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ABSTRACT 

It is common to evaluate high-dimensional normal probabilities in many uncertainty-

related applications such as system and time-dependent reliability analysis. An accurate 

method is proposed to evaluate high-dimensional normal probabilities, especially when 

they reside in tail areas. The normal probability is at first converted into the cumulative 

distribution function of the extreme value of the involved normal variables. Then the series 

expansion method is employed to approximate the extreme value with respect to a smaller 

number of mutually independent standard normal variables. The moment generating 
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function of the extreme value is obtained using the Gauss-Hermite quadrature method. The 

saddlepoint approximation method is finally used to estimate the cumulative distribution 

function of the extreme value, thereby the desired normal probability. The proposed 

method is then applied to time-dependent reliability analysis where a large number of 

dependent normal variables are involved with the use of the First Order Reliability Method. 

Examples show that the proposed method is generally more accurate and robust than the 

widely used randomized quasi Monte Carlo method and equivalent component method.   

 

Keywords: Multivariate normal distribution, Extreme value distribution, Dimension 

reduction, Saddlepoint approximation, Gauss-Hermite quadrature, Reliability 
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1. Introduction 

Many uncertainty-related applications require the evaluation of multivariate normal 

probabilities, for instance, the system reliability analysis [1-3] and time-dependent 

reliability analysis [4-26]. Both analyses predict the reliability by integrating a multivariate 

normal density in the safe region if the First Order Reliability Method (FORM) [27] is 

employed. Other areas requiring a multivariate normal probability include the extreme 

value distribution [28], multivariate probit model [29], multiple comparisons [30], and 

multiple ordinal response models [31].  

No methods exist for the exact computation of the multivariate normal probability, and 

many numerical and sampling methods have been developed to produce approximations 

[32]. The existing methods can be roughly grouped into two categories: random methods 

and deterministic methods. 

Random methods generate a large number of samples of the involved random variables 

and then calculate the probability based on the statistical information of the samples. The 

most straightforward method is the crude Monte Carlo simulation (MCS) [33]. Other 

random methods are more or less based on the crude MCS. They include the quasi MCS 

[34, 35], the importance sampling method [36-38], the subset simulation method [39], and 

the Bayesian MCS [40]. The random methods are generally robust, easy to use, and 

accurate if the sample size is large enough. But they also have some shortcomings.  First, 

samples are usually generated randomly and hence the result is not deterministic, resulting 

in unrepeatable results when different seed numbers, software, or computer platforms are 
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used. Second, they are inefficient to estimate a small probability. This makes reliability 

analysis difficult since engineering applications usually require a low probability of failure 

or high reliability. Note that some advanced random methods, such as importance sampling 

method [36-38] and the subset simulation method [39], can get over this shortcoming to 

some extent. 

Deterministic methods do not need random sampling. The equivalent component 

methods [41-43] are widely used. They sequentially compound two components, i.e., two 

of the involved normal variables, into an equivalent one, and the multivariate normal 

probability is eventually estimated by a univariate normal probability. The methods differ 

from one another mainly in the way of evaluating the correlation coefficients between the 

equivalent component and the other components. The correlation coefficients are 

determined by the sensitivity equivalency and the finite difference method [41, 43]. The 

finite difference method is replaced by an analytical approach [42], resulting in better 

accuracy and efficiency. The correlation coefficients can also be evaluated by conditional 

probabilities [3]. Generally, the equivalent component methods are efficient, even for high-

dimensional problems. They may not be accurate when solving high-dimensional problems 

with small probabilities. One reason is that the equivalent component is not necessarily a 

normal variable and the error accumulates with the increase of the dimensionality. In 

addition, other deterministic methods are also available, including the first-order methods 

[44, 45], the product of conditional marginal probabilities [46, 47], and conditioning 

approximation methods [32, 48]. Their accuracy still needs to be improved when solving 

high-dimensional problems with small probabilities. 
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Overall, evaluating a multivariate normal probability is challenging in terms of 

accuracy and efficiency when the dimension is large and the probability is small. The 

objective of this work is to develop a new method to improve both accuracy and efficiency. 

The proposed method involves the integration of dimension reduction, the expansion 

optimal linear estimation (EOLE) [49], the Gauss-Hermite quadrature method [50], and the 

saddlepoint approximation (SPA) [51, 52].  The proposed method is then applied to and 

evaluated by the time-dependent reliability analysis with a large number of dependent 

normal variables and small probabilities. 

The remaining parts of the paper are organized as follows. Section 2 gives the problem 

statement. Section 3 reviews the existing methods. An overview of the proposed method is 

given in Section 4, followed by the detailed formulations in Section 5. Section 6 gives the 

application to time-dependent reliability analysis. Four examples are given in Section 7 to 

demonstrate the proposed method. Section 8 provides conclusions. 

2. Problem statement 

Suppose 𝐘 is a vector of 𝑁 normal random variables with the mean vector 𝛍 and the 

correlation matrix 𝚺. The joint probability density function (PDF) 𝑓Y(𝐲) of 𝐘 is given by 

 𝑓Y(𝐲; 𝛍, 𝚺) =
1

√(2𝜋)𝑁|𝚺|
exp (−

1

2
(𝐲 − 𝛍)T𝚺−1(𝐲 − 𝛍)) (1) 

The cumulative distribution function (CDF) 𝐹Y(�̂�; 𝛍, 𝚺) of 𝐘 is given by 

 𝐹Y(�̂�; 𝛍, 𝚺) = ∫ 𝑓Y(𝐲; 𝛍, 𝚺)d𝐲
�̂�

−∞

 (2) 

Note that Eq. (2) shows an 𝑁-dimensional integral. 
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Without losing generality, we assume that �̂� = 𝟎. We also assume that all components 

of 𝐘 have a variance of 1. Then we only focus on calculating the following integral 

 𝐹Y(𝟎; 𝛍, 𝐂) = ∫ 𝑓Y(𝐲; 𝛍, 𝐂)d𝐲
𝟎

−∞

 (3) 

where 𝐂 is the correlation coefficient matrix of 𝐘. A general problem can be solved by Eq. 

(3) using the following transformation 

 𝐹Y(�̂�; 𝛍, 𝚺) = 𝐹Y(𝟎; (𝛍 − �̂�)./𝛔, 𝐂) (4) 

where 𝛔  is the standard deviation vector of 𝐘 , and the operator ./  represents the 

elementwise division. 𝐹Y(𝟎; (𝛍 − �̂�)./𝛔, 𝐂)  shares the same format with 𝐹Y(𝟎; 𝛍, 𝐂) .  

Introducing the indicator function 𝐼(∙), Eq. (4) is written as 

 𝐹Y(𝟎; 𝛍, 𝐂) = ∫ 𝐼(𝐲 < 𝟎)𝑓Y(𝐲; 𝛍, 𝐂)d𝐲
+∞

−∞

 (5) 

where 𝐼(𝐲 < 𝟎) = {
1, 𝐲 < 𝟎        
0, otherwise

. 

In practical applications, high dimensions are commonly encountered. For example, 

in system reliability analysis, the dimensionality may be dozens or hundreds. Many 

existing methods require 𝐂 to be full-rank. However, a non-full-rank 𝐂 is also frequently 

encountered in engineering problems. The objective of the study is to calculate the high-

dimensional normal probabilities with a 𝐂 being full-rank or not. 

3. Review of existing methods 

In this section, we briefly review four commonly used methods: the crude MCS, the 

sequential conditioned importance sampling method (SCIS) [38], the randomized quasi 
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MCS method [35], and the equivalent component method [42]. The first three are random 

methods while the last one is a deterministic method. 

3.1. Crude MCS 

Crude MCS is the origin of other random methods. It first randomly generates 𝑛s 

samples of 𝐘 using 𝑓Y(𝐲; 𝛍, 𝐂) and then approximates Eq. (5) by 

 𝐹Y(𝟎; 𝛍, 𝐂) ≈ �̃� =
1

𝑛s
∑ 𝐼(𝐲𝑘 < 𝟎)

𝑛s

𝑘=1

 (6) 

where �̃� represents the approximation, and 𝐲𝑘  is the 𝑘th sample of 𝐘. �̃� itself is a random 

variable. Therefore, different runs of crudes MCS lead to different realizations of �̃�. This 

is known as random error. The variation coefficient 𝑉MCS  of �̃�  is used to measure the 

random error and is given by 

 𝑉MCS = √
1 − �̃�

𝑛s�̃�
 (7) 

It shows that the convergence rate of crude MCS is 𝑂(1/√𝑛s) [35], which is independent 

of 𝑁. With this feature, crude MCS does not suffer from the curse of dimensionality. The 

convergence rate, however, is thought to be low. For example, if the exact value of 

𝐹Y(𝟎; 𝛍, 𝐂) is 10−5 and 𝑉MCS is required to be no more than 10−2, then according to Eq. 

(7), the sample size 𝑛s must be at least about 109. 

Despite its low convergence rate, MCS is widely used and is especially treated as a 

benchmark method for an accuracy comparison study when an exact solution is not 

available. 
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3.2. Sequential conditioned importance sampling (SCIS) method 

SCIS is based on the importance sampling method and makes use of the property that 

conditioned on given values of arbitrary components of 𝐘, the remaining components also 

follow (univariate or multivariate) normal distribution [38].  

 

Fig. 1 Flowchart of SCIS 

The flowchart of SCIS is shown in Fig. 1, where Pr{∙} represents probability. Because 

of the property of multivariate normal variables, derivations of the conditional PDF and of 

𝐷𝑘 (in Fig. 1) are obtained easily. More details are given in Ref. [38]. Similar to crude 

MCS, the approximation �̃� calculated by SCIS is also a random variable, with its variation 

coefficient 𝑉SCIS given by 
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 𝑉SCIS =
1

𝑛s�̃�
√∑(𝐷𝑘 − �̃�)

2

𝑛s

𝑘=1

 (8) 

Compared to Eq. (7), Eq. (8) shows that the convergence rate of SCIS is significantly better 

than that of crude MCS. 

3.3. Randomized quasi MCS 

An effective way to improve the convergence rate of MCS is to replace the randomly 

generated samples by carefully selected, deterministic sequences of samples [35]. This 

approach is known as quasi MCS, and those samples are called low-discrepancy samples. 

Fig. 2 shows 103 random samples and 103 low-discrepancy samples of 𝐘, given 𝛍 = [
0
0

] 

and 𝐂 = [
1 0
0 1

]. The low-discrepancy samples are generated by Halton sequences [53]. 

The low discrepancy samples are regularly even while the random samples have irregular 

clusters. The evenness improves the convergence rate of the quasi MCS. 

 

Fig. 2 Random samples (left) and low-discrepancy samples (right) 
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A drawback of quasi MCS is that it is hard to estimate the error. In order to estimate 

the error with the way similar to crude MCS, the deterministic low-discrepancy samples 

are randomized and the randomized quasi MCS was developed [35, 54]. It is worth 

mentioning that the quasi MCS developed by Genz and Bretz [35] is commonly used. This 

method has been coded into pmvnorm(), an R [55] function in R package mvtnorm. 

3.4. Equivalent component methods 

The equivalent component methods compound a pair of component normal variables 

into an equivalent normal variable sequentially so that the multivariate normal probability 

is finally estimated by a univariate normal probability. Fig. 3 shows the compounding 

procedure. 𝑌12
e  is the equivalent component obtained by compounding 𝑌1 and 𝑌2. Then 𝑌12

e  

and 𝑌3 are compounded into 𝑌123
e . This process continues until 𝑁 normal variables have 

been compounded into one equivalent normal variable 𝑌123…𝑁
e . Eq. (3) is then 

approximated by 

 𝐹Y(𝟎; 𝛍, 𝐂) = ∫ 𝑓e(𝑦; 𝜇e, 𝜎e
2)

0

−∞

d𝑦 = Φ (−
𝜇e

𝜎e
) (9) 

where 𝑓e(𝑦; 𝜇e, 𝜎e
2), 𝜇e and 𝜎e

2 are the PDF, mean, and variance of 𝑌123…𝑁
e , respectively, 

and Φ(∙) is the CDF of the standard normal variable.  

The latest equivalent component method [42] has been proven to be effective for many 

problems. Assuming all the equivalent components to be normal variables, however, may 

introduce an unmeasurable error and hence compromise the accuracy of the method. 
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Fig. 3 Compounding procedures of the equivalent component method 

4. Overview of the proposed method 

The main idea of the proposed method is to convert the multidimensional probability 

into an equivalent extreme value probability. Eq. (3) is equivalent to 

 𝐹Y(𝟎; 𝛍, 𝐂) = Pr {⋂ 𝑌𝑖 < 0
𝑁

𝑖=1
} = Pr{max(𝐘) < 0} = Pr{𝑍 < 0} = 𝐹𝑍(0) (10) 

where 𝑍 = max(𝐘) is the maximum value of 𝐘. Note that 𝑍 itself is a random variable, and 

we denote it by 𝑍(𝐘) since it is a function of 𝐘.  

 



12 

 

 

Fig. 4 Functions that fully define the distribution of 𝑍 

The distribution of 𝑍 can be determined from its PDF 𝑓𝑍(𝑧), CDF 𝐹𝑍(𝑧), moment 

generating function (MGF) 𝑀𝑍(𝑠) , cumulant generating function (CGF) 𝐾𝑍(𝑠) , or 

characteristic function (CF) 𝐶𝑍(𝑠). The relationships among those functions are shown in 

Fig. 4. A solid line means a theoretically rigorous transformation between the two functions 

connected by the line, while a dotted line means an approximate transformation. 

Theoretically, once any of the five functions is obtained, the other four can also be obtained 

using the transformation indicated above or below a line.  

The easiest starting point is the MGF given by 

 𝑀𝑍(𝑠) = ∫ exp(𝑠𝑧)𝑓𝑍(𝑧)
+∞

−∞

d𝑧 = ∫ exp[𝑠𝑧(𝐲)]𝑓Y(𝐲; 𝛍, 𝐂)d𝐲
+∞

−∞

 (11) 

Although Eq. (11) is also a high-dimensional integral similar to Eq. (5), it is much easier 

to calculate. The reason is that the integrand exp[𝑠𝑧(𝐲)] is generally a continuous function, 
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which can be calculated effectively using quadrature methods, while the integrand 

𝐼(𝐲 < 𝟎) in Eq. (5) is not. This is also the reason why we convert the multidimensional 

probability in Eq. (5) into the extreme value probability in Eq. (10). 

Once 𝑀𝑍(𝑠) is obtained, there are at least two ways to get 𝐹𝑍(𝑧) or Eq. (10). As shown 

in Fig. 4, the first way is 𝑀𝑍(𝑠) → 𝐶𝑍(𝑠) → 𝑓𝑍(𝑧) → 𝐹𝑍(𝑧)  and the second way is 

𝑀𝑍(𝑠) → 𝐾𝑍(𝑠) → 𝐹𝑍(𝑧) . The first way, however, is not practical, and there are two 

reasons. First, 𝑀𝑍(𝑠) calculated by the quadrature method is not exact, and neither is 𝐶𝑍(𝑠), 

which generally has complex output values and may suffer from large errors. Second, 

currently there are no robust and effective methods to transform 𝐶𝑍(𝑠) into 𝑓𝑍(𝑧) using the 

inverse Fourier transform, especially when 𝐶𝑍(𝑠) is not exact. In contrast, the second way 

is effective. The reason is that a simple logarithm is needed to obtain 𝐾𝑍(𝑠) from 𝑀𝑍(𝑠), 

and SPA is an accurate and efficient method to approximate 𝐹𝑍(𝑧) from 𝐾𝑍(𝑠), especially 

at the tails of 𝐹𝑍(𝑧). Therefore, we use the latter way to calculate 𝐹𝑍(𝑧). 

Calculating Eq. (11), however, needs a heavy computational effort, since it may be a 

high-dimensional integral. To solve this problem, we propose two approaches to reduce 

the dimension of the integral. The first approach is to screen the random variables in 𝐘 and 

remove the ones that barely contribute to the desired 𝐹Y(𝟎; 𝛍, 𝐂). The second approach is 

to transform the integral from the 𝐘 space, or physical space, into the eigenspace, using 

truncated series expansion of 𝐘 . With the latter approach, we can further reduce the 

dimension of the integral. This approach can usually reduce the dimension significantly 

because 𝐂 is a low-rank matrix in many engineering problems. 
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Fig. 5 Abstract flowchart of the proposed method 

An abstract flowchart of the proposed method is given in Fig. 5. Step 1 screens random 

variables in 𝐘. (See Subsection 5.1.) Note that after the screening step, we still use 𝐘 for 

the remaining random variables for convenience of presentation. In Step 2, we use EOLE 

to expand 𝐘 and then truncate the expansion to 𝑁′ orders. This step transforms the integral 

in Eq. (11) from the 𝐘 space into the 𝐔 space (the eigenspace). (See Subsection 5.2.) In 

Step 3, the Gauss-Hermite quadrature is used to calculate the MGF of 𝑍 in the eigenspace. 

(See Subsection 5.3.) In Step 4, SPA is employed to transform the MGF into CDF of 𝑍, 

and finally the desired 𝐹Y(𝟎; 𝛍, 𝐂) is obtained through Eq. (18). (See Subsection 5.4) 

There are four advantages of the proposed method. First, it can calculate 

multidimensional normal probabilities with arbitrary dimension 𝑁 , as long as the 

dimension 𝑁′ of the truncated eigenspace is not large. This is practical for dealing with 

engineering problems where the number of basic random variables is not large. Second, 
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the method is accurate even when calculating very small probabilities because SPA is able 

to recover CDF from MGF with sufficient accuracy, especially at tails of CDF. Third, it is 

generally more efficient than the abovementioned random methods, when 𝐹Y(𝟎; 𝛍, 𝐂) is 

small, such as 10−5 and smaller. The reason is that random methods need large sample size 

to guarantee the accuracy when calculating small probabilities. Fourth, the result calculated 

by the proposed method is deterministic, instead of random by a random method.  

5. Formulation of the proposed method 

In this section we give all details involved in the steps shown in Fig. 5.  

5.1. Step1: Screening random variables 

The screening procedure is aimed at reducing the dimension by removing those 

components of 𝐘 that are not important to 𝐹Y(𝟎; 𝛍, 𝐂). If Pr{𝑌𝑖 < 0} is almost equal to 1, 

or equivalently if Pr{𝑌𝑖 > 0} is sufficiently small, then removing 𝑌𝑖 will not significantly 

affect the accuracy.   

Since Pr{𝑌𝑖 > 0} measures the importance of 𝑌𝑖  to 𝐹Y(𝟎; 𝛍, 𝐂), the most important 

component 𝑌∗ is determined by 

 𝑌∗ = arg max
𝑖

Pr{𝑌𝑖 > 0} (12) 

and Pr{𝑌∗ > 0} is used as a benchmark to screen the other components of 𝐘. The screening 

criterion is given by 

 Pr{𝑌𝑖 > 0} < 𝑐Pr{𝑌∗ > 0} (13) 
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where 𝑐 is a hyperparameter taking a small value, such as 10−4. Theoretically, the smaller 

is 𝑐, the higher accuracy will we have. However, if 𝑐 is too small, the screening step will 

not effectively screen out unimportant normal random variables. If  𝑌𝑖 meets the criterion, 

it will be removed. Since 𝐘 are normal variables, Eq. (13) is equivalent to 

 Φ(𝜇𝑖) < 𝑐Φ(𝜇∗) (14) 

where 𝜇∗  is the mean value of 𝑌∗ . Note that we have assumed in Section 2 that all 

components of 𝐘 have variance of 1, so Eq. (14) does not involve the variance of 𝐘. Fig. 6 

shows an example of the screening of 𝐘. Initially, there are 𝑁 = 300 components in 𝐘. 

Only 68 components shown by the circles, however, do not satisfy the criterion in Eq. (13). 

Therefore, only 68 components are kept and the other 232 ones are removed, reducing the 

dimensionality from 𝑁 = 300 to 𝑁 = 68. Note that after the screening step, we also use 𝐘 

to denote the remaining random variables for convenience. 

 

Fig. 6 An example of the screening step 



17 

 

5.2. Step 2: Series expansion with EOLE 

The purpose of EOLE [49] is to transform the integral in Eq. (11) from the 𝐘 space 

into the eigenspace. A key step of EOLE is the eigendecompositon [56] of 𝐂. In linear 

algebra, eigendecomposition, or spectral decomposition, is the factorization of a matrix 

into a canonical form. With the decomposition, a square matrix 𝐂 is represented in terms 

of its eigenvalues and eigenvectors. A (non-zero) vector 𝐕 is an eigenvector of 𝐂 if it 

satisfies the linear equation 

 𝐂𝐕 = 𝜆𝐕 (15) 

where 𝜆 is the eigenvalue corresponding to 𝐕. The eigenvalues are obtained though solving 

the following equation 

 det(𝐂 − 𝜆𝐈) = 0 (16) 

where det(∙) represents determinant, and 𝐈 is an identity matrix with the same size as 𝐂. 

The number of eigenvalues obtained by solving Eq. (16)  is 𝑁rank, the rank of 𝐂. Once an 

eigenvalue is obtained, we can calculate its corresponding eigenvector by substituting it 

into Eq. (15). 

With the eigendecomposition, we obtain 𝑁rank eigenvalues 𝛌 and 𝑁rank eigenvectors 

𝐕𝑗 , 𝑗 = 1,2, … , 𝑁rank.  Note that the eigenvalues are sorted from the largest to the smallest. 

Then the EOLE expansion of 𝐘 is given by 

 𝑌𝑖(𝐔) = 𝜇𝑖 + ∑
𝑈𝑗

√𝜆𝑗

𝑁rank

𝑗=1

𝐕𝑗
𝑇𝐂(: , 𝑗), 𝑖 = 1,2, … , 𝑁 (17) 
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where 𝐔 = [𝑈1, 𝑈2, … , 𝑈𝑗 , … 𝑈𝑁rank
]  are 𝑁rank  mutually independent standard normal 

variables, 𝜆𝑗 is the 𝑗th eigenvalue, and 𝐂(: , 𝑗) is the 𝑗th column of 𝐂. The 𝑗th eigenvalue 𝜆𝑗 

measures how sensitive 𝐘 is to 𝑈𝑗. 

For a full-rank 𝐂, 𝑁rank = 𝑁, and hence there are 𝑁 + 1 terms in the expansion. For a 

non-full-rank 𝐂, with 𝑁rank < 𝑁, there are only 𝑁rank non-zero eigenvalues, and therefore 

there are less than 𝑁 + 1 terms in the expansion. In practical engineering, however, not all 

the 𝑁rank eigenvalues are at the same level of magnitude. Excluding the 𝜇𝑖 term, we only 

keep the first 𝑁′ terms that have large eigenvalues, because they contribute most to the 

expansion. Hereafter, we let 𝐔  denote [𝑈1, 𝑈2, … , 𝑈𝑗 , … 𝑈𝑁′] . The uncertainty of 𝐘  is 

mainly propagated from the uncertainty of 𝐔, and hence we call 𝐔 significant basic random 

variables. 

Specifically, 𝑁′ is determined as the smallest integer that meets the criterion as follows 

 (∑ 𝜆𝑗

𝑁′

𝑗=1

) / ( ∑ 𝜆𝑗

𝑁rank

𝑗=1

) ≥ 𝜂 (18) 

where 𝜂 is a hyperparameter determining the accuracy of the expansion. It takes a value 

close to, but not larger than, 1. The smaller is 𝜂, the less accurate is the expansion. If 𝜂 =

1, the expansion is exact. Typically, 𝜂 is set to 0.9999. When 𝑁′ has been determined by 

Eq. (18), the truncated EOLE expansion is given by  

 𝑌𝑖(𝐔) = 𝜇𝑖 + ∑
𝑈𝑗

√𝜆𝑗

𝑁′

𝑗=1

𝐕𝑗
𝑇𝐂(: , 𝑗), 𝑖 = 1,2, … , 𝑁 (19) 

With the truncated EOLE expansion, each 𝑌𝑖 is a function of 𝐔, and hence 𝑍(𝐘) =

max(𝐘) is also a function of 𝐔. Then Eq. (11) is converted into 
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 𝑀𝑍(𝑠) = ∫ exp[𝑠𝑧(𝐮)]𝑓U(𝐮)d𝐮
+∞

−∞

 (20) 

where 𝑓U(𝐮)  is the PDF of 𝐔 , i.e., the PDF of 𝑁′ -dimensional mutually independent 

standard normal variables.  

Eq. (20) shows an 𝑁′ -dimensional integral. Compared to Eq. (11) for an 𝑁 -

dimensional integral, Eq. (20) is more efficient because of the dimension reduction. With 

the dimension reduction, the efficiency of the proposed method mainly depends on 𝑁′ 

instead of 𝑁. Intuitively, a larger 𝑁 will lead to a larger 𝑁′. However, there is no direct 

relationship between 𝑁′  and 𝑁 . It is the number of significant eigenvalues of 𝐂  that 

directly determines 𝑁′ . A 𝐂 with a dimension of 1,000 by 1,000 may have only two 

significant eigenvalues and hence 𝑁′ = 2, while another  𝐂 with a dimension of 5 by 5 

may have up to 5 significant eigenvalues and hence 𝑁′ = 5.  

5.3. Step 3: Calculate MGF with Gauss-Hermite quadrature 

The purpose of this step is to calculate the multidimensional integral in Eq. (20) 

efficiently. Gauss-Hermite quadrature is a form of Gaussian quadrature for approximating 

the integrals with the following format 

 𝐼 = ∫ 𝑔(𝑢)exp(−𝑢2)d𝑢
+∞

−∞

 (21) 

where 𝐼  is the integral result, 𝑔(𝑢)  is a smooth and continuous function of 𝑢 , and 

exp(−𝑢2) is called a weight function. With the Gauss-Hermite quadrature, Eq. (21) is 

approximated by 
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 𝐼 = ∑ 𝑤(𝑞)𝑔[𝑢(𝑞)]

𝑄

𝑞=1

 (22) 

where 𝑄, the quadrature order, is the number of quadrature points used, 𝑤(𝑞) is the 𝑞th 

weight, and 𝑢(𝑞)  is the 𝑞th  quadrature point. Table 1 shows the quadrature points and 

weights for some quadrature orders. 

When the weight function is the PDF of the standard normal variable, i.e., 

1

√2𝜋
exp (−

𝑢2

2
) , instead of exp(−𝑢2) , the quadrature weights and points should be 

modified accordingly. The modification rule is simply multiplying the weights by 
1

√𝜋
, and 

the points by √2. For example, the weights and points in Table 1 are modified to that in 

Table 2. 

Table 1 Guass-Hermite quadrature points and weights 

Quadrature order 𝑄 Quadrature point 𝑢(𝑞) Quadrature weight 𝑤𝑞 

1 0 1.772453 

2 ±0.707107 0.886227 

3 
0 1.81635 

±1.22474 0.295409 

4 
±0.524648 0.804914 

±1.65068 0.081312 

 

Table 2 Modified Guass-Hermite quadrature weights and points 

Quadrature order 𝑄 Quadrature point 𝑢(𝑞) Quadrature weight 𝑤𝑞 

1 0 1.772453/√𝜋 

2 ±0.707107√2 0.886227/√𝜋 

3 
0 1.81635/√𝜋 

±1.22474√2 0.295409/√𝜋 

4 
±0.524648√2 0.804914/√𝜋 

±1.65068√2 0.081312/√𝜋 
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The integral in Eq. (20) is 𝑁′-dimensional, and the unidimensional formulation in Eq. 

(22) is extended to its multidimensional counterpart using the tensor product rule. The  𝑁′-

dimensional Gauss-Hermite quadrature formulation is given by 

 𝐼 = ∑ ∑ … ∑ 𝑤1
(𝑞1)

𝑤2
(𝑞2)

… 𝑤
𝑁′

(𝑞
𝑁′)

𝑄
𝑁′

𝑞𝑁′ =1

𝑄2

𝑞2=1

𝑄1

𝑞1=1

𝑔 [𝑢1
(𝑞1)

, 𝑢2
(𝑞2)

, … , 𝑢
𝑁′

(𝑞
𝑁′ )

] (23) 

where 𝑄𝑗 is the quadrature order in the 𝑗th dimension. Therefore, Eq. (20) is approximated 

by 

 𝑀𝑍(𝑠) = ∑ ∑ … ∑ 𝑤1
(𝑞1)

𝑤2
(𝑞2)

… 𝑤
𝑁′

(𝑞𝑁′)

𝑄
𝑁′

𝑞𝑁′=1

𝑄2

𝑞2=1

𝑄1

𝑞1=1

exp {𝑠𝑧 [𝑢1
(𝑞1)

, 𝑢2
(𝑞2)

, … , 𝑢
𝑁′

(𝑞𝑁′)
]} (24) 

Note that the weight function 𝑓U(𝐮) in Eq. (20) is the PDF of 𝑁′ mutually independent 

standard normal variables, and Eq. (24) should use the modified quadrature weights and 

points. The total number 𝑁𝑄 of quadrature points is equal to ∏ 𝑄𝑗
𝑁′

𝑗=1 . 

Generally, the higher are the quadrature orders 𝑄𝑗 , 𝑗 = 1,2, … , 𝑁′, the higher is the 

accuracy. Higher quadrature orders, however, mean lower efficiency. Therefore, a good 

tradeoff is needed. Since the 𝑗th eigenvalue 𝜆𝑗 of 𝐂 measures how sensitive 𝐘 is to 𝑈𝑗, as 

mentioned in Subsection 5.2, 𝜆𝑗 also measures how sensitive 𝑍 is to 𝑈𝑗. Hence, we assign 

values to 𝑄𝑗 , 𝑗 = 1,2, … , 𝑁′, according to the corresponding eigenvalues. 

To determine 𝑄𝑗  , 𝑗 = 1,2, … , 𝑁′ , we need the maximum and minimum allowable 

values 𝑄max  and 𝑄min . Since 𝜆1  is the largest eigenvalue, we set 𝑄1  to 𝑄max . 𝑄𝑗  , 𝑗 =

2,3, … , 𝑁′, are determined by 

 𝑄𝑗 = max {round (
𝜆𝑗

𝜆1
𝑄1) , 𝑄min} (25) 
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where round(∙) rounds its input value to the nearest integer. Eq. (25) shows that the larger 

is 
𝜆𝑗

𝜆1
, the larger is 𝑄𝑗, but 𝑄𝑗 cannot be smaller than 𝑄min . The specific values of the two 

hyperparameters 𝑄max  and 𝑄min  are dependent on the requirement of the calculation 

accuracy and efficiency.  

5.4. Step 4: Transform MGF to CDF using SPA 

 SPA is a powerful tool to transform MGF to CDF as well as to PDF. Although the 

theory behind SPA is complicated, its implementation is straightforward.  

First, the MGF 𝑀𝑍(𝑠) is transformed to CGF 𝐾𝑍(𝑠) through 

 𝐾𝑍(𝑠) = ln [𝑀𝑍(𝑠)] (26) 

Then the first derivative �̇�𝑍(𝑠) of 𝐾𝑍(𝑠) is given by 

 �̇�𝑍(𝑠) =
�̇�𝑍(𝑠)

𝑀𝑍(𝑠)
 (27) 

where �̇�𝑍(𝑠) is the first derivative of 𝑀𝑍(𝑠) and is given by 

 

�̇�𝑍(𝑠) = ∑ ∑ … ∑ 𝑤
1

(𝑞1)
𝑤

2

(𝑞2)
… 𝑤

𝑁′

(𝑞
𝑁′)

𝑧 [𝑢
1

(𝑞1)
, 𝑢

2

(𝑞2)
, … , 𝑢

𝑁′

(𝑞
𝑁′)

]

𝑄
𝑁′

𝑞
𝑁′=1

𝑄2

𝑞2=1

𝑄1

𝑞1=1

 

∗ exp {𝑠𝑧 [𝑢1
(𝑞1)

, 𝑢2
(𝑞2)

, … , 𝑢
𝑁′

(𝑞𝑁′)
]} 

(28) 

The second derivative �̈�𝑍(𝑠) of 𝐾𝑍(𝑠) is given by 

 �̈�𝑍(𝑠) = −
�̇�𝑍

2(𝑠)

𝑀𝑍
2(𝑠)

+
�̈�𝑍(𝑠)

𝑀𝑍(𝑠)
 (29) 

where �̈�𝑍(𝑠) is the second derivative of 𝑀𝑍(𝑠) and is given by 
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�̈�𝑍(𝑠) = ∑ ∑ … ∑ 𝑤
1

(𝑞1)
𝑤

2

(𝑞2)
… 𝑤

𝑁′

(𝑞
𝑁′)

𝑧2 [𝑢
1

(𝑞1)
, 𝑢

2

(𝑞2)
, … , 𝑢

𝑁′

(𝑞
𝑁′)

]

𝑄
𝑁′

𝑞
𝑁′=1

𝑄2

𝑞2=1

𝑄1

𝑞1=1

 

∗ exp {𝑠𝑧 [𝑢1
(𝑞1)

, 𝑢2
(𝑞2)

, … , 𝑢
𝑁′

(𝑞𝑁′)
]} 

(30) 

Daniels [57] derived the SPA to the PDF 𝑓𝑍(𝑧) of 𝑍 as 

 𝑓𝑍(𝑧) = [
1

2𝜋�̈�𝑍(𝑠∗)
]

1
2

exp[𝐾𝑍(𝑠∗) − 𝑠∗𝑧] (31) 

where 𝑠∗, known as the saddlepoint, is the solution to the equation given by 

 �̇�(𝑠) = 𝑧 (32) 

The bisection method [58] is employed to solve Eq. (32). Apart from 𝑓𝑍(𝑧), the CDF 𝐹𝑍(𝑧) 

is given by 

 𝐹𝑍(𝑧) = Φ[𝑤(𝑧)] + 𝜙[𝑤(𝑧)] (
1

𝑤(𝑧)
−

1

𝑣
) (33) 

where 𝜙(∙) is the PDF of the standard normal variable, 

 𝑤(𝑧) = sign(𝑠∗){2[𝑠∗𝑧 − 𝐾𝑍(𝑠∗)]}
1
2 (34) 

and 

 𝑣 = 𝑠∗[�̈�𝑍(𝑠∗)]
1
2 (35) 

Since we only need to calculate 𝐹𝑍(0), we can simply set 𝑧 = 0 in Eqs. (32), (33) and (34). 

Once 𝐹𝑍(0)  is obtained, we also obtain the desired multivariate normal probability 

𝐹Y(𝟎; 𝛍, 𝐂) = 𝐹𝑍(0). 

An important property of SPA is that it is able to convert MGF to CDF with sufficient 

accuracy, especially at the tails of CDF [51, 57]. Some studies showed that in some cases, 
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SPA has tail exactness [59]. This property makes the proposed method able to calculate 

very small probabilities with high accuracy. 

6. Application in time-dependent reliability analysis 

Time-dependent reliability measures the probability that a component or system does 

not fail within a given period of time. With different theories, existing methods to time-

dependent reliability analysis are roughly grouped into simulation methods [16, 17, 21, 33], 

surrogate model methods [6, 11, 12, 18-20], extreme value methods [13, 22, 23, 25], 

outcrossing rate methods [4, 7, 10, 15], and equivalent Gaussian process methods [5, 8, 14], 

etc.  

Simulation methods are straightforward. A large number of samples of 𝑌 are generated 

first, whose statistic information is then used to estimate the reliability or the probability 

of failure. This group of methods are generally accurate as long as the sample size is 

sufficiently large. Generating a large number of samples, however, is usually expensive or 

even unaffordable, especially when the limit-state function is an expensive black-box 

function. To deal with this problem, surrogate model methods train a computationally 

cheap surrogate model to replace the original expensive limit-state function. Once the 

surrogate model is well trained, the time-dependent reliability may be estimated accurately 

and efficiently. This group of methods, however, introduce some additional issues, such as 

the design of experiment, training scheme, learning function, and convergence criteria, etc.  

Extreme value methods convert the time-dependent problems into static ones by 

calculating the extreme values of the limit-state function with respect to time. Generally, 
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the calculation of extreme values needs a global optimization with respect to time. It limits 

the application of this group of methods since global optimization may not be efficient.  

Outcrossing rate methods are traditional methods for time-dependent reliability 

analysis and are widely used. The methods are efficient if they are used with FORM. Their 

accuracy may not be good for problems with low reliability because the dependence among 

crossing events is neglected. On the contrary, the autocorrelation of the limit-state function 

is considered in equivalent Gaussian process methods, and hence more accurate results can 

be obtained. The procedures of equivalent Gaussian process methods are straightforward. 

FORM is first employed to convert the limit-state function into a Gaussian process whose 

discretization is a vector of correlated normal variables, and then a high-dimensional 

normal integral is used to calculate the reliability.  

The existing equivalent Gaussian process methods mainly differ in the way the high-

dimensional normal integral is estimated. Hu and Du [5] employed the crude MCS. Jiang 

et al. [14] employed the quasi MCS [35]. Gong and Frangopol [8] employed the equivalent 

component method. In this study, we apply the proposed method to improve the accuracy 

of equivalent Gaussian process methods without a random sampling method.  

The reliability is predicted by a limit-state function given by 

 𝑌 = 𝐺(𝐗, 𝐏(𝑡), 𝑡) (36) 

where 𝐗 are the basic input random variables, 𝐏(𝑡) are the input random processes, and  𝑡 

is time. Generally, 𝑌 is a random process. The time-dependent reliability 𝑅 over the time 

interval [𝑡, 𝑡] is given by 

 𝑅 = Pr{𝑌 < 0, ∀𝑡 ∈ [𝑡, 𝑡]} (37) 
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To calculate 𝑅 numerically, we need to discrete [𝑡, 𝑡] into 𝑁 points 𝑡𝑖, 𝑖 = 1,2, … , 𝑁, 

where 𝑡1 = 𝑡  and  𝑡𝑁 = 𝑡 . Then the random process 𝑌  is discretized into 𝑁  random 

variables 𝑌𝑖 = 𝐺(𝐗, 𝐏(𝑡𝑖), 𝑡𝑖), 𝑖 = 1,2, … , 𝑁. With the discretization, Eq. (37) is rewritten 

as 

 𝑅 = Pr {⋂ 𝑌𝑖 < 0
𝑁

𝑖=1
} (38) 

Although 𝑌𝑖 is in general not a normal variable, we can use FORM to transform it into an 

equivalent normal variable with a unit variance [5]. Therefore, we always assume that 𝑌𝑖 is 

normally distributed with a unit variance without losing generality. Then Eq. (38) is 

equivalent to  

 𝑅 = 𝐹Y(𝟎; 𝛍, 𝐂) (39) 

The details of how to calculate 𝐂  using FORM is given in [5]. The time dependent 

probability of failure 𝑃𝑓 = 1 − 𝑅.  

For general time-dependent reliability problems, 𝑁 can be hundreds. Although 𝑁 is 

large, the number of significant basic random variables, i.e., 𝑁′, is not necessarily large. If 

there are no random processes in Eq. (36), 𝑁rank will be exactly equal to the dimension of 

𝐗, i.e., the number of basic random variables. 𝑁′ is no larger than 𝑁rank. 𝑁′ = 𝑁rank only 

if 𝑌 is sensitive to all the basic random variables. 𝑁′ < 𝑁rank when 𝑌 is not sensitive to at 

least one basic random variable. If there are input random processes, 𝑁rank is dependent 

on not only the number of basic random variables and random processes, but also the 

autocorrelation functions of the input random processes. 
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From response 𝑌, 𝑁′ is generally determined by the correlation length 𝑙𝑌 of 𝑌 and the 

length 𝑙𝑡 = (𝑡 − 𝑡) of time interval [𝑡, 𝑡]. More specifically, the larger 
𝑙𝑌

𝑙𝑡
 is, the smaller 𝑁′ 

will we have. For problems with small 
𝑙𝑌

𝑙𝑡
, 𝑁′ is large and hence the proposed method may 

not be efficient or may even fail. 

7. Numerical examples 

In this section, we demonstrate the effectiveness of the proposed method using four 

time-dependent reliability analysis examples. The first example has the exact solution and 

hence we can easily test the accuracy of the proposed method. In the second example, the 

limit-state function is given as a Gaussian random process. The third example involves a 

mechanism whose inputs only contain several random variables without a random process. 

The last example has an implicit limit-state function, which is a black-box model evaluated 

by the finite element method (FEM) [60]. Exact solutions are not available for the last three 

examples, and hence we employ the crude MCS, using a sufficiently large sample size, to 

obtain accurate results, which are treated as benchmarks. In all the examples, the 

hyperparameters 𝑐, 𝜂, 𝑄max , and 𝑄max  are set to 10−4 , 0.9999, 35, and 5, respectively. 

Note that there are no criteria for selecting specific values for those hyperparameters. We 

set those values based on our experience from many experiments. Note that all the reported 

results and error are about the calculation of the multinormal probabilities, so the error due 

to FORM approximation is not included. 

The proposed method is also compared with two widely used methods. The first one 

is the latest version of the equivalent component method [42], which is a deterministic 
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method. For convenience, we denote this method by IECA (improved equivalent 

component method). The second one is the randomized quasi MCS developed by Genz and 

Bretz [35], which has been implemented in the 𝑅 programming language and has been 

widely used to calculate the high-dimensional normal probabilities. We can simply call the 

R function pmvnorm() to calculate the desired probability. Since it is a random method 

whose result is dependent on the seed of the random number generator, we will run this 

method three times to see the differences. For convenience, we denote the three solutions 

from the method by RQ1, RQ2, and RQ3.  

7.1. Example 1: A math example with exact solution 

The limit-state function 𝑌(𝑡) is a stationary Gaussian process with mean value 𝜇(𝑡) =

𝑏  and standard deviation 𝜎(𝑡) = 1 . Its autocorrelation coefficient function 𝜌(𝑡1, 𝑡2)  is 

given by 

 𝜌(𝑡1, 𝑡2) = cos(𝑡1 − 𝑡2) (40) 

The time interval [𝑡, 𝑡] = [0, 2𝜋] s. 𝑌(𝑡) is a function of 𝐔 = [𝑈1, 𝑈2] given by 

 𝑌(𝑡) = 𝑏 + 𝑈1cos(𝑡) + 𝑈2sin(𝑡) = b + √𝑈1
2 + 𝑈2

2sin [𝑡 + tan−1 (
𝑈1

𝑈2
)] (41) 

Therefore, the maximum value 𝑍 of 𝑌(𝑡) is given by 

 𝑍 = 𝑏 + √𝑈1
2 + 𝑈2

2 (42) 

Since 𝑈1
2 + 𝑈2

2 is a chi-square variable with freedom 2, the exact 𝑅 is given by 

 𝑅 = Pr{𝑍 < 0} = Prob{𝑈1
2 + 𝑈2

2 < 𝑏2} = Ψ(𝑏2, 2) (43) 

where Ψ(∙ ,2) represents the chi-square CDF with the degree of freedom being 2.  
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[𝑡, 𝑡] = [0, 2𝜋] is evenly discretized into 𝑁 = 500 points, hence a 500-dimensional 

normal probability is to be calculated. With Eq. (40), we get the correlation coefficient 

matrix 𝐂 whose dimension is 500 × 500. Since 𝑌(𝑡) is a stationary Gaussian process, after 

discretization, 𝐘 = (𝑌1, 𝑌2, … , 𝑌500) share the same mean value 𝑏 and standard deviation 1. 

As a result, no components in 𝐘 are removed during the variable screening procedure. 

Since there are only two input random variables in Eq. (41), 𝑁rank = 2 . The 

corresponding two eigenvalues of 𝐂 are 250.5 and 249.5, both of which are significant, 

and therefore there are 𝑁′ = 2 significant basic random variables. Since 𝑄max = 35 and 

𝑄min = 5, we use 𝑄1 = 35 and 𝑄2 = 35 quadrature points for 𝑈1  and 𝑈2 , respectively, 

and hence there are in total 𝑁𝑄 = 𝑄1𝑄2 = 1225  quadrature points. To test how the 

proposed method performs at different levels of 𝑃𝑓, we vary 𝑏. The values of 𝑃𝑓 calculated 

by the proposed method, IECA, and RQ are given in Table 3. Note that the values in the 

parentheses under 𝑃𝑓 are relative errors with respect to the accurate solutions and that the 

values in the square brackets are the estimated absolute errors (EAE) given by the RQ 

method. 

When 𝑏 takes −2, −4, −6, and −8, all the relative errors of the proposed method are 

less than 1%. It shows that the proposed method is accurate even when we calculate an 

extremely small 𝑃𝑓, such as 1.27 × 10−14. The reason for the high accuracy is that there 

are only two significant basic random variables, and hence the Gauss-Hermite quadrature 

can obtain accurate MGF using Eq. (24). SPA can also produce an accurate CDF, and hence 

accurate 𝑃𝑓. In addition, this example shows that although 𝑁 = 500, 𝑁′ is only 2. 
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IECA is less accurate. When 𝑏  is −2, −4, −6 , and −8 , the errors of IECA are 

57.3%, 34.7%, 15.4%,  and 4.4% , respectively. When 𝑏 = −2 , RQ gets stable and 

accurate results. However, when calculating small probabilities ( 𝑏 = −4, −6, or − 8), 

RQ1, RQ2 and RQ3 produce different results, showing instability. It is a typical feature of 

a random method.  

Table 3 Results for Example 1 

𝑏 → 

Methods ↓ 
−2 −4 −6 −8 

Proposed 
1.35 × 10−1 

(0.0%) 

3.34 × 10−4 
(−0.5%) 

1.52 × 10−8 
(−0.2%) 

1.27 × 10−14 
(0.0%) 

IECA 
2.13 × 10−1 

(57.3%) 

4.52 × 10−4 
(34.7%) 

1.76 × 10−8 
(15.4%) 

1.32 × 10−14 
(4.4%) 

RQ1 

1.35 × 10−1 4.31 × 10−4 1.60 × 10−8 1.48 × 10−14 
(0.0%) (28.5%) (5.1%) (16.7%) 

[7.80 × 10−6] [2.92 × 10−4] [1.84 × 10−8] [1.18 × 10−14] 

RQ2 

1.35 × 10−1 3.39 × 10−4 8.78 × 10−9 9.66 × 10−15 
(0.0%) (1.1%) (−42.4%) (−23.7%) 

[6.77 × 10−6] [1.93 × 10−4] [3.48 × 10−9] [3.83 × 10−15] 

RQ3 

1.35 × 10−1 2.84 × 10−4 7.77 × 10−9 9.66 × 10−15 
(0.0%) (−15.3%) (−49.0%) (−23.7%) 

[5.40 × 10−6] [5.29 × 10−5] [9.98 × 10−10] [1.94 × 10−15] 
Exact 1.35 × 10−1 3.35 × 10−4 1.52 × 10−8 1.27 × 10−14 

7.2. Example 2: A math example without an exact solution 

The limit-state function 𝑌(𝑡)  is a nonstationary Gaussian process. The standard 

deviation is 𝜎(𝑡) = 1 and the mean 𝜇(𝑡) is given by 

 𝜇(𝑡) = −6 − 𝑡cos(𝑡) (44) 

where 𝑡 ∈ [𝑡, 𝑡] = [0, 5] s. We consider three different correlation coefficient functions, 

given by Eq. (45), Eq. (46), and Eq. (47). 

 Case 1: 𝜌(𝑡1, 𝑡2) = sin(𝜋|𝑡1 − 𝑡2|)/(𝜋|𝑡1 − 𝑡2|) (45) 
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 Case 2: 𝜌(𝑡1, 𝑡2) = exp[−0.25(𝑡1 − 𝑡2)2] (46) 

 Case 3: 𝜌(𝑡1, 𝑡2) = exp(−0.25|𝑡1 − 𝑡2|)(1 + 0.25|𝑡1 − 𝑡2|) (47) 

 

Fig. 7 Variable screening for Example 2 

For numerical calculation, [𝑡, 𝑡] is evenly discretized into 𝑁 = 300 points, and hence 

the dimension is 300. Fig. 7 shows the variable screening. 176 points among the 300 

points do not contribute to 𝑃𝑓 significantly and hence are removed. 𝑁 is updated to 124. 

Note that the physical meaning of Φ(𝜇𝑖) in Eq. (14) is the instantaneous probability of 

failure, and the variable screening procedure in fact removes those time points with low 

instantaneous probabilities of failure. 

In Case 1, there are 𝑁′ = 5  significant basic random variables. The numbers of 

quadrature points for them are 35, 31, 15, 5, and 5, and hence there are in total 406,875 

quadrature points. The results are given in Table 4, where 휀 represents the relative error 

with respect to MCS. The sample size of MCS is 8 × 106. 
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𝑃𝑓 calculated by the proposed method is 6.42 × 10−3 with a relative error of −0.1%, 

while IECA yields a 𝑃𝑓 value of 6.93 × 10−3 with a relative error of 7.9%. The proposed 

method is significantly more accurate than IECA. RQ is more accurate than IECA, but not 

stable due to randomness. 

Table 4 Results for Case 1 of Example 2 

Methods Proposed IECA RQ1 RQ2 RQ3 MCS 

𝑃𝑓(× 10−3) 6.42 6.93 6.76 5.94 6.54 6.42 

휀(%) −0.1 7.9 5.3 −7.5 1.8 - 

EAE - - 6.37 × 10−4 5.90 × 10−4 3.40 × 10−4 - 

 

In Case 2, there are 𝑁′ = 4  significant basic random variables. The numbers of 

quadrature points for them are 35, 7, 5, and 5, respectively, and hence there are in total 

6125  quadrature points. The results are given in Table 5. The sample size of MCS is 

1.2 × 107. Again, the proposed method is more accurate than both IECA and RQ.  

Table 5 Results for Case 2 of Example 2 

Methods Proposed IECA RQ1 RQ2 RQ3 MCS 

𝑃𝑓(× 10−3) 3.96 3.60 3.76 4.17 4.17 3.99 

휀(%) −0.8 −9.7 −5.8 4.6 4.5 - 

EAE - - 4.49 × 10−4 5.81 × 10−4 4.69 × 10−4 - 

In Case 3, there are 𝑁′ = 4  significant basic random variables. The numbers of 

quadrature points for them are 35 , 5 , 5 , and 5 , and hence there are in total 4,375 

quadrature points. The results are given in Table 6. The sample size of MCS is 1.2 × 107. 

All the three methods are accurate, and the proposed method is slightly more accurate.  

Table 6 Results for Case 3 of Example 2 

Methods Proposed IECA RQ1 RQ2 RQ3 MCS 

𝑃𝑓(× 10−3) 3.42 3.35 3.48 3.35 3.48 3.43 
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휀(%) −0.2 −2.3 1.6 −2.3 1.7 - 

EAE - - 2.31 × 10−4 8.54 × 10−7 2.34 × 10−4 - 

 

7.3. Example 3: A slider-crank mechanism 

Shown in Fig. 8 is a slider-crank mechanism. The link with lengths 𝑅1 and 𝑅3 rotates 

with an angular velocity of 𝜔 = 𝜋 rad/s. The motion output is the difference between the 

displacements of two sliders A and B. The mechanism is supposed to work with small 

motion errors during time period [𝑡, 𝑡] = [0, 2] seconds. The motion error is defined as the 

difference between the desired motion output and the actual motion output. A failure occurs 

when the motion error is larger than 0.94 mm. The actual motion output ∆𝑠actual is given 

by 

 

Fig. 8 A slider-crank mechanism 
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∆𝑠actual = 𝑅1cos(𝜃 − 𝜃0) + √𝑅2
2 − 𝑅1

2sin2(𝜃 − 𝜃0)

− 𝑅3cos(𝜃1 + 𝜃0 − 𝜃 − 𝛿0)

− √𝑅4
2 − 𝑅3

2sin2(𝜃1 + 𝜃0 − 𝜃 − 𝛿0) 

(48) 

where 𝜃 = 𝜔𝑡. The desired motion output ∆𝑠desired is given by 

 

∆𝑠desired = 108cos(𝜃 − 𝜃0) + √2112 − 1082sin2(𝜃 − 𝜃0)

− 100cos(𝜃1 + 𝜃0 − 𝜃 − 𝛿0)

− √2132 − 1002sin2(𝜃1 + 𝜃0 − 𝜃 − 𝛿0) 

(49) 

Then the limit-state function 𝑌(𝑡) is given by 

 𝑌(𝑡) = (∆𝑠desired − ∆𝑠actual) − 0.94 (50) 

Table 7 shows the random variables and other parameters. 

Table 7 Variables and parameters of Example 3 

Variable Mean Standard deviation Distribution 

𝑅1 108 mm 0.05 mm Gaussian 

𝑅2 211 mm 0.2 mm Gaussian 

𝑅3 100 mm 0.05 mm Gaussian 

𝑅4 213 mm 0.2 mm Gaussian 

𝜃0 45° 0 Deterministic 

𝜃1 60° 0 Deterministic 

𝛿0 10° 0 Deterministic 

ω 𝜋 rad/s 0 Deterministic 

 

The time interval [𝑡, 𝑡]  is evenly discretized into 𝑁 = 300 points. Since 𝑌(𝑡)  is not a 

Gaussian random process, we need to transform it into an equivalent Gaussian process by 

applying FORM at each time point. After that we need to calculate a 300-dimensional 

normal probability to obtain 𝑃𝑓. Fig. 9 shows the variable screening step. No points among 
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the 300 points are removed because the instantaneous probabilities of failure at all the 300 

points contribute to 𝑃𝑓 significantly. 

 

Fig. 9 Variable screening for Example 3 

There are four significant basic random variables in 𝐔 after the dimension reduction is 

performed. The numbers of quadrature points for 𝐔 are 35, 5, 5, and 5, and hence there 

are in total 4,375 quadrature points. The results are given in Table 8. The sample size of 

MCS is 1.8 × 107.  

Table 8 Results of Example 3 

Methods Proposed IECA RQ1 RQ2 RQ3 MCS 

𝑃𝑓(× 10−3) 2.38 2.11 2.48 2.39 2.48 2.38 

휀(%) 0.1 −11.4 4.1 0.5 4.1 - 

EAE - - 3.24 × 10−4 3.82 × 10−4 4.62 × 10−4 - 
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𝑃𝑓 calculated by the proposed method is 2.38 × 10−3 with a relative error of 0.1%, 

while 𝑃𝑓 calculated by IECA is 2.11 × 10−3 with a relative error of −11.4%. RQ is more 

accurate than IECA but less accurate than the proposed method. 

 Note that there is no input random process in this example and hence the number 𝑁′ 

of significant basic random variables is at most the number of input random variables. If  

𝑌(𝑡) was not sensitive to some input random variables, 𝑁′ would be less than the number 

of input random variables.  

7.4. Example 4: A 52-bar space truss 

This example is modified from an example in [61]. Shown in Fig. 13 is a 52-bar space 

truss with 21 nodes. All the nodes are located on the surface of an imaginary hemisphere 

whose radius is 𝑟 = 240 in. The cross-sectional areas of Bars 1~8 and 29~36 are 2 in2. 

The cross-sectional areas of Bars 9~16 and other bars are 1.2 in2 and 0.6 in2, respectively. 

The Young’s modulus of all bars is 𝐸 . To distinguish the node numbers and the bar 

numbers, we add a decimal point after all node numbers in Fig. 13. Nodes 1~13 are 

subjected to external loads 𝐹1~𝐹13, all in the −𝑧 direction. 𝐹1 is a stationary Gaussian 

process whose autocorrelation coefficient function is given by 

 𝜌(𝑡1, 𝑡2) = exp[−0.25(𝑡1 − 𝑡2)2] (51) 

𝐸 and  𝐹2~𝐹13 are random variables, and their distributions are given in Table 9. 
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            (a) Top view                            (b) Left view 

Fig. 13 A 52-bar space truss 

Table 9 Variables and parameters of Example 4 

Variable Mean 
Standard 

deviation 
Distribution Autocorrelation 

𝐸 2.5 × 104 ksi 2.5 × 102 ksi Gaussian N/A 

𝐹1(𝑡) 40 kip 4 kip 
Nonstationary 

Gaussian process 
Eq. (51) 

𝐹2~𝐹5 50 kip 5 kip Lognormal N/A 

𝐹6~𝐹13 60 kip 6 kip Lognormal N/A 

 

A failure occurs when the displacement 𝛿 of Node 1 along −𝑧 direction exceeds the 

threshold 𝛿0 = 1.3 in at any instant of time in the period [𝑡, 𝑡] = [0, 5] years. The limit-

state function is given by 

 𝑌(𝑡) = 𝛿0 −  δ(𝐸, 𝐅) (52) 

where 𝐅 = [𝐹1(𝑡), 𝐹2, 𝐹3, … , 𝐹13 ] is the vector all the loads.δ(𝐸, 𝐅) is calculated by FEM. 

The linear bar element is used.  

The time interval [𝑡, 𝑡] is evenly discretized into 𝑁 = 500 points. Since 𝑌(𝑡) is not a 

Gaussian random process, we need to transform it into an equivalent Gaussian process by 

applying FORM at each time point. After that we need to calculate a 500-dimensional 

normal probability to obtain 𝑃𝑓. Since 𝑌(𝑡) becomes a stationary Gaussian process after 
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the transformation, 𝐘 = (𝑌1, 𝑌2, … , 𝑌500) share the same mean value and standard deviation. 

As a result, no components in 𝐘 are removed during the variable screening procedure. 

There are only 𝑁′ = 7  significant basic random variables after the dimension 

reduction. The numbers of quadrature points for them are 35, 18, 6, 5 5, 5, and 5, and 

hence there are in total 2,362,500 quadrature points. The sample size of MCS is 1.2 × 108. 

The results are given in Table 10. The proposed method is significantly more accurate than 

both RQ and IECA. 

Table 10 Results for Example 4 

Methods Proposed IECA RQ1 RQ2 RQ3 MCS 

𝑃𝑓(× 10−4) 3.35 4.07 4.11 4.25 2.72 3.36 

휀(%) −0.6 21.0 22.3 26.4 −19.1 - 

EAE - - 2.51 × 10−4 4.72 × 10−4 2.13 × 10−4 - 

 

The four examples have demonstrated the high accuracy and robustness of the 

proposed method. IECA is accurate for some examples but less accurate for the others, and 

RQ is not robust for some problems because of large randomness in the solutions with 

different sampling seeds. The proposed method works particularly well for a time-

dependent reliability analysis for which the limit-state function has been approximated by 

a Gaussian process. 

8. Conclusions 

Evaluating a multivariate normal probability is widely encountered in many 

engineering problems. It is a challenging task when the dimension is high and the 

probability is low. The proposed method addresses the problem by using the extreme value 
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of all the normal variables. Its moment generating function (MGF) is obtained by the 

Gauss-Hermite quadrature method, and the dimension is also reduced by screening out 

variables in both the physical space and the eigenspace. The saddlepoint approximation is 

used to recover the multivariate normal probability from MGF. 

The main computational effort is the calculation of MGF by a multidimensional 

quadrature method. The efficiency depends on the dimension of the integral, or the reduced 

dimension. Therefore, the efficiency of the proposed method mainly depends on the 

number of the significant basic random variables after the dimension reduction, instead of 

the dimension of the original normal variables. This is a good feature for many engineering 

problems where the dimension can be reduced significantly because not all normal 

variables contribute significantly to the multivariate normal probability and the 

multivariate normal probability is not sensitive to all coordinates of the eigenspace. 

Another advantage of the proposed method is its ability to calculate extremely small 

probabilities. The accuracy is achieved by the accurate generation of MGF, as well as 

saddlepoint approximation with its well-known accuracy for small probabilities. This 

feature makes the proposed method suitable for reliability applications where the 

probability of failure is inevitably small. The proposed method is also numerically stable, 

and the result is repeatable.  

The method, however, may not work well if the reduced dimension is still high. For 

example, in time-dependent reliability problems, if the correlation length of the limit-state 

function is short and/or the time interval of interest is long, the reduced dimension will be 

high and the proposed method may not work well or may even fail. Our future work will 

focus on accommodating larger dimension in the reduced space. 
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