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Novel biomarkers of type 2 diabetes (T2D) and response
to preventative treatment in individuals with similar
clinical risk may highlight metabolic pathways that are
important in disease development. We profiled 331
metabolites in 2,015 baseline plasma samples from the
Diabetes Prevention Program (DPP). Cox models were
used to determine associations between metabolites
and incident T2D, as well as whether associations dif-
fered by treatment group (i.e., lifestyle [ILS], metformin
[MET], or placebo [PLA]), over an average of 3.2 years
of follow-up. We found 69 metabolites associated with
incident T2D regardless of treatment randomization. In
particular, cytosine was novel and associated with the
lowest risk. In an exploratory analysis, 35 baseline metab-
olite associations with incident T2D differed across the
treatment groups. Stratification by baseline levels of sev-
eral of these metabolites, including specific phospholipids

and AMP, modified the effect that ILS or MET had on
diabetes development. Our findings highlight novel
markers of diabetes risk and preventative treatment
effect in individuals who are clinically at high risk and
motivate further studies to validate these interactions.

Clinical interventions can successfully prevent progression
to type 2 diabetes (T2D) in individuals at high risk;
however, not everyone responds. The Diabetes Prevention
Program (DPP) was a randomized control trial that dem-
onstrated that lifestyle changes and metformin pharma-
cotherapy reduced diabetes progression in individuals
with impaired glucose metabolism (1). Subgroup analyses
suggested that clinical factors such as age, BMI, fasting
plasma glucose (FPG), and 2-h oral glucose tolerance tests
(OGTTs) were associated with differences in diabetes risk
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reduction between lifestyle (ILS), metformin (MET), and
placebo (PLA) treatment groups (1).

Metabolomics—the study of small molecules involved
in cellular processes—leverages high-throughput technol-
ogies to identify biomarkers of risk and treatment re-
sponse. Previous studies in population-based cohorts
have demonstrated that certain metabolites are persis-
tently associated with diabetes decades before clinical
diagnosis—including higher levels of branched-chain
(BCAAs) and aromatic (AAAs) amino acids (2–5) and
specific triacylglycerol (TAG) species (4,6) or lower levels
of glycine and glutamine (5,7)—even after adjustment for
clinical risk factors. The majority of individuals in these
cohorts, however, had normal glucose homeostasis.
Metabolomics has also been leveraged to study the effects
of exercise and metformin but mostly in small studies
focused on healthy individuals or those with overt diabetes
(8–12). There is little information regarding metabolite
profiles associated with behavioral or pharmacological
interventions on preventing diabetes.

A prior analysis in the DPP profiled a limited number
of metabolites in plasma samples from 427 diabetes case-
control pairs matched on sex, hypertension, diabetes pro-
pensity score, and treatment group. Previously established
associations of BCAA, AAA, and glutamine/glutamate with
diabetes incidence were confirmed but attenuated after
adjustment for clinical risk factors. Four novel metabolite
associations with incident disease persisted after adjust-
ment; namely, betaine and serine concentrations were in-
versely associated with diabetes, and methionine sulfoxide
and propionylcarnitine were positively associated. These
findings suggested that there are unique biomarkers of di-
abetes development in this population at high risk. Betaine
levels also increased significantly after a mean 3.2 years of
ILS, and this increase was associated with a reduction in in-
cident diabetes, demonstrating that plasma metabolites can
be associated with preventative intervention response (13).

In the current study, we profiled an expanded number of
metabolites in .2,000 stored baseline plasma samples from
all three treatment groups of the DPP. Our main goals were
twofold: 1) to identify a unique metabolomic profile associated
with progression to T2D in this population at high risk using
a larger sample size—including validation of our previous
findings—and 2) to explore baseline metabolite interactions
with the effects of lifestyle changes ormetformin. Ultimately,
novel associations could implicate metabolic pathways
involved in disease development and inform future discov-
eries in biomarkers for preventative intervention response.

RESEARCH DESIGN AND METHODS

The DPP
The DPP was a multicenter randomized control trial with
a median follow-up of 3.2 years among individuals at
high risk for diabetes. Inclusion and exclusion criteria
were published previously (14). At baseline, partici-
pants had impaired oral glucose tolerance (75-g OGTT
of 140–199 mg/dL), a fasting glucose of 95–125 mg/dL

(,125 mg/dL in American Indians), and BMI $24 kg/m2

($22 kg/m2 in Asians). More than two-thirds of study
participants were female, and 45% were from racial/ethnic
minorities (15). A total of 3,234 participants recruited
were randomized to three interventions (1,079 to ILS,
1,073 to MET, and 1,082 to PLA). Those in ILS targeted
a goal weight loss of $7% of initial body weight achieved
through a low-calorie, low-fat diet and moderate-intensity
exercise for a minimum of 150 min per week. Participants
in MET received 850 mg twice daily. Published study
results showed a reduction in incident diabetes of 58%
with ILS and 31% with MET compared with PLA after
mean follow-up time of 2.8 years (1). Study protocols were
approved by the institutional review board of each clinical
center, and all participants provided written consent.

Outcome Measures
The study outcome was T2D incidence over an average
follow-up of 3.2 years determined by an annual OGTT or
semiannual FPG. A diagnosis of T2D was defined by the
1997 American Diabetes Association criteria of at least one
FPG $126 mg/dL (7.0 mmol/L) or plasma glucose $200
mg/dL (11 mmol/L) after a 75-g OGTT (16). The diagnosis
was confirmed with repeat testing within 6 weeks.

Metabolite Sample Selection and Analysis
For this analysis, a total of 2,015 baseline fasting plasma
samples from all three treatment groups were obtained,
aliquoted, and stored at 280°C during the DPP. Selection
was based on these criteria: a nested case control subset for
cardiovascular disease (CVD) and cancer (n 5 1,008), a ran-
domly selected subset from all three treatment groups (n 5
1,007), and sufficient sample volume for metabolite profiling.

Three platforms were used (17,18): for assessment of
amino acids and amines, hydrophilic interaction chromatog-
raphy (Waters; Milford, MA) was coupled to a Q Exactive
mass spectrometer (MS) in positive ionmode (Thermo Fisher
Scientific, Waltham, MA). For assessment of lipids, C8 chro-
matography (Waters) was coupled to a Q Exactive MS in
positive ion mode. For assessment of organic acids, amide
chromatography (Waters) was coupled to an Agilent 6490
triple quadrupole MS (Agilent Technologies, Santa Clara, CA)
using negative ion mode electrospray ionization. Quality
control measures included monitoring of isotope-labeled
internal standards in each sample and the use of pooled
plasma reference samples inserted every 10–20 study sam-
ples to serve as a reference to standardize within and across
batches. Separate pooled plasma injections were included
every 20 injections to gauge the effectiveness of the normal-
ization and to determine the coefficient of variation of each
metabolite. Of the 365 metabolites measured, 331 (91%)
qualified for inclusion based on ,10% sample missingness
and an assay CV ,25% (Supplementary Table 1).

Data Analysis
We included data from the masked phase of DPP collected
from 1996–2001 corresponding to the data lock of 31 July
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2001 and an average follow-up of 3.2 years. To correct for
nonrandom missingness and bias in treatment effects on
diabetes incidence, we employed inverse probability
weighting (IPW) using a two-step approach (19). First,
a propensity score for each participant was created by
fitting logistic regression models separately for individuals
with and without incident diabetes to model the availabil-
ity of metabolite data as outcome and to adjust for
treatment group, sex, hypertension, age randomized,
race/ethnicity, fasting glucose, and BMI. Then the inverse
of the propensity scores were used as weights in Cox
(IPW-Cox) and linear (IPW linear) models detailed below.
A similar approach was used in a previous report (20). The
number of diabetes cases was similar between the nested
CVD and cancer case-control (19%) and random (18%)
sample subsets over the study period. CVD and cancer
outcomes were outside the focus of our analyses and so are
not included.

For determination of whether baseline metabolites are
associated with diabetes incidence in the DPP, IPW-Cox
models pooled data from all treatment groups with ad-
justment for treatment and traditional diabetes risk fac-
tors (baseline age, sex, race/ethnicity, BMI, FPG, and
hypertension status) using weights from the logistic mod-
els. These were the same adjustments used in the previous
smaller case-control DPP metabolomics study (13). The
metabolites were transformed as z scores in the models,
and associations were expressed as hazard ratio (HR) per
1 SD of the baseline metabolite distribution. The 14 metab-
olites associated with diabetes incidence in the prior
smaller DPPmetabolite study were included in this current
study for validation (13) and were not considered for
multiplicity adjustment. In the 317 metabolites assessed
for discovery, we applied Benjamini-Hochberg false dis-
covery rate (FDR) adjustment with a threshold for statis-
tical significance of ,0.05 (21). Models were also used to
further adjust for clinical laboratory–measured HDL, log-
transformed triglycerides, and statin use.

IPW-Cox models were used to conduct a hypothesis-
generating exploratory analysis stratified by treatment
group with the same adjustments as above (baseline
age, sex, race/ethnicity, BMI, FPG, and hypertension sta-
tus) to assess whether the metabolite-diabetes associations
differed among the three treatment groups. The test of
homogeneity was conducted to identify metabolite asso-
ciations with incident diabetes that differed by treatment
using Benjamini-Hochberg FDR adjustment for multiplic-
ity using an overall significance level of 0.05.

We also pursued an exploratory analysis to identify
metabolites that modified the effects of lifestyle changes
and metformin on diabetes incidence. Metabolites found
to have significant heterogeneity among treatment groups
from the previous analysis were considered in these anal-
yses. HRs of the treatment effects were estimated in
subgroups defined by quartiles of metabolite concentra-
tion levels and testing for homogeneity among quartiles
was conducted using a significance level of 0.05.

In selected metabolites, we graphically depict the haz-
ard rates across the biomarker levels expressed as z scores
using the estimates derived from the treatment-stratified
IPW-Cox models. Estimates of the absolute risk gradient
associated with metabolite concentrations across a range
of z values (61.96 or 2 SD) were used to describe the
hazard rate for a participant with metabolite value equal to
the group mean (z score 5 0). The point on each line
indicates the expected hazard rate for a subject at the mean
value for the group as estimated in life table analysis.

All analyses were conducted using SAS (9.2; Cary, NC)
and R (version 3.5.1; R Foundation for Statistical
Computing).

Data and Resource Availability
The data sets generated during and/or analyzed for the
current study will be available in the National Institute of
Diabetes and Digestive and Kidney Diseases repository at
https://repository.niddk.nih.gov/studies/dppos/.

RESULTS

Clinical characteristics of the metabolite profiling subco-
hort and complete DPP cohort were similar (Table 1). With
the IPW adjustment (see RESEARCH DESIGN AND METHODS),
baseline traits of the original DPP cohort and of the
treatment groups were balanced in the metabolite profiling
subcohort except for small differences in BMI and the
percentage of female participants in PLA compared with
the other groups. Mean values of baseline FPG, 2-h glucose
after a 75-g OGTT, and BMI were elevated in all groups and
consistent with the original study population at high risk.

Baseline Metabolite Levels Predict Incident Diabetes
IPW-Cox models were used to determine the association
between baseline metabolite level and incident T2D with
adjustment for age, sex, race/ethnicity, hypertension, FPG,
and BMI. Out of 331 metabolites included in the analysis,
69 were associated with diabetes incidence with an FDR q
value ,0.05 in the entire metabolite profiling subcohort
independent of treatment group randomization (Figs. 1
and 2).

We identified higher concentrations of several TAG,
diacylglycerol (DAG), and phosphatidylethanolamine (PE)
species that were associated with diabetes incidence (Fig. 1),
consistent with prior studies (4,6). C50:1 (total number of
carbon atoms:total number of double bonds) TAG conferred
the greatest risk of all lipids, with an HR of 1.34 for incident
T2D per 1-SD increase in concentration (95% CI 1.21–1.49,
FDR q 5 7.80 3 1026). A composite measurement of
glucose, fructose, and galactose—metabolites of identical
mass that cannot be differentiated on the platform—was
positively associated with diabetes risk even after adjust-
ment for baseline FPG levels (HR 1.42 [95% CI 1.25–1.61],
FDR q5 7.803 1026). Metabolites associated with lower
diabetes incidence at higher concentrations that have
previously been reported included bilirubin (0.78 [0.65–
0.92], FDR q 5 3.43 3 1022 [Fig. 2]), sphingomyelins
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(SMs), cholesterol esters (CEs), phosphatidylcholine (PC)
plasmalogens, and glutamine (22,23). Carnitines were
both positively (C5 dicarboxyl carnitine HR 1.20 [95% CI
1.08–1.33], FDR q5 1.263 1022, and C5 carnitine 1.13
[1.04–1.23], FDR q5 4.253 1022) and inversely (C18:1
carnitine 0.83 [0.73–0.94], FDR q 5 2.79 3 1022)
associated with diabetes incidence. Twenty-eight of
these associations remained significant after further
adjustments for clinically measured HDL and log-trans-
formed triglycerides (Supplementary Table 2) without
significant changes after further adjustment for statin
use.

Higher levels of cytosine and C36:1 PE plasmalogen
were found to have novel associations with lower diabetes
incidence in our expanded population. Cytosine had the
greatest associated risk reduction (23% reduction per 1-SD

increase in concentration) of all measured metabolites
(95% CI 0.67–0.89, FDR q 5 8.32 3 1023). This relation-
ship remained significant after further adjustment for
clinically measured HDL and log-transformed triglycerides
(Supplementary Table 2) and statin use. C36:1 PE plasmal-
ogen, a phospholipid with an ethanolamine head and
distinctive vinyl-ether bond, was associated with 18%
lower diabetes incidence per SD increase in concentration
(FDR q5 2.483 1022). Of the 14 metabolites included for
validation, all associations were directionally consistent
with previous findings in the DPP, but only six associations
remained at least nominally significant (P , 0.05) after
multivariable adjustment (Supplementary Table 1). These
included the positive associations of isoleucine (HR 1.14
[95% CI 1.06–1.22], P 5 4.38 3 1023) and methio-
nine sulfoxide (1.09 [1.01–1.17], P 5 0.02) and inverse

Table 1—Baseline characteristics of DPP subjects, individuals included in the metabolite profiling subcohort, and the DPP
cohort and treatment arms after IPW

DPP IPW

Whole
cohort

Metabolite
subcohort

Metabolite
subcohort ILS MET PLA

N 3,234 2,015 3,228 1,077 1,069 1,083

ILS group, n (%) 1,079 (33.4) 685 (34.0) 1,077 (33.4)

MET group, n (%) 1,073(33.2) 669 (33.2) 1,069 (33.1)

PLA group, n (%) 1,082 (33.4) 661 (32.8) 1,083 (33.5)

Age, years 51 (11) 53 (10) 51 (13) 51 (14) 51 (13) 50 (13)

Sex, n (%)

Female 2,191 (67.7) 1,336 (66.3) 2,158 (66.9) 706 (65.5)* 664 (62.2)* 789 (72.8)*

Race/ethnicity, n (%)
Caucasian 1,768 (54.7) 1,158 (57.5) 1,768 (54.7) 587 (54.5) 607 (56.8) 574 (53.1)
African American 645 (19.9) 376 (18.7) 639 (19.8) 194 (18.0) 215 (20.1) 230 (21.3)
Hispanic 508 (15.7) 264 (13.1) 508 (15.4) 173 (16.1) 166 (15.5) 169 (15.6)
Asian 142 (4.4) 93 (4.6) 139 (4.3) 60 (5.5) 41 (3.9) 38 (3.5)
American Indian 171 (5.3) 124 (6.1) 173 (5.4) 63 (5.9) 39 (3.7) 71 (6.5)

BMI, kg/m2 34.0 (6.7) 33.3 (6.20) 34.0 (8.6) 33.6 (7.9)* 33.9 (8.3)* 34.6 (9.5)*

Circumference, cm 105.1 (14.5) 104.3 (14.0) 105.1 (18.3) 104.8 (18.2) 105.6 (18.8) 105 (18.1)

Smoking, n (%) 226 (7.0) 123 (6.1) 211 (6.5) 50 (4.7) 77 (7.2) 84 (7.8)

Hypertensive, n (%) 925 (28.6) 624 (31) 938 (29.1) 296 (27.5) 317 (29.6) 325 (30.0)

Lipid-lowering medication, n (%) 160 (4.9) 115 (5.7) 158 (4.9) 45 (4.2) 62 (5.8) 51 (4.7)

Statin medications 137 (4.2) 101 (5.0) 139 (4.3) 36 (3.3) 57 (5.3) 46 (4.3)

Nonstatin medications 23 (0.7) 14 (0.7) 19 (0.6) 9 (0.9) 6 (0.5) 4 (0.4)

Family history of diabetes, n (%) 2,243 (69.4) 1,367 (67.9) 2,213 (68.6) 737 (68.5) 714 (66.8) 762 (70.5)

FPG, mg/dL 106.5 (8.3) 106.4 (8.30) 106.6 (10.67) 106.4 (10.4) 106.6 (10.6) 106.7 (11.0)

2-h plasma glucose, mg/dLǂ 164 (17.0) 165 (17.2) 165 (21.8) 164.6 (21.2) 164.3 (21.9) 165.1 (22.3)

Triglycerides, mg/dL 141 (99, 201) 143 (101, 200) 143 (101, 199) 138 (98, 197) 142 (101, 199) 147 (104, 205)

HDL cholesterol, mg/dL 45.6 (11.8) 46.6 (12.2) 46.6 (12.2) 46.3 (15.8) 46 (14.3) 45.4 (15.6)

Fasting insulin, mU/mL 24 (16, 33) 23 (16, 32) 24 (16, 34) 24 (16, 33) 24 (16, 35) 24 (17, 33)

HbA1c, % 5.9 (0.5) 5.9 (0.5) 5.9 (0.6) 5.9 (0.6) 5.9 (0.6) 5.9 (0.6)

HbA1c, mmol/mol 41 (4.3) 41 (5.4) 41 (7.0) 41 (7.0) 41 (7.0) 41 (6.8)

Data shown are n (%) for all categorical variables andmean (SD) for all quantitative traits except triglycerides and fasting insulin, which are
presented as median (interquartile range). Following implementation of the IPW, the demographic characteristics of the DPP were
restored in the IPWmetabolite profiling subcohort and were balanced across treatment groups, except for sex and BMI. *P values,0.05.
ǂ2-h plasma glucose determined after a 75-g oral glucose load.
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Figure 1—Baseline metabolites associated with decreased risk of incident diabetes in the DPP. The pooled HRs and 95%CIs are shown for
baseline metabolite associations with decreased risk of incident diabetes for every 1-SD increase in metabolite concentration in the entire
metabolite profiling subcohort over an average follow-up of 2.8 years. Metabolites are arranged in increasing-HR order and color coded
according to FDR q value. All metabolites with FDR q , 0.05 were included. Glutamine, serine, and asparagine were previously associated
with decreased risk of incident diabetes in a smaller matched case-control metabolite profiling study in the DPP. They were included in the
analysis for validation but were not included in the FDR q adjustment. Association with FDR q , 0.05, lightest green; unadjusted, gray.
Weighted Cox models used are adjusted for treatment group, age, sex, race/ethnicity, hypertension status, baseline FPG, and baseline BMI.
Symbols represent metabolite subclasses. Phospholipid notation denotes: total number of carbon atoms:total number of double bonds.

diabetes.diabetesjournals.org Chen and Associates 2341



Figure 2—Baseline metabolites associated with increased risk of incident diabetes in the DPP. The pooled HRs and 95% CIs are shown for
baseline metabolite associations with increased risk of incident diabetes for every 1-SD increase in metabolite concentration in the entire
metabolite profiling subcohort over an average follow-up of 2.8 years. Metabolites are arranged in increasing-HR order and color coded
according to FDR q value. All metabolites with FDR q, 0.05 were included. Tyrosine, phenylalanine, glutamate, a-glycerophosphocholine,
methionine sulfoxide, leucine, valine, and isoleucine were associated with increased risk of incident diabetes in a smaller matched case-
control metabolite profiling study in the DPP. They were included in the analysis for validation but were not included in the FDR q adjustment.
Association with FDR q , 1025, darkest green; q , 1023, medium green; q , 0.05, lightest green; unadjusted, gray. Weighted Cox models
used are adjusted for treatment group, age, sex, race/ethnicity, hypertension status, baseline FPG, and baseline BMI. Symbols represent
metabolite subclasses. Phospholipids notation denotes: total number of carbon atoms:total number of double bonds.
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associations of betaine (0.81 [0.71–0.92], P 5 1.06 3
1023), glutamine (0.85 [0.75–0.95], P 5 3.94 3 1023),
asparagine (0.86 [0.77–0.96], P 5 6.77 3 1023), and
serine (0.86 [0.77–0.97], P 5 0.01).

Due to potential biases introduced by our sample
selection scheme, we evaluated metabolite-diabetes asso-
ciations in the whole metabolite cohort versus the 1,007
random samples. Overall, there was a high degree of
concordance despite a halving of the sample size and
diabetes cases (Supplementary Fig. 1). However, a few
metabolites had stronger associations in the random sam-
ples, shown in Supplementary Table 3, including specific
carnitine (e.g., C5-DC, C4-OH, etc.), TAG (e.g., C56:3 and
C56:2), and CE (e.g., C22:6, C22:5, etc.) species.

Differences in Metabolite Associations With Diabetes
Incidence by Treatment Group
For assessment of whether baseline metabolite associa-
tions with diabetes incidence differed between treatment
groups, associations of the 331 knownmetabolites profiled
were assessed using treatment group–specific IPW-Cox
models. Thirty-five metabolite-diabetes associations were
found in a general test for heterogeneity to differ across
the three treatment groups (Table 2), many of which were

phospholipids. Among individuals randomized to ILS,
higher levels of PCs, CEs, SMs, PEs, phosphatidylinositols,
and lysophosphatidylethanolamines (LPEs) were associated
with decreased diabetes incidence. Conversely, higher
levels of AMP were associated with increased incidence
(HR 1.39 [95% CI 1.19–1.64], FDR q 5 0.002) along with
higher levels of xanthosine (1.25 [1.05–1.49], FDR q 5
0.07) and the conjugated bile acids, glycocholic acid
( [1.10–1.54], FDR q 5 0.02) and taurocholic acid
(1.45 [1.14–1.84], FDR q 5 0.03). Higher levels of biliru-
bin were associated with lower incidence in individuals
randomized to MET (0.66 [0.52–0.83], FDR q 5 0.008).
1-methylnicotinamide, a biologically inactive metabolite of nic-
otinamide (1.23 [1.08–1.39], FDR q5 0.02); indole-3-propanoic
acid, a gut microbiome metabolite (1.35 [1.20–1.52], FDR q 5
0.00003); and methylthioadenosine, a nucleoside involved in
methionine and purine salvage (1.21 [1.08–1.36], FDR q 5
0.01), were associated with increased incidence in MET.

Lifestyle Change and Metformin Effects on Diabetes
Incidence in Subgroups Defined by Metabolite
Quartiles
To explore the relationship that baseline levels of metab-
olites had with treatment effect, we compared the HRs

Figure 3—Treatment-specific hazard rates for incident diabetes across standardized baselinemetabolite concentrations. Treatment-specific
HRs for incident diabetes in ILS (●), MET (▲), and PLA (▪) are shown for an individual with metabolite value equal to the group mean. The
associated curves represent the absolute risk gradient across standardized baseline metabolite concentrations. Phospholipid notation
denotes total number of carbon atoms:total number of double bonds. pyrs, person-years.
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associated with treatment effect stratified across quar-
tiles of metabolite concentrations. Treatment effects in
pairwise group comparisons were found to differ across
concentration quartiles in 15 of these metabolites (P ,
0.05 for homogeneity across metabolite quartiles within
treatment effects [Table 3]). The majority of these asso-
ciations were in phospholipids.

For specific phospholipids—including C34:2, C34:3,
C36:3, C36:4, and C38:2 PC; C18:2 and C20:4 LPE;
C18:2 CE; and C38:2 PE—individuals with baseline con-
centrations in the highest quartile had a greater reduction
in diabetes incidence with ILS compared with MET, while
those in the lowest quartile had no difference (Phomogeneity

,0.05). There was a similar trend across quartiles for

Table 2—Baseline metabolite associations with incident diabetes that differed* across treatment groups

Baseline metabolite

HR (95% CI) per 1 SD Phomogeneity for
treatment
groupPLA ILS MET

AMP 0.98 (0.85, 1.12) 1.39 (1.19, 1.64) 0.92 (0.74, 1.14) 0.0010

C36:2 PC 1.14 (0.97, 1.34) 0.68 (0.53, 0.87) 1.15 (0.94, 1.41) 0.0012

C18:2 CE 1.07 (0.87, 1.32) 0.65 (0.52, 0.81) 0.78 (0.64, 0.94) 0.0040

C34:0 PI 1.15 (1.00, 1.33) 0.66 (0.49, 0.89) 0.99 (0.84, 1.17) 0.0044

C38:2 PE 1.06 (0.88, 1.27) 0.60 (0.45, 0.80) 0.97 (0.76, 1.24) 0.0046

C44:13 PE plasmalogen 1.10 (0.91, 1.32) 0.58 (0.41, 0.81) 0.96 (0.80, 1.14) 0.0049

1-pethylnicotinamide 0.79 (0.60, 1.02) 0.97 (0.78, 1.20) 1.23 (1.08, 1.39) 0.0052

C34:2 PC 1.24 (1.02, 1.50) 0.75 (0.56, 0.99) 1.26 (1.03, 1.56) 0.0063

C36:4 PC 1.12 (0.95, 1.32) 0.64 (0.46, 0.88) 1.09 (0.89, 1.34) 0.0080

Indole-3-propanoic acid 1.32 (0.65, 2.67) 0.76 (0.53, 1.07) 1.35 (1.20, 1.52) 0.0089

C32:2 PC 1.27 (1.07, 1.51) 0.74 (0.54, 1.02) 1.21 (0.99, 1.47) 0.0128

C16:0 CE 1.02 (0.85, 1.22) 0.61 (0.45, 0.83) 0.79 (0.65, 0.97) 0.0143

C14:0 SM 1.08 (0.91, 1.27) 0.70 (0.54, 0.90) 0.87 (0.72, 1.06) 0.0167

C3 carnitine 1.54 (1.22, 1.94) 0.98 (0.79, 1.21) 1.25 (1.03, 1.51) 0.0168

Bilirubin 0.97 (0.78, 1.21) 0.58 (0.38, 0.90) 0.66 (0.52, 0.83) 0.0227

Taurocholic acid 0.98 (0.85, 1.13) 1.45 (1.14, 1.84) 1.09 (0.97, 1.22) 0.0232

C16:1 SM 0.95 (0.76, 1.19) 0.60 (0.45, 0.79) 0.90 (0.73, 1.10) 0.0239

C20:4 LPE 0.96 (0.80, 1.15) 0.73 (0.53, 1.00) 1.17 (0.99, 1.37) 0.0250

C34:3 PC 1.08 (0.90, 1.30) 0.71 (0.50, 0.99) 1.22 (0.99, 1.50) 0.0250

Glycocholic acid 0.97 (0.85, 1.11) 1.30 (1.10, 1.54) 1.06 (0.96, 1.17) 0.0256

C22:5 CE 1.01 (0.83, 1.22) 0.68 (0.51, 0.90) 0.74 (0.60, 0.91) 0.0295

3-hydroxybutyric acid 0.82 (0.67, 1.02) 1.12 (0.99, 1.26) 0.95 (0.81, 1.11) 0.0305

C36:3 PC 1.10 (0.92, 1.33) 0.77 (0.56, 1.04) 1.26 (1.03, 1.54) 0.0319

Methylthioadenosine 1.03 (0.77, 1.38) 0.91 (0.75, 1.10) 1.21 (1.08, 1.36) 0.0334

C22:1 SM 0.97 (0.80, 1.18) 0.61 (0.46, 0.82) 0.87 (0.72, 1.06) 0.0338

Xanthosine 0.91 (0.76, 1.10) 1.25 (1.05, 1.49) 1.01 (0.87, 1.16) 0.0379

C18:2 LPE 0.99 (0.83, 1.17) 0.64 (0.42, 0.99) 1.17 (0.97, 1.41) 0.0381

C18 carnitine 1.16 (0.96, 1.40) 0.74 (0.51, 1.05) 0.89 (0.72, 1.09) 0.0384

C16:0 ceramide (D18:1) 1.19 (0.99, 1.42) 0.77 (0.58, 1.02) 1.01 (0.84, 1.21) 0.0387

C38:2 PC 1.07 (0.91, 1.25) 0.78 (0.60, 1.01) 1.18 (0.97, 1.44) 0.0403

C34:1 PC 1.01 (0.84, 1.20) 0.87 (0.67, 1.12) 1.24 (1.06, 1.46) 0.0409

C34:4 PC 1.20 (1.00, 1.44) 0.79 (0.58, 1.07) 1.21 (1.00, 1.45) 0.0440

C36:1 PC 0.97 (0.83, 1.14) 0.82 (0.66, 1.03) 1.17 (0.99, 1.38) 0.0442

Pyroglutamic acid 0.95 (0.81, 1.12) 1.21 (1.07, 1.37) 1.00 (0.82, 1.22) 0.0447

C36:0 PC 0.98 (0.81, 1.17) 0.66 (0.51, 0.86) 0.92 (0.75, 1.13) 0.0481

Metabolites are arranged by increasing Phomogeneity value across treatment groups. The HRs are expressed as incident diabetes risk for
each SD increase in baseline metabolite levels within a treatment group. FDR q values,0.05 are in boldface type. Phospholipid notation
denotes: total number of carbon atoms:total number of double bonds. PI, phosphatidylinositol. *Differential effects across treatment
groups are identified using a test for homogeneity in HR across treatment groups with P , 0.05 from weighted Cox models with
development of diabetes as outcome andmetabolite as the exposure of interest with adjustment for age, sex, race/ethnicity, hypertension
status, baseline FPG, and baseline BMI.
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Table 3—HR (95% CI) of treatment effects in subgroups defined by quartiles of metabolites found to have heterogeneity
among treatment groups in the association of metabolite–incident diabetes

Baseline metabolite Quartile ILS vs. PLA MET vs. PLA ILS vs. MET

AMP 1 0.30 (0.16, 0.58) 0.94 (0.57, 1.56) 0.31 (0.17, 0.57)
2 0.41 (0.24, 0.71) 0.63 (0.37, 1.09) 0.68 (0.37, 1.27)
3 0.52 (0.31, 0.90) 0.78 (0.49, 1.24) 0.65 (0.38, 1.12)
4 0.57 (0.33, 0.96) 0.56 (0.33, 0.95) 1.03 (0.62, 1.72)

C36:2 PC 1 0.75 (0.43, 1.31) 0.71 (0.42, 1.20) 1.02 (0.60, 1.76)
2 0.40 (0.23, 0.71) 0.62 (0.37, 1.04) 0.56 (0.32, 0.98)
3 0.42 (0.25, 0.72) 0.66 (0.40, 1.09) 0.91 (0.52, 1.59)
4 0.23 (0.12, 0.43) 0.82 (0.53, 1.28) 0.25 (0.14, 0.47)

C18:2 CE 1 0.94 (0.58, 1.53) 0.91 (0.56, 1.45) 1.04 (0.65, 1.66)
2 0.32 (0.18, 0.56) 0.76 (0.49, 1.17) 0.41 (0.23, 0.72)
3 0.34 (0.19, 0.60) 0.46 (0.27, 0.80) 0.76 (0.40, 1.43)
4 0.30 (0.15, 0.57) 0.73 (0.42, 1.25) 0.39 (0.19, 0.77)

C38:2 PE 1 0.64 (0.40, 1.04) 0.61 (0.38, 0.98) 1.13 (0.68, 1.87)
2 0.48 (0.27, 0.85) 0.68 (0.41, 1.14) 0.75 (0.43, 1.29)
3 0.40 (0.22, 0.70) 0.62 (0.36, 1.08) 0.58 (0.31, 1.07)
4 0.23 (0.11, 0.45) 0.97 (0.60, 1.57) 0.22 (0.11, 0.43)

C44:13 PE plasmalogen 1 1.03 (0.61, 1.75) 1.06 (0.66, 1.68) 0.97 (0.60, 1.57)
2 0.43 (0.27, 0.69) 0.52 (0.32, 0.84) 0.78 (0.46, 1.32)
3 0.36 (0.20, 0.67) 0.75 (0.44, 1.28) 0.47 (0.25, 0.87)
4 0.25 (0.13, 0.47) 0.74 (0.47, 1.17) 0.35 (0.18, 0.67)

C34:2 PC 1 0.49 (0.29, 0.81) 0.45 (0.26, 0.76) 1.08 (0.61, 1.93)
2 0.70 (0.36, 1.33) 1.13 (0.63, 2.03) 0.58 (0.33, 1.02)
3 0.45 (0.26, 0.78) 0.64 (0.39, 1.04) 0.76 (0.44, 1.31)
4 0.26 (0.15, 0.47) 0.77 (0.49, 1.20) 0.33 (0.18, 0.6)

C36:4 PC 1 0.71 (0.42, 1.21) 0.77 (0.47, 1.27) 0.98 (0.58, 1.66)
2 0.46 (0.27, 0.77) 0.56 (0.35, 0.91) 0.80 (0.47, 1.38)
3 0.38 (0.21, 0.67) 0.59 (0.34, 1.03) 0.61 (0.34, 1.1)
4 0.23 (0.13, 0.44) 0.93 (0.60, 1.42) 0.26 (0.14, 0.49)

Bilirubin 1 0.50 (0.31, 0.79) 0.57 (0.36, 0.90) 0.96 (0.60, 1.56)
2 0.99 (0.57, 1.73) 1.30 (0.78, 2.15) 0.65 (0.39, 1.07)
3 0.21 (0.10, 0.44) 0.73 (0.44, 1.20) 0.30 (0.14, 0.61)
4 0.27 (0.14, 0.52) 0.52 (0.29, 0.94) 0.56 (0.28, 1.12)

C20:4 LPE 1 0.45 (0.27, 0.73) 0.44 (0.27, 0.72) 1.06 (0.60, 1.90)
2 0.52 (0.29, 0.92) 0.70 (0.42, 1.18) 0.72 (0.41, 1.27)
3 0.66 (0.36, 1.20) 1.14 (0.68, 1.90) 0.59 (0.33, 1.04)
4 0.25 (0.13, 0.47) 0.77 (0.47, 1.27) 0.31 (0.17, 0.57)

C34:3 PC 1 0.61 (0.37, 1.00) 0.54 (0.33, 0.88) 1.22 (0.71, 2.09)
2 0.32 (0.17, 0.60) 0.81 (0.48, 1.36) 0.38 (0.20, 0.72)
3 0.53 (0.30, 0.92) 0.70 (0.43, 1.16) 0.76 (0.43, 1.34)
4 0.28 (0.16, 0.50) 0.87 (0.56, 1.36) 0.30 (0.16, 0.54)

3-hydroxybutyric acid 1 0.29 (0.17, 0.52) 0.56 (0.34, 0.91) 0.50 (0.28, 0.90)
2 0.79 (0.43, 1.44) 0.86 (0.49, 1.51) 0.95 (0.55, 1.63)
3 0.28 (0.16, 0.49) 0.61 (0.39, 0.96) 0.42 (0.24, 0.73)
4 0.72 (0.39, 1.31) 1.06 (0.61, 1.84) 0.68 (0.39, 1.22)

C36:3 PC 1 0.47 (0.27, 0.80) 0.48 (0.29, 0.80) 1.06 (0.56, 2.04)
2 0.65 (0.37, 1.12) 0.86 (0.50, 1.45) 0.72 (0.43, 1.22)
3 0.36 (0.21, 0.61) 0.60 (0.37, 0.97) 0.63 (0.36, 1.09)
4 0.32 (0.17, 0.59) 1.02 (0.65, 1.61) 0.30 (0.16, 0.55)

C22:1 SM 1 0.75 (0.47, 1.22) 0.74 (0.47, 1.18) 1.02 (0.62, 1.68)
2 0.32 (0.19, 0.54) 0.60 (0.38, 0.95) 0.57 (0.33, 0.99)
3 0.29 (0.15, 0.56) 0.59 (0.35, 1.01) 0.47 (0.25, 0.86)
4 0.40 (0.21, 0.75) 0.83 (0.49, 1.40) 0.48 (0.26, 0.91)

C18:2 LPE 1 0.70 (0.40, 1.22) 0.74 (0.44, 1.24) 0.97 (0.56, 1.69)
2 0.44 (0.25, 0.77) 0.55 (0.33, 0.91) 0.82 (0.46, 1.46)
3 0.41 (0.24, 0.70) 0.56 (0.34, 0.93) 0.76 (0.44, 1.31)
4 0.26 (0.13, 0.52) 1.21 (0.77, 1.89) 0.22 (0.11, 0.43)

Continued on p. 2346
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C44:13 PE plasmalogen and C22:1 SM when ILS was
compared with PLA (Phomogeneity ,0.05) and for C36:2
PC and C18:2 CE when ILS was compared with both PLA
and MET (Phomogeneity ,0.05). For C34:1 PC, individuals in
the highest quartile had lower diabetes risk when ILS was
compared with MET (Phomogeneity 5 0.039) and higher risk
when MET was compared with PLA (Phomogeneity 5
0.0012). Figure 2 provides a visual depiction of the differ-
ences in diabetes risk for an individual with a given
metabolite concentration at a specific z score across the
three treatment groups in selectedmetabolites. The treatment-
specific hazard rates of C36:2 PC were plotted as an
example of the phospholipids, with the hazard rates of
ILS converging with those of MET and PLA at lower z
scores but diverging at higher z scores as ILS hazard rates
decrease (Fig. 2A).

For AMP, individuals in the lowest quartile had a 69%
reduction in diabetes incidence when ILS was compared
withMET (HR 0.31 [95% CI 0.17–0.57]). Individuals in the
highest quartile, however, had no difference (1.03 [0.62–
1.72], Phomogeneity across quartiles 5 0.03). When ILS was
compared with PLA, individuals in all quartiles had an
overall reduction in diabetes incidence. When the treatment-
specific hazard rates were plotted for AMP, the hazard
rates for ILS at lower levels were much lower than for MET
and PLA but gradually converged with those for MET and
PLA at higher values (Fig. 2B).

Other nonlipid metabolites levels associated with dif-
ferences in treatment effect included bilirubin and
3-hydroxybutyric acid. For bilirubin, when ILS was com-
pared with PLA, individuals in the highest concentration
quartile had a 73% reduction in diabetes risk compared
with only a 50% reduction in those in the lowest quartile
(Phomogeneity 5 0.002). The plot of treatment-specific
hazard rates revealed that the hazard rate for PLA
remained stable while the hazards rates for MET and
ILS decreased and diverged at higher concentrations
(Fig. 2C). For the ketone body 3-hydroxybutyric acid,
when ILS was compared with PLA, individuals in the
lowest quartile had a 71% reduction in diabetes risk, but
there was no difference in risk among individuals in
the highest quartile (Phomogeneity 5 0.013). When the

treatment-specific hazard rates were plotted, the hazard
rates converged at the highest z scores but diverged at
lower z scores, as the hazard rate for MET remained
relatively stable, while ILS and PLA changed across con-
centrations (Fig. 2D).

DISCUSSION

We characterized the comprehensive baseline metabolite
profile of the DPP and identified unique metabolite asso-
ciations with incident diabetes—including the association
of higher levels of cytosine and C36:1 PE plasmalogen with
lower risk—in this multiethnic, high-risk population. We
also confirmed the association of higher levels of betaine
and lower levels of methionine sulfoxide with decreased
diabetes risk initially described in a smaller metabolite
profiling study of the DPP (13). In exploratory analyses,
we identified specific metabolite subclasses associated
with different diabetes risk across the three treatment
groups. These data suggest that individuals at high risk
with low levels of AMP or high levels of specific phos-
pholipids (e.g., C36:2 PC and C38:2 PE) will benefit the
most from intensive lifestyle modification to prevent
progression to T2D. By contrast, individuals with similar
clinic risk but low levels of these phospholipids or higher
levels of AMP can have the same benefit from metformin
therapy. These findings suggest there are unique baseline
metabolites associated with T2D progression and preventa-
tive treatment effect in our population that could implicate
metabolic pathways important to T2D development and
serve as candidate biomarkers of preventative intervention
response motivating further study.

Higher levels of cytosine and C36:1 PE plasmalogen
were associated with decreased T2D incidence in our study.
Cytosine is a product of pyrimidine metabolism that
reduces glutamine (24). Higher levels of cytosine have
been associated with improved glycemic control in people
with type 1 diabetes (25) and with a low glycemic diet (26).
Further studies, possibly utilizing instrumental variable
analysis via Mendelian randomization, could clarify
whether cytosine is a surrogate marker of glycemic control
or is causally related to diabetes development. C36:1 PE
plasmalogen is a phospholipid with a vinyl ether bond

Table 3—Continued

Baseline metabolite Quartile ILS vs. PLA MET vs. PLA ILS vs. MET

C34:1 PC 1 0.48 (0.28, 0.81) 0.37 (0.21, 0.63) 1.25 (0.67, 2.35)
2 0.40 (0.22, 0.70) 0.67 (0.40, 1.11) 0.64 (0.35, 1.16)
3 0.53 (0.31, 0.93) 1.18 (0.74, 1.87) 0.46 (0.28, 0.78)
4 0.37 (0.21, 0.65) 0.86 (0.54, 1.37) 0.39 (0.22, 0.69)

Metabolites included in this table were 1) associated with different treatment effects across treatment groups with a Phomogeneity for
treatment group ,0.05 and 2) associated with differences across metabolite quartiles within treatment effects with a Phomogeneity

value ,0.05 in at least one pairwise treatment group comparison. HR and Phomogeneity values across metabolite quartiles within
treatment effects ,0.05 are in boldface type. The HR is expressed as diabetes risk for each pairwise treatment group comparison
for the given baseline metabolite concentration quartile. All weighted Cox models were adjusted for age, sex, race/ethnicity,
hypertension status, baseline FPG, and baseline BMI. Phospholipid notation denotes: total number of carbon atoms:total number of
double bonds.
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highly susceptible to reactive oxygen species oxidation and
has been proposed to protect pancreatic b-cells from in-
jury. C36:1 PE plasmalogen levels have been inversely
associated with type 1 diabetes incidence in a pediatric
population (27–29). Since DPP participants were selected
to be insulin resistant, b-cell function could be a stronger
predictor of diabetes progression in this population. Fur-
ther studies will be needed in similar populations to
confirm this association with incident diabetes and to
explore the relationship with b-cell reserve.

We confirmed the associations of higher levels of
betaine and serine and lower levels of methionine
sulfoxide with decreased risk of incident diabetes
that were first described in a smaller cohort of the
DPP (13). We also validated the associations of iso-
leucine, glutamine, and asparagine with incident T2D
previously found in population-based cohorts. Other estab-
lished metabolite associations with incident T2D such as
the BCAAs leucine and valine and the AAAs phenylalanine
and tyrosine were not significant in this study after
adjustment for clinical risk factors (2,3,5,13). Several lipid
species were associated with both increased (including
TAGs, DAGs, and PEs) and decreased (including SMs,
PE and PC plasmalogens, and CEs) diabetes risk in the
entire cohort (Fig. 1). These associations were stronger
than for previously established metabolite markers dis-
covered in population-based cohorts—such as BCAAs and
AAAs—and they persisted even after adjustment for clin-
ical measures of HDL and triglycerides (Supplementary
Table 2). This complements previous findings that lipid
acyl chain content provides additional information
about diabetes risk beyond clinical measures of “bulk”
triglycerides or cholesterol (4,6,22,30). Elevated levels
of DAG, TAG, and incomplete fatty acid oxidation
intermediates may induce cellular insulin resistance
(31,32), and phospholipids contribute to DAG forma-
tion (33,34). However, it is still unclear whether in-
tracellular accumulation of lipids is causal or secondary
to the metabolic dysfunction associated with diabetes
development. Our findings show that phospholipids as
a metabolite subclass have the strongest associations
with incident diabetes in these individuals at high
risk and may help refine risk stratification in this
population.

In our novel exploratory analyses, we also found that
specific phospholipid associations with incident diabetes
differed with treatment group randomization (Table 2). In
general, individuals randomized to ILS who had higher
levels of these phospholipids had better outcomes. When
ILS was compared with MET, individuals in the highest
concentration quartiles had improved outcomes, but the
outcomes were similar in individuals in the lowest quartile.
Several phospholipids also had similar trends when ILS
was compared with PLA. Considering these complemen-
tary trends in this metabolite subclass, certain phospho-
lipids could be candidates for biomarkers of response to
lifestyle intervention for diabetes prevention.

We also found that AMP—an allosteric nucleotide acti-
vator of the master cell energy regulator AMPK and a po-
tential mediator of metformin’s therapeutic effect (35)—
had the greatest heterogeneity of treatment effects across
treatment arms. Individuals with lower levels of AMP at
baseline had lower diabetes incidence when randomized to
ILS. When AMP concentration was stratified into quartiles,
individuals had lower risk for diabetes in all quartiles when
ILS was compared with PLA (Table 3). However, when ILS
was compared with MET, individuals in the lowest quartile
experienced a 69% risk reduction, but this effect was
completely attenuated in the highest quartile (Ptrend 5
0.032). These findings suggest that while individuals overall
benefit from ILS comparedwith PLA, those with lower levels
of AMP potentially could benefit more from ILS than MET
for diabetes prevention. Since AMP is central to cellular
metabolism, further studies are needed to confirm these
interactions.

This study has several notable limitations. Although the
DPP is the largest randomized trial to date comparing
lifestyle changes and metformin for diabetes prevention,
due to the number of metabolites and variability in their
concentrations, the study was underpowered to defini-
tively detect heterogeneity of treatment effects. These
analyses were treated as discovery analyses, and further
validation of these finding are needed in an independent
cohort. Finding a suitable replication cohort has its chal-
lenges, since the DPP design included two randomized
intervention arms compared with placebo. The Da Qing
Diabetes Prevention Study and Finnish Diabetes Preven-
tion Study are contemporaneous randomized trials com-
paring lifestyle interventions with placebo that could be
considered. In the Da Qing Diabetes Prevention Study,
however, baseline samples are not available and only
a minority of patients received both exercise and diet
intervention, while a limited panel of metabolites was
measured in the Finnish Diabetes Prevention Study
(36–39). An orthogonal method to further investigate
these associations would be to leverage available genetic
data in the DPP to complete instrumental variable analysis
via Mendelian randomization to determine whether these
metabolite-diabetes associations are causal. Also, for im-
provement of the power of our primary analysis, samples
from a CVD and cancer case-control study were included
with randomly selected samples. While top metabolite-
diabetes associations were concordant between the whole
metabolite profiling cohort and random samples, some
metabolites had stronger associations only in the ran-
domly selected subcohort (Supplementary Table 3). Con-
founders introduced by the sampling scheme could have
abrogated these associations, and further study is war-
ranted in a suitable replication cohort. Another limitation is
we were underpowered to complete subgroup analyses
based on age, sex, race and ethnicity, and other baseline
characteristics that would be of interest.

In summary, comprehensive metabolite profiling of
baseline plasma samples from 2,015 participants in the
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DPP revealed novel metabolite associations with incident
diabetes in this group at high risk—findings that differed
from those of community-based populations. This in-
cluded the novel inverse association of cytosine and
C36:1 PE plasmalogen with incident diabetes. In our
discovery analysis, baseline levels of several metabolites
involved in the regulation of cellular metabolism including
specific phospholipids and nucleotides such as AMP were
associated with differences in treatment effect. Our find-
ings suggest that baseline metabolites could highlight
metabolic pathways important in the transition from
impaired glucose tolerance to overt diabetes and may serve
as biomarkers of disease development and response to
preventative strategies, motivating further studies to fully
explore these interactions.
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