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Abstract

Top-down mass spectrometry is capable of identifying whole proteoform sequences with multiple 

post-translational modifications because it generates tandem mass spectra directly from intact 

proteoforms. Many software tools, such as ProSightPC, MSPathFinder, and TopMG, have been 

proposed for identifying proteoforms with modifications. In these tools, various methods are 

employed to estimate the statistical significance of identifications. However, most existing 

methods are designed for proteoform identifications without modifications, and the challenge 

remains for accurately estimating the statistical significance of proteoform identifications with 

modifications. Here we propose TopMCMC, a method that combines a Markov chain random 

walk algorithm and a greedy algorithm for assigning statistical significance to matches between 

spectra and protein sequences with variable modifications. Experimental results showed that 

TopMCMC achieved high accuracy in estimating E-values and false discovery rates of 

identifications in top-down mass spectrometry. Coupled with TopMG, TopMCMC identified more 

spectra than the generating function method from an MCF-7 top-down mass spectrometry data set.
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Introduction

Top-down mass spectrometry (MS) has gained increasing attention in the past decade 

because of its ability to explore complex proteoforms.1,2 By analyzing intact proteoforms 
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instead of short protein fragments,3 top-down MS is capable of providing whole sequence 

information of proteoforms, many of which contain primary structural alterations, such as 

amino acid substitutions, post-translational modifications (PTMs), and terminal truncations.
4,5 Identification and characterization of these proteoforms aid researchers in answering 

questions in basic and translational research.6,7

Assigning accurate statistical significance to proteoform identifications is an important step 

in top-down mass spectral interpretation. 8,9 In spectral identification, a query spectrum is 

searched against a protein sequence database to find several candidate proteoform spectrum 

matches (PrSMs). These matches are usually ranked by their E-values to find the best one. In 

proteome-level MS studies, thousands of spectra are searched and matched to proteoforms, 

and these identified PrSMs are often filtered by an E-value cutoff. Accurate E-values of 

identifications efficiently distinguish correct identifications from incorrect ones and increase 

the number of identifications.

Many efforts have been made to develop methods for estimating the statistical significance 

of identifications in bottom-up MS,10 in which proteins are digested into short peptides 

before MS analysis. Because of the similarity between bottom-up MS and top-down MS, 

most of the methods developed for bottom-up MS can be used in top-down MS.

There are three types of methods for assigning statistical significance to identifications in 

bottom-up MS. The first is probability distribution fitting, which has been widely used.11–14 

In this approach, a parametric probability distribution is fit to an empirical score distribution 

and then used to compute the statistical significance of identifications. Methods using 

probability distribution fitting highly depend on the empirical score function in spectral 

identification and may fail to to accurately compute extremely small p-values or E-values.15

The second is the generating function method,15,16 which provides an analytical framework 

for assigning statistical significance to identifications. Given a match between a query 

spectrum and a peptide with a score t, its p-value is computed as follows: a dynamic 

programming algorithm is employed to compute the distribution of the similarity score 

between the spectrum and a random peptide whose molecular mass matches the precursor 

mass of the spectrum, and then the p-value is computed based on the probability that the 

score is no less than t in the distribution. This approach is capable of accurately assigning p-

values to identifications. When thousands of spectra are analyzed, the score distribution of 

each query spectrum needs to be computed separately, making it much slower than the first 

approach.

The third is the Markov chain Monte Carlo (MCMC) method. 17 Importance sampling 

methods, such as direct probability distribution (DPR), are often used in Monte Carlo 

simulation to estimate probabilities of extremely rare events.18 Mohimani et al.19 proposed 

MS-DPR, which successfully applied MCMC with DPR to estimate the statistical 

significance of identified cyclic peptides. In MS-DPR, peptides are sampled by a random 

walk on a Markov chain to estimate the distribution of the similarity score between a query 

spectrum and a random peptide as well as the p-value of an identification.
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Many proteoform identifications in top-down MS contain multiple alterations, especially 

multiple variable PTMs.4,20 The problem of assigning statistical significance to 

identifications with multiple PTMs has not been extensively studied. In bottom-up MS, 

peptide identifications seldom contain three or more PTMs, and there is no urgent need to 

solve the problem. In top-down MS, most existing methods are extended from those in 

bottom-up MS, which are not designed for the problem.

When variable PTMs are allowed, many proteoforms of a protein are similar, and the 

similarity scores of a query spectrum and these proteoforms are not independent. As a result, 

it is a challenging problem to accurately estimate proteoform-level statistical significance of 

identifications. In this paper, we focus on the estimation of protein-level statistical 

confidence of identifications.

The first two approaches in bottom-up MS have been applied to estimate the protein-level 

statistical significance of identifications in top-down MS. In ProSightPC,21 the distribution 

of similarity scores of proteoform identifications is fit to a Poisson distribution for p-value 

estimation. The generating function method was extended to handle unexpected alterations 

in proteoform identifications9 and used in MS-Align+,22 TopPIC,23 and MS-PathFinder.24

In this paper, we propose TopMCMC, an MCMC method with DPR for estimating the 

protein-level statistical significance of proteoform identifications with multiple PTMs 

identified by top-down MS. Because of the existence of PTMs, the MS-DPR method 

proposed by Mahimani et al.19 cannot be directly applied to solve this problem. We designed 

a new Markov chain model for representing proteins in top-down spectral identification and 

a fast greedy algorithm for computing the similarity score between a query spectrum and a 

protein with variable PTMs. By combining the Markov chain method and the greedy 

algorithm, TopMCMC is capable of efficiently assigning protein-level statistical significance 

to PrSMs. We used two evaluation methods to test the performance of TopMCMC on four 

top-down MS data sets, and showed that TopMCMC achieved high accuracy in estimating p-

values of identifications. By coupling TopMCMC and spectral alignment algorithms in 

TopMG,5 we identified more top-down mass spectra from an MCF-7 data set than TopMG 

with the generating function method.

Methods

Data sets

Four top-down MS data sets were used in this study: the first was generated from the human 

histone H3 protein, the second from the human histone H4 protein, the third from 

Escherichia coli (EC) K-12 MG1655 cells, and the fourth from human MCF-7 cells. The 

first three data sets were reported in previous studies,23,25,26 and the fourth data set was 

generated for this study.

The histone H3 data set was generated by Tian et al.25 A total of 7.5 µg purified HeLa core 

histone proteins was first separated using a Jupiter C5 column (Phenomenex, Torrance, CA, 

USA). Two Cheminert column selector systems (VICI, Houston, TX, USA) were used to 

collect fractions of interest. Each collected fraction was further separated by a weak cation 
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exchange hydrophilic interaction liquid chromatography (WCX-HILIC) system, which was 

coupled with an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Waltham, 

MA). MS and MS/MS acquisitions were performed with a resolution of 60 000. The 

isolation window was 1.5 m/z, and alternating collision-induced dissociation (CID) and 

electron-transfer dissociation (ETD) fragmentation was performed to analyze precursor ions. 

Although all histone protein families were analyzed in Ref 25, we used only the data set of 

the histone H3 protein family, which contains 3 462 CID and 3 462 ETD top-down MS/MS 

spectra.

The histone H4 data set was reported in Ref. 26. Core histone proteins of primary normal 

human dermal fibroblasts (NHDFs) were purified using a histone purification kit (Active 

Motif, Carlsbad, CA). A total of 10 µg core histone proteins were first separated by a 

reversed phase liquid chromatography (RPLC) column. The histone H4 protein was 

collected and further analyzed by a hydrophilic interaction liquid chromatography (HILIC) 

column coupled with an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific, 

Waltham, MA). A high resolution 60 000 was used to acquire MS and MS/MS spectra. In 

each MS spectrum, the five most intense precursor ions were selected for MS/MS analysis. 

The precursor ions were collected with an isolation window of 3 m/z and analyzed by 

alternating CID and ETD fragmentation. The data set contains 1 626 CID and 1 626 ETD 

top-down MS/MS spectra.

The third data set was generated for studying proteoforms in EC K-12 MG1655 cells.23 

Intact proteins extracted from EC K-12 MG1655 cells were separated by an RPLC system 

coupled with an LTQ Orbitrap Velos mass spectrometry (Thermo Fisher Scientific, 

Waltham, MA). Alternating CID and ETD fragmentation was performed to analyze the 4 

most intense precursor ions in each MS spectrum. The isolation window was 3 m/z. With a 

resolution of 60 000, a total of 2 027 CID and 2 027 ETD top-down MS/MS spectra were 

collected.

The fourth data set were generated from MCF-7 cells. Proteins extracted from MCF-7 cells 

were reduced with dithiothreitol and alkylated with iodoacetamide, and then separated by 

capillary zone electrophoresis (CZE). A one-meter linear polyacrylamide coated capillary 

(50 µm/360 µm i.d./o.d.) was used for CZE, and a commercialized electro-kinetically 

pumped sheath flow CE-MS interface (CMP Scientific, Brooklyn, NY) was used to couple 

CZE to MS.27,28 The background electrolyte (BGE) of CZE was 10% (v/v) acetic acid. The 

sample was dissolved in 50 mM ammonium bicarbonate (pH 8.0) for the dynamic pH 

junction based CZE-MS/MS, 29 and injected into the capillary via applying 5-psi pressure 

for 95 seconds. The sample injection volume was 500 nL. 28 kV was applied across the 

capillary for separation and 2 kV was applied for electrospray. At the end of the separation, 

20 psi was applied at the injection end for 10 min to flush the capillary with the BGE. A Q-

Exactive HF mass spectrometer (Thermo Fisher Scientific, Waltham, MA) was coupled with 

the CZE system. The top 3 precursor ions in each MS spectrum were selected for MS/MS 

analysis. The mass resolution for MS and MS/MS was 120 000 and 60 000, respectively. 

The AGC target for MS and MS/MS was the same, 1E6. The number of microscans was 4 

and 3 for MS and MS/MS, respectively. A total of 1 523 top-down higher-energy collisional 

dissociation (HCD) MS/MS spectra were acquired.
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All the raw data files were controided and converted to mzML files by msconvert in 

ProteoWizard (version 3.0.11537).30 The mzML files were further deconvoluted by TopFD 

(version 1.1.2, http://proteomics.informatics.iupui.edu/software/toppic/), which converted all 

MS/MS spectra into lists of neutral fragment masses.

Similarity scores of PrSMs

In proteoform identification, a score is reported for each identified PrSM to evaluate the 

similarity of the match, and the statistical significance of the match is estimated based on the 

similarity score. Next we describe the representations of spectra and proteins, and define a 

similarity score between an MS/MS spectrum and a proteoform.

In preprocessing of top-down mass spectra, spectral deconvolution tools24,31,32 are often 

used to convert complex tandem mass spectra to neutral monoisotopic fragment masses. A 

deconvoluted tandem mass spectrum S is represented by a monoisotopic precursor mass and 

a list of neutral monoisotopic fragment masses. The residue mass of S is defined as 

PrecMass(S) − Mass(H2O), where PrecMass(S) is the monoisotopic neutral precursor mass 

of S and Mass(H2O) is the monoisotopic mass of a water molecule.

A proteoform F of n amino acids (some amino acids may be modified) is represented as a 

list of n integer residue masses, that is, F = a1a2 … an, where ai is the integer residue mass of 

the ith amino acid. In practice, residue masses of amino acids are discretized by multiplying 

them by a scale factor and rounding the results to integers. 26 The residue mass of the 

protein P is the sum of its amino acid residue masses, Mass F = i = 1
n ai.

To compute the similarity between spectrum S and proteoform F, we generate a theoretical 

fragment mass list of F. For 1 ≤ i ≤ n − 1, the mass f i = k = 1
i ak is called a prefix residue 

mass of F; the mass gi = k = n − i + 1
n ak is called a suffix residue mass of F. Combining all 

the prefix and suffix residue masses gives us a theoretical mass list of F, denoted by t(F) = 

{f1, …, fn−1, gi, …, gn−1}. The theoretical mass list contains neutral monoisotopic fragment 

masses of b- and y-ions, which are used in the interpretation of CID spectra. We add mass 

shifts to prefix and suffix residue masses to generate theoretical mass lists for other 

dissociation methods. For example, when the scale factor in discretization is 1, a mass shift 

of 17 is added to all prefix residue masses to obtain theoretical c-ion masses, which are 

commonly observed in ETD spectra.

The mass counting score between S and F is defined based on their residue masses and 

matched fragment masses. If the residue mass of S matches the residue mass of F, the mass 

counting score FScore(S, F) is defined as the number of matched fragment masses between 

S and t(F). Otherwise, the similarity score is 0. The mass counting score is used as the 

similarity score of a spectrum and a proteoform in the following analysis.

Similarity scores between proteins and spectra

Database search is the most used method for proteoform identification by top-down MS. 

Many protein databases contain only unmodified protein sequences, not proteoforms with 
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modifications. Several variable PTMs are often provided by the user to identify modified 

proteoforms.

Let V be a multiset of variable PTMs. Each PTM in V is represented by its discretized 

monoisotopic mass shift. Similar to residue masses, mass shifts of PTMs are discretized by 

multiplying them by a scale factor and rounding the results to integers. To simplify the 

analysis, we assume that a PTM v ∈ V can modify any amino acid with a residue mass a if 

the modified residue mass is positive, that is, a +v > 0. In Section “Sequences of standard 

amino acids”, we will discuss the case in which a PTM modifies only one or several amino 

acids. A PTM may occur several times in the multiset V. For example, V = {80, 80, 16} 

specifies two phosphorylation sites and one oxidation site in a modified proteoform. A 

length n proteoform F is a modified proteoform of a length n protein P with PTMs V = {v1, 

v2, …, vk} if (1) there are n − k matched mass pairs in P and F and (2) the multiset of the 

mass differences of the remaining k mass pairs is the same as V. For example, 57, 147, 114, 

156, 129, 167, 128 is a modified proteoform of protein 57, 131, 114, 156, 129, 87, 128 with 

two PTMs V = {16, 80}.

Let D(P, V) be the set of all modified proteoforms of a protein P with a multiset V = {v1, v2, 

…, vk} of PTMs. The P-score between S and P with the multiset V is the maximum 

similarity score between S and the proteoforms in D(P, V), denoted by PScore(S, P, V). That 

is, PScore(S, P, V) = maxF ∈D(P, V) FScore(S, F). All proteoforms in D(P, V) have the same 

residue mass m + i = 1
k vi, where m is the residue mass of P. When m + i = 1

k vi does not 

match the residue mass of S, the score PScore(S, P, V) is zero.

In this paper, we study protein-level statistical significance of matches between proteins and 

spectra. When PScore(S, P, V) = t > 0, we use an MCMC-based method to estimate the 

probability that the P-Score between the spectrum and a random protein with n amino acids 

and a residue mass m is no less than t. It is inefficient to compute PScore(S, P, V) by 

enumerating all proteoforms in D(P, V). The size of D(P, V) is proportional to nk, where n is 

the length of P and k is the size of V. When the PTM list V is long, the size D(P, V) is very 

large.

Similarity scores between spectra and proteins are computed in two phases in database 

search. In the first phase, tens of database proteins have been reported for a query spectrum 

by a filtering algorithm, and we need to compute the similarity score between the spectrum 

and each of the database proteins. In the second phase, a PrSM with a similarity score has 

been identified, and the MCMC method is used to estimate the statistical significance of the 

identification. In the MCMC method, ten of thousands of random proteins are simulated, and 

we need to compute the P-score between the spectrum and each of the random proteins. The 

number of similarity score computations for a query spectrum in the second phase is usually 

more than 1 000 times of that in the first phase. A dynamic programming method is often 

used to compute similarity scores in the first phase, but it is slow for the second phase.

To address the problem, we propose a greedy algorithm (Fig. 2) to quickly estimate 

PScore(S, P, V). We first define neighbor proteoforms used in the greedy algorithm. Two 

proteoforms F1 and F2 in D(P, V) are neighbors if we can obtain F2 from F1 by shifting the 
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position of one PTM in F1 and vice versa. For example, F = 57, 147, 114, 156, 129, 167, 128 

is a proteoform of protein 57, 131, 114, 156, 129, 87, 128 with two PTMs {16, 80}, and F′ 
= 57, 131, 114, 172, 129, 167, 128 is a neighbor proteoform of F. The proteoform F′ can be 

obtained from F by shifting the position of the PTM 16 to the right: the PTM is shifted from 

the second amino acid residue to the fourth. In the greedy algorithm, we start with a random 

proteoform F in D(P, V). In each round, we select a proteoform F′ from all neighbors of F to 

maximize the score FScore(S, F′) and use F′ to replace F. The algorithm is terminated if the 

similarity score cannot be improved, and the final score is used as an estimation of PScore(S, 
P, V).

Representing proteins by Markov chains

Similar to the method proposed by Mohimani et al.,19 we assume that the alphabet of protein 

sequences is not the masses of the 20 standard amino acids, but the set of all positive 

integers Z+ = {1, 2, …}. Using the alphabet of Z+ makes it possible to build a homogeneous 

Markov chain for representing all proteins that match a query spectrum.

Let Ωn,m be the collection of all length n proteins with a residue mass m, in which the 

probabilities of the elements follow a uniform distribution. Next we define sister proteins 

and introduce a method for building a Markov chain representing Ωn,m.

Two masses ai and bi (1 ≤ i ≤ n) in two proteins a1a2 … an and b1b2 … bn are a matched ass 

pair if ai = bi, and a mismatched mass pair otherwise. Two proteins are sister proteins if they 

have the same length and the same residue mass, and contain at most 2 mismatched mass 

pairs. For example, 57, 71, 114, 156, 129, 57, 128 and 57, 87, 114, 156, 113, 57, 128 are 

sister proteins. They have the same length 6, the same residue mass 712, and contain only 

two mismatched mass pairs (71, 87) and (129, 113), whose mass differences are opposites: 

16 and −16. In addition, a protein is a sister protein of itself by definition.

Below we give the total number of sisters of a protein P = a1a2 … an with a residue mass 

m = i = 1
n ai. Let P′ = b1b2 … bn be a sister protein of P with two mismatched mass pairs: 

(ai, bi) with ai > bi and (aj, bj) with aj < bj. There are a total of ai − 1 possible values for bi, so 

the total number of such sister proteins is (ai − 1). For a given pair (ai, bi), there are n − 1 

possible positions for the other pair (aj, bj). As a result, the total number of sister proteins of 

P with two mismatched mass pairs is i = 1
n ai − 1 n − 1 = m − n n − 1 . In addition, P is a 

sister protein of itself. The total number of sister proteins of P is (m − n)(n − 1) + 1.

We build a Markov chain C for the sample space Ωn,m as follows. Each protein in Ωn,m is 

represented by a state in C, and a state is connected to another state by a directed edge if and 

only if their corresponding proteins are sisters (Fig. 1). Each state has an outdegree of (m − 

n)(n − 1) + 1 because its corresponding protein has (m − n)(n − 1) + 1 sister proteins. The 

transition probability of each edge is 1
m − n n − 1 + 1 . The Markov chain is ergodic and 

aperiodic because it is connected and contains length-1 cycles. Based on the fundamental 

theorem of Markov chains, 33 the Markov chain has a unique stationary distribution. In 

addition, the Markov chain C is homogeneous because each state in C has the same number 
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of edges connecting to it and the transition probability for each edge is the same. It can be 

proved that the stationary distribution of C is a uniform distribution: each state has the same 

probability 1
Ωn, m

, where |Ωn,m| is the size of the set Ωn,m. We will use the MCMC method to 

sample elements in Ωn,m.

The direct probability redistribution method

Let X be a random variable for the similarity score PScore(S, P, V) between a spectrum S 
and a random protein P ∈ Ωn,m with a fixed multiset V = {v1, v2, …, vk} of PTMs. The 

space of X is {0, 1, …, m}, where m is the number of masses in the spectrum S. When the 

spectrum S and multiset V are fixed, the score PScore(S, P, V) is also defined as the score of 

the state in the Markov chain C corresponding to P. We use the MCMC random walk 

method to generate random proteins for estimating the distribution of X.

In MS-DPR, two mismatched mass pairs in two sister peptides need to be neighbors, but 

those in two sister proteins in TopMCMC may be not neighbors. The definition of sister 

proteins in TopMCMC leads to abrupt changes of similarity scores of states visited in 

random walks and makes it possible to move from a state with a low score to another state 

with a high score with several transitions.

For an identified PrSM with a similarity score t, we need to estimate the probability Pr(X ≥ 

t) to obtain its p-value. The probability is often very small when the score t is large. For 

example, the probability is usually less than 10−10 when t = 20. In the MCMC random walk 

method, billions of simulations (trial runs) are required to accurately estimate such a small 

probability. To speed up the computation, we need to oversample rare events to reduce the 

number of simulations.

The Direct Probability Redistribution (DPR) method is an efficient technique for reducing 

the number of simulations in estimating rare event probabilities in Monte Carlo simulation. 
18 Let pi (0 ≤ i ≤ m) be the probability that X = i. The DPR method increases the transition 

probability of the edge from a state Q1 to another state Q2 if the score for Q2 is higher than 

that for Q2. The oversampling procedure is a recursive function (Fig. 3). Let u0 ≤ u1 ≤ … ≤ 

um be oversampling factors, where ui is the oversampling factor for states with score i. We 

assume that the oversampling factor increases when the score increases. In each iteration of 

the algorithm, a new state Q′ is randomly selected from a current state Q using the Markov 

chain. The number of simulations starting from the new state Q′ is based on its score s′, the 

score s for Q, and a threshold h ≤ s. There are three cases: (1) If the score s′ is smaller than 

the threshold h, the number of simulations from state Q′ is reduced to 0 (Step 4). (2) If the 

score s′ is larger than s, the number of simulations from Q′ is increased (Steps 6–8). (3) If 

the score s′ is between h and s, that is, h ≤ s′ ≤ s, the number of simulations from Q′ is 1 

(Step 9). The output of the procedure is stored in a list of counts z0, z1, …, zm, in which zi 

represents the number of visited states with a score i. For each score i (0 ≤ i ≤ m), the 

stationary probability pi is computed as 
zi/ui

k = 0
m zi/uk

. More details of the DPR method can be 

found in Ref. 18.
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The oversampling factors u0, …, um are important parameters for accurate estimation of rare 

event probabilities. Haraszti et al. 18 proved that ui = 1/pi are the optimal oversampling 

factors. Since the stationary probabilities p0, …, pm are unknown, an iterative method is 

used to find settings for the oversampling factors (Fig. 4). In the first iteration, the 

oversampling factors are set to u0 = · · · = um = 1 to estimate p0, …, pm; in the next iterations 

the oversampling factors are set to u0 = 1/p0, …, um = 1/pm. The algorithm will be 

terminated after T iterations. The parameter T was set to 3 in the experiments.

Expected values of PrSMs

Given a spectrum S, a multiple set V of PTMs, and a random protein sequence P from Ωi,j, 

the DPR method is used to estimate the distribution of PScore(S, P, V) when the sum of the 

residue mass j and the masses in V equals the residue mass of S. Let D be a protein sequence 

database that contains random sequences with various lengths and residue masses. We 

denote by Di,j the set of protein sequences in D with i amino acids and a residue mass j. The 

size of Di,j is denoted by di,j. In practice, the value di,j is obtained by counting the number of 

protein sequences with i amino acids and residue mass j in the protein sequence database 

used in top-down spectral identification. Each sequence in Di,j is randomly selected from the 

set Ωi,j. Let X(i, j, t, V) be a random variable representing the number of protein sequences P 
in Di,j with PScore(S, P, V) ≥ t. Note that X(i, j, t, V) is zero when the sum of the residue 

mass j and the masses in V does not match the residue mass of S. The expected value of X(i, 
j, t, V) is estimated to be p(i, j, t, V) · di,j, where p(i, j, t, V) = Pr(PScore(S, P, V) ≥ t). Let 

X(t, V) be a random variable representing the number of proteins in D with a score 

PScore(S, P, V) ≥ t. The expected value of X(t, V) is 
i j

p i, j, t, V ⋅ di, j.

In top-down spectral identification, a set T of possible PTM types, instead of a multiset of 

PTM sites, is allowed in identified proteoforms. Let Φk be a set of all multisets V each 

containing at most k PTMs (may have repetitions) in T. We define a random variable 

Y k, t = V ∈ Φk
X t, V , which represents the number of pairs (P, V) with a score PScore(S, 

P, V) ≥ t, where P is a protein in D and V is a multiset in Φk. The expectation of Y (k, t) is 

computed as 
V ∈ Φk i j

p i, j, t, V ⋅ di, j . The expected value of Y (k, t) is reported as the 

E-value for a PrSM with k variable PTM sites and a mass counting score t identified by 

database search. The p-value of the PrSM is the probability that the maximum score 

maxP ∈ D, V ∈ Φk
 PScore(S, P, V) ≥ t, which equals the probability that at least one match 

between a protein P in D and a multiset V ∈ Φk has a score PScore(S, P, V) ≥ t. That is, the 

p-value of the PrSM is the probability Pr(Y (t, V) ≥ 1). Because it is complicated to compute 

the probability, we use a simple method to estimate it. (See the supplementary material for 

details).

To speed up the computation, the greedy algorithm in Fig. 2 is used to estimate P-scores in 

the DPR method. Below we describe how to estimate the probability p(i, j, t, V) with the 

greedy algorithm. Consider an identified PrSM (S, P*) between a spectrum S and a protein 

P* with a multiset V of PTMs and a similarity score t. We first use the greedy algorithm to 
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compute an estimation t′ of PScore(S, P*, V). Second, we use the DPR method to compute 

the probability that the estimation of PScore(S, P, V) reported by the greedy algorithm is no 

less than t′, where P is a random protein in Ωi,j. The probability is used as an estimation of 

p(i, j, t, V).

Sequences of standard amino acids

In the Markov chain model described previously, the alphabet of a protein sequence is all 

positive integer numbers, not the residue masses of the 20 amino acids. We modify the 

model to sample protein sequences of the 20 amino acids.

In the modified model, the alphabet contains 19 integer masses, each of which is the 

discretized residue mass of an amino acid. We use 19 instead of 20 masses because leucine 

and isoleucine have the same integer mass value and are treated as the same. Because of the 

small size of the alphabet, two sister proteins a1a2 … an and b1b2 … bn of the 19 masses 

often have two mismatched mass pairs (ai, bi) and (aj, bj) where ai = bj and aj = bi. That is, 

the two proteins have the same composition of amino acids. As a result, simulations in the 

MCMC method may be limited to sequences similar to that of the initial state.

To address the problem, we introduce cousin proteins, which allow more changes in 

sequences compared with sister proteins. The lengths of two cousin proteins can be 

different, and they have at most two pairs of mismatched segments, the length of which can 

be longer than one. A protein with two mismatched segments is divided into 5 segments by 

the four ending points of the two mismatched segments. Two protein sequences P1 and P2 

are cousin proteins if they have the same residue mass and can be represented by 

concatenations of three matched segments and two mismatched segments P1 = 

A1A2A3A4A5 and P2 = B1B2B3B4B5, where A1 = B1, A2 ≠ B2, A3 = B3, A4 ≠ B4, and A5 = 

B5. The segments A1, A3, A5, B1, B3, B5 may be empty ones. In addition, a protein sequence 

is a cousin of itself.

Because cousin proteins may have various lengths, a Markov chain in the modified model 

represents protein sequences with various lengths, not a fixed length. Let Ωj be the set of all 

protein sequences on the alphabet of the 19 masses with a residue mass j. Each state in the 

Markov chain represents a protein in Ωj. Two states are connected by an edge if their 

corresponding proteins are cousins. In the implementation of the method, we added an 

additional constraint to reduce the number of cousin proteins of a state: the lengths of A2 

and A4 are each no longer than 2. In addition, an error tolerance is allowed for the residue 

masses of two cousin proteins. An example of cousin proteins is given in Fig. 5.

The number of cousins of a random protein in Ωj is not fixed because the proteins in Ωj have 

various lengths and the numbers of possible mismatch segment pairs (A2, B2) and (A4, B4) 

of proteins are not fixed. As a result, we assign different transition probabilities to edges. For 

a state corresponding to a protein with k cousin proteins, we assign a transition probability 1
k

to each edge leaving the state. The stationary distribution of such a Markov chain is not a 

uniform distribution. Let z be a random variable representing the number of cousins of a 

random protein in Ωj (with the restriction that each mismatched segment is no longer than 2). 
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The distribution of z is narrowly concentrated and has a small relative standard deviation 

(Fig. S1 in the supplementary material).

A PTM in general modifies several amino acids, not all the 20 amino acids. In this case, a 

length n proteoform F is a modified proteoform of a length n protein P with PTMs V = {v1, 

v2, …, vk} if (1) there are n − k matched mass pairs in P and F and (2) the multiset of the 

mass differences of the remaining k mass pairs is the same as V, and (3) for each unmatched 

mass pair corresponding to an amino acid and a PTM (a mass shift), the PTM can modify 

the amino acid. In addition, we modify the definition of neighbor proteoforms in the greedy 

algorithm: two proteoforms F1 and F2 in D(P, V) are neighbors if we can obtain F2 from F1 

by shifting the position i of one PTM in F1 to a new position j such that the amino acid at 

position j can be modified by the PTM. For the protein sequence P = GRMPKESK modified 

by a methylation and a phosphorylation, the proteoforms F1 = GR[meth]MPKES[ph]K and 

F2 = GRMPK[meth]ES[ph]K are neighbors, because F2 can be obtained by shifting the 

position of the methylation site from the second amino acid R to the fifth amino acid K.

We define Dj as the set of protein sequences in D with a residue mass j, and dj the size of Dj. 

Each sequence in Dj is randomly selected from the set Ωj. Let X(j, t, V) be a random variable 

representing the number of protein sequences P in Dj with PScore(S, P, V) ≥ t. The p-values 

and E-values of PrSMs with various PTMs are estimated using the same method described 

previously.

Many proteoforms identified by top-down MS contain unexpected alterations. The proposed 

method can be extended to compute E-values and p-values of PrSMs containing unexpected 

alterations. For a PrSM with variable PTMs and an unexpected alteration with a mass shift x 
in [−500, 500] Da, the proposed method is modified as follows: the mass shift x is 

considered as a variable PTM. An amino acid with a residue mass a can be modified by the 

PTM if x + a > 0.

Results

The proposed TopMCMC method was implemented in C++. All experiments were 

performed on a computer with an Intel Xeon E5–2637 3.50GHz CPU and 128 GB memory.

Evaluation of the greedy algorithm

The greedy algorithm in Fig. 2 may fail to report correct similarity scores of protein 

spectrum matches with PTMs because its search space is limited. Large errors in estimated 

similarity scores will affect the accuracy of p-values reported by TopMCMC. We used the 

histone H4 data set to evaluate the accuracy of the greedy algorithm.

The human histone H4 protein sequence was downloaded from the UniProt database 

(version September 12, 2016).34 Acetylation, methylation, dimethylation, trimethylation, 

and phosphorylation were considered as variable PTMs (Table S1 in the supplementary 

material). In a candidate proteoform, at most 10 variable PTMs were allowed and no 

unexpected mass shifts were allowed. Of the 3 256 spectra, the precursor masses of 1 112 
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matched (within 15 ppm) the molecular mass of a candidate proteoform of the histone H4 

protein.

We computed two similarity scores: the P-score and G-score, for the match between each of 

the 1 112 spectra and the histone H4 protein with variable PTMs. For a protein spectrum 

match (S, P, V) between a spectrum S and a protein P with a multiset V of PTMs, the G-

score reported by the greedy algorithm is an estimation of PScore(S, P, V). The PScore(S, P, 
V) is accurately computed by the graph alignment algorithm in TopMG. In the greedy 

algorithm, the error tolerance for fragment masses was 15 ppm. For each protein, the 

algorithm was performed 3 times with different initial random proteoforms (Step 1 in Fig. 

2), and the best score was reported. The parameter settings of TopMG can be found in Table 

S2 in the supplementary material.

The greedy method has a smaller search space and a shorter running time than the graph 

alignment method. The average running times of the greedy method and the graph alignment 

method on the 1 112 protein spectrum matches were 6 and 1 237 seconds, respectively. 

Because of the small search space of the greedy method, the G-score of a match was no 

larger than the P-score (Table S3 in the supplementary material). We divided the 1 112 

matches into four groups based on the number of PTMs in the best scoring proteoform 

reported by TopMG: 0 − 2 PTMs, 3 − 5 PTMs, 6 − 8 PTMs, and 9 − 10 PTMs. Fig. 6 shows 

the scatter plots of the two scores of the matches in the four groups. The difference between 

the G-score and P-score of a PrSM increases as the number of PTMs increases. In the 

MCMC method, a large variance in the difference of the two scores significantly affects the 

accuracy of estimated p-values, but a large average difference does not. For example, when 

the variance of the differences is 0, for a match with a G-score g and a P-score p, the 

probability that a random protein has a G-score ≥ g is the same as the probability that a 

random protein has a P-score ≥ p. The reason is that the difference between the G-score and 

P-score of a random protein is fixed. When the number of PTMs is no larger than 5, the 

difference between the two scores is 7.1 on average, and the standard deviation of the 

differences is 6.06. When the number of PTMs is larger than 5, the average and standard 

deviation of the differences between the two scores are increased to 10.7 and 10.32, 

respectively. The greedy method introduces more errors for matches with > 5 PTMs than 

those with ≤ 5 PTMs.

Evaluation based on p-values

The bipartite database strategy35 was used to evaluate the accuracy of p-values reported by 

TopMCMC. In this strategy, query MS/MS spectra are searched against a bipartite protein 

database containing sample sequences and entrapment sequences. While the sample 

sequences are expected to be observed in the sample, the entrapment sequences are not. The 

p-values of matches between spectra and entrapment sequences should follow a uniform 

distribution. This property is used to assess the accuracy of methods that assign p-values to 

PrSMs.

We used the histone H3 data set to assess the accuracy of p-values estimated by TopMCMC. 

A bipartite database was constructed as follows. The 5 histone H3 protein sequences in the 

UniProt human proteome database (version September 12, 2016) were treated as sample 
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sequences, and the sequences in the UniProt Pyrococcus furiosus proteome database 

(version February 4, 2017, 499 entries) entrapment ones. A previous study36 demonstrated 

that P. furiosus proteins are a good choice for entrapment sequences because they have a 

long evolutionary distance with human sequences,

TopMG5 was employed to search the spectra in the histone H3 data set against the bipartite 

database. Acetylation, methylation, dimethylation, trimethylation, and phosphorylation were 

considered as variable PTMs (Table S1 in the supplementary material). The error tolerance 

for precursor and fragment masses was set to 15 ppm, at most 5 variable PTMs were allowed 

in an identified proteoform, and no unexpected mass shifts were allowed. Candidate PrSMs 

of a query spectrum can be divided into many types based on the number of PTMs and 

terminal truncations. TopMG reported a top scoring PrSM for each query spectrum and each 

PrSM type. The TopMCMC method was used to estimate p-values and E-values for the top 

scoring PrSMs and report one with the best E-value for each query spectrum. The greedy 

algorithm was used to speed up the estimation of P-Scores in TopMCMC. The parameter 

settings of TopMG and TopMCMC are given in Table S4 and S5 in the supplementary 

material. Of the 6 824 spectra, 2 638 were matched to proteoforms of the entrapment 

sequences (Table S6 in the supplementary material).

By definition, the p-values of the entrapment PrSMs should follow a uniform distribution. 

One-sample Kolmogorov-Smirnov test was used to compute a D value (Kolmogorov-

Smirnov statistic), a distance between the empirical distribution of the p-values reported by 

TopMCMC for the entrapment PrSMs and the uniform distribution over [0, 1]. The D value 

was 0.1874 with a p-value 2.2 × 10−16 (Fig. 7), demonstrating that the empirical distribution 

and the uniform distribution are similar. Granholm et al. studied D values of scores reported 

by several commonly used tools for bottom-up mass spectral identification, such as 

SEQUEST (D value ≤ 0.03) and MS-GFDB (D value 0.21).35 The D values of SEQUEST 

and MS-GFDB are given for references, not for the comparison between TopMCMC and 

these tools. The average running time of TopMCMC for a PrSM was 2.13 seconds. The 

settings of the parameters cmax = 10 000 and T = 3 were chosen to balance the running time 

and the accuracy of reported p-values (Fig. S2 and S3 in supplementary material).

We also compared cumulative relative frequencies of the p-values of the 2 638 PrSMs 

reported by TopMCMC and cumulative probabilities of the uniform distribution over [0, 1] 

(Fig. 8). If the cumulative relative frequency of the reported p-values for a value x ∈ [0, 1] is 

larger than the cumulative probability of the uniform distribution for x, then the reported p-

values in [0, x] are underestimated. Fig. 8 shows that TopMCMC underestimated the p-

values in [0, 0.7]. The main reason is that rare events (PrSMs with high scores) might not be 

effectively sampled when the number of simulations (10 000 in the experiments) is not large 

enough.

Evaluation based on FDRs

We also evaluated the accuracy of TopMCMC using a false discovery rate (FDR)-based 

method.9,37 Given a list of query mass spectra, a target protein database, and an E-value 

cutoff t, the spectrum level FDR of identifications is estimated by two methods: one is by the 

target-decoy approach (TDA),38 and the other by the eTDA estimator.37 In the first method, 
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the query mass spectra are searched against a concatenated target-decoy database for 

spectral identification, and the numbers of target and decoy identifications with an E-value 

better than t are used to estimate the FDR of the identifications. In the second method, each 

query mass spectrum is searched against the target database to find the best target PrSM, 

whose E-value is denoted by tD. Then we compute the probability that the spectrum and a 

random decoy database, whose size is the same as the target database, have a PrSM with an 

E-value < min{t, tD}. That is, the decoy PrSM has an E-value better than t and than that of 

the best target PrSM. Such probabilities for all query spectra are summed up to obtain the 

expected number of decoy identifications, which is used to compute the expected FDR of 

identifications. A brief description of the eTDA method is given in the supplementary 

material. The FDR estimated by the target-decoy approach is used as the gold standard. 

Because the computation of FDRs in the eTDA method is based on E-values reported by 

TopMCMC, a high similarity between the FDRs reported by the two methods demonstrates 

a high accuracy of the E-values reported by TopMCMC.

The EC data set was used in the evaluation. The UniProt EC proteome database (version 

September 12, 2016, 4 306 entries) was concatenated with a shuffled database of the same 

size. A two-step database search was performed to analyze the EC data set. Many spectra in 

the EC data set were generated from proteoforms without modifications, and it was 

unnecessary to use TopMG to analyze these spectra. In the first step, all mass spectra in the 

EC data set were searched against the EC proteome database using TopPIC23 to quickly 

identify PrSMs without modifications (some may contain terminal truncations), speeding up 

the following TopMG analysis. In addition, mass shifts identified by TopPIC were used to 

find common PTMs in the data set. In TopPIC, one unexpected mass shift was allowed in a 

proteoform, and other parameter settings can be found in Table S7 in the supplementary 

material. With a 1% spectrum level FDR, a total of 1 920 PrSMs from 178 proteins were 

identified, including 470 PrSMs with unexpected mass shifts (Table S8 in the supplementary 

material). Many mass shifts in the 470 PrSMs can be explained by common PTMs (Table 1). 

For example, mass shifts around 14 Da, which can be explained by methylation sites, were 

reported in 7 proteoforms from 4 proteins.

In the second step, the 1 450 spectra matched to proteoforms without mass shifts in the 

previous step were excluded, and the remaining 2 604 spectra (including the 470 spectra 

identified with mass shifts in the previous step) were searched against the target-decoy EC 

database using TopMG. Because the mass shifts of acetylation, methylation, 

phosphorylation, and oxidation were observed in the first step of the analysis, they were 

treated as variable PTMs in TopMG. At most 5 variable PTM sites were allowed in a 

proteoform and no unexpected mass shifts were allowed. Other parameter settings of 

TopMG can be found in Table S9 in the supplementary material.

A total of 303 and 86 PrSMs with an E-value smaller than 1 were reported from the target 

and decoy sequences, respectively. Since the FDR estimated by the target-decoy approach 

would be 0 when the cut-off E-value was below 1.11 × 10−4, we only compared the FDRs 

for cut-off E-values greater than 1.11 × 10−4 (Fig. 9). When the E-value cutoff is smaller 

than 0.1 (− log10(cutoff E-value) > 1), the FDRs estimated by the two methods are similar, 
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and the FDRs estimated by the eTDA method are smaller than those by the TDA method, 

showing that E-values reported by TopMCMC are underestimated.

Discriminative capacity

We compared the TopMCMC method and the generating function approach9,16 on 

distinguishing correct identifications from incorrect ones using the MCF-7 data set. A 

human proteome database (version February 5, 2018, 20 303 entries) was downloaded from 

the UniProt database34 and concatenated with a shuffled decoy database of the same size. 

Similar to the EC data set, a two-step database search was performed to analyze the MCF-7 

data set. In the first step, all MCF-7 mass spectra were searched against the human target-

decoy database using TopPIC, and the parameter settings were the same as the EC data 

analysis. With a 1% spectrum level FDR, TopPIC identified 615 PrSMs from 115 proteins, 

including 400 PrSMs without unexpected mass shifts (Table S11 in the supplementary 

material). In the second step, the 400 spectra were excluded and the remaining 1 123 spectra 

were searched against the human target-decoy database using TopMG. The PTMs in Table 2 

were considered as variable PTMs, and other parameter settings were the same as the EC 

data analysis. The TopMCMC method and the generating function method were 

incorporated into TopMG for E-value computation separately. TopMG coupled with 

TopMCMC is referred to as TopMG+MCMC, and TopMG coupled with the generating 

function method TopMG+GF.

With a 5% spectrum level FDR, TopMG+MCMC and TopMG+GF identified 161 and 133 

PrSMs, respectively (Fig. 10). TopMG+MCMC identified 21.1% more PrSMs than TopMG

+GF, demonstrating that TopMCMC is better than the generating function method in 

distinguishing correct identifications from incorrect ones. Four proteoforms missed by 

TopMG+GF are given in Fig. S4-S7 in the supplementary material. TopMG+GF missed 

many PrSMs because the implementation of the generating function method cannot 

accurately estimate E-values for PrSMs with multiple variable PTMs. TopMG+MCMC also 

missed 21 PrSMs identified by TopMG+GF. A possible reason is that the greedy method in 

TopMCMC introduced errors in the estimation of E-values of PrSMs with many variable 

PTMs. Most of the PrSMs (16 out of 21) missed by TopMG+MCMC have at least 4 variable 

PTMs. The running times of the two methods for E-value computations were similar: 380 

seconds for TopMCMC and 375 seconds for the generating function method.

Discussion

There are two main differences between TopMCMC and MS-DPR19 although they use the 

same MCMC framework and oversampling method. First, while a sister of a peptide is 

obtained by changing two neighboring masses in MS-DPR, a sister of a protein is obtained 

by changing two masses or two substrings, which may be not neighbors, in TopMCMC. The 

definition of sister peptides in MS-DPR leads to smooth change of similarity scores after 

state transition, and that in TopMCMC leads to abrupt change of similarity scores. PrSMs 

identified by top-down MS often have a high similarity score. In MS-DPR, we need at least 

30 transitions to move from a state with a score 0 to a state with a score 30. When the 

number of simulations is not large, the MS-DPR method may fail to find such a long path, 
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resulting in inaccurate p-value estimation. Abrupt change of scores in TopMCMC can 

significantly reduce the length of such a path, increasing the chance that states with high 

similarity scores are visited.

Second, the score of a peptide for a query spectrum in MS-DPR is the shared mass counting 

score between the spectrum and the peptide; the score of a protein in TopMCMC is the 

shared mass counting score between the query spectrum and the best candidate proteoform 

of the protein. Because the number of all candidate proteoforms grows exponentially with 

the number of PTM sites, it is inefficient to compute the score by enumerating all candidate 

proteoforms. Although the mass graph alignment algorithm in TopMG solves the problem in 

a polynomial time complexity when the number of PTMs in a proteoform is limited, its 

running time is still unacceptable when a spectrum is aligned with tens of thousands of 

proteins. To address this problem, a greedy method is used in TopMCMC to speed up the 

computation.

TopMCMC is more accurate than the generating function method because it estimates 

protein-level probabilities, not proteoform-level probabilities. The generating function 

approach was designed to estimate E-values of matches between spectra and unmodified 

protein sequences. When it is extended to analyze PrSMs with variable PTMs, it can only 

report proteoform-level probabilities: the probability that a query spectrum and a random 

proteoform has a score no less than a threshold. Because many proteoforms of a protein are 

similar, the similarity scores of the query spectrum and these proteoforms are not 

independent. As a result, the generating function approach may have large errors in reported 

E-values. TopMCMC is capable of accurately estimating the protein-level probabilities: the 

probability that a query spectrum and the best scoring proteoform of a random protein has a 

score no less than a threshold, avoiding the errors caused by similar proteoforms. If users are 

interested in modification identification or proteoform characterization, modification 

identification scores or localization scores, such as the MIScore,39 can be reported as 

confidence scores of identified modifications.

The accuracy of p-values reported by TopMCMC is related to its number of simulations. 

While increasing the number of simulations will improve the accuracy, it also increases the 

running time. Experimental results (Fig. S2 and S3 in supplementary material) demonstrated 

that TopMCMC achieved a good balance between the running time and the accuracy by 

setting cmax (the number of simulations) to 10 000 simulations and setting T (the number of 

rounds in oversampling factor estimation) to 3. The accuracy of reported p-values can be 

further improved by increasing the settings of cmax and T when a long running time is 

acceptable.

The TopMCMC method still has some limitations. First, a greedy algorithm was introduced 

to speed up the estimation of the similarity score. The greedy algorithm often fails to report 

accurate scores for PrSMs with a large number of variable PTMs, and affects the accuracy of 

estimated p-values and E-values. TopMCMC may introduce large errors to estimated p-

values and E-values of PrSMs with more than 5 PTMs. A fast and accurate method for 

computing similarity scores can further improve the performance of TopMCMC. Second, a 

simple shared mass counting score is used, and the peak intensity information is ignored. 
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Using a scoring function that takes account peak intensities into consideration can further 

improve the discriminative capacity of TopMCMC.

Conclusions

In this paper, we proposed a new MCMC-based method for estimating the statistical 

significance for proteoform identifications with variable PTMs in top-down MS. The 

experiments showed that TopMCMC achieved high accuracy in estimating p-values and E-

values and outperformed the generating function method in distinguishing correct 

identifications from incorrect ones.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
An example Markov chain for the sample space Ω3,5, which contains all proteins with length 

3 and residue mass 5. Each protein is represented as a state in the Markov chain, and a state 

is connected to another if and only if their corresponding proteins are sister proteins. There 

are no edges connecting (1, 3, 1) and (2, 1, 2) because they contain 3 mismatched mass 

pairs. Each state is connected to itself because each protein is a sister protein of itself. Each 

state has an outdegree of (m – n)(n – 1) + 1 = (5 – 3)(3 – 1) + 1 = 5. The transition 

probability of each edge is 1
5 .
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Figure 2: 
A greedy algorithm for estimating similarity scores.
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Figure 3: 
MCMC simulation using DPR.
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Figure 4: 
The algorithm for estimating oversampling factors.
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Figure 5: 
An example of cousin proteins on the alphabet of the residue masses of the 20 standard 

amino acids. The sum of the residue masses in the substrings ‘AG’ and ‘S’ in the protein 

MAGKSTSMPT is the same as that in the substrings ‘N’ and ‘T’ in the protein 

MNKSTTMPT within an error tolerance of 15 ppm.
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Figure 6: 
Scatter plots of the P-scores and G-scores of the 1 112 protein spectrum matches in the 

histone H4 data set with various numbers of PTMs: (a) 0 − 2 PTMs; (b) 3 − 5 PTMs; (c) 6 

− 8 PTMs; (d) 9 − 10 PTMs.
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Figure 7: 
The histogram of p-values reported by TopMCMC for the 2 638 entrapment PrSMs reported 

from the histone H3 data set. The D value (Kolmogorov-Smirnov statistic) between the 

empirical distribution of the p-values and the uniform distribution over [0, 1] is 0.1874.
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Figure 8: 
Comparison of the cumulative relative frequencies of the p-values reported by TopMCMC of 

the 2 638 entrapment PrSMs and the cumulative probabilities of the uniform distribution 

over [0, 1]. For each value x in [0, 1], the cumulative relative frequency of the reported p-

values in [0, x] and the cumulative probability of the uniform distribution for x are plotted.
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Figure 9: 
Comparison of the FDRs estimated by the TDA and eTDA methods for the PrSMs identified 

by TopMG in the EC data set.
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Figure 10: 
Comparison of the numbers of PrSMs identified by TopMG+MCMC and TopMG+GF from 

1 123 spectra in the MCF-7 data set with a 5% spectrum level FDR.
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Table 1:

Common PTMs observed in the TopPIC identifications of EC data set.

PTM Monoisotopic mass shift (Da) Amino acids that can be modified # proteins # proteoforms

Acetylation 42.01056 R, K 8 9

Methylation 14.01565 R, K 4 7

Phosphorylation 79.96633 S, T, Y 1 1

Oxidation 15.99492 D, K, N, P, Y, R, C 9 9
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Table 2:

Common PTMs observed in the TopPIC identifications of MCF-7 data set.

PTM Monoisotopic mass shift (Da) Amino acids that can be modified # proteins # proteoforms

Acetylation 42.01056 R, K 5 5

Dimethylation 28.03130 R, K 2 2

Phosphorylation 79.96633 S, T, Y 8 15

Oxidation 15.99492 D, K, N, P, Y, R, C 3 3
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