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ChIP followed by next-generation sequencing (ChIP-Seq) is a
key technique for mapping the distribution of histone post-
translational modifications (PTMs) and chromatin-associated
factors across genomes. There is a perceived challenge to define
a quantitative scale for ChIP-Seq data, and as such, several
approaches making use of exogenous additives, or “spike-ins,”
have recently been developed. Herein, we report on the devel-
opment of a quantitative, physical model defining ChIP-Seq.
The quantitative scale on which ChIP-Seq results should be
compared emerges from the model. To test the model and
demonstrate the quantitative scale, we examine the impacts of
an EZH2 inhibitor through the lens of ChIP-Seq. We report a
significant increase in immunoprecipitation of presumed off-
target histone PTMs after inhibitor treatment, a trend pre-
dicted by the model but contrary to spike-in–based indica-
tions. Our work also identifies a sensitivity issue in spike-in
normalization that has not been considered in the literature,
placing limitations on its utility and trustworthiness. We call
our new approach the sans-spike-in method for quantitative
ChIP-sequencing (siQ-ChIP). A number of changes in com-
munity practice of ChIP-Seq, data reporting, and analysis are
motivated by this work.

ChIP followed by sequencing (ChIP-Seq) was introduced in
2007 (1) as a way to observe the distribution of histone post-
translational modifications (PTMs) and transcription factors
(TFs) on the genome. In ChIP-Seq, bulk chromatin is harvested
from cells, and an antibody targeting either a TF or a particu-
lar PTM is used to collect the subset of chromatin that is
bound or cross-linked (2) to the antibody target. The DNA
associated with that target-rich chromatin is sequenced,
aligned to the host genome, and collected into a histogram.
Thus, the distribution of target is measured as a function of
genomic location.
Difficulties in reproducibility were forecast at the introduc-

tion of the method (1), and the “immunoprecipitation blues”
continue to this day (3). Recently, the field has sought to make
the method quantitative so that height of the histogram has
some physical sense that allows comparison between different
experiments and different chromatin samples. A host of meth-
odological alterations have been suggested to establish relative
scales (4–9), but all of these require increased complexity in

protocol and therefore only increase possible sources for vari-
ability, and none call for or facilitate a more robust understand-
ing, practice, or reporting of themethod.
What has remained undone until now is the development of

a complete, predictive physical model of ChIP-Seq. We show
here that by appealing to the physics exploited by ChIP-Seq, a
natural framework for quantification, reproducibility, and con-
sistency can be obtained. The standard protocol (10) does not
need to be altered to establish a quantitative scale. Moreover, it
becomes apparent that ChIP-Seq data reporting is insufficient
for understanding variability and reproducibility. Our analysis
shows that a number of common measurements made in every
ChIP-Seq experiment should be reported, both because they
facilitate understanding reproducibility of experiments and
because they are required to determine the inherent scale for
quantification.
The idea for our approach was to leverage the binding reac-

tion in the immunoprecipitation step of ChIP-Seq to define a
physical scale for the sequencing results, allowing comparison
of properly designed experiments, and to provide a predictive
model for ChIP-Seq outcomes. The quantitative scale for
ChIP-Seq arises directly through the existence of the binding
isotherm of the IP products. We show example isotherms in
Fig. S9. Standard ChIP-Seq involves evaluating only a single
point on the isotherm in total neglect of the isotherm generally.
Knowledge of the isotherm allows quantitative comparison
between ChIP-Seq results for fixed chromatin and different
antibody load or fixed antibody load and different chromatin
composition (with fixed total chromatin concentration). We
focus on the latter in this report.
In the siQ-ChIP context, two or more ChIP-Seq results can

be quantified and compared by relationship to the isotherm if
the axioms of siQ-ChIP are satisfied by the experimental
design: 1) ChIP-Seq IPs must be carried out in equal volumes
with 2) equal total chromatin concentration and 3) equal anti-
body load. If the samples being compared present different epi-
tope distributions, then the product of IP reactions (conform-
ing to the above axioms) can be compared on a quantitative
scale without modification of the ChIP-Seq protocol. Below, we
define the model, make numerical predictions, and report on
application to ChIP-Seq experiments.

Results and discussion

A model for generation of sequencing reads

First, note that all sequencing results are the aggregate of
sampling the genomes of many cells, as illustrated in Fig. 1a.
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Cellular heterogeneity implies that in a particular genomic
interval, x different cells can present different target densities
or may present an off-target that binds to the antibody or an
inert off-target that does not bind. Thus, when the cellular
chromatin is fragmented and captured noncovalently by anti-
body binding (Fig. 1b), both target and off-target fragments
spanning x are captured, and both types of fragments contrib-
ute to the visualized distribution (Fig. 1c). Fig. 1b describes the
antibody capture step, immunoprecipitation (IP), as a competi-
tive binding reaction and is subject to the typical mass conser-
vation laws. These are the conservation laws commonly used to
determine binding constants by measuring binding isotherms
and fitting. Our interpretation of binding constants is consist-
ent with the treatment of polyvalent systems introduced by
Mammen et al. (11), as the interaction between chromatin and
antibody-bead is of unknown complexity. Application of these
laws requires equilibrium, and we report validation of equilib-
rium for IP in Fig. S8.
With the above discussion in mind, we next define every-

thing in the binding model. The total count of frag-
ments with epitope i in interval x rendered from C cells is

ntiðxÞ ¼
XC

j¼1

N j
iðxÞ. The number of fragments of epitope i in

the interval x from cell j is N j
iðxÞ, although we never need to

determine this parameter for each cell. The total number of
fragments with epitope i in the “multi-cell genome” is

nti ¼
X

x

ntiðxÞ. The fraction of the fragments of epitope i at

x is oiðxÞ ¼ nti ðxÞ
nti

. The “input” sequencing histogram is then

given by the proportionality, inputðxÞ /
X

i

ntiðxÞ. The

“input” is a small-volume aliquot of the chromatin, removed
just before the chromatin is reacted with antibody, and
is assumed to be a representative sample of all particles
present in the intervals x. The IP histogram, which is ren-
dered from the antibody-captured subset of chromatin, is

IPðxÞ /
X

i

nbi oiðxÞ, where nbi is the total number of epitope i

fragments bound to antibody particles. We express the
number of fragments captured on x as the expectation
against the distribution oiðxÞ, given the assumption that
antibody is unbiased with respect to x. It is always assumed
that the antibody is not biased by genomic location, mean-
ing the antibody has no more preference for target frag-
ments from chromosome 1 than it has for target fragments
from chromosome 11. As an example, if the antibody bound
to a total of 100 epitope i–bearing fragments (nbi ¼ 100) and
only 2% of all i-type fragments are at x (oi(x) = 0.02), then on
average 2 of the 100 bound i-type nucleosomes will fall on x,
2¼ nbi3oiðxÞ. Note that nothing has been said about all frag-
ments being mononucleosomal. In the supporting information,
we show that the efficiency is computed with fragment length
being treated explicitly, allowing for different nucleosome den-
sities to be correctly evaluated.
Intuitively, the chromatin field expresses target “enrichment”

as the ratio of sequenced IP fragments (or reads) to sequenced
input fragments (or reads) in the interval x. Given the formal
definitions above, we have the following.

X

i

nbi oiðxÞ
X

i

ntiðxÞ
¼ a

IPðxÞ
inputðxÞ ¼ a

IP reads at x
input reads at x

(Eq. 1)

The main results of this work are 1) determination of the
proportionality constant a and 2) development of a heuristic
model for nbi so that we can predict and understand ChIP-Seq
outcomes.
Equation 1 states that we expect IPðxÞ /

X

i

nbi oiðxÞ, the

mapped fragments at x are proportional to all of the fragments
bound in the IP that map to x. There is a similar proportionality
expressed for the input. The index i runs over every possible

Figure 1. Schematic of ChIP-Seq. All variables are defined under “Results and discussion.” a, cellular chromatin and illustrative species distributions
(oiðxÞ) at genomic interval x. b, immunoprecipitation and input and the mass conservation laws satisfied in the binding reaction. The total mass of anti-
body and epitope species is conserved in the binding reaction. AB and S, antibody and epitope concentrations, with superscripts f and t indicating free
and total. KB is a binding constant. c, illustration of sequencing peak at interval x, where n is the number of fragments and superscript b or t indicates
bound or total.
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interaction captured by the IP. The lowest affinities are
expected to be very noisy and strongly perturbed by washes,
where high affinities are expected to be easily maintained. In
practice, we collect IP(x) and therefore never specify exactly
what all of the values or interpretations of i are. In fact, one
of the main challenges in ChIP-Seq is gaining confidence
that peaks in the interval x are actually target peaks. This
reflects our lack of practical knowledge for what the index i
might include. The proportionality constant a is worked out
below.
Another technical note about Equation 1 in practice before

moving on. We make explicit use of paired-end sequencing
in siQ-ChIP. One can use all of the tools of siQ-ChIP for sin-
gle-end workflows by giving all fragments the same length.
However, paired-end has the following advantage that is ex-
plicitly utilized in siQ-ChIP quantification. To make the
most of having measured the length of a mapped fragment,
the length being L, we interpret x as the genomic interval on
which a mapped fragment starts. Keeping track of all of the
mapped lengths allows us to write the siQ-ChIP efficiency as
follows.

êðx; LÞ ¼ a
IPðx; LÞ

inputðx; LÞ (Eq. 2)

Both the input and IP lengths are explicit in the efficiency.
This provides a significant improvement in information content,
as one can see how short and long fragments might be differen-
tially captured. Both a visualization of this two-dimensional effi-
ciency and the details of projecting this to one dimension for vis-
ualization in a genome browser are given in Fig. S4.
In the end, the user controls the size of the interval x on

which the efficiency is computed. This interval has a nonnegli-
gible impact if it is chosen too small. Making the interval too
small can result in regions where either IP or input contain
mapped fragments but not both IP and input. These regions are
evaluated to zero in Equation 2. The interval size should be
increased iteratively until it is clear that the results no longer
depend on the width of interval. This is shown in Fig. S5.
The proportionality constant a has not been reported in the

literature but is straightforward to deduce. Each of the symbols
introduced here can be paired with a step of the ChIP-Seq pro-
tocol as illustrated in Fig. 2. To deduce a, consider that one of
the sequencing experiments reported herein produced a total
of R̂ ¼ 37;298;373 mapped IP reads. These reads were gener-
ated by sequencing 20 fmol of library, where the total library
mass was 856 fmol. Setting F L ¼ 20=856¼ 0:02336 for the
fraction of the library that was sequenced, the total number of
reads that the full library would generate upon sequencing is
R̂=F L, or 1.5 billion for this experiment. The library was ampli-
fied with c = 11 cycles of PCR, so this estimate of the total reads
must be reduced by the appropriate number of amplifications,
lowering the estimate of total reads to its preamplification
value, R̂=F L=2c.3 The library was captured on KAPA Pure

beads, producing an additional material loss, r. r is the ratio of
captured library concentration to the expected library concen-
tration.4 This coefficient compensates for losses due to bead
capture and washing and, to some extent, for global deviations
from the perfect 2c amplification. The estimated number of
possible reads becomes R̂=F L=2c=r. The observed read count
(R̂) has been scaled up by each known source of material loss
and down-sampling.
The IP produced 24.2 ng of material, but only 10 ng were

used to produce the library, so, where F ¼ 0:413 is the fraction
of IPmaterial carried into the library, the total fragments gener-
ated by sequencing all of the DNA collected by IP are as
follows.

R ¼ R̂

F L 2c rF (Eq. 3)

Thus, 226million reads could be extracted from the IP mate-
rial if all of the material were sequenced. The total sequenced
fragments have been scaled to match the total collected frag-

ments,
X

x

X

i

nbi oiðxÞ. An analogous scaling also applies to the

input sample. The constant a is defined as the ratio of these
factors,

a ¼ rin
r

F L
in

F L

F in

F (Eq. 4)

where the subscript in refers to the analogous measurements
taken on the input sample.
Having established Equations 1, 2, and 4, we have established

the requirements for a quantitative ChIP-Seq. (We are assum-
ing that every sequencer is subject to a central limit theorem,
which seems implicit in the way sequencing results are cur-
rently used. Sequencing results are expected to be reproducible
and subject to standard practices for determining means and
variances.) One can go one step further now by establishing a
predictive heuristic model for the bound particles (or frag-
ments), nbi . Any fragments captured by IP are captured because
their free energy of binding to the IP beads is sufficiently nega-
tive. We take “sufficient” to mean that the interaction survives
washes and generates DNA for library preparation. Without
specifying any details about what the microscopic state of any
of these interactions is, we can associate with each a macro-
scopic binding constant, KB,i. This association allows us to
specify the following predictive model for understanding ChIP-
Seq outcomes.
For any species of epitope i, we can write the total concentra-

tion in the IP volume as Sti . This corresponds to the above defi-
nitions as nti ¼ ðV2vinÞNA Sti , where V2vin is the IP volume,

3 If the efficiency e is a known function of sequence x, then amplification
can be more accurately accounted for with 11eðxÞ. Because e is not usu-
ally known, we take the typical assumption, 11eðxÞ’2.

4The average base pair has a molar mass of 660 g/mol. 300-bp fragments
are then expected at 198,000 g/mol. If 10 ng of 300-bp-long DNA are
amplified by 211 and suspended in 20 ml (our library volume), the
expected concentration is 5.17 mM. r is the ratio of actual library concen-
tration to the estimated 5.17 mM. In practice, the empirical library aver-
aged fragment length must be used to determine r. Thus, average
fragment length is an input parameter for the software associated with
this work.
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andNA is Avogadro’s number. Thus, chromatin was suspended
in a total volumeV, and then an input aliquot of volume vinwas
removed prior to reaction with antibody. The concentration of
any bound species can be stated as the difference between total

and unbound concentrations, giving us Sbi ¼ Sti2Sfi . Relating
back to the definitions above, nbi ¼ ðV2vinÞNA Sbi .
Using these definitions and a, Equation 1 can now be recast

in terms of epitope concentrations in the IP.

êðxÞ ¼ a
vin

ðV2vinÞ
IP reads at x

input reads at x

¼

X

i

Sbi oiðxÞ
X

i

StiðxÞ

¼

X

i

Stið
ABf KB;i

11ABf KB;i
ÞoiðxÞ

X

i

StiðxÞ

(Eq. 5)

From here on, we include the volume factor in the definition
of a. We noted above that one should expect the proportional-

ity IPðxÞ /
X

i

nbi oiðxÞ. In Equation 5, we have written nbi as

ðV2vinÞNA Sbi , which connects the expected outcome of the
ChIP-Seq experiment to the binding reaction in IP.
The last line of Equation 5 rewrites Sbi as the formal solu-

tion to the mass conservation laws in Fig. 1b. Details are
given in the supporting information. ABf is the free antibody
concentration, determined as the solution to the conserva-
tion laws. The bound concentration of each epitope will fol-
low a sigmoidal shape given by y=ð11yÞ, where y¼ ABf KB;i.
KB;i is the binding constant for epitope i, in the sense of Ref.
11. We note that the above results apply also to sequencing
experiments where spike-ins were used. The “genome” in
that case is simply understood as the host genome appended
with the spike-in DNA so that certain intervals x correspond
only to spike-in sequences.

Numerical predictions

In this section, we present simulated outcomes from Equa-
tion 5 to make every aspect of the model concrete. The first
step of ChIP-Seq is the IP, so this section first covers solutions
to the mass conservation equations of Fig. 1b to elucidate the
composition of bound fragments in the IP for different reaction
conditions.

Figure 2. Schematic deduction of a. This schematic organizes each factor of awith its origin in the ChIP-Seq protocol. a is the proportionality constant that
maintains connection between thematerial in the IP product and the sequencing reads/fragments.
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Binding isotherms

The empirical data presented below pertain to ChIP-Seq
outcomes in the case of epitope depletion. In that paradigm, a
histone PTM, H3K27me3, is depleted by culturing cells in the
presence of an inhibitor of the enzyme (EZH2) responsible
for chemical addition of the PTM. We will demonstrate
below that applying standard ChIP-Seq to a depleted and con-
trol sample results in counterintuitive changes in sequencing
peaks, where the depleted sample may present larger peaks
than the control sample (see Fig. 4a). No doubt, such observa-
tions underlie the broad claims that ChIP-Seq is not quantita-
tive on its own. A quantitative ChIP-Seq would eliminate
physically inconsistent outcomes and allow direct compari-
son of capture efficiency on genomic intervals. We note that
an interactive form of the following numerical demonstration
is available at the author’s web page (www.proteinknowledge.
com/siqD3).
To understand possible outcome scenarios for a depletion

experiment, we solved the mass conservation laws in Fig. 1b for
a four-species system in two physically possible cases. Gener-
ally, it is unknown how the chromatin landscape will respond
to the use of an inhibitor, so we solved themodel for the follow-

ing scenarios.Case 1 (Fig. 3a) models a system inwhich epitope
is replaced with inert fragments. These fragments do not inter-
act with antibody. Case 2 (Fig. 3b) models a system in which
epitope is replaced with off-target fragments, causing a net
increase in concentration for that off-target PTM. Both cases
always present equal total chromatin and antibody concentra-
tions in the IP reaction. Equal chromatin and antibody loading
of the IP are the only constraints of siQ-ChIP. To the greatest
extent possible, variation in ChIP-Seq outcomes is isolated to
perturbation-induced changes in chromatin epitope distribu-
tion when this constraint is met.
We do not know binding constants for antibodies, so the

simulation assumes that the antibody is 100-fold selective for
target St1 over the off-target St2 and 22-fold selective over the
remaining off-target St3. Here “selective” is taken as ratios of
binding constants. Full details are given in the legend to Fig. 3.
Even without exact knowledge of these parameters, this heuris-
tic model allows us to gain intuition for ChIP-Seq outcomes
and to make testable predictions for comparison with experi-
ments. Fig. 3 summarizes IP reactions across a range of condi-
tions. Any single experimental outcome would correspond to a
single vertical slice of the graphs.

Figure 3. In silico predictions for epitope depletion: Sequencing composition in a simulated, four-component system of target (St1), off-target
(St2; S

t
3), and inert (St4) fragments. %Sbi , percentage of total reads contributed by Sbi . a, case 1: target epitope is replaced with inert nucleosomes to model

equal chromatin loading in all IP. b, case 2: target is replaced with off-target, causing St2 to increase while maintaining equal total chromatin loading. At each
point in case 2, St2 ¼ 112St1 is satisfied. Epitope species 1 is target, species 2 and 3 are off-target, and species 4 is inert. Antibody concentration was 6 mM, and
binding constants were KB;1 ¼ 11; KB;2 ¼ 0:1; KB;3 ¼ 0:5 mM

21, and St3 ¼ 0:3 mM. St1, target, was the independent variable. Total concentration bound is shown
in gray (right axis). The inert pool does not interact with antibody and is not shown. These figure panels are broken into red and green zones. The vertical black
line separating the zones indicates the break point for potential contamination increase, St1 ¼ St2. This is the point at which the target PTM is no longer the
most abundant PTM in the reaction. IP conditions in the red zones run greater risk for off-target contamination than conditions in the green zones. Red lines
(solid, dotted, and dashed) show capture efficiency for semisynthetic spike-ins (6, 14).
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Simulation results in Fig. 3 are plotted as a function of target
concentration (St1) and display how the composition of
sequencing reads is predicted to change in response to epitope
depletion. Epitope depletion is read from Fig. 3 by moving left-
ward along the x axis. Importantly, the left-side y axis is a per-
centage, allowing us to plot both the percent composition of
bound fragments and the percent efficiency of capture for each
species. These are two distinct quantities, and the ChIP-Seq
field has so far only considered the capture efficiency because it
is easily reflected by spike-in capture efficiency. The key dis-
tinction to be aware of is that capture efficiency reflects the
fraction (or percent) of a given species that is captured. The
fractional composition (or percent composition) reflects how
much of the sequenced fragments arise from each species cap-
tured in IP. The composition cannot be determined from cap-
ture efficiency of spike-ins, but the field has overlooked this
reality so far. In Fig. 3 we have plotted spike-in capture effi-
ciency as red lines (solid or dashed), and we have plotted the
fractional composition in solid lines (shades of purple for off-
target and gold for on-target).
There are a few key observations to be made from the results

in Fig. 3, which are true of both simulated cases. First, target
depletion results in an increase in the number of off-target reads.
This is seen by looking at the fractional composition of the IP
products, shown in shades of purple (off-target) and gold (tar-
get). As target epitope is depleted (moving from right to left in
Fig. 3), the fractional composition of target decreases as
expected. However, the fractional composition of off-targets
increases. So whereas epitope depletion may result in decreas-
ing IP mass, the fraction of that captured mass that belongs to
off-target epitope is increasing.
Second, and in stark contrast to the fractional composition,

all species capture efficiencies increase when target concentra-
tion is decreased.The simulated spike-in efficiencies are plotted
with red lines in Fig. 3. Both target and off-target capture effi-
ciencies increase when the amount of target presented by chro-
matin is decreased. This is intuitive. The amount of target pre-
sented by chromatin is reduced by depletion, leaving more
antibody to interact with spike-in. Fig. 3 simulates the spike-in
consistent with the ICeChIP method (6, 12, 13), where small
amounts of synthetic bar-coded nucleosomes are added to the
IP. Because these spike-ins are presented in small amounts, the
antibody easily saturates them after target depletion, leading to
an increase in capture efficiency. Remember, the capture effi-
ciency simply reports the fraction of each labeled species that is
captured in the IP. Spike-in capture efficiency and unlabeled
chromatin capture efficiency are inversely related, yet the
spike-in recipe is to normalize to the capture efficiency for tar-
get spike-in.
Third, as a corollary to the second observation, spike-in cap-

ture will saturate at conditions different from saturation condi-
tions for the unlabeled chromatin. Fig. 3 shows that a large
range of IP conditions produce constant spike-in capture effi-
ciency even though the fractional composition of the IP is
changing. This means that whereas more and more of the IP
product is due to off-target interactions, the spike-ins do not
change. Spike-ins are blind to this contamination. ADrosophila

spike-in may improve sensitivity here (because epitope signals
are not separable) but still runs the same risk, especially when
the limits of sensitivity for a given IP are not defined. For exam-
ple, the percentage of on-target reads, or fragments, varies from
90% down to less than 10% in case 1 of Fig. 3 (gold line),
whereas the spike-in efficiency only ranges from 90 to 98% for
the same experimental conditions. The spike-in capture effi-
ciency is not sensitive to experimental conditions for most of
the conditions shown in Fig. 3. Normalizing to spike-ins in
these limits would not produce a quantitative scale; the scale
would be invariant to the changing amount of target epitope.
This limit of invariance can be achieved if antibody is in excess
of target and may thus be encountered for tightly distributed
PTMs like H3K4me3 (12) or in epitope depletion experiments
involving oncohistones (14).
The above observations make the following general predic-

tions for ChIP-Seq outcomes. First, off-target peaks will grow
under depletion conditions. The extent of growth depends on
antibody affinity and homogeneity/heterogeneity of the off-tar-
get in the cell population. This growth is predicted even for
“selective” antibodies any time the antibody has a nonzero
binding constant to any off-target species. Second, spike-in
capture efficiencies will be improved by depletion for an epitope
presenting a nonzero binding constant (that is sufficiently
strong to generate sequenced fragments). Finally, we predict
that spike-ins have a sensitivity problem that has been ignored
in the literature. Any time spike-ins are used, one should vali-
date that they are used in conditions that ensure a measurable
response. This is intuitive and obvious but not routinely shown
in cases where spike-ins were used. In what follows, we test
these predictions in actual ChIP-Seq experiments in the deple-
tion paradigm.

Off-target signal and “specificity”

Beforemoving on to empirical results, we note that the simu-
lation results pose a problem for theway the community under-
stands “specificity” of antibodies. Typically, off-target reads
would be interpreted as on-target reads any time an antibody
is deemed “selective” or “specific.” It is a fact that selectivity,
even if defined through evaluation of binding (or dissociation)
constants for epitopes (15), is a meaningless concept without
knowledge of the distribution of epitopes presented by the
unlabeled chromatin. Binding constants alone do not indicate
the scope of signal contamination. Fig. 3 shows that even for
a 100-fold selective antibody, the distribution of epitope in
chromatin results in a majority of off-target sequences after
target depletion. Moreover, the weaker binding of the off-target
epitope, epitope 2, presents larger amounts of bound frag-
ments. This shows that the relative abundance of the epitopes
cannot be ignored when attempting to anticipate ChIP-Seq
quality. Knowing the binding constants alone would suggest
that epitope 3 is more of an issue, but this is not the case.
Because the epitope abundances in chromatin samples are gen-
erally unknown, there is no way to accurately speculate a priori
on levels of off-target contamination.
One major advance of the siQ-ChIP approach is that we can

leverage the sequencing data directly toward categorizing peaks
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as on- or off-target. The siQ-ChIP model predicts that individ-
ual peaks can be compared for losses and gains in capture effi-
ciency without any traditional “specificity” measurements. For
the epitope depletion experiment, the model predicts that off-
target peaks will actually grow in height because excess anti-
body will be free to react. The extent of the increase is con-
trolled by the amount of excess antibody and the strength of
interaction between antibody and epitope. Peak heights follow
proportionality with the isotherms in Fig. 3. Thus, our predic-
tions for the empirical data below were that the spike-in
reagents would show large improvements in capture efficiency
for target, some improvement in capture efficiency of off-tar-
gets dependent on binding affinities, and increased peak height
for any off-target that is capable of capturing excess antibody
that was freed by epitope depletion.
The siQ-ChIP efficiency, Equation 5, has in its denominator

the sum of all genomic fragments whether or not they are asso-
ciated with the antibody target and likewise derives its scale
from the fact that the IP is a competitive binding reaction. The
siQ-ChIP efficiency behaves like the purple and gold lines in
Fig. 3, showing a decrease where target is lost and an increase
where free antibody is recruited by off-target PTMs. Note that
the species-specific spike-ins show an increase in capture effi-
ciency for spike-in target when target in chromatin is depleted,
yet fewer on-target reads are being generated. The simulation
trend of increased capture efficiency for off-target spike-ins
was also observed empirically for ICeChIP (6) spike-ins (Fig.
S1), where target capture efficiency was 8% in DMSO-treated
chromatin and 88% in EPZ6438-treated chromatin. (These per-
centages are computed using a, as described in the supporting
information for these spike-ins.)

Interactive IP and sequencing simulations

To better develop intuition for the siQ-ChIP model, we have
built an interactive web page. The page details the model from
the perspective of simulating the ChIP-Seq experiment and
allows visitors to change parameters and interact with the
results. The interactive model can be found at www.
proteinknowledge.com/siqD3. In the interactive model, we also
present a detailed look at the main challenge facing spike-ins as
determinants of quantitative scale: heterogeneity. Because
spike-ins and cellular chromatin are mismatched in their re-
spective homogeneity, synthetic spike-ins provide an upper
bound for specific PTM capture on any genomic interval.

Application to ChIP-Seq data

To test model predictions described in Fig. 3, we performed
native ChIP-Seq for H3K27me3 in HCT116 cells, treated either
with DMSO (or “vehicle”) or EPZ6438 (16), an inhibitor of
EZH2 (Fig. S7). This is an epitope depletion paradigm, wherein
the DMSO-treated chromatin represents reaction conditions
at the far right x axis in Fig. 3, and EPZ6438 treatment shifts
those conditions leftward along the x axis. The antibody target
H3K27me3 is globally depleted by exposure to EPZ6438, as evi-
dent in Western blotting (Fig. S6), yet by ChIP-Seq there is an
apparent increase in peak height (Fig. 4a). Fig. 4 reports the
results for a 12-megabase stretch of chromosome 2, where Fig.

4a shows the ratio of IP/input fragments for standard ChIP-
Seq. It can be appreciated that cells treated with EPZ6438 dem-
onstrate peaks on the same scale or even larger than what was
seen in cells treated with DMSO. This panel illustrates how
ChIP-Seq on its own is “not quantitative.” This empirical result
for raw ChIP-Seq data is predicted by Equation 5, where the
height of IP/input peaks would take proportionality with a21

and direct proportionality with F—as the IP mass decreases, F
increases. This is significant in that the emergence or increased
height of peaks resultant to cellular perturbations cannot be
taken at face value and actually demonstrates a counterintuitive
relationship with quantities at the IP.
We also measured a and computed the capture efficiency

according to Equation 2 using our open-source software for
siQ-ChIP (https://github.com/BradleyDickson/siQ-ChIP). See
Equations S17 and S18 for details. The siQ-ChIP results are
shown in Fig. 4b and demonstrate regions of lost capture,
regions of similar capture, and potentially even regions of slight
capture efficiency gains.
Fig. 4b shows the same IP/input data from Fig. 4a scaled by a

according to Equation 5. Notice that the EPZ6438-treated
chromatin no longer appears to have larger peaks than DMSO.
As discussed in the supporting information, the capture effi-
ciency is evaluated in units of efficiency per base pair. Fig. 4b
uses êðxÞ\langleL\rangle, where \langleL\rangle is the average
base pair length per sequenced fragment, to report efficiency in
“per fragment” units. H3K27me3 is largely regarded as broadly
distributed so we used Equation S18 to project data into inter-
vals of width 10 kb. At higher resolutions, êðxÞ\langleL\rangle
may need to be replaced with the appropriate integral over the
distribution of L. Fig. 4c plots the siQ-differential enrichment
as the ratio of êðxÞ for EPZ6438-treated cells to DMSO-treated
cells. The enrichment quotient demonstrates regions of
impaired and improved capture efficiency.
Fig. 4d shows spike-in normalized data generated with the

ICeChIP (6) method. The normalization factors in this method
are computed simply as the number of IP reads of target spike-
in divided by the number of input reads of target spike-in in
each treatment, respectively. For DMSO-treated cells, this led
to a factor of 1.51, and for EPZ6438-treated cells, it led to a
factor of 8.99. Thus, the tracks in Fig. 4a are divided by these
factors, respectively, and multiplied by \langleL\rangle to pro-
duce the “histone modification density” on a per fragment ba-
sis, as shown in Fig. 4d. We note that the values over 100%
match the data originally reported for H3K27me3 under his-
tone modification density (HMD) normalization (6). We also
note that this normalization demonstrates two different levels
of ’background’ in the DMSO and EPZ6438 signals, even
though these data were produced with identical protocols using
the exact same sequencer. The spike-in normalization factors
can be compared directly with a21 for the two data sets. For
DMSO, the HMD normalization was 1.5, whereas a21 = 9.17.
For EPZ6438, the HMD correction was 8.99, whereas a21 =
16.02. As dictated by the definition of a, the ratio of a between
the DMSO and EPZ6438 cases is exactly thematerial difference
in the two samples as they arrive at the sequencer, primarily
(but not only) due to the mass difference at the IP. The ratio of
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EPZ/DMSO a values is 1.74, whereas the ratio of DMSO/EPZ
IP mass is 2.29. The ratio of HMD normalizations is 5.95. Thus,
whereas ratios of a suggest a 2-fold material difference, the ra-
tio of ICeChIP normalizations suggest a 6-fold difference in
material. Because a requires tracking all material quantities, we
know that a 6-fold difference is not consistent with any mea-
surement made on the samples. (See Table S1.) This speaks to
the nonphysical relative scale resulting from spike-in normal-
ization. siQ-ChIP maintains that the reads accumulated on the
genome (as shown in Fig. 4) are always connected to the total
mass of the IP and input, respectively. This is what establishes a
physical scale for the data and is unique from any spike-in
approach.
In the previous section, the competitive binding model pre-

dicted that both on- and off-target capture efficiencies would
increase on epitope depletion. Figs. S1–S3 report that spike-in

efficiencies improved as predicted after treatment with
EPZ6438. Fig. S2 shows that this response in capture efficiency
artificially improves the perceived “specificity” of the antibody,
meaning that the antibody tests as more specific after target
depletion when the standard definition of specificity (6, 12) is
used. In contradiction with improved “specificity,” the siQ-
ChIP model predicts that the quantity of off-target material
increases when target is removed, and this is borne out by the
raw amounts of captured spike-ins (Fig. S3) as well. Moreover,
it is borne out in the genomic sequencing. Fig. 4c indicates that
there is increased capture of large sections of the genome. Such
large regions have been termed mesas by others (17, 18). Using
siQ-ChIP, we see that these mesas have increased capture effi-
ciency after epitope depletion.
To gain some insight into what these mesas are or might be,

we plotted sequencing results from ENCODE (10) for several

Figure 4. siQ-ChIP analysis reveals off-target contamination. a, IP/input ratio for unscaled ChIP-Seq data, in units of “efficiency” per base pair. The notion
of efficiency in a is arbitrary, so arbitrary units are assigned to this panel. This panel shows that target depletion has produced peaks of unchanged scale and
peaks of increased scale, demonstrating the common interpretation that “ChIP-Seq is not quantitative.” See the “Results and discussion” for explanation of
this through analysis of a. b, the siQ-ChIP capture efficiency per fragment, êðxÞ\langleL\rangle. The siQ-ChIP efficiency ê has units of efficiency per base, and
we have multiplied by the average fragment length to produce units of efficiency per fragment. In contrast to unnormalized ChIP-Seq, siQ-ChIP shows peaks
of reduced, unchanged, and marginally increased scale. c, the siQ-ChIP differential enrichment ratio, EPZ6438/DMSO. This is the ratio of siQ-ChIP efficiencies,
whichmakes it easy to visualize response to target depletion. d, HMD from ICeChIP spike-ins shows that the entire signal is reduced throughout the whole ge-
nome. The spike-ins “compress,” or shrink, all features of the EPZ6438-treated track. e, the H3K9me3 track is shown to suggest that siQ-ChIP is indicating
potential off-target capture after EPZ6438 treatment.
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PTMs alongside our siQ-differential enrichment. Through ba-
sic, human-level pattern matching, we identified H3K9me3
antibody tracks as highly correlated with regions of improved
capture post-EPZ6438 exposure. This is not too surprising
when considering the similarity in histone sequence around
Lys-9 and Lys-27 and when considering that we are likely pick-
ing up on another broadly distributed (abundant) PTM. Anec-
dotally, this patternmatching is demonstrated in Fig. 4e for this
small stretch of chromosome 2. Additionally, we performed an
IP using the H3K27me3 antibody followed byWestern blotting
with an H3K9me3 antibody and found detectable levels of
cross-reaction with the IP products. Fig. S6 reports these find-
ings and shows that, by Western blotting, neither H3K27me3
nor H3K9me3 antibody signals are detectable by Western after
EPZ6438 treatment.
In summary of Fig. 4, panel a demonstrates that “ChIP-Seq is

not quantitative.” Panels b, c, and e show that performing
ChIP-Seq with an H3K27me3 antibody in epitope-depleted
cells (those exposed to EPZ6438) results in a quantitative
increase in capture efficiency for genomic regions bearing the
H3K9me3 PTM, at least on chromosome 2. Panels a and b can
be interpreted together as evidence that the fraction of cap-
tured fragments in the region overlapping H3K9me3 has
increased after EPZ6438 exposure, all consistent with our
model predictions. The total mass captured by IP has decreased
but not vanished (Table S1), also consistent with predictions.
The reduction in total mass likely explains the lack of sensitivity
by Western blot for EPZ6438-treated chromatin. However,
spike-in nucleosomes fail to indicate signal contamination and
instead report that the antibody is “specific” in either DMSO-
or EPZ6438-treated chromatin (Fig. S2). Despite being re-
ported as “specific” by the accepted metrics, an increase in off-
target capture is reported by the spike-ins when target epi-
tope is reduced (Fig. S3), consistent with the model predic-
tion that off-target capture will increase when target epitope
is decreased.
To determine the extent of genome-wide correlation

between the sequencing tracks from H3K9me3 antibody in
untreated cells and the H3K27me3 antibody–generated se-
quencing track from EPZ6438-treated chromatin, we called
peaks in the raw sequencing data using MACS2 (19) on the
DMSO, EPZ6438 (both H3K27me3 antibody), and H3K9me3
antibody (chromatin exposed to neither DMSO nor EPZ6438)
data sets. The resulting distributions of called peaks for full
human autosomes are shown in Fig. 5. The pattern match
between peaks in sequencing from EPZ6438-treated cells and
H3K9me3 antibody in untreated cells is easy to appreciate.
Thus, we conclude that this experiment demonstrates that ei-
ther target depletion has resulted in increased off-target bind-
ing for the H3K27me3 antibody in EPZ6438-treated cells or
there are low-level amounts of H3K27me3mixed into the puta-
tive H3K9me3 mesas. This mixture could be either single his-
tone tails with both Lys-9 and Lys-27 methylation or different

tails within the same nucleosome harboring one or the other
PTM, or it could be that a subset of cells presents H3K9me3 in
the mesas, whereas another subset present H3K27me3 in the
mesas. Given the response to target depletion registered by the
spike-in nucleosomes (approximately 4-fold for target and less
than 1.5-fold for H3K9me3) and the low cross-reaction meas-
ured by peptide microarray (20, 21) (Fig. S10), we reason that
the small response seen in genomic data suggests that this is
indeed off-target cross-reaction. We are also assuming that the
EPZ6438 inhibitor is equally effective toward EZH2 inhibition
regardless of the genomic region in which EZH2 is found.
There is no evidence in the literature to weaken this assump-
tion. We also compared the degree of overlap in H3K9me3
antibody and H3K27me3 antibody coverage for both DMSO
and EPZ6438 tracks using the hypergeometric distribution.
The overlap is statistically significant in both cases, and the
sampling bias increased from 1.33- to 4.19-fold over expected
after treatment with EPZ6438. The overlap between H3K9me3
antibody and H3K27me3 antibody tracks increased nearly 4-
fold upon epitope depletion, a trend consistent with predictions
for off-target response in the heuristic model introduced above.
In summary, it is important to note that the binding model

introduced to explain and quantitate ChIP-Seq has predicted
the trends of outcomes both for the genomic sequencing and
for the spike-ins. Additionally, the evaluation of a has allowed
us to measure everything directly within the genomic sequenc-
ing, not needing to profile the “specificity” of the antibody. The
above discussion used “specificity” profiling to support the like-
lihood that off-target cross-reaction is being observed only after
differential response wasmeasured in the genomic data. In gen-
eral, we do think such profiling is an affordable way to avoid
antibodies of terrible quality—those with roughly equal peptide
microarray signals for different PTMs. Nevertheless, we have
shown that “specificity” cannot be used to assign confidence to
every peak in sequencing outcomes and that rather each peak
must be considered individually.

Conclusion

The above analysis has several consequences. First, no spike-
in is needed to achieve quantification in ChIP-Seq, given adher-
ence to the siQ-ChIP paradigm. The siQ-ChIP parameter a
establishes the natural quantitative scale for ChIP-Seq. It can
be argued that spike-ins are only “quantitative”when the spike-
in normalizer is equal to a21 for the experiment, a condition
that can always be checked. In our experiments above, we
showed that not only are the spike-in normalizers different
from the physical values of a21, but the ratio of spike-in nor-
malizers produces erroneous interpretations, like a 6-fold dif-
ference in apparent mass content. The spike-ins do not pro-
duce a quantitative scale in our experiments.
Second, to improve reproducibility and enable assessment

of experimental conditions, all of the values within a should
be reported for experiments. This allows the community to

Figure 5. Autosome peak densities indicating genome-wide off-target contamination. The peak density (histogram of MACS coverages) on whole chro-
mosomes shows strong correlation with H3K9me3 peak locations. Sequencing data from untreated cells are shown in orange, and data from EPZ6438-treated
cells are shown in purple; both were ChIPs using CST (9773 clone C36B11 lot 14) H3K27me3 antibody. ChIP-Seq from HCT116 cells using Active Motif (39161
lot 1441800) H3K9me3 antibody is shown in green. Even though the purple track is the result of chipping with H3K27me3 antibody, the sequencing reads are
frequently falling on genomic regions of H3K9me3, consistent with predictions from Fig. 3 that off-target will increase contribution to total fragments.
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compare all of the factors leading up to a and to assess whether
repeats are operating in a similar or disparate reaction regime.
Given that the IP is a competitive binding reaction, control
over these parameters is paramount for reproducibility, yet
none of the measurements within a are currently reported.
Even reporting only the IP mass and chromatin load in the IP
would vastly improve our ability to compare across repeats and
afford some ability to mitigate variations in antibody quality.
One should match the parameters within a prior to sequencing
to view the sequencing results as a “repeat” of the experiment.
Third, simulations suggest that there are conditions in which

spike-ins may not respond to experimental perturbation. In sim-
ulation, this corresponded to conditions of excess antibody,
ABt.St1, which might be realized in cases where ChIP-Seq is
used to study scarce PTMs or TFs. Our own spike-in target cap-
ture improved from 8% to 88% after epitope deletion (Fig. S1),
which implies that the spike-in normalization is essentially sat-
urated (Fig. 3). The sensitivity of the spike-in scale is thus
dubious.
Fourth, ChIP-Seq data should always be cross-validated

against other available sequencing results for other PTMs (or
TFs). As shown in Fig. 5, ChIP-ing with an antibody against a
given target may produce a large number of off-target peaks,
depending on the epitope distribution presented by chromatin.
Our data show that cross-validation is most important when
considering scarce PTMs or epitope depletion like that associ-
ated with various inhibition mechanisms, including oncohi-
stones. We will make efforts in the future to automate some
cross-validation and statistical assessment of peaks (22).
Finally, as illustrated in Fig. 1c, the histogram measured

by ChIP-Seq is not equivalent to the actual distributions of
PTMs. The actual distributions, oiðxÞ in our notation, underlie
ChIP-Seq outcomes, but these signals are convoluted by the
superposition of many individual cellular contributions and the
imperfect fidelity of the antibody. The extent to which this con-
volution distorts interpretation is assumed to be small, but this
has never been rigorously examined, and single-cell techniques
(23) have only recently begun to emerge.
The siQ-ChIP method requires that chromatin and antibody

loading be held constant so that changes in chromatin epitope
distribution can be isolated and experiments can be understood
as motion along the binding isotherm illustrated in Fig. 3. Cases
where equal loading produces small IP masses (like hard-to-
ChIP TFs or scarce PTMs) are addressed in the supporting
information and are fully treatable with siQ-ChIP. The siQ-
ChIP scale can be applied to any data retroactively, provided
that a can be computed and that chromatin and antibody load-
ing were properly controlled. The values needed for determina-
tion of a are not currently reported in the literature, despite the
power that these values can afford in understanding variation
in repeats (e.g. between different laboratories) and interpreta-
tion. It is our opinion that even if siQ-ChIP is not used, these
values should be reported by practitioners. Table S1 lists each
factor in a. Perhaps ironically, all of themeasurements required
to determine a are made every time ChIP-Seq is performed.
However, the measurements are used only for quality control
or for meeting sequencing depth requests. Last, we note that

results from different sequencers can be compared via siQ-
ChIP. siQ-ChIP assumes that the IP and input were sequenced
on the same sequencer. Thus, the proportionality constants
specific to the sequencer should cancel from the siQ-ChIP cap-
ture efficiency. siQ-ChIP should not be used if input and IP are
sequenced on different sequencers. The situation of combining
IP for sequencing or working with very limited sample amounts
is given in Equations S19 and S20.

Data availability

All data are included in the article and supporting
information. All siQ-ChIP codes, scripts, and documentation
are published at GitHub (https://github.com/BradleyDickson/
siQ-ChIP). Gene Expression Omnibus (GEO) data are accessi-
ble under accession number GSE132906.
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