other Ly6CLow subclusters.
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(E) PCA triplot of sparse CCA of microbiota families and Ly6CLow DEGs in young and 

aged. Dots represent cells from aged and triangles represent cells from young. Ly6CLow 

subclusters are represented by different colors. Gene names are in green and OTUs are in 

pink.

(F) Gene-microbial family correlation plot. Red indicates positive and blue indicates 

negative correlation. All correlations have corr.test p < 0.01.

All plots were derived from pooling three biological replicates per experimental condition. 

Data in (D) were analyzed by Wilcoxon rank-sum test. Also see Tables S2, S3, and S4.
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Figure 5. CNS Innate Lymphoid Cell Plasticity Reflects Chronic Neuroinflammation in the Aged 
Brain
(A) UMAP clustering as in Figure 1B highlighting RNA-based clusters 7 (blue) and 9 

(purple) (left) and with Cell-ID ILCs darkened (right, split by conditions).

(B) Re-clustered young and aged ILCs on UMAP. Plots split by young and aged (top left) 

and stacked bar charts of cluster frequencies (n = 3 biological replicates per group) (top 

right). Dot plot of ILC subcluster expression level (color scale) and percentage (size of dot) 

for indicated cell types and associated marker genes (bottom).

(C) Heatmap of ILC subcluster DEGs.

(D) Volcano plot of DEGPs in ILC subcluster 1 versus all other ILC subclusters.

(E) Trajectory of ILC subclusters overlaid with indicated genes.
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(F) Heatmap of trajectory DEGs in cluster ordering. Ordering is denoted by arrows at the 

bottom.

All plots were derived from pooling three biological replicates per experimental condition. 

Data in (D) were analyzed by Wilcoxon rank-sum test. Also see Tables S2 and S3.
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Figure 6. ABX Treatment Alters ILC Plasticity Pattern in the Aged Mice
(A) Re-clustered young control and young ABX ILCs on UMAP (top left) and stacked bar 

charts of cluster frequencies (n = 3 biological replicates per group) (top right). Re-clustered 

aged control and aged ABX ILCs on UMAP (bottom left) and stacked bar charts of cluster 

frequencies (n = 3 biological replicates per group) (bottom right).

(B) Heatmap of aged control and aged ABX ILC subcluster DEGs.

(C) Trajectory of aged control and aged ABX ILC subclusters overlaid with indicated genes.

(D) Heatmap of trajectory DEGs in cluster ordering. Ordering is denoted by arrows at the 

bottom.

All plots were derived from pooling three biological replicates per experimental condition. 

Also see Tables S2, S3, and S4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CITE-seq: rat anti-CCR2/CD192 (SA203G11) Biolegend Cat#150625; 
RRID:AB_2783122

CITE-seq: rat anti-CD117/c-kit (2B8) Biolegend Cat#105843; 
RRID:AB_2749960

CITE-seq: rat anti-CD11b (M1/70) Biolegend Cat#101265; 
RRID:AB_2734152

CITE-seq: armenian hamster anti-CD11c (N418) Biolegend Cat#117355; 
RRID:AB_2750352

CITE-seq: rat anti-CD172a/SIRPα (P84) Biolegend Cat#144033; 
RRID:AB_2800670

CITE-seq: rat anti-CD25 (PC61) Biolegend Cat#102055; 
RRID:AB_2749982

CITE-seq: rat anti-CD3 (17A2) Biolegend Cat#100251; 
RRID:AB_2750533

CITE-seq: rat anti-CD38 (90) Biolegend Cat#102733; 
RRID:AB_2750556

CITE-seq: rat anti-CD4 (RM4–5) Biolegend Cat#100569; 
RRID:AB_2749956

CITE-seq: rat anti-CD44 (IM7) Biolegend Cat#103045; 
RRID:AB_2734154

CITE-seq: rat anti-CD45 (30-F11) Biolegend Cat#103159; 
RRID:AB_2734156

CITE-seq: rat anti-CD45R/B220 (RA3-6B2) Biolegend Cat#103263; 
RRID:AB_2734158

CITE-seq: rat anti-CD86 (GL-1) Biolegend Cat#105047; 
RRID:AB_2750348

CITE-seq: rat anti-CD8a (53-6.7) Biolegend Cat#100773; 
RRID:AB_2734151

CITE-seq: mouse anti-CD90.1 (OX-7) Biolegend Cat#202547; 
RRID:AB_2783141

CITE-seq: mouse anti-Cx3cr1 (SA011F11) Biolegend Cat#149041; 
RRID:AB_2783121

CITE-seq: rat anti-F4/80 (BM8) Biolegend Cat#123153; 
RRID:AB_2749986

CITE-seq: rat anti-I-A/I-E (M5/114.15.2) Biolegend Cat#107653; 
RRID:AB_2750505

CITE-seq: rat anti-Ly6C (HK1.4) Biolegend Cat#128047; 
RRID:AB_2749961

CITE-seq: rat anti-Ly6G (1A8) Biolegend Cat#127655; 
RRID:AB_2749962

CITE-seq: mouse anti-NK1.1 (PK136) Biolegend Cat#108755; 
RRID:AB_2750536

CITE-seq: rat anti-PD-1 (RMP1–30) Biolegend Cat#109123; 
RRID:AB_2734169

CITE-seq: rat anti-PD-L1 (MIH6) Biolegend Cat#153604; 
RRID:AB_2783125

CITE-seq: rat anti-CD169/Siglec-1 (3D6.112) Biolegend Cat#142425; 
RRID:AB_2783106

CITE-seq: rat anti-Siglec-H (551) Biolegend Cat#129615; 
RRID:AB_275053
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REAGENT or RESOURCE SOURCE IDENTIFIER

CITE-seq: mouse anti-TMEM119 (A16075D) Biolegend Cat#853303; 
RRID:AB_2801201

CITE-seq: mouse anti-XCR1 (Zet) Biolegend Cat#148227; 
RRID:AB_2783120

CITE-seq: rat anti-CD24 (M1/69) Biolegend Cat#101841; 
RRID:AB_2750380

CITE-seq: rat armenian hamster anti-CD103 (2e7) Biolegend Cat#121437; 
RRID:AB_2750349

CITE-seq: mouse anti-CD64 (X54-5/7.1) Biolegend Cat#139325; 
RRID:AB_2750367

CITE-seq: mouse anti-CD83 (Michel-19) Biolegend Cat#121519; 
RRID:AB_2783061

CITE-seq: rat anti-mouse Hashtag 1 antibody (M1/42; 30-F11) Biolegend Cat#155801; 
RRID:AB_2750032

CITE-seq: rat anti-mouse Hashtag 2 antibody (M1/42; 30-F11) Biolegend Cat#155803; 
RRID:AB_2750033

CITE-seq: rat anti-mouse Hashtag 3 antibody (M1/42; 30-F11) Biolegend Cat#155805; 
RRID:AB_2750034

CITE-seq: rat anti-mouse Hashtag 4 antibody (M1/42; 30-F11) Biolegend Cat#155807; 
RRID:AB_2750035

CITE-seq: rat anti-mouse Hashtag 5 antibody (M1/42; 30-F11) Biolegend Cat#155809; 
RRID:AB_2750036

CITE-seq: rat anti-mouse Hashtag 6 antibody (M1/42; 30-F11) Biolegend Cat#155811; 
RRID:AB_2750037

Chemicals, Peptides, and Recombinant Proteins

FcR Block Reagent, mouse Miltenyi 
Biolec

Cat#130-092-575 
RRID: N/A

Hanks Balanced Salt Solution (HBSS), 1x, -Ca, -Mg, Phenol Red Cytiva Life 
Sciences

Cat#SH30588.01 
RRID: N/A

Percoll GE 
Healthcare

Cat#17-0891-02 
RRID: N/A

Metronidazole MedChem 
Express

Cat#HY-B0318 
RRID: N/A

Vancomycin Hydrochloride BioVision Cat#B1507 RRID: 
N/A

Neomycin Sulfate VWR Cat#97061-906 
RRID: N/A

Ampicillin Sodium Salt Sigma 
Aldrich

Cat#A9518 RRID: 
N/A

Critical Commercial Assays

Chromium Single Cell 3’ Library and Gel Bead Kit v3 10x 
Genomics

PN-10000092 
RRID: N/A

Single Cell 3’ GEM Library and Gel Bead Kit v3.1 10x 
Genomics

PN-10000092 
RRID: N/A

Chromium Chip B Single Cell Kit 10x 
Genomics

PN-1000074 RRID: 
N/A

Chromium i7 Multiplex Kit 10x 
Genomics

PN-120262 RRID: 
N/A

Multi-tissue Dissociation Kit I Miltenyi 
Biotec

130-110-201 
RRID: N/A

CD45 Microbeads Miltenyi 
Biotec

130-052-301 
RRID: N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

ZymoBIOMICS DNA Miniprep Kit Zymo 
Research

D4300 RRID: N/A

MiSeq V2 500 cycle Kit Illumina MS-102-2003 
RRID: N/A

Nextera XT Index Kit Illumina FC-131-1096

Deposited Data

Mouse CITE-seq data This paper GSE148127

16S Gut Microbiome data This paper GSE160628

Experimental Models: Organisms/Strains

C57BL/6 Jackson 
Laboratories

Stock#:000664 
RRID: N/A

Oligonucleotides

Primer: ADT_TruSeq_i7_UDI01 - 
CAAGCAGAAGACGGCATACGAGAACCGCGGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA

This Paper N/A

Primer: ADT_TruSeq_i7_UDI02 - 
CAAGCAGAAGACGGCATACGAGGGTTATAAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA

This Paper N/A

Primer: ADT-RPI-1 - 
CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA

This Paper N/A

Primer: ADT-RPI-2 - 
CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA

This Paper N/A

Primer: HTO_Nextera_i7_UDP01 - 
CAAGCAGAAGACGGCATACGAGATCGCTCAGTGTGACTGGAGTT CAGACGTGTGC

This Paper N/A

Primer: HTO_Nextera_i7_UDP04 - 
CAAGCAGAAGACGGCATACGAGATCTTATGGAGTGACTGGAGTTCAGACGTGTGC

This Paper N/A

Primer: HTO-N701 - 
CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTCAGACGTGTGC

This Paper N/A

Primer: HTO-N702 - 
CAAGCAGAAGACGGCATACGAGATCTAGTACGGTGACTGGAGTTCAGACGTGTGC

This Paper N/A

Recombinant DNA

Software and Algorithms

R studio (Ihaka and 
Gentleman, 
1996)

https://rstudio.com

CellRanger 3.1.0 10x 
Genomics

https://
support.10xgenomi
cs.com/single-cell-
gene-expression/
software/
downloads/latest

Seurat_3.1.1 (Satija et al., 
2015)

https://satijalab.org/
seurat/

SCENIC/AU Cell (Aibaretal., 
2017)

https://aertslab.org/
#scenic

DYNO (Saelens et 
al., 2019)

https://dynverse.org

GSVA (Hanzelmann 
et al., 2013)

https://rdrr.io/bioc/
GSVA/

DADA2 (Callahan et 
al., 2016)

https://
benjjneb.github.io/
dada2/

RNA Velocity (La Manno 
et al., 2018)

http://velocyto.org
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REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Illumina NovaSeq 6000 Illumina N/A

Illumina MiSeq Illumina N/A

10x Chromium Controller and Accessory Kit 10x 
Genomics

PN-120223
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