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Abstract

Worldwide, one of the leading causes of death for patients with car
disease is aortic valve failure or insufficiency as a result of calcifica Feedback
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cardiovascular disease. The surgical treatment consists of repair or total replacement
of the aortic valve. Artificial aortic valve implantation via a percutaneous or
endovascular procedure is the minimally invasive alternative to open chest surgery,
and the only option for high-risk or older patients. Due to the complex anatomical
location between the left ventricle and the aorta, there are still engineering design
optimization challenges which influence the long-term durability of the valve. In this
study we developed a computer model and performed a numerical analysis of an
original self-expanding stent for transcatheter aortic valve in order to optimize its
design and materials. The study demonstrates the current valve design could be a
good alternative to the existing commercially available valve devices.

Keywords: Aortic valve, stent, finite elements, nitinol

Introduction

The aortic valve allows the oxygenated blood from the heart’s right ventricle to flow
into the aorta and the arterial system and prevents blood from flowing back into the
ventricle. To reduce trauma and recovery period of the patient, aortic valve
replacement can be performed transapically, in a procedure that provides a direct
access to the natural valve, using real-time MRI for intraoperative guidance and
results assessment [1,2].

During these procedures, the valve is attached to a stent and delivered via a catheter
to the anatomical location. The stent is expanded and fixed in place via specific stent
features.

The function of the aortic valve is complex, with a durability of the bioprosthetic
valves between 12 to 15 years. The functional limitations are the mechanical
properties of the valve and the effect of the stresses imposed on the valve leaflets by
the stent structure, while the aortic root to which the artificial valve is attached
expands and contracts during the cardiac cycle.

An important feature of the natural heart valve is its ability to expand in diameter by
more than 10% during systole which facilitates the flow of blood and contributes to

minimal bending of the cusps, and reduced internal flexural fatigue [3].

There is also a meaningful torsion/twisting motion that the aorta endures during
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each pulse. All these motions need to be considered in the design of a valve stent
which will be attached to the aortic wall. The stent has specific design to ensure its
resilience, durability, and ability to be delivered transapically and repositioned in a
patient, while providing an appropriate opening of the valve during systole to
facilitate blood flow, and minimal bending of the cusps to reduce valve failure.

Other important features of a stent are to: slightly expand during compression but
not apply too much force to the valve leaflets, provide a stable yet flexible scaffolding
platform for the valve prosthesis, resist torsion, also be able to expand and contract
repeatedly over long periods of time [4,5].

Material and Methods

Aortic Valve Stent Design

The present aortic valve design includes an expandable stent to support the
prosthesis and to anchor the prosthesis to the aortic root. The patented [6], self-
expandable stent, designed for a 25mm diameter aorta, includes a tubular lattice
structure defined by longitudinally aligned rods connected to V-shaped struts and
present flares along opposite ends of each rod to properly seat and prevent undue
torsion during deployment and placement within the lumen (Figure 1a). Attached to
the stent is an equine or bovine pericardial trileaflet valve (Figure 1b)

Finite Element Model

The assembly of the aorta, aortic valve and stent is modeled with solid finite elements
using the software package Abaqus (Dassault Systemes, Paris, France). The aorta and
stent are modeled with 15t order C3D8I hexahedral elements. The C3D8I
incompatible mode elements are hexahedral elements which minimize the
appearance of hourglass modes as well as the node lock phenomenon. The valves and
valve cage are modeled with modified 2" order tetrahedral elements, C3D10M [3].
Boundary conditions and loads

Two loading cases were considered:

1: Uniform pressure of 4.4kPa applied to the lower surface of the valve (Figure 3, a)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716760/?report=printable[4/14/2022 10:38:35 AM]


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716760/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716760/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716760/figure/F3/

Finite Element Analysis of a Novel Aortic Valve Stent - PMC

to test the strength of the valve opening.

2: Constant blood flow with a speed of 41/min to open the valve and deform the stent
and the aorta

Stent material

The material used to model the stent was Nitinol [7,8,9,10].

The Abaqus material subroutines was employed to simulate its behavior with the
following values (Table 1).

For valves, valve cage and aorta an hyperelastic material model Ogden 2™ order
[11,12] was used. Ogden strain energy potential is given by [7]:

where A; represent deviatoric principal stretches; N is the order of approximation;
and p;, o, and Dj are parameters which depend on temperature. The initial shear
modulus and bulk modulus are:

The resulting stress-strain curve from the Ogden 2nd order material model is shown
in Figure 4.

In this study, the density of the leaflet was 1100kg/m3, 01=67.74, 0,=27.47,
n1=19.58kPa, up=260.56kPa [13].

Blood was modeled as an inviscid fluid [4] with 1060Kg/m3 density and 0.0035 Pa's
dynamic viscosity.

Fluid structure interaction case is modeled as smooth particle hydrodynamics (SPH).
SPH is a Lagrange system where the fluid is represented by a discrete set of points
distributed over the domain with no need to discretize the domain into elements.
The Lagrange method correlated with the non-existence of a fixed mesh is used to
model the complexity correlated with fluid modeling, large displacement structural

problems and free surfaces [7].

The method is a representation of continuum partial differential equations. In that
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regard, smoothed particle hydrodynamics is like the finite element method. Like FEA,
SPH uses an interpolation method to approximate a field variable at any pointin a
domain. The contributions of neighboring particles give the output of a variable in a
form of summation:

where the “kernel” function, W, is different than zero.

Results

The stress distribution for the valve leaflets and stent (Figure 5), as well as the radial
(Figure 6) and axial deformations (Figure 7) were computed to evaluate the
biomechanical state for constant blood flow (4L/min) which opens the valve. The
maximum von Mises stress (0.26MPa) is distributed at leaflet base and at opposite
end of the stent (17MPa).

The radial (0.18mm) and axial (0.26mm) maximal deformations for the stent were
proved to be relatively small because of the particular design of the stent with
longitudinally rods connected to V-shaped struts, developing an increase resilience
and durability and reducing the valve failure due to the minimal bending of the cusps.

Discussion

Cardiovascular disease is the leading cause of death world-wide with important
economic implications [14].

Transcatheter valve replacement is an alternative treatment to surgery for stenosis
of aortic valves [15], when the diseased valve is replaced by a biological valve
sutured to a stent, deployed using a catheter through the femoral artery to its natural
position in the body.

The stent used in this procedure as a support structure has a great importance,
enduring high stress due to the blood flow changes in the heart. This paper presents
the design of a novel, patented stent, with a design to increase its rigidity, that was
analyzed using finite element method with Abaqus software, under natural loading
conditions. Similar other studies have analyzed stent design for aortic or mitral valve
application [16,17].
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A possible next step for our study would be to use explanted swine heart and aortic
arch tissue to test the aortic valve stent as other groups tested the mitral valve stent
[16].

This will further validate our theoretical results. Another necessary study is to
analyze the effect of calcification plaque on the aortic wall stress distribution and
how the stent will alleviate this stress [17].

Two testing scenarios were used: one for pressure loading on the valve to maintain
the valve closed, and the second one when there is a constant flow of blood to open
the valve [11,13].

In both cases we calculated the deformations and stresses in the stent in the radial
and axial directions. In the radial direction, there was a larger deformation in the first
case scenario when the stent has to hold the valve closed. In the second scenario
when the valve is open, the stent undergoes negative radial deformations where the
valve is attached (stent is pulled slightly inward when the valve opens) but overall
the deformation is smaller than in the first scenario.

In the axial direction, the deformations are larger than in the radial direction (but
still within the normal limits) to accommodate the torsion/twisting motion of the
aorta and slightly reposition in the patient. The particular, V shape of the stent’s
struts allows deformation of the stent without changing its shape and durability.
Because of this particular design, the stent undergoes small deformations resulting in
a reduced fatigue of the valve failure due to the minimal bending of the cusps, but the
peak stresses for leaflets located at the line of junction will possibly produce a leaflet
degeneration in these regions.

For the valve and stent ensemble, the stresses in the valve were in the same range
but slightly higher in the pressure load scenario which shows that the features of a
stent do not apply too much force to the valve leaflets. The stresses on the stent
struts show a few points of increased stress at the tip of the V shape but overall, they
offer a stable yet flexible scaffolding platform for the valve prosthesis which expand
and contract repeatedly over time.

Conclusions
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The finite element method is an important tool to precisely analyze the design and
the performance of the medical devices [18], and particularly of an aortic valve
mounted on an original stent for this study.

During analyses, we used two loading cases scenarios to simulate the valve behavior,
and compute stress distribution and displacements: a uniform distributed pressure
on the valve leaflets and a constant blood flow.

The geometry of the stent with tubular lattice structure defined by longitudinally
aligned rods connected to V-shaped struts proved to improve its behavior by
reducing the axial displacement under a constant blood flow as reported before [19].

Another improvement of the design will be accomplished by using the patient’s own
anatomy and optimizing the stent shape and mechanical characteristics [20].

Future modeling scenarios could include more complex boundary conditions like the
pulsatile blood flow and three-layer model for aorta wall, or clinical procedures like
crimping and balloon expansion during delivery, for a further optimization of the
valve design efficiency and durability.
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Self-expended original stent (patented) (a) and a trileaflet valve (b)

Figure 2

FEM model assembly (half) (a), aorta (b), valve cage (c), valves (d), stent (e), detailed view of the stent (f).
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Figure 3

Boundary conditions and loads. (a) pressure load, and fluid (blood) structure interaction (b), opposite

pressure applied to the stent flares to cancel axial movement of the stent (c)
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Table 1

NiTinol material model [3]

Density Austenite Martensite

3
kg/m Young Poisson Young Poisson Trans. Startof End of

Modulus Ratio Modulus Ratio Strain  trans. trans.
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(MPa) (MPa) Loading Loading Unloading Unloading Lo
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Figure 5
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Stress [MPa] distribution in the valve and stent for both loading cases: 1: the pressure load (a,c) and 2:

fluid-structure interaction (b,d)
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Figure 6

Radial Deformation [mm] for loading case 1 (a,c) and loading case 2 (b,d), using a 10x scale for a better
visualization

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716760/?report=printable[4/14/2022 10:38:35 AM]






Finite Element Analysis of a Novel Aortic Valve Stent - PMC

U, Ui (AT:CSYS-1)

=
=l
Ee 1Y)

SOoo00oo00
Pl o ok ok 3 2 D 2 D
L = O A = QD LA =

o
P
@

Max: 0.12
Mode: STENT-DEF-1.64

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716760/?report=printable[4/14/2022 10:38:35 AM]



Finite Element Analysis of a Novel Aortic Valve Stent - PMC

U, U1 (AT:CSYS-1)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716760/?report=printable[4/14/2022 10:38:35 AM]



Finite Element Analysis of a Novel Aortic Valve Stent - PMC
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Figure 7

Axial Deformation [mm] for loading case 1 (a) and loading case 2 (b), using a 10x scale for a better

visualization
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