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Abstract—Single cell RNA-sequencing (scRNA-seq) technology
enables comprehensive transcriptomic profiling of thousands of
cells with distinct phenotypic and physiological states in a com-
plex tissue. Substantial efforts have been made to characterize
single cells of distinct identities from scRNA-seq data, including
various cell clustering techniques. While existing approaches can
handle single cells in terms of different cell (sub)types at a high
resolution, identification of the functional variability within the
same cell type remains unsolved. In addition, there is a lack of
robust method to handle the inter-subject variation that often
brings severe confounding effects for the functional clustering of
single cells. In this study, we developed a novel data denoising and
cell clustering approach, namely CIBS, to provide biologically
explainable functional classification for scRNA-seq data. CIBS is
based on a systems biology model of transcriptional regulation
that assumes a multi-modality distribution of the cells’ activation
status, and it utilizes a Boolean matrix factorization approach
on the discretized expression status to robustly derive functional
modules. CIBS is empowered by a novel fast Boolean Matrix
Factorization method, namely PFAST, to increase the computa-
tional feasibility on large scale scRNA-seq data. Application of
CIBS on two scRNA-seq datasets collected from cancer tumor
micro-environment successfully identified subgroups of cancer
cells with distinct expression patterns of epithelial-mesenchymal
transition and extracellular matrix marker genes, which was
not revealed by the existing cell clustering analysis tools. The
identified cell groups were significantly associated with the
clinically confirmed lymph-node invasion and metastasis events
across different patients.

Index Terms—Cell clustering analysis, Data denoising, Boolean
matrix factorization, Cancer microenvirionment, Metastasis.

I. INTRODUCTION

The rise of single-cell RNA sequencing (scRNA-seq) tech-
nology has revolutionized the biological and biomedical re-
search fields in recent years [1], [2]. One important mission of
scRNA-seq is to explore the inter/intra-subject heterogeneity
of the tissue microenvironment by enumerating compositions
of the cells, and their functional states. Essentially, most of
the state-of-the-art approaches detect cell clusters based on
cell-wise distances that is calculated based on a pre-selected
set of gene features, or their projections. However, technical
confounders, such as dropouts, are prevalent in single cell data

that could introduce large variability in single cell expression
data, and severely affect the clustering efficiency. On the
other hand, recent studies revealed that many varied gene
expressions may not necessarily contribute to different cell
types or their functional activity states [1], [2], due to cell
type unrelated expression and the confounding factor induced
gene expression variation. Such that the challenge to robustly
identify the functional variations within the same cell type
while selecting and relying on only the informative genes
remains unsolved.

In sight of these challenges, we here developed a novel data
denoising framework, namely CIBS (Cell type Identification
by fast Boolean matrix factorization of ScRNA-seq data)1,
that can be seamlessly implemented with existing cell clus-
tering analysis, to optimize the detection of cell groups with
converged functional activities from scRNA-seq data. The
key ingredient of CIBS is derived from a systems biology
perspective, by considering the variation of observed gene
expression as a result of the on-/off-switch of the gene’s
transcriptional regulators. A multi-modal model is applied to
transform a scRNA-seq data into a binary expression matrix,
where each matrix element represents a discretized gene
expression status. A functional gene module is further modeled
as a subset of genes showing consistently active expression
states across a subset of cells, and such a module can be iden-
tified by a Boolean Matrix Factorization (BMF) approach on
the binarized expression state matrix. A new BMF algorithm,
namely PFAST, was developed to empower the analysis on
large scale scRNA-seq data. The input scRNA-seq data will
be further denoised by removing the expression signal that
cannot be explained by principle binary matrix factors. Both
CIBS framework and PFAST algorithm were benchmarked
with state-of-the-art methods on real-world and synthetic data
sets. Specifically, application of CIBS on two scRNA-seq data
of cancer cells identified distinct cell group associated with

1*equal contribution, † correspondence.
CIBS can be accessed at https://github.com/clwan/CIBS
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Fig. 1. Gene expression model and CIBS pipeline. A. two-state gene expression. B. LTMG models on/off and multimodality in gene expression. C. functional
cell type with its gene expression modules. D. illustrations of CIBS pipeline.

epithelial-mesenchymal transition and metastasis, which was
validated by matched clinical data.

The key contributions of this work include:
• We developed CIBS, a user-friendly data denoising

framework that can be implemented with existing cell
clustering methods to optimize the detection of function-
ally meaningful cell groups.

• We developed PFAST, a computationally efficient BMF
algorithm that is customized to handle large scale scRNA-
seq data with more than 20,000 gene features and over
5,000 cells.

• Application of CIBS on cancer scRNA-Seq datasets
collected from different patients identified distinct
cell groups and signature genes related to epithelial-
mesenchymal transition (EMT) and metastasis.

• Downstream analysis revealed the epithelial-like cancer
cells have high inter-tumoral heterogeneity while the
mesenchymal-like cancer cells tend to be more homo-
geneous, suggesting that the cancer cells share similar
trancriptional variations during the EMT process.

II. BACKGROUND AND PROBLEM FORMULATION

Numerous models have been developed to infer the multi-
modality in the expression profile of each gene in scRNA-
seq data [4], [9]. Recently, Larson et al utilized allele specific
scRNA-seq to trace the allele origin of each mRNA molecule,
which for the first time validated that gene’s expression was
determined by an on-/off-state, where they also revealed the
determination of different expression states are the major
facilitators in determining the functional groups of cell (Fig
1A) [5]. We have recently developed a left truncated mixture
Gaussian model to simultaneously discriminate the on- and
off- expression state and estimate the multi-modality of the
on expression state of single gene’s expression profile through
multiple cells. Denote X ∈ R

m×n, where Xij is the expres-
sion level of gene j in the cell i, the LTMG model enables

a direct discrimination of the expression profile of each gene
into on- and off- expression states. Specifically, Xij is inferred
as with an on-state if ∃l > 0, s.t., ajl pl(Xij |uΩl,j

on , σΩl,j
on ) >

aj0p0(Xij |uΩ0,j
off , σΩ0,j

off ), and Xij is inferred as with an off-
state if aj0p0(Xij |uΩ0,j

off , σΩ0,j
off ) > ajl pl(Xij |uΩl,j

on , σΩl,j
on ) for

all l > 0 (Fig 1B, see details in [4]). We introduce a binary
expression state matrix P with Pij defined as

Pij = 1Xij ∈ Ω1,2,...,m, Pij = 0Xij ∈ Ω0

, i.e. the Pij = 0 or 1 indicates Xij is with an off- or on-
expression state. As discussed above, we deem the variations
in the expression state matrix P can better represent true func-
tional variations comparing to the original expression profile
X . Another advantage to consider P instead of X is that
the expression variation led by different batch or other noise
were eliminated in P . While we shift the focus to the binary
expression state matrix P , the functional clustering problem
is thus transferred as mining the relational information among
modules of cells and genes, i.e., to conduct a disentangled
representation learning of P [6], [7].

Low rank representation of binary matrix is a warehouse
for disentangling the 1s enriched pattern matrices, i.e rank-
1 matrices, from a binary data (Fig 1C1,2), which can be
solved by a co-clustering or Boolean Matrix Factorizaton
(BMF) approach[8]. Noted. existing co-clustering method tend
to identify non-overlapped patterns (Fig 1C3,4). However, this
assumption does not fit scRNA-seq data since each gene can
serve multi-functionalities in different cells, i.e. the activated
expression of one gene can be regulated for attending multiple
functional modules [10]. Hence it is necessary to enable over-
laps among the rank-1 patterns, i.e. the observed expressions
state matrix is the Boolean aggregation of different functional
modules, which forms a BMF problem [6], [7], [11] (1C5,6).
However, the binarization and BMF process may over simplify
the expression variations. For example, different activated
expression state of one gene may correspond to different func-
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tions, which are presented as same values (1) in P but different
values (original expression level) in X . To better characterize
functional related gene expression variations, instead of using
P alone, we project the original expression profile X onto
the BMF fitted expression state matrix P̂ , i.e., the Hadamard
product, X̂ = X ◦ P̂ , for cell clustering analysis.

III. CIBS PIPELINE

We introduce the CIBS analysis pipeline (Fig 1D). Based on
the LTMG model, CIBS first derives the expression state ma-
trix P from expression profile X as described above. The BMF
identifies functional modules of genes that are consistently
with on-expression state in a subset of cells. To encourage
the within-group difference, the original expression values was
then projected onto then BMF fitting expression state matrix
P , which only leaves the gene expressions represent in at
least one functional module. Dimension reduction and cell
clustering methods are further applied on the denoised data
to derive functional cell clusters (Fig 1D).

To cope with the large scale of scRNA-seq data, we propose
a fast BMF algorithm, namely PFAST. PFAST follows the
general framework of well-received PANDA algorithm [7]
with some major improvements: (1) In searching optimal basis,
PANDA needs to calculate global loss with O(mn) complexity
on every attempt. On the other hand, PFAST only needs to
sum up the positive values within covered regions, which
has approximate complexity of O(m). (2) Both PFAST and
PANDA update residual matrix after each iteration. However,
PFAST removed the look back step, which was set in PANDA
to consider already generated patterns in decomposing current
residual matrix. We found this approach affects the efficiency
along with the increase of pattern number but has limited
improvement to the matrix decomposition. (3) While ex-
panding patterns generated by PFAST core, PFAST ext core
simplifies the computational cost by introducing a similarity
cutoff t that reduces its complexity to O(n). In summary,
each iteration of PFAST has an approximated complexity of
O(mn), and the total complexity of PFAST is O(kmn), where
k is number of identified patterns. The detailed illustration of
PFAST as well as the auxiliary algorithm PFAST core and
PFAST ext core are listed in Appendix.

We benchmark PFAST with ASSO, PANDA and MP on
simulated data (see experiment detail in Appendix). Com-
paring to ASSO, PANDA and MP, our analysis suggested
that PFAST achieved superior performance in both sparse and
dense matrices (2). The running time of PFAST is significantly
lower than other methods. We also observed a better con-
vergence rate of PFAST. Meanwhile, the number of patterns
detected by PFAST are closer to the number ture patterns, for
both sparse and dense matrices.

IV. APPLICATION OF CIBS ON REAL DATASETS

We applied CIBS on the head and neck cancer and
melanoma data with the following analysis settings (see ex-
periment detail in appendix). We compared the cell clusters
identified by using Seurat on the original data and CIBS

Fig. 2. Performance comparison of PFAST with ASSO, PANDA and MP. For
sparse and dense matrices (A and B) respect to reconstructed error, pattern
density and time cost to reach convergence.

denosised data, as it represent the state-of-the-art performance
in cell clustering analysis. All the cell type annotation and
patient information were directly retrieved from the original
works. Seurat identified cells clusters correspond to different
cell types, including distinct clusters of Fibroblast, T-, B-
myeloid, and cancer cells (Fig 3A, E,). By investigating the
patient origin of each cell in both datasets, the stromal and
immune cell types from different patients form consistent
cell type specific cluster while clusters of cancer cells were
largely separated by their patient origin (Fig 3B, F). These
observations are consistent with the original work [1], [2].
On the other hand, applicaton of Seurat on CIBS denoised
data also identified clusters of cells with distinct stromal and
immune types (Fig 3C, G). But for cancer cells, we observed
several sub clusters (marked with yellow circles in Fig 3D, H)
that are constituted by cancer cells from multiple patients in
both datasets.

We further focused on the analysis and biological interpre-
tation of the functional variations of the identified clusters
of cancer cells [1], [2]. We retrieved all cancer cells in the
head and neck dataset and identified 5 clusters from the
CIBS denoised data, as shown in (Fig 3I). The cluster 1
and 2 are formed by cells from multiple patients, while the
cluster 3 to 5 are associated to specific patients. We identified
significant differential expression of epithelial-mesenchymal
transition (EMT) genes among the five clusters (Fig 3J).Cells
in the cluster 1 and 2 are with overly expression of well
confirmed marker genes of mesenchymal-like cell, such as
CDH3, TGFB1, ITGB6 and VIM, while the cluster 3, 4 and 5
overly express epithelial marker genes such as CDH1, CLDN4,
CLDN7 KRT19 and EPCAM, suggesting the cell cluster 1
and 2 are of mesenchymal-like cells and cluster 3-5 are of
epithelial-like cells. In addition, the patient origins dominating
the cell clusters 1 and 2 are with higher number of lymph-
node invasion comparing to the patients of the cell cluster
3-5, suggesting the EMT-associated cell groups identified
from CIBS denoised data are truly related to metastasis. On
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Fig. 3. Application of CIBS on real cancer dataset. A-H. CIBS clustered cancer cell from multiple head and neck, and melanoma patients. I-J. Detailed
analysis revealed CIBS identified functional cell types are in different states in EMT process.

the other hand, the cell clusters inferred by Seurat on the
original data are all patient origin specific. Our observation
clearly suggested the clusters identified by CIBS correspond
to sub groups of cancer cells with varied functional states of
metastasis, demonstrating CIBS can effectively eliminate the
gene expression variation irrelevant to cell functions, such as
the sample-wise batch effect, and identify cell groups with
truly varied functional states.

V. DISCUSSION

Distinguishing cells of different phenotypic types or func-
tional groups is major challenge in cell clustering analysis of
scRNA-seq datasets. To tackle this challenge, we developed
the CIBS data denoising approach, by detecting the gene ex-
pressions that are more likely caused by a functional variation,
from a systems biology perspective. The computational model
is inherited from our previously developed statistical distribu-
tion [4], which not only reduces observational noise, but also
eliminates the bias led by biological factors such as different
mRNA degradation rate and unfully degraded mRNAs. To deal
the large feature and sample size of a scRNA-seq data, we
also developed a fast Boolean matrix factorization algorithm,
namely PFAST. PFAST is with a significantly decreased com-
putational cost and detection accuracy compared with state-
of-art approaches. Noted, CIBS can be easily implemented
with existing cell clustering methods by providing a data
denoising of the input data. We applied CIBS on two high
quality cancer scRNA-seq data. Compared with classic cell
clustering methods, CIBS identified clusters of cancer cells
with distinct expression pattern of EMT and metastasis related
genes. Interestingly, the identified epithelial-like cancer cells
possess higher patient specificity but the mesenchymal-like
cells from different patients are more homogeneous. CIBS
enables an elimination of functional irrelevant inter-tumoral
variation. Hence amplify the intra-tumorual gene expression

variations of true biological functions in cell clustering anal-
ysis.
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APPENDIX

A. PFAST algorithm

We propose PFAST, tailored to the cost function of BMF
and maintains a low computational complexity requirements.
It follows the general framework of PANDA algorithm [7].
In each iteration, PFAST has two functions – core pat-
tern discovery (PFAST core) and extension of core pattern
(PFAST ext core). Specifically, PFAST core detects the most
enriched square of 1s within current residual matrix, and
PFAST ext core expands the generated core pattern with
uncovered area. Starting with original binary matrix, after
each iteration, PFAST iteratively retains the residual matrix
with setting the 1s covered by existing derived patterns to 0s,
and detect largest pattern from the residual matrix until the
convergence criteria η is met. Different convergence criteria
can be set based on the analysis demand. Common settings
include identifying the top k patterns or covering certain ratio
of 1s in the input data. The general framework of PFAST is
illustrated below:

Algorithm 1: PFAST
Inputs: Binary matrix P , Threshold t, and

convergence criteria η
Outputs: A ∈ {0, 1}n×k, B ∈ {0, 1}k×m

PFAST(P, t, η):
A ← ∅ B ← ∅ Pr ← P
while !η do

(a, b) ← PFAST core(Pr)
(a, b) ← PFAST ext core(Pr, a, b, t)
A ← A ∪ a B ← B ∪ b
Prij ← 0where (a ⊗ b)ij = 1

end

1) Core pattern discovery: Here we denote the to-be-fitted
residual matrix as Pr. For each Pr, the solution space of the
optimal decomposition can be as big as 2mn and the optimal
solution can not be guaranteed [6], [7]. PFAST inherited
the searching strategy from PANDA[7]. In each iteration,
PFAST first calculates and ranks row-wise l1 norm, |Pri,:|,
corresponding to number of 1s for each row. And return a
vector of row indices s of the descending order for |Pri,:|.
Such that, the first element of s corresponds to the row indices
with largest l1 norm. I.e., s1 = argmaxi(|Pri,:|). Searching
is initialized with a ∈ {0, 1}n, b ∈ {0, 1}m, where b is
the same as Prs1,:. And a is a vector with as1 setting to 1
and other elements as 0. PFAST core detects 1s enriched sub
matrices by following the order of s. At term l, new patterns
a∗, b∗ are generated, where a∗ is the same as a except asl
setting to 1, b∗ becomes the intersection of b and Prsl,:, i.e.,
b ∧ Prsl,:. Here ∧ stands for and operation under Boolean
algebra, where 1 ∧ 1 = 1, 1 ∧ 0 = 0 and 0 ∧ 0 = 0. The
comparison of new patterns and current patterns is tailored
to the cost function that is to find the maximum number of
1s covered. If new patterns covered more positive values, the
new patterns will be promoted. Moreover, scRNAseq data are

generally sparse so that the covered region is usually far less
than n or m. Thus, counting the covered positive values has a
approximate complexity of O(m). By going this process for
n-1 times, PFAST core finds a rather dense square. And the
overall complexity is O(mn).

Algorithm 2: PFAST core
Inputs: Residual matrix Pr
Outputs: a ∈ {0, 1}n, b ∈ {0, 1}m
PFAST core(Pr):
s = {s1, ..., sn} ← sorting based on row-wise sum
a ← 0n ; b ← 0m; as1 ← 1; b ← Prs1,:
for l ← 2, ..., n do

a∗ ← a; a∗si ← 1; b∗ ← b ∧ Prsl,:
if sum(Pra∗,b∗) > sum(Pra,b) then

a ← a∗; b ← b∗
end

2) Core pattern extension: In the process of finding dense
square, PFAST core keeps updating the patterns. Such that the
final patterns can be greatly different from its initialization.
It is highly likely that some rows in Pr can fit the final
patterns very well but were neglected in the searching process.
PFAST ext core is designed to rescue the rows with good
fittings to the final patterns but were omitted in the pattern
searching. Based on the cost function, we are invariant to add
zero values into the decomposition. This property granted a
very fast process for PFAST ext core, that we can include
Pri,: as long as it mapped an acceptable ratio, t , of positive
values with generated patterns. This mapping could be easily
revealed by counting the row-wise sum of column pattern cov-
ered sub matrix Pr:,b. In general cases, |b| << m, Counting
row-wise sum of Pr:,b has a complexity of O(n), which makes
PFAST ext core with an approximate complexity of O(n).

Algorithm 3: PFAST ext core
Inputs: Pr a b t
Outputs: a ∈ {0, 1}n, b ∈ {0, 1}m
PFAST ext core(Pr, a, b, t):
Pext ← Pr:,b
for i in 1, ...n do

ai ← 1 ∀i |Pexti,: | > |b| ∗ t
end

B. Experiments setting

1) On simulated data: We simulated binary matrices
Pm×n = Um×k ⊗ V k×n, where each element of U , V
follows an identical Bernoulli distribution with probability
p. We set n = m = 1000, k = 4, and two signal levels
p = 0.2/0.4 corresponding to sparse or dense matrix. We
compared the methods follows the same metrics in [12]:
(1) reconstruction error measures overall fitting, (2) density
measures the parsimonious level of generated patterns, (3) time
consumption. The solution with smaller reconstruction error
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and density are regarded as more optimal. Detailed definitions
of the metrics are listed below.

reconstruction error :=
|P � (A⊗B)|

|P |

Density :=
|A|+ |B|

(n+m)× k

The convergence criteria η for all the methods were set as:
1) 5 patterns were identified, i.e., one pattern more than
the true rank, 2) the cost function stopped decreasing. For
each scenario, we conducted the evaluation with 10 rounds of
simulations.

2) On real cancer single cell data: The binary expression
state matrix P was generated from the gene-wise LTMG
fitting. PFAST was applied on the binary matrices with t equal
to 0.6. Convergence criteria η for PFAST was set as: 1) top
10 patterns have been identified, 2) 30% of non-zero values
has been recovered, which resulted 5 patterns in head and
neck cancer and 10 patterns in melanoma datasets. ScRNA-
seq data is overall sparse. A large number of patterns is usually
needed to achieve a small-reconstruction error. However, some
patterns identified in later iterations are likely to be less biolog-
ically explainable due their small size. Our analyses suggested
an empirical setting of 10 patterns and 30% coverage rate
can achieve a good derivation of functional clusters for cell
clustering. We conducted the dimension reduction using t-
SNE for visualization. Cell clustering analysis was conducted
by using the default setting of Seurat – the most utilized
cell clustering analysis for scRNA-seq data [3]. For the re-
clustering in Fig3. I, we utilized k-mean clustering algorithm.
Number of k is selected by using elbow method.
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