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Abstract 
Electrical Mobility is arguably the property upon which some of the most successful classification criteria are based 
for aerosol particles and ions in the gas phase. Once the value of mobility is empirically obtained, it can be related to 
a geometrical descriptor of the charged entity through a size-mobility relationship. Given the multiscale range of 
sizes in the aerosol field, approaches that can provide accurate transformations from mobility to size are not 
straightforward, and many times rely on experimentally derived parameters. The most well-known size-mobility 
analytical expression covering the whole Knudsen range for spherical particles is the semi-empirical Stokes-Millikan 
correlation. This expression matches Stokes’ drag friction coefficient in the continuum regime and the friction factor 
for a predominantly diffuse reemission of the gas molecule in the free molecular regime, as theorized by Epstein, 
with empirical slip coefficients chosen to agree with Millikan’s oil drop experiments. Despite its success, the Stokes-
Millikan correlation has its shortcomings. For example, it needs to be modified to predict the mobility of non-
spherical entities and needs correction terms when potential interactions or reduced mass effects are non-negligible. 
The Stokes-Millikan asymptotic behavior also fails to predict the gradual transition from diffuse to specular 
reemission behavior that is observed for increasingly smaller ions within the free molecular regime. Here we make 
an attempt at providing a comprehensive account of the existing mass-mobility relations in the continuum, transition 
and free molecular regimes for both spherical and non-spherical particles. Epstein’s diffuse interaction is critically 
explored experimentally and numerically for different gases in the free molecular regime with the observation that, 
as the size of the particle increases, a progression from specular to diffuse reemission occurs for all gases studied. 
The rate at which this variation happens seems to differ from gas to gas and to be related to the conditions for which 
diffuse reemission effects stem from a combination of scattering and potential interactions. 
Keywords: Electrical Mobility; Transport Phenomena; Stokes-Millikan; Kinetic Theory; Ions; transition regime; free 
molecular regime 
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Nomenclature 
Variable Significance 

𝒂𝒂 Radius of a sphere on an aggregate 
𝑨𝑨𝟏𝟏,𝑨𝑨𝟐𝟐,𝑨𝑨𝟑𝟑/𝑨𝑨,𝑩𝑩, 𝒄𝒄 Slip Correction parameters 

𝒃𝒃 Impact parameter 
𝑩𝑩𝒊𝒊𝒊𝒊 Drag force tensor 
𝒄𝒄� Gas average molecular speed 
𝒄𝒄𝒊𝒊, 𝒄𝒄 Gas thermal velocity 
𝒄𝒄𝟏𝟏, 𝒄𝒄𝟐𝟐 Phillips accommodation constants 
𝑫𝑫 Diffusion coefficient 
𝒅𝒅𝑯𝑯 Hydrodynamic diameter 
𝒅𝒅𝒈𝒈 Diameter of the gas 
𝒅𝒅𝒑𝒑 Particle mobility diameter 

𝒅𝒅𝒑𝒑,𝒆𝒆𝒆𝒆𝒆𝒆 Effective diameter considering potential interaction enhancement 
𝒅𝒅𝒗𝒗𝒆𝒆 Volume equivalent diameter 
𝑬𝑬 Electrical field 
𝑭𝑭𝑫𝑫 Drag force 
𝒆𝒆𝒆𝒆 Friction factor 
𝒆𝒆(𝒄𝒄𝒊𝒊) Gas velocity distribution 
𝑭𝑭(𝒛𝒛𝒊𝒊) Ion/Charged particle velocity distribution 
𝒈𝒈𝒊𝒊,𝒈𝒈 Relative velocity 
𝒌𝒌 Boltzmann’s Constant 
𝑲𝑲𝒏𝒏 Knudsen number 
𝒎𝒎𝒈𝒈𝒂𝒂𝒈𝒈 Molecular mass of the gas 
𝒎𝒎𝒓𝒓𝒆𝒆𝒅𝒅 Reduced Mass 
𝒎𝒎𝒘𝒘 Molecular mass of the charged entity 
𝒏𝒏 Gas number concentration 
𝑵𝑵𝑨𝑨 Avogadro’s number 
𝒏𝒏𝒏𝒏����,����� 𝑰𝑰�� Normal and unit dyadics 
𝒏𝒏𝜶𝜶 Concentration fraction leaving the particle surface accommodated 

𝒏𝒏𝒊𝒊, 𝒕𝒕𝟏𝟏,𝒊𝒊, 𝒕𝒕𝟐𝟐,𝒊𝒊 Normal and tangential  
𝑵𝑵𝒕𝒕 Total number of gas molecules entering a given domain in time 𝜏𝜏𝑡𝑡 
𝒑𝒑 Gas pressure 
𝑷𝑷𝑨𝑨 Orientationally averaged Projected Area 

�̇�𝒑𝒊𝒊−, �̇�𝒑𝒊𝒊+ Momentum of impinging and reflected molecules per unit time 
𝑸𝑸 Gas molecule flux  
𝒒𝒒𝒊𝒊 Charge or partial charge in the particle 

𝒒𝒒𝟏𝟏,𝒒𝒒𝟐𝟐 Perturbations due to the presence of the sphere 
𝒓𝒓 Distance between different entities 

𝑹𝑹,𝑹𝑹𝟎𝟎 Distance between force center and gas molecule, apsidal distance 
𝑻𝑻𝐞𝐞𝐞𝐞𝐞𝐞 Effective temperature 
𝑻𝑻𝒍𝒍,𝒌𝒌 Oseen/Rotne and Pragers hydrodynamic tensor 
𝒖𝒖𝒊𝒊 Perturbed velocity field over a sphere 
𝑼𝑼𝒑𝒑𝒑𝒑𝒍𝒍 Ion induced dipole potential interaction 
𝑼𝑼∞ Free stream velocity 
𝒗𝒗𝒅𝒅 Drift velocity 
𝑽𝑽𝒎𝒎 Gas molar volume 
𝑽𝑽𝒑𝒑 Gas molecule volume 
𝑾𝑾𝒊𝒊 Center of mass velocity 



𝒛𝒛𝒆𝒆 Particle charge; z elementary charges 
𝒛𝒛𝒊𝒊, 𝒛𝒛 Ion/Charged particle velocity 
𝒁𝒁𝒑𝒑,𝑲𝑲 Electrical Mobility 
𝒁𝒁𝒑𝒑𝒆𝒆𝒓𝒓𝒆𝒆𝒆𝒆𝒎𝒎 Electrical Mobility Free Molecular 

𝒁𝒁𝒑𝒑𝒄𝒄𝒑𝒑𝒏𝒏𝒕𝒕/𝒁𝒁𝒄𝒄𝒑𝒑𝒏𝒏𝒕𝒕𝒊𝒊𝒏𝒏𝒖𝒖𝒖𝒖𝒎𝒎 Electrical Mobility in the continuum 
  

Greek symbols  
𝜶𝜶 Accommodation coefficient 
𝜶𝜶𝒑𝒑 Polarization potential 

𝜶𝜶𝑻𝑻,𝜶𝜶𝑸𝑸,𝜶𝜶𝑳𝑳 Thermal diffusion factors 
𝜷𝜷𝒊𝒊𝒊𝒊 Collision frequency 
𝚫𝚫 Correction to diffusion 

𝜻𝜻𝟏𝟏, 𝜻𝜻𝟐𝟐, 𝜻𝜻𝟑𝟑 Annis slip correction coefficients 
𝜼𝜼 Viscosity 
𝓛𝓛 Potential correction factor 
𝝀𝝀 Mean free path of the gas 
𝝃𝝃 Accommodation enhancement factor 
𝝈𝝈, 𝝐𝝐 Lennard-Jones parameters, zero cross and well depth 
𝚺𝚺 Charged particle surface area  
𝝉𝝉𝒕𝒕 Total time for 𝑁𝑁𝑡𝑡 to enter the given domain 
𝜱𝜱 Gas-Charged particle Interaction Potential 
𝝋𝝋𝒆𝒆 Ion induced dipole potential dimensionless interaction potential 

𝝓𝝓,𝜽𝜽,𝜸𝜸 Orientation angle 
𝝌𝝌𝒅𝒅𝒆𝒆𝒆𝒆 Deflection angle 
𝝌𝝌𝒌𝒌 Collision frequency correction factor. 
𝝌𝝌𝒎𝒎 Dynamic Shape factor 

𝜴𝜴�𝟏𝟏,𝟏𝟏,𝜴𝜴�𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆(𝟏𝟏,𝟏𝟏) Collision Cross Section/ First Collision Integral 
 

  



1. Introduction 
One of the most difficult challenges in the aerosol field is the classification of airborne particles due to their 
large disparity in mass, size, shape, composition, and concentration. Although it only pertains to the charged 
portion of particles suspended in air, one of the most successful classification criteria is that of separation 
by means of electrical mobility (Hoppel, Frick, & Larson, 1986; Knutson & Whitby, 1975; Wiedensohler, 
1988). Fortunately, most ordinary aerosols can be charged in the gas phase in a predetermined and 
controlled manner, which has allowed the technique to become widespread. Electrical mobility, 𝑍𝑍𝑝𝑝, as its 
name suggests, is a property that refers to the ability of a charged particle to be transported through a buffer 
gas by means of an electrical field. In its simplest one-dimensional definition, it is related to the electric 
field, 𝐸𝐸, through the drift velocity, 𝑣𝑣𝑑𝑑, as: 

 𝑣𝑣𝑑𝑑 = 𝑍𝑍𝑝𝑝𝐸𝐸 (1) 

The electrical mobility is generally related to what is known as a mobility diameter which may then be 
compared to a physical size of the particle. This comparison, while useful to interpret data in a clean way, 
does convey an inevitable loss of information that might ultimately lead to wrong comparisons. 

 
Figure 1. Multiscale range of particle sizes in the field of aerosols including the different regimes assuming standard pressure. 

Among the complications surrounding particle classification within the realm of aerosols using electrical 
mobility, one of the most challenging aspects is the large multiscale range of different sizes and shapes, 
which extends from the free molecular to the continuum regime as shown in Figure 1. In particular, much 
of the particulate matter is just as likely to be much smaller or much larger than the gas mean free path, 
including all possible intermediate situations, which ultimately leads to a non-trivial characterization. While 
the particle in the free molecular regime is assumed to not perturb the gas and follow deterministic 



formulations, the postulation completely changes as the particle becomes larger and a 
compression/rarefaction process ensues in the transition to continuum regimes. Because of such drastically 
different behaviors between the two different regimes, the difficulty resides in understanding how electrical 
mobility transitions smoothly from one extreme to the other, or, in other words, discerning how the mobility 
behaves as the particle size relates to the mean free path, 𝜆𝜆. The ratio between the two is referred to as the 
Knudsen number (𝐾𝐾𝐾𝐾 = 2𝜆𝜆/𝑑𝑑𝑝𝑝), where for Kn>>1 the particle does not perturb the gas and is considered 
to be in the free molecular regime whereas for Kn<<1, the particle is considered to be in the continuum. 
Therefore, an intricate relationship between electrical mobility and Knudsen number unequivocally must 
appear in the study of aerosols and its effect must be studied carefully. 

A useful way to understand why molecular ions and macroscale charged particles behave in such different 
ways is to study how the drag force, or rather the friction factor 𝑓𝑓𝑓𝑓, behaves in the different regimes. The 
drag force, 𝐹𝐹𝐷𝐷, for a particle of mobility diameter 𝑑𝑑𝑝𝑝 in the creeping flow continuum regime, without slip, 
is given by the well-known Stokes’ law (Stokes, 1851): 

𝐹𝐹𝐷𝐷 = 3𝜋𝜋𝜋𝜋𝑑𝑑𝑝𝑝𝑣𝑣𝑑𝑑 = 𝑓𝑓𝑓𝑓𝑣𝑣𝑑𝑑 (2) 

where 𝜋𝜋 is the viscosity of the gas. The appearance of a constant 𝑣𝑣𝑑𝑑 in eq. (2) suggests that a steady state 
condition has been achieved between drag and electric force on a particle of charge 𝑧𝑧𝑧𝑧 (𝐹𝐹𝑒𝑒 = 𝑧𝑧𝑧𝑧𝐸𝐸), which 
allows a definition of the electrical mobility in the continuum given by: 

𝑍𝑍𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 = 𝑧𝑧𝑒𝑒
3𝜋𝜋𝜋𝜋𝑑𝑑𝑝𝑝

(3) 

In the free molecular regime, on the other hand, an approximation to the electrical mobility, more commonly 
referred to as ion mobility (and many times represented by 𝐾𝐾 instead of 𝑍𝑍𝑝𝑝), is given through kinetic theory: 

𝑍𝑍𝑝𝑝𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑓𝑓 = 3𝑧𝑧𝑒𝑒
16𝑐𝑐
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which is known as the 2 temperature-theory Mason-Schamp (sometimes Mason-Viehland) equation 
(Edward A Mason & Schamp Jr, 1958; Larry A Viehland & Mason, 1978). Here 𝐾𝐾 is the gas number 
concentration, 𝑘𝑘 is the Boltzmann constant, 𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓 is the effective temperature, 𝑚𝑚𝑓𝑓𝑒𝑒𝑑𝑑 = 𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑤𝑤/(𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔 +
𝑚𝑚𝑤𝑤) is the reduced mass of the gas/charged particle system with 𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔 being the molecular mass of the gas 
and 𝑚𝑚𝑤𝑤 the molecular mass of the charged particle, and 𝛺𝛺�1,1�𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓� is the Collision Cross Section (CCS). 
The effective temperature includes collisional heating due to drift, 𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑇𝑇 + 𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑣𝑣𝑑𝑑2/3𝑘𝑘, where 𝑇𝑇 is the 
equilibrium temperature of the buffer gas(Wannier, 1953). Under most scenarios pertaining to low velocity 
aerosols, the second term on the right-hand side, 𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑣𝑣𝑑𝑑2/3𝑘𝑘, is negligible.  

Given that viscosity does not depend on 𝐾𝐾, one of the major differences between continuum and free 
molecular considerations is that the electrical mobility of charged particles is independent of 𝐾𝐾 in the 
continuum regime but inversely proportional to it in the free molecular regime. The necessity of reconciling 
the two behaviors via a smooth transition requires a parameter that compares size to concentration leading 
naturally and once again to the appearance of the Knudsen number: 

𝐾𝐾𝐾𝐾 = 2𝜆𝜆
𝑑𝑑𝑝𝑝

= 2
𝑐𝑐√2𝜋𝜋𝑑𝑑𝑔𝑔2𝑑𝑑𝑝𝑝

= 1
3√2𝑁𝑁𝐴𝐴

𝑉𝑉𝑚𝑚
𝑉𝑉𝑔𝑔

𝑑𝑑𝑔𝑔
𝑑𝑑𝑝𝑝

, 

Here 𝑑𝑑𝑔𝑔 is the gas molecule diameter, 𝜆𝜆 is the mean free path, 𝑉𝑉𝑔𝑔 is the gas molecule volume (assuming it 
is spherical), 𝑁𝑁𝐴𝐴 is Avogadro’s number, and 𝑉𝑉𝑓𝑓 is the gas molar volume. The last 𝐾𝐾𝐾𝐾 definition, although 



not generally used, suggests a dependence of electrical mobility on the rarefaction (𝑉𝑉𝑓𝑓/𝑉𝑉𝑔𝑔) of the gas as 
well as on the ratio of gas size to particle size (𝑑𝑑𝑔𝑔/𝑑𝑑𝑝𝑝), with the particle itself being a plausible perturbing 
agent to the flow. Regardless of the obvious necessity, no one general theoretical formula exists that 
unequivocally captures the evolution of mobility through the different regimes. The reason is most likely 
that the Knudsen number is not the optimal physical quantity to use, despite the obvious influence, given 
that 𝑉𝑉𝑓𝑓, and consequently 𝜆𝜆, is not necessarily constant near the charged particle. For example, on one hand, 
in the free molecular regime, direct interactions of individual gas molecules with the charged particle (or 
ion) are the prevalent cause of momentum transfer, making the electrical mobility inversely proportional to 
the collision cross-section of the particle and the gas number concentration. Within the continuum creeping 
flow, on the other hand, the particle perturbs the gas surrounding the charged particle causing it to be 
compressed and rarified, leading to the mobility being inversely proportional to a blurred characteristic size 
(direct impingements on the surface are not as prevalent and have a lower contribution to the drag) and the 
viscosity of the gas. Therefore, the physical evolution between the two regimes should be trying to account 
for how secondary gas to gas collisions -collisions that occur between incoming gas molecules and those 
reflected from the surface that perturb the gas- affect momentum transfer (or equivalently affect the 
viscosity or mean free path), something not simple by any means. 

There have been many attempts to provide estimates to the electrical mobility over the full Knudsen range. 
Perhaps, the most well-known semi-empirical law describing the mobility of charged particles through the 
transition regime is known as the Stokes-Millikan equation (although many other names for the same 
equation do exist)(Robert A Millikan, 1923b): 

  𝑍𝑍𝑝𝑝 = 𝑧𝑧𝑒𝑒
3𝜋𝜋𝜋𝜋�𝑑𝑑𝑝𝑝+𝑑𝑑𝑔𝑔�

�1 + 2𝜆𝜆
𝑑𝑑𝑝𝑝+𝑑𝑑𝑔𝑔

�𝐴𝐴1 + 𝐴𝐴2 𝑧𝑧𝑒𝑒𝑒𝑒 �−
𝐴𝐴3�𝑑𝑑𝑝𝑝+𝑑𝑑𝑔𝑔�

𝜆𝜆
���, (5) 

where 𝐴𝐴𝑖𝑖 are dimensionless experimentally derived slip factor parameters which depend on the gas. 
Equation (5) is only meant initially to be used for spherical particles and agrees with the continuum result 
of eq. (3) for vanishing values of the Knudsen number (𝐾𝐾𝐾𝐾 = 2𝜆𝜆/(𝑑𝑑𝑝𝑝 + 𝑑𝑑𝑔𝑔)~ 2𝜆𝜆/𝑑𝑑𝑝𝑝 ) and, given an 
appropriate choice of the 𝐴𝐴𝑖𝑖 values, with diffuse-reflection conditions for the free molecular regime 
described in eq. (4). The Stokes-Millikan eq. (5) and its derivatives are surprisingly accurate despite the 
challenges they present. They have been successfully employed in aerosol science(Ehn et al., 2011; Fang 
et al., 2014; Fernández-García & de la Mora, 2013; Jung, Han, Mulholland, Pui, & Kim, 2013; Ku & de la 
Mora, 2009), despite not completely satisfying the underlying complicated physics of the phenomena. The 
fundamental theory leading to the semi-empirical relationship is far from complete and, as new more 
capable experimental systems are surfacing, it is necessary to revisit our fundamental understanding and 
offer possible new initiatives to tackle the electrical mobility problem(Hirsikko et al., 2010). 

To assist in the above goal, this article offers a review of the approaches used in the field of aerosols to 
calculate electrical mobility for a charged particle or ion of arbitrary shape and size for low Mach number 
and electric field strengths. As a comprehensive analysis, it showcases how the flexibility and fluency in 
which experimental transport properties, such as diffusion or electrical mobility, may be obtained is in 
contrast with the difficulty required to correctly understand the measured values. The discernment of a 
comprehensive theory that accurately explains the measurements is nonetheless crucial due to the practical 
importance of aerosol transport properties in a variety of fields and research disciplines such as nucleation, 
particle dynamics, atmospheric science, dusty plasmas, material processing, pollution, particle reactors and 
combustion (Agarwal & Girshick, 2012; Alam & Flagan, 1986; Carbone et al., 2019; Davis, Joshi, Wang, 
& Egolfopoulos, 2005; Girshick, Chiu, & McMurry, 1990; Girshick & Chiu, 1990; Gopalakrishnan & 
Hogan Jr, 2012; Kulmala et al., 2013; McMurry, 1983; Pratsinis, 1988; Rogak & Flagan, 1992). Due to the 



vast differences in the way the calculation of electrical mobility is handled, one should distinguish between 
approaches used in the free molecular and transition/continuum regimes, where the former can be handled 
from an aerosol perspective (momentum transfer approach) rather than using a full kinetic theory approach. 
Although not addressed in this review, one can access plenty of relevant literature regarding flows at high 
Mach numbers and/or high electric fields (Bowden & Harbour, 1966; Henderson, 1976; C. Li et al., 2019; 
Z.-H. Li, Peng, Zhang, & Yang, 2015; Loth, 2008; Edward A. Mason & McDaniel, 1988; McCoy & Cha, 
1974; Rose, 1964; Larry A Viehland & Mason, 1975). 

Given the broadness of the covered topics, the manuscript is organized in two main discussion sections. 
Section 2 pertains to the methods used to calculate the value of the electrical mobility of charged particles 
of spherical shape in the entire range of Knudsen numbers starting from the  Stokes solution for the 
continuum regime. This first section begins with the discussion of the historically relevant and simplest 
theories (i.e., some variations of the Stokes-Millikan law) before diving into the description of approaches 
based on more fundamental principles that can be used for refined calculations in the free molecular 
regimes. The last part of section 2 introduces further corrections of the described methods to include the 
effect of potential force interactions between the charged particle and the gas molecules and provide the 
tools to account for the experimentally observed transition from specular to diffuse reflection of the gas 
molecules at increasing values of the Knudsen number. Section 3 introduces the adaptation of the Stokes-
Millikan based methods introduced in the previous section to infer the electrical mobility of particles of 
arbitrary shape. The results of these modifications are compared to that of more sophisticated and modern 
approaches, including Monte Carlo simulations, specifically designed to consider particles of any shape in 
the transitional regime. The last part of Section 3 focuses on the free molecular regime and describes how 
the most modern modeling tools can be used to perform mobility calculation of entities with specified and 
detailed atomic structure in which each atom of the structure is the center of an interaction potential with 
gas molecules. The surveyed literature shows how such types of detailed calculations enable the possibility 
of predicting the mobility from first principles without performing assumptions on the reflection type of 
the molecules upon collision with the charged particle. Short final remarks conclude the manuscript content.  



2. Mobility Transport Theories for Spherical Particles in the Free 
Molecular, and Transition Regimes.  

2.1 Origins of mobility transport theories for spheres of any size: The Stokes-
Millikan equation. 

In the low field limit, the first deviations from the continuum regime to account for the effect of the Knudsen 
number were given by Cunningham using a linear perturbation of the Stokes equation (eqs. 2-3) 
as(Cunningham, 1910): 

 𝑍𝑍𝑝𝑝 = 𝑧𝑧𝑒𝑒
3𝜋𝜋𝜋𝜋𝑑𝑑𝑝𝑝

�1 + 𝐴𝐴 2𝜆𝜆
𝑑𝑑𝑝𝑝
�, (6) 

with 𝐴𝐴 a constant intended to take into account the law of reflection of the gas molecules upon impingement 
of the charged particle (slip correction). However, it was made clear that the value of 𝐴𝐴 in eq. (6) had to 
vary with concentration in the transition region to match experimental results.  A semi-empirical formula 
was then devised by Knudsen and Weber and similarly by Millikan that focused on correctly describing the 
transition portion (M Knudsen, 1950; Martin Knudsen & Weber, 1911; Robert A Millikan, 1923b). The 
equation, which appears in the introduction as eq. (5) is labeled Stokes-(Cunningham-Knudsen-Weber)-
Millikan equation (in no particular order) and its more primitive version is provided here for convenience: 

 𝑍𝑍𝑝𝑝 = 𝑧𝑧𝑧𝑧
1+2𝜆𝜆/𝑑𝑑𝑝𝑝�𝐴𝐴+𝐵𝐵𝑒𝑒𝐵𝐵𝑝𝑝�−

𝑐𝑐𝑟𝑟𝑝𝑝
𝜆𝜆 ��

3𝜋𝜋𝜋𝜋𝑑𝑑𝑝𝑝
= 𝑧𝑧𝑧𝑧

1+𝐾𝐾𝑐𝑐�𝐴𝐴+𝐵𝐵𝑒𝑒𝐵𝐵𝑝𝑝�−2𝑐𝑐
𝐾𝐾𝐾𝐾��

3𝜋𝜋𝜋𝜋𝑑𝑑𝑝𝑝
 (5’) 

Where 𝐴𝐴, 𝐵𝐵 and 𝑐𝑐 have the same meaning as the 𝐴𝐴𝑖𝑖 coefficients in eq. (5). The equation agrees with the 
Stokes equation in the continuum regime and is somewhat reminiscent of the free molecular counterpart 
(eq. 4) when the Knudsen number approaches infinity. The 𝐴𝐴𝑖𝑖 coefficients have been derived in different 
ways, for different gases and through different methods, many of them coming from Millikan and his pupils 
(Derieux, 1918; Eglin, 1923; Ishida, 1923; Lassalle, 1921; Lee, 1914; Silvey, 1916; Stacy, 1923; Van Dyke, 
1923). For air, the most commonly used values are given by Davies as 𝐴𝐴1 = 1.257, 𝐴𝐴2 = 0.4 and 𝐴𝐴3 =
0.55 (Davies, 1945). While the first two coefficients are dependent on matching the free molecular 
expression through the different modes of reflection, the third coefficient, 𝐴𝐴3, is empirically adjusted as no 
theoretical value is known and may vary up to a factor of 2. It is perhaps necessary to explain the values 
chosen by Davies for the 𝐴𝐴𝑖𝑖 coefficients, as they are not based on theoretical results but rather on averages 
of previously reported values. Based on results from Millikan, Mattauch, Monch and Knudsen, and Weber 
(Martin Knudsen & Weber, 1911; Mattauch, 1925; R. Millikan, 1920; Robert A Millikan, 1923a, 1923b; 
Mönch, 1933), Davies obtains the result for  𝐴𝐴1 by averaging the results from the first 3 authors and 𝐴𝐴2 
using all but Mattauch’s results. Lastly, 𝐴𝐴3 is obtained through the median of the results from Millikan and 
Mattauch. While Davies’ results are the most commonly used, there are a plethora of published values 
which seem to vary depending on the particle studied, e.g. solid vs liquid particles. A compilation of slip 
correction factors appears in Table I (M. Allen & Raabe, 1982; M. D. Allen & Raabe, 1985; Annis, 
Malinauskas, & Mason, 1972; Buckley & Loyalka, 1989; N. A. Fuchs, Daisley, Fuchs, Davies, & 
Straumanis, 1965; Metzig, 1984; Rader, 1990; Schmitt, 1959) for air and other gases. Most authors agree 
on the universality of 𝐴𝐴1 + 𝐴𝐴2 for all gases with a value of approximately ~1.65 at standard pressure and 
temperature. 

  



Table I. Several Slip Correction Factors published in literature for different gases. The values have been modified to 
reflect a viscosity of 𝜼𝜼 = 𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒𝒏𝒏𝒎𝒎𝒈𝒈𝒂𝒂𝒈𝒈𝝀𝝀𝒄𝒄� and standard temperature and pressure. Where only the values of 𝑨𝑨𝟏𝟏 are 
reported, consider using Cunnigham’s approximation eq. (6) or Rader’s extrapolation to obtain A+B. 

Source 𝑨𝑨𝟏𝟏/𝑨𝑨 𝑨𝑨𝟐𝟐/𝑩𝑩 𝑨𝑨𝟑𝟑/𝒄𝒄 𝑨𝑨 + 𝑩𝑩/ 
𝑨𝑨𝟏𝟏 + 𝑨𝑨𝟐𝟐 Surface Gas 

Kudsen and Weber, 1911  1.103 0.572 1.143 1.675 Glass spheres Air 
Millikan, 1923 1.234 0.414 0.876 1.648 Oil-drop Air 
Mattauch, 1925  1.282 0.445 1.66 1.727 Oil drop N2 
Monch, 1933 1.285    Tobacco Smoke Air 
Davis, 1945  1.257 0.4 1.10 1.657 Derived Air 

Schmitt, 1959  1.45 0.4 0.9 1.85 Silicon droplet N2 
Annis and Malinauskas, 1972 1.558 0.173 0769 1.731 Predicted Air 

Metzig, 1984  1.2 0.432 1.039 1.632 Solid Air 
Allen and Raabe, 1985  1.142 0.558 0.999 1.700 Solid/PSL/PVT Air 

Buckley and Loyalka, 1988 1.099 0.518 0.425 1.617 Fit to low Kn Air 
Rader, 1989    0.78 1.647 Extrapolated Air 
Ishida, 1923  1.207    Oil-drop Air 
Stacy, 1923  0.983    Machined Brass Air 

Van Dyke, 1923  1.114    Cleaned brass Air 
Ishida, 1923 1.277    Oil-drop He 
Rader, 1989    0.92 1.647 Extrapolated He 

Millikan, 1923 1.144    Oil-drop H2 
Ishida, 1923  1.141    Oil-drop H2 
Ishida, 1923  1.208    Oil-drop CO2 
Eglin, 1923 1.150    Oil-drop CO2 

Lasalle, 1921 1.160    Oil-drop CO2 
Van Dyke, 1923  1.142    Shellac Resin CO2 

Rader, 1989   2.0 1.647 Extrapolated CO2 
Rader, 1989  𝐴𝐴1 1.647-𝐴𝐴1 ~0.85 1.647 Extrapolated All gases 

 

When eq. (5 (or equivalently 5’)) is compared to its free molecular counterpart, eq. (4), for 𝐾𝐾𝐾𝐾 ≫ 1, a 
relation between CCS and mobility diameter may be inferred. If one assumes that 𝑚𝑚𝑤𝑤 ≫ 𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔 

(𝑚𝑚𝑓𝑓𝑒𝑒𝑑𝑑~𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔), 𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓~𝑇𝑇, and that the viscosity is given by 𝜋𝜋 = 0.499𝐾𝐾𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝜆𝜆𝑐𝑐̅ = 0.499𝐾𝐾𝜆𝜆�8𝑘𝑘𝑇𝑇𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔

𝜋𝜋
  

(Larriba & Hogan, 2013b), the comparison yields: 

 Ω�1,1�𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓� = 9
4(𝐴𝐴1+𝐴𝐴2)

𝜋𝜋
4
�𝑑𝑑𝑝𝑝 + 𝑑𝑑𝑔𝑔�

2 = 9
4(𝐴𝐴1+𝐴𝐴2)𝑃𝑃𝐴𝐴 = 𝜉𝜉𝑃𝑃𝐴𝐴 , (7) 

where 𝑃𝑃𝐴𝐴 is the equivalent of a Projected Area for a hard sphere of effective diameter 𝑑𝑑𝑝𝑝 + 𝑑𝑑𝑔𝑔 and 𝜉𝜉 is the 
accommodation enhancement factor. As its name suggests, 𝜉𝜉 is a measure of the effective increase of the 
CCS over PA due to momentum accommodation, i.e. how the momentum transfer is adjusted due to gas 
molecule-particle hard sphere interaction upon a collision.  If the results from Davies are applied to eq. (7), 
it yields a value 𝜉𝜉 = 1.3578. As will be later derived, the value of ~1.36 is assumed to be caused by a 
predominantly diffuse reflection of the gas molecules after impingement on the surface (Epstein, 1924).   
The diffuse reflection explanation is extensively used although its elusive theoretical justification is a 
subject of enormous debate, and not without reasons. In principle, the expectation is that molecular 
collisions should eventually become more specular as the size of the charged particle becomes sufficiently 
small (which will also be shown to yield 𝜉𝜉~1) contradicting the asymptotic results to the Stokes-Millikan 
(Z. Li & Wang, 2003a, 2003b; Tammet, 1995). This would suggest that an evolution from specular to 
diffuse must take place within the free molecular regime, something not accounted for in Stokes-Millikan. 
To properly understand the results behind eq. (7), a more rigorous introduction of the theory of electrical 
mobility in the free molecular regime is necessary and provided in section 2.2.  



One must also reflect here on the meaning of the mobility diameter 𝑑𝑑𝑝𝑝. Given that most aerosol particles 
are not perfectly spherical, 𝑑𝑑𝑝𝑝 does not normally describe the physical diameter of the particle but rather a 
measure of the mobility of the particle. It should not be compared to a physical mass diameter unless the 
charged particle is spherical, of a known density, and the effects of interaction potentials are negligible or 
very well quantifiable. The non-spherical effects are addressed in section 3. 

 
Figure 2. Mobility as a function of Knudsen numbers from continuum to free molecular regimes showing Stokes-Millikan, 
Cunningham, and Phillips approximations. On the free molecular portion, approximations for diffuse and specular scattering are 
represented. 

It is perhaps beneficial at this point to highlight the existence of other mobility calculations that encompass 
the free molecular and continuum regimes but do not rely directly on the Stokes-Millikan equation. As an 
example, these include Basset’s solution to the continuum equations with slip boundary conditions (Basset, 
1888) and Goldberg’s as well as Liu and Sugimura’s approximate solution to moments of the Boltzmann 
equation (Goldberg, 1954; C. Liu & Sugimura, 1969; Sugimura, 1968). Perhaps the most used form is that 
of Phillips who solves an approximation to six moments of the Boltzmann equation while matching the 
behavior of both continuum and free molecular regimes (Phillips, 1975): 

 𝑍𝑍𝑝𝑝 = 𝑧𝑧𝑒𝑒
3𝜋𝜋𝜋𝜋𝑑𝑑𝑝𝑝

5+4𝑐𝑐1𝐾𝐾𝑐𝑐+3(𝑐𝑐12+1)𝐾𝐾𝑐𝑐2+6(𝑐𝑐2(𝑐𝑐12+2)𝐾𝐾𝑐𝑐3

5−𝑐𝑐1𝐾𝐾𝑐𝑐+𝑐𝑐2(8+𝜋𝜋)(𝑐𝑐12+2)𝐾𝐾𝑐𝑐2/3
   ; 𝑐𝑐1 = 2−𝛼𝛼

𝛼𝛼
   ; 𝑐𝑐2 = 1

2−𝛼𝛼
 (5’’) 

with 𝛼𝛼 being the percentage of molecules that have been thermally accommodated and which Phillips 
himself set to 0.895 guided by Millikan’s work (Robert Andrews Millikan, 1911; Robert A Millikan, 



1923b). The expression from Phillips reproduces the results from Millikan’s oil drop experiments to within 
2%.  

Figure 2 captures the variation of electrical mobility from continuum to free molecular as a function of the 
Knudsen number for a spherical charged particle. The estimations from Cunningham (eq. 6), Stokes-
Millikan (eq. 5) and Phillips (eq. 5’’) are plotted showing the validity of all the approximations to predict 
the full range of values. The results from eq. (4) are also plotted for the free molecular regime with 𝜉𝜉~1.36 
for diffuse reflection and 𝜉𝜉 = 1 for specular reflection. Note how Cunningham’s eq. (6) is sufficient to 
correctly approximate, at least asymptotically, the free molecular regime for diffuse reflection when 𝐴𝐴 is 
taken to be 1.657. Hence eq. (6) may be used to provide a simple asymptotic equation for the free molecular 
as presented in the figure, with the 𝜁𝜁 variable being a function of the Knudsen number. The blue shaded 
area in Figure 2 shows how an appropriate choice of 𝜁𝜁could potentially yield values anywhere between the 
specular and diffuse reflection scattering asymptotes. The diffuse and specular scattering limits depicted in 
Figure 2 may be considered to be bounds to the calculation at least until the interaction potentials become 
non-negligible (around 2nm for singly charged particles). Potential interactions are difficult to characterize 
due to their dependence on the charge and polarizability of the charge. They can be represented by the 
yellow shaded area Fig 2. 

2.2 Calculations of electrical mobility in the Free Molecular Regime. 
As noted in the previous section, in order to understand how diffuse/specular collisions affect mobility in 
the free molecular regime, one must provide a comprehensive examination of how the drag force may be 
calculated in a deterministic fashion. The study of transport properties in the free molecular regime dates 
back to Chapman and Enskog and their study of diffusion (Chapman & Cowling, 1970), and where the 
analysis of electrical mobility appears from its close connection with diffusion through Einstein’s relation 
(Einstein, 1905; Smoluchowski, 1906). Upon the difficulty that studying the interaction between gas and 
charged particle entails, some general assumptions must be considered prior to providing a suitable 
transport equation for the charged particle. The first, and probably most important, is that the charged 
particle or ion (perhaps a more accurate description within the free molecular regime) does not perturb the 
buffer gas, and thus every interaction of gas molecule with the charged particle is independent of the rest 
(Kihara, 1953). This allows for the gas velocity to assume a three-dimensional Boltzmann distribution: 

 𝑓𝑓(𝑐𝑐𝑖𝑖) = �𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔

2𝜋𝜋𝑘𝑘𝑇𝑇
�
3
2 exp �−  𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐2

2𝑘𝑘𝑇𝑇
�, (8) 

with 𝑐𝑐2 = 𝑐𝑐12 + 𝑐𝑐22 + 𝑐𝑐32 = 𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖 the square of the gas thermal velocity magnitude, and 𝑐𝑐𝑖𝑖 being any ith 
coordinate of such velocity.  

The ion velocity distribution cannot be readily defined unless certain approximations are first established. 
The reason is that the distribution is dependent on the external contribution of the field and hence a 
Boltzmann equation for the distribution must be first constructed. Assuming that the charged particle 
concentration is much smaller than the concentration of gas molecules as well as small enough so that 
charged particles do not interact with each other, a viable collision operator for the Boltzmann equation can 
be inferred. Using this collision operator, a solution of the first few moments of the Boltzmann equation 
can be attempted, including the drift velocity and hence the electrical mobility (Edward A. Mason & 
McDaniel, 1988; Edward A Mason & Schamp Jr, 1958). This procedure is known as the kinetic theory 
approach. However, discussing the moments of the Boltzmann equation is beyond the scope of this review, 
but the solution to approximations of the first few moments have been provided by Kihara, Mason and 
Schamp and Viehland among others (Kihara, 1953; E. Mason & Hahn, 1972; Edward A. Mason & 



McDaniel, 1988; Edward A Mason & Schamp Jr, 1958; Larry A Viehland & Mason, 1975, 1978). For the 
two-temperature theory, the first approximation to drift velocity moment leads to eq. (4) where the first 
collision integral, or CCS, can be written from momentum transfer considerations in the form of a 
quadrature: 

 𝛺𝛺�𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓(1,1) = 1
8𝜋𝜋2 ∫ ∫ 𝑠𝑠𝑖𝑖𝐾𝐾𝑛𝑛𝜋𝜋
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0

2𝜋𝜋
0 𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑 (9) 

where 𝑛𝑛, 𝑑𝑑 and 𝑑𝑑 are the ion orientation angles with respect to the incoming gas molecules, 𝑔𝑔∗ is a 
dimensionless relative velocity between ion and gas molecule, 𝜋𝜋 is the impact parameter, and 𝜒𝜒𝑑𝑑𝑒𝑒𝑓𝑓 is the 
resulting deflection angle of the gas molecule due to the interaction with the particle. The most interesting 
feature in this equation is that the quadrature can be analytically calculated if the deflection angle 𝜒𝜒𝑑𝑑𝑒𝑒𝑓𝑓 is 
known. However, due to the intricate relations that affect the deflection angle, including potential 
interactions, inelastic collisions, and scattering effects, this angle is generally calculated numerically under 
most circumstances. Nonetheless, the deflection angle may be calculated analytically for relatively simple 
and convex geometries, e.g. spherical, as long as the potential interactions are negligible or their 
contribution can be accounted for, e.g. a central force. It should be noted here that when the CCS is averaged 
over all orientations in eq. (9), drift velocity, drag, and electric field have been assumed to be in the same 
direction, a simplification that works well for small ions but does not necessarily have to be true in principle. 
Finally, higher-order approximations to the Mason-Schamp equation do exist, but the error committed for 
using the first approximation is minimal for most if not all aerosol particles and small fields/Mach numbers 
(Larry A Viehland & Mason, 1975, 1978; L. A. Viehland & Mason, 1995).  

Despite the success of the solution to the moments' method (kinetic theory approach), a different approach 
more akin to aerosol science and focusing on direct momentum transfer is provided here (Epstein, 1924). 
The consideration of this slightly different approach is based mainly on two reasons. The first consideration 
comes from the realization that solving eq. (9) when hard sphere interactions are considered, yields 
𝛺𝛺�𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓(1,1) =  𝜋𝜋

4
�𝑑𝑑𝑝𝑝 + 𝑑𝑑𝑔𝑔�

2 = 1 ∗ 𝑃𝑃𝐴𝐴, akin to specular and elastic interactions, which would be 
insufficient to predict the necessary drag to match the experimental results provided by Millikan using oil 
drops, as was established in eq. (7). It appears that a modification of the particle collision model is necessary 
to reproduce the asymptotic behavior of the Stokes-Millikan equation. One simple modification to achieve 
this result considers the possibility that a fraction of all impinging gas molecules is subject to inelastic and 
diffuse collisions. The second consideration is that, given that aerosols are seldom highly charged and have 
masses much larger than gas molecules, the reduced mass and potential interaction effects may be safely 
ignored under most scenarios. This second relaxation, as stated above, allows for analytical calculations to 
be performed when the particle may be considered convex and not excessively complicated (Fernández de 
la Mora, 2002; Garcia‐Ybarra & Rosner, 1989; Ivanov & Yanshin, 1980), so a more suitable expression 
based on the wetted surface area of the ion would be preferred. As a result of these considerations, a 
simplified calculation focusing on convex particles with inelastic collisions was the most logical approach 
to deal with aerosols. For the sake of completeness, it should be noted that inelastic approaches to 
polyatomic systems are indeed possible within the kinetic theory approach as well. The so-called Wang 
Chang-Uhlenbeck-de Boer (WUB) equation is akin to the Boltzmann equation but allows for a semi-
classical approach where internal states of both gas molecules and charged particles may change after a 
collision (Chang, Uhlenbeck, & de Boer, 1964; Monchick, Pereira, & Mason, 1965; Monchick, Yun, & 
Mason, 1963).  

It is customarily acceptable to assume a solution to the Boltzmann equation by providing a guess to the 
charged particle velocity distribution. It can be shown that, for a vanishingly small electric field to 



concentration ratio, 𝐸𝐸/𝐾𝐾~0, and sufficiently massive ions (𝑚𝑚𝑤𝑤 > 4𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔) (Kihara, 1953; Edward A Mason 
& Schamp Jr, 1958), the velocity distribution of a charged particle or ion drifting with velocity 𝑣𝑣𝑑𝑑𝑖𝑖 may be 
given by: 

 𝐹𝐹(𝑧𝑧𝑖𝑖) = � 𝑓𝑓𝑤𝑤
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with 𝑧𝑧𝑖𝑖 the indexed velocity of a charged particle and where �𝑧𝑧𝑖𝑖 − 𝑣𝑣𝑑𝑑𝑖𝑖�
2 is understood as the square of the 

magnitude of the resulting vector difference. By means of eqs. (8) and (10), one can proceed to calculate 
the drag force by calculating the excess momentum transfer of gas molecules colliding with the drifting 
ion. Such calculation was attempted initially by Langevin and Cunningham assuming only specular and 
elastic collisions (Cunningham, 1910; Langevin, 1905), expanded by Lenard and completed by Epstein 
both of whom assumed other cases of reflection (Epstein, 1924; Lenard, Weick, & Mayer, 1920). For the 
sake of generality and agreement with the analytical chemistry field, the calculations carried out here differ 
slightly from those of previous authors. The reason is that in order to consider reduced masses, both the gas 
and ion velocity distributions (eqs. 8 and 10) must be taken into account, as opposed to Epstein’s approach 
who directly assumed that the aerosol mass is much greater than that of the gas molecule, indirectly 
neglecting the reduced mass effects. The end result however qualitatively agrees with that of Epstein and 
other authors such as Waldmann (Waldmann, 1959).   

To calculate the momentum transfer of gas molecules onto the charged particle, it is customary to initially 
calculate the number of gas molecules per unit time colliding onto an infinitesimal surface of the particle 
𝑑𝑑Σ (which maybe expanded to include the diameter of the gas) with normal 𝐾𝐾𝑖𝑖 and integrating over the 
whole surface (dropping the dependencies of the distributions 𝑓𝑓 and 𝐹𝐹): 

 𝑄𝑄 = 𝐾𝐾∮∫ ∫ 𝑓𝑓𝐹𝐹𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖|𝑔𝑔𝑖𝑖∙𝑐𝑐𝑖𝑖<0𝑑𝑑
3𝑐𝑐𝑖𝑖𝑑𝑑3𝑧𝑧𝑖𝑖 𝑑𝑑Σ, 

where 𝑔𝑔𝑖𝑖= 𝑧𝑧𝑖𝑖 − 𝑐𝑐𝑖𝑖 is the relative velocity of the gas molecules impinging on the ion’s surface and the 
condition 𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖 < 0 represents that only gas molecules incoming from the outside of the particle are 
counted. 𝑑𝑑3𝑐𝑐𝑖𝑖 and 𝑑𝑑3𝑧𝑧𝑖𝑖 represent the integration over all three components, e.g. 𝑑𝑑𝑐𝑐1𝑑𝑑𝑐𝑐2𝑑𝑑𝑐𝑐3. 

To account for inelastic collisions, the momentum transfer is separated between impinging and reflected 
molecules. The momentum transfer per unit time of the impinging gas molecules, �̇�𝑒𝑗𝑗− can be obtained 
straightforwardly by multiplying the flux of impinging molecules by their momentum 𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐𝑗𝑗: 

 �̇�𝑒𝑗𝑗− = 𝐾𝐾∮∫ ∫ 𝑓𝑓𝐹𝐹𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐𝑗𝑗𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖|𝑔𝑔𝑖𝑖∙𝑐𝑐𝑖𝑖<0𝑑𝑑
3𝑐𝑐𝑖𝑖𝑑𝑑3𝑧𝑧𝑖𝑖 𝑑𝑑Σ  (11) 

To make the calculation a little more tractable, a change of variables is performed from world variables 𝑐𝑐𝑖𝑖 
and 𝑧𝑧𝑖𝑖 to relative velocity and the center of mass velocity (Kruger & Vincenti, 1965): 

 𝑊𝑊𝑖𝑖 = 𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐𝑖𝑖+𝑓𝑓𝑤𝑤𝑧𝑧𝑖𝑖
𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔+𝑓𝑓𝑤𝑤

 

Given that 𝑑𝑑3𝑐𝑐𝑖𝑖𝑑𝑑3𝑧𝑧𝑖𝑖 = 𝑑𝑑3𝑊𝑊𝑖𝑖𝑑𝑑3𝑔𝑔𝑖𝑖, one can then integrate the equations over the center of mass velocity 
yielding: 

 �̇�𝑒𝑗𝑗− = 𝐾𝐾 �𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
2𝜋𝜋𝑘𝑘𝑇𝑇

�
3/2

∮∫ 𝑧𝑧−
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟(𝑔𝑔𝑖𝑖−𝑣𝑣𝑟𝑟𝑖𝑖)

2

2𝑘𝑘𝑘𝑘 𝑚𝑚𝑓𝑓𝑒𝑒𝑑𝑑𝑔𝑔𝑗𝑗𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖|𝑔𝑔𝑖𝑖∙𝑐𝑐𝑖𝑖<0𝑑𝑑
3𝑔𝑔𝑖𝑖 𝑑𝑑Σ (12) 



Under the assumptions of low electric field and large masses, 𝑣𝑣𝑑𝑑𝑖𝑖 ≪ 𝑔𝑔𝑖𝑖, the exponential may be linearized 
taking only the first two terms of the expansion to yield some useful analytical relationships: 

 �̇�𝑒𝑗𝑗− = 𝐾𝐾 �𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
2𝜋𝜋𝑘𝑘𝑇𝑇

�
3/2

∮∫ 𝑧𝑧−
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔

2

2𝑘𝑘𝑘𝑘 �1 − 2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
2𝑘𝑘𝑇𝑇

𝑔𝑔𝑖𝑖 ∙ 𝑣𝑣𝑑𝑑𝑖𝑖 + ⋯�𝑚𝑚𝑓𝑓𝑒𝑒𝑑𝑑𝑔𝑔𝑗𝑗𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖|𝑔𝑔𝑖𝑖∙𝑐𝑐𝑖𝑖<0𝑑𝑑
3𝑔𝑔𝑖𝑖 𝑑𝑑Σ (13) 

Although it may seem at first that the linearization is unnecessary, it allows for an analytical separation 
between the unperturbed (the unit term) flow and its perturbation (2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟

2𝑘𝑘𝑇𝑇
𝑔𝑔𝑖𝑖 ∙ 𝑣𝑣𝑑𝑑𝑖𝑖). This becomes quite 

important for convergence, as the total momentum transfer of the unperturbed flow is 0 and can be removed 
from the analysis. It can also be used to show that the drag force and electric field are not assumed to be in 
the same direction as the drift velocity.  

One can now integrate eq. (13) over all relative velocities. It is customary to separate the result into surface 
normal and surface tangential projections and, assuming without loss of generality that 𝑔𝑔1 = 𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖, 𝑔𝑔2 =
𝑔𝑔𝑖𝑖 ∙ 𝑡𝑡1𝑖𝑖 and 𝑔𝑔3 = 𝑔𝑔𝑖𝑖 ∙ 𝑡𝑡2𝑖𝑖, the result for impinging momentum transfer yields: 

 �̇�𝑒𝑗𝑗− = −𝐾𝐾𝑚𝑚𝑓𝑓𝑒𝑒𝑑𝑑�
𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
2𝜋𝜋𝑘𝑘𝑇𝑇 ∮ ∫ �1

4�
𝜋𝜋𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
2𝑘𝑘𝑇𝑇

+ 𝑣𝑣𝑑𝑑𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖� 𝐾𝐾𝑗𝑗 + 1
2
�𝑣𝑣𝑑𝑑𝑖𝑖 ∙ 𝑡𝑡1𝑖𝑖�𝑡𝑡1𝑗𝑗 + 1

2
�𝑣𝑣𝑑𝑑𝑖𝑖 ∙ 𝑡𝑡2𝑖𝑖�𝑡𝑡2𝑗𝑗𝑑𝑑Σ (14) 

For the reflected gas molecules, one has to choose whether they are reemitted specularly or diffusely and 
whether elastically or inelastically. Let us assume for now that a mixture of the two cases exists. For those 
molecules reflected diffusely, let us also assume that the gas molecules become thermally “accommodated” 
to the particle temperature before leaving the surface in a random direction. If the accommodation 
coefficient 𝛼𝛼 represents the fraction of reflected gas molecules that leave the surface at the surface 
temperature, the momentum transfer of that fraction �̇�𝑒𝑑𝑑𝑖𝑖𝑓𝑓+  is given by: 

 �̇�𝑒𝑑𝑑𝑖𝑖𝑓𝑓+ 𝑗𝑗
= 𝐾𝐾𝛼𝛼 �

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
2𝜋𝜋𝑘𝑘𝑇𝑇

�
3/2

∮ ∫ 𝑧𝑧−
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔

2

2𝑘𝑘𝑘𝑘 𝑚𝑚𝑓𝑓𝑒𝑒𝑑𝑑𝑔𝑔𝑗𝑗𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖|𝑔𝑔𝑖𝑖∙𝑐𝑐𝑖𝑖>0𝑑𝑑𝑔𝑔𝑖𝑖 𝑑𝑑Σ, (15) 

where 𝐾𝐾𝛼𝛼 is the number concentration of gas molecules reemitted diffusively and the condition 𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖 > 0 
now refers to the gas molecules leaving the surface. The 𝐾𝐾𝛼𝛼 fraction is given by equating the fraction of the 
impinging flux that will become accommodated to the equivalent reflected flux. Calculating the fraction of 
the flux of particles that collide with a surface differential per unit time yields: 

 𝑄𝑄𝛼𝛼− = 𝛼𝛼𝐾𝐾 ∮∫ 𝑧𝑧−
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔

2

2𝑘𝑘𝑘𝑘 �1 − 2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
2𝑘𝑘𝑇𝑇

𝑔𝑔𝑖𝑖 ∙ 𝑣𝑣𝑑𝑑𝑖𝑖� 𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖|𝑔𝑔𝑖𝑖∙𝑐𝑐𝑖𝑖<0𝑑𝑑𝑔𝑔𝑖𝑖𝑑𝑑Σ = ∮ 𝛼𝛼𝑐𝑐
2
�� 2𝑘𝑘𝑇𝑇

𝜋𝜋𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
+ 𝑣𝑣𝑑𝑑𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖� 𝑑𝑑Σ (16) 

This result must be equal to the number of particles that leave the surface diffusely per unite time (with 
𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖 = 𝑔𝑔1):  

 𝑄𝑄𝛼𝛼+ = 𝐾𝐾𝛼𝛼 ∮∫ 𝑧𝑧−
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔

2

2𝑘𝑘𝑘𝑘 𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖|𝑔𝑔𝑖𝑖∙𝑐𝑐𝑖𝑖>0𝑑𝑑𝑔𝑔𝑖𝑖𝑑𝑑Σ = ∮𝑐𝑐𝛼𝛼
2 �

2𝑘𝑘𝑇𝑇
𝜋𝜋𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑Σ. (17) 

Comparing integrands yields between eqs. (16) and (17): 

 𝐾𝐾𝛼𝛼 = 𝛼𝛼𝐾𝐾 �1 + �𝜋𝜋𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
2𝑘𝑘𝑇𝑇

𝑣𝑣𝑑𝑑𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖� (18) 

Now, one is in a position to calculate the momentum transfer of the molecules that undergo diffuse 
reflections. Using eqs. (15) and (18): 



�̇�𝑒𝑑𝑑𝑖𝑖𝑓𝑓𝑗𝑗
+ = 𝛼𝛼𝑐𝑐𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟

4 �2𝜋𝜋𝑘𝑘𝑇𝑇
𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟

∮ �� 2𝑘𝑘𝑇𝑇
𝜋𝜋𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟

+ 𝑣𝑣𝑑𝑑𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖� 𝐾𝐾𝑗𝑗𝑑𝑑Σ (19) 

The rest of the reflected gas molecules, 1 − 𝛼𝛼, are assumed to be emitted specularly. After the reflection, 
the relative velocity will be given by 𝑔𝑔𝑗𝑗 − 2(𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖)𝐾𝐾𝑗𝑗 so that the momentum transfer is given by: 

�̇�𝑒𝑔𝑔𝑝𝑝𝑐𝑐𝑗𝑗
+ = (1 − 𝛼𝛼)𝐾𝐾 �𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟

2𝜋𝜋𝑘𝑘𝑇𝑇
�
3/2

∮ ∫ 𝑧𝑧−
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔

2

2𝑘𝑘𝑘𝑘 �1 − 2𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
2𝑘𝑘𝑇𝑇

𝑔𝑔𝑖𝑖 ∙ 𝑣𝑣𝑑𝑑𝑖𝑖�𝑚𝑚𝑓𝑓𝑒𝑒𝑑𝑑𝑔𝑔𝑗𝑗 − 2(𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖)𝐾𝐾𝑗𝑗𝑔𝑔𝑖𝑖 ∙ 𝐾𝐾𝑖𝑖|𝑔𝑔𝑖𝑖∙𝑐𝑐𝑖𝑖<0𝑑𝑑𝑔𝑔𝑖𝑖 𝑑𝑑Σ, (20) 

which if integrated yields: 

�̇�𝑒𝑔𝑔𝑝𝑝𝑐𝑐𝑗𝑗
+ = (1 − 𝛼𝛼)�−�̇�𝑒𝑖𝑖− ∙ 𝐾𝐾𝑖𝑖𝐾𝐾𝑗𝑗 + �̇�𝑒𝑖𝑖− ∙ 𝑡𝑡1𝑖𝑖𝑡𝑡1𝑗𝑗 + �̇�𝑒𝑖𝑖− ∙ 𝑡𝑡2𝑖𝑖𝑡𝑡2𝑗𝑗� (21) 

The difference between the momentum transfer of the reflected and impinging gas molecules yields the 
total drag: 

𝐹𝐹𝐷𝐷𝑗𝑗 = �̇�𝑒𝑑𝑑𝑖𝑖𝑓𝑓𝑗𝑗
+ + �̇�𝑒𝑔𝑔𝑝𝑝𝑐𝑐𝑗𝑗

+ − �̇�𝑒𝑗𝑗− = 2𝐾𝐾𝑚𝑚𝑓𝑓𝑒𝑒𝑑𝑑�
2𝑘𝑘𝑇𝑇

𝜋𝜋𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
∮ ��1 − 𝛼𝛼

2
+ 𝛼𝛼𝜋𝜋

8
� 𝐾𝐾𝑖𝑖𝐾𝐾𝑗𝑗 + 𝛼𝛼

4
�𝑡𝑡1𝑖𝑖𝑡𝑡1𝑗𝑗 + 𝑡𝑡2𝑖𝑖𝑡𝑡2𝑗𝑗�� ∙ 𝑣𝑣𝑑𝑑𝑖𝑖 𝑑𝑑Σ (22) 

Adding and subtracting 𝛼𝛼
4
𝐾𝐾𝑖𝑖𝐾𝐾𝑗𝑗 and realizing that 𝐾𝐾𝑖𝑖𝐾𝐾𝑗𝑗 + 𝑡𝑡1𝑖𝑖𝑡𝑡1𝑗𝑗 + 𝑡𝑡2𝑖𝑖𝑡𝑡2𝑗𝑗 = 𝐼𝐼 ̅ ̅leads to (Fernández de la Mora,

2002): 

𝐹𝐹𝐷𝐷𝑗𝑗 = �2𝐾𝐾𝑚𝑚𝑓𝑓𝑒𝑒𝑑𝑑�
2𝑘𝑘𝑇𝑇

𝜋𝜋𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟
∮ ��1− 3𝛼𝛼

4
+ 𝛼𝛼𝜋𝜋

8
� 𝐾𝐾𝐾𝐾�������� + 𝛼𝛼

4
𝐼𝐼 ̅�̅ 𝑑𝑑Σ� ∙ 𝑣𝑣𝑑𝑑𝑖𝑖 (23) 

Eq. (23) is the standard drag force expression for charged particles. After integration over the wettable 
surface area of the particle (Σ), a drag tensor 𝐵𝐵𝑖𝑖𝑗𝑗 may be obtained (bracketed in eq. 23), which, when 
multiplied by the drift velocity, will yield the drag force for a particular orientation of the charged particle: 

𝐹𝐹𝐷𝐷𝑗𝑗 = 𝐵𝐵𝑖𝑖𝑗𝑗𝑣𝑣𝑑𝑑𝑖𝑖;     𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝐹𝐹𝐷𝐷𝑗𝑗 = 𝑧𝑧𝑧𝑧𝐸𝐸𝑗𝑗 (24) 

As expected, eq. (24) allows for the drag force and the drift velocity to be in different directions. To be able 
to obtain a single value for mobility from eq. (24) instead of a tensorial expression, one has to make an 
assumption about the orientation of the particle subject to the electric field. If all orientations are assumed 
to be equally probable, an average value may be obtained. A difficulty that arises is whether the drag tensor 
or its inverse should be calculated to obtain a metric of the mobility that may be compared to experiments. 
There has been much controversy surrounding the correct averaging. Based on results from Landau and 
Lifshitz and (Landau & Lifshitz, 1975), later on, Happel and Brenner (Happel & Brenner, 2012), the 
mobility was primarily averaged using the inverse of the tensor so that, once the tensor was diagonalized 
using the principal directions, the mobility would be given by: 

𝑍𝑍𝑝𝑝𝑝𝑝&𝐵𝐵 = 𝑧𝑧𝑒𝑒
3
� 1
𝐵𝐵11

+ 1
𝐵𝐵22

+ 1
𝐵𝐵33
� (25) 

However, the result of the mobility using eq. (25) does not agree with the results from Mason & Schamp 
in eq. (4) even for specular collisions unless the charged particle meets certain criteria, e.g. being spherical. 
Upon revision of the results from Happel and Brenner, however, it is clear that the displacement per unit 
time they calculated was in the direction of the “settling velocity” (here called drift velocity) and not its 
component in the direction of the drag or electric field, being the latter projection the only magnitude that 
can be measured by an instrument. Hence the result from eq. 25 should not be compared to experimental 
results (Carlos Larriba-Andaluz, Nahin, & Shrivastav, 2017). Conversely, performing the average of the 
drag tensor rather than its inverse gives the average displacement in the direction of field and has been 



shown to agree exactly with the results from Mason and McDaniel (Carlos Larriba-Andaluz et al., 2017), 
so that: 

 𝑍𝑍𝑝𝑝 = 3𝑧𝑧𝑒𝑒
(𝐵𝐵11+𝐵𝐵22+𝐵𝐵33) (26) 

should be used when the electrical mobility is calculated in the free molecular regime under the assumption 
of all orientations being equally probable. Some authors have estipulated that the applicability eq. (26) (or 
seemingly eq. 4) relies on the assumption that it is only valid in the fast rotation limit of a small ion(M. Li, 
Mulholland, & Zachariah, 2014). However, given that no assumption regarding the speed of rotation of the 
charged particle was ever provided in the analysis of Mason & Schamp (Edward A Mason & Schamp Jr, 
1958), nor is it required to arrive at the results of eq. (4), this explanation cannot convey a rigorous physical 
portrayal of the phenomenon and should be re-examined. In all, Eq. (25) is not incorrect, and, in fact, its 
results provide what may be regarded as the “true mobility” of the particle (Carlos Larriba-Andaluz et al., 
2017),  to differentiate it from the “projected mobility” in the direction of the field. For example, two 
particles with drastically different “true mobility” may be indistinguishable from each other in an 
instrument because their projected displacement per unti time in the direction of the field is the same(Carlos 
Larriba-Andaluz et al., 2017). A final note is that eq. (25) may still be used benefitting from the fact that 
for most globular ions, the difference between eq. (25) and (26) is only a few percent. However, this 
difference becomes substantially larger for particles of high aspect ratios.   

Eqs (26) and (4) will yield identical results as long as the CCS is calculated in an analogous form to how 
momentum transfer is considered for eq. (26), i.e. hard sphere interactions only. To understand the effects 
of inelastic vs. elastic or diffuse vs. specular collisions, it is customary to use a sphere as the charged 
particle. However, the use of a sphere neglects secondary scattering effects of gas molecules colliding more 
than once with the charged particle, which may increase the overall drag force. Equation (23) for a sphere 
may be reduced, after integrating, to: 

 𝐹𝐹𝐷𝐷𝑗𝑗 = 16
3
𝐾𝐾�𝑘𝑘𝑇𝑇𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟

2𝜋𝜋
�1 + 𝛼𝛼𝜋𝜋

8
�𝑃𝑃𝐴𝐴 ∙ 𝑣𝑣𝑑𝑑𝑖𝑖=

16
3
𝐾𝐾�𝑘𝑘𝑇𝑇𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟

2𝜋𝜋
𝛺𝛺�1,1 ∙ 𝑣𝑣𝑑𝑑𝑖𝑖, (23’) 

where 𝛺𝛺�1,1 = �1 + 𝛼𝛼𝜋𝜋
8
�𝑃𝑃𝐴𝐴 = 𝜉𝜉𝑃𝑃𝐴𝐴 by means of comparing eqs. (23’), (26) and (4). One can now attempt 

to understand the result conveyed by eq. (7), i.e. 𝛺𝛺 = 𝜉𝜉𝑃𝑃𝐴𝐴~1.36𝑃𝑃𝐴𝐴 for a hard-spherical entity with no 
potential interactions. Different choices of 𝛼𝛼 or different reemission laws would provide different values of 
𝜉𝜉. The issue at hand is that the exact reflection law is unknown so an informed guess of how the reemission 
occurs must be suggested to match the empirical evidence. Three different scenarios will be assumed for 
the reflecting molecules; elastic/specular, elastic/diffuse, and inelastic/diffuse with full accommodation at 
the surface temperature. Many other reflection cases have been studied, however, as shown by Epstein, 
many of them violate thermodynamic principles and are only shown for historical reasons (Epstein, 1924). 
A representation of the most significant gas-particle interactions used in literature are given in Figure 3. If 
all collisions are assumed to be specular and elastic, as depicted in Figure 3A, the value of the 
accommodation coefficient 𝛼𝛼 must be set to 0. This yields a value of 𝜉𝜉 = 1, which is about 36% off the 
expected Stokes-Millikan value. On the other hand, if one considers only inelastic diffuse with full 
accommodation, as shown in Figure 3B, 𝛼𝛼 = 1 and the value of 𝜉𝜉 increases to 𝜉𝜉 = 1 + 𝜋𝜋/8 = 1.3927, a 
value very close to the one using the slip coefficients from Davies. If reflections are assumed to be elastic 
and diffuse, which would require a small modification of the equations presented here, it would yield  𝜉𝜉 =
1.4445. In order to match the value provided by Millikan in eq. (7), Epstein hypothesized that one tenth of 
the molecules should be reflected specularly while the rest would have a diffuse inelastic reflection with 



full accommodation to the surface temperature, yielding the very common value used nowadays of 𝜉𝜉 =
1 + 𝛼𝛼𝜋𝜋/8 = 1.3574 with 𝛼𝛼 = 0.91.  

 

 
Figure 3. Different possible gas-molecule particle interactions, including specular and diffuse as well as potential interactions. A) 
Specular reemission. B) Diffuse Reemission. C) 4 −∞ interaction. D) 4-6-12 interaction with subunits of the particle. 

Based on the results from Epstein and Millikan, Friedlander and Fernandez de la Mora employed similar 
expressions for the scattering based on the accommodation coefficient 𝜉𝜉 = (1 + 𝛼𝛼𝜋𝜋/8)  and they showed 



that under most scenarios 𝛼𝛼 = 0.91 yields a more than reasonable result for most of singly charged particles 
down to ~2nm at least in air (de la Mora, De Juan, Liedtke, & Schmidt-Ott, 2003; Friedlander, 2000). The 
value of 0.91 is however an asymptotical result at best and fails to explain the mostly specular behavior 
observed for very small ions, in particular when they are drifting in light monoatomic gases such as He 
(Gotts, von Helden, & Bowers, 1995; Z. Li & Wang, 2003b; Tammet, 1995). Undoubtedly, the value of 𝛼𝛼 
is a subject of tremendous debate for numerous reasons. The seemingly artificial choice of 91% inelastic 
diffuse and 9% elastic specular is the first of such issues. While it may seem like a reasonable choice for an 
ideal sphere, its applicability may be questioned for entities with resolved atomic structure and non-
spherical particles.  How the transition occurs from diffuse to specular as the Knudsen number is increased 
is also incredibly hard to assess. One of the main reasons is the complexity of the rationale behind the 
diffuse nature of the collisions, a problem accentuated by the fact that the cause seems to differ from one 
substance-gas pair to another (B. E. Dahneke, 1973b; Phillips, 1975), having no universality on how the 
collisions migrate towards becoming more specular. Given the variability of the accommodation coefficient 
𝛼𝛼 and its empirical nature, its use should be steered mostly towards calculations for charged particles 
approaching the transition regime and should not be trusted for very small ions (smaller than ~3nm at 
atmospheric pressure). Perhaps a very good discussion on the nature of specular to diffuse effects is given 
by Li and Wang (Z. Li & Wang, 2003a, 2003b). Given that a more precise calculation, one that includes 
entities with resolved atomic structure and potential interactions, must be provided in order to better 
understand how the specular to diffuse transition occurs, the discussion shall be continued when dealing 
with non-spherical particles below in Section 3. 

A final point that needs to be addressed is the lack of any potential interaction in the treatment of eq. (23).  
The longest potential interaction to consider is that regarding the induced-dipole potential. While this 
potential interaction is negligible for singly charged particles with diameters over 2nm (Larriba et al., 2011), 
it could easily represent increases in the CCS of over 200% for small ions and heavily charged entities 
(Canzani, Laszlo, & Bush, 2018; Fernández-García & de la Mora, 2014; Ku & de la Mora, 2009; Hui 
Ouyang, Larriba-Andaluz, Oberreit, & Hogan Jr, 2013) in air or nitrogen, and has been shown to be critical 
in nucleation and new particle formation (Gamero-Castano & de la Mora, 2002; Iida et al., 2006; Kusaka, 
Wang, & Seinfeld, 1995; Laakso, Mäkelä, Pirjola, & Kulmala, 2002). While potential interactions will be 
addressed more carefully for non-spherical particles, most simple potential interactions can be accounted 
for in the case of spherical charged particles through numerical integration of the deflection angle in eq. 
(9). For example, for any central force with potential interaction 𝛷𝛷(𝑅𝑅), the quadrature to calculate the 
deflection angle is given by (Kruger & Vincenti, 1965): 

 𝜒𝜒𝑑𝑑𝑒𝑒𝑓𝑓  = 𝜋𝜋 − 2∫ 𝑏𝑏𝑑𝑑𝑏𝑏
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where 𝑅𝑅 is the distance between force center and gas molecule and 𝑅𝑅0 is the apsidal distance. Overall, the 
effect of this type of interaction potential can be regarded as an increase in the particle diameter. As such 
the effective diameter may be calculated as: 

  𝑑𝑑𝑝𝑝,𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑑𝑑𝑝𝑝 �1 −
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Eq. (28) suggests for an additional parameter that modifies the CCS value to account for a potential 
interaction so that Ω�1,1�𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓� = ℒ𝜉𝜉𝑃𝑃𝐴𝐴, and where ℒ lumps the effect of the potential interactions which 

could be loosely related to �1 − 2𝛷𝛷�𝑑𝑑𝑝𝑝�
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 but can also be expanded to accommodate non-spherical 



particles with multiple charge locations. Figure 3C shows the typical effect of a central force interaction 
between gas molecule and charge as an ion-induced dipole interaction and a hard sphere, labeled as a 4 −
∞ interaction, and where the outcome, in this case, may be regarded as an increased effective diameter. 
Many other potential interactions may be added. As an example, Figure 3D shows a 4-6-12 soft interaction, 
when dispersive attraction forces are incorporated by the sixth power law exponent, and where repulsion is 
no longer considered to be infinite but is substituted by a repulsive twelfth power law. However, such 
complex interactions are better implemented in entities with resolved atomic structure or coarse-grained 
structures, where the contributions of different elements may lead to an effectively diffuse interaction as 
shown in the following sections. From all these considerations, it is clear that further corrections to the 
Stokes-Millikan equation must be required when approaching the free-molecular regime.  

2.3.  Further corrections to the Stokes-Millikan Equation 
With the knowledge acquired from free molecular regime considerations, one can envision certain 
modifications of the Stokes-Millikan equation to understand the theoretical nature of its empirical 
parameters and to improve its predictive capabilities. Indeed, there are a plethora of different kinetic theory 
approaches, with some of them being inconsistent (N. Fuchs, Stechkina, & Starosselskii, 1962), which can 
give more insight into the electrical mobility problem. The most rigorous treatments involve attempts at 
solving the Boltzmann equation or the Bhatnagar-Gross-Krook simplification of it (BGK)(V. C. Liu, Pang, 
& Jew, 1965; Pao & Willis, 1969). Cercignani et al. developed a calculation based on the BGK model that 
is valid for all Knudsen numbers and axisymmetric bodies (C Cercignani & Pagani, 1968; CDCDP 
Cercignani, Pagani, & Bassanini, 1968). The variational procedure is quite cumbersome, but the results 
closely resemble those of Millikan (eq. (5’)). One interesting result is that of Annis et al. which is based 
loosely on kinetic theory (Annis, 1971; Annis et al., 1972). They assume that the motion of the particle can 
be described as a combination of a viscous and a diffusive component so that: 

 𝑣𝑣𝑑𝑑 = 𝑣𝑣𝑑𝑑𝑣𝑣𝑖𝑖𝑔𝑔𝑐𝑐𝑣𝑣𝑣𝑣𝑔𝑔 + 𝑣𝑣𝑑𝑑𝑟𝑟𝑖𝑖𝑒𝑒𝑒𝑒𝑣𝑣𝑔𝑔𝑟𝑟 = 𝑧𝑧𝑒𝑒𝑧𝑧
3𝜋𝜋𝜋𝜋𝑑𝑑𝑝𝑝

+ 𝑧𝑧𝑒𝑒𝑧𝑧(𝑐𝑐+𝑁𝑁)𝐷𝐷
𝑝𝑝

, (29) 

where 𝑁𝑁 is the number concentration of charged particles, 𝑒𝑒 = 𝐾𝐾𝑘𝑘𝑇𝑇 is the gas pressure, and 𝐷𝐷 is the 
diffusion coefficient. From the drift velocity, the electrical mobility may then be expressed as: 

 𝑍𝑍𝑝𝑝 = 𝑧𝑧𝑧𝑧
𝑘𝑘𝑇𝑇+(𝐾𝐾+𝑁𝑁)

𝐾𝐾 3𝜋𝜋𝜋𝜋𝑑𝑑𝑝𝑝𝐷𝐷

3𝜋𝜋𝜋𝜋𝑑𝑑𝑝𝑝𝑘𝑘𝑇𝑇
, (30) 

which resembles Cunningham’s approach in eq. (6). The kinetic theory portion comes from the 
determination of the diffusion coefficient using Chapman-Enskog’s approximation. Rather than just the 
free molecular approximation to diffusion, there must be an additional effect due to the extra pressure that 
appears when leaving the free molecular regime. As such: 

  𝐷𝐷 = [𝐷𝐷]1
1−Δ

 (31) 

where [𝐷𝐷]1 is the first approximation to the diffusion coefficient in the free molecular regime and Δ includes 
the correction from the change in pressure (Hirschfelder, Curtiss, Bird, & Mayer, 1964). The first 
approximation [𝐷𝐷]1 at zero field for particles much larger and heavier than the gas molecules is directly 
related to electrical mobility through the Einstein’s relation (𝑧𝑧𝑧𝑧𝐷𝐷 = 𝑍𝑍𝑝𝑝𝑘𝑘𝑇𝑇) which then reveals from eq. (4): 

 [𝐷𝐷]1 = 3
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where in general (𝐾𝐾 ≫ 𝑁𝑁). The correction term Δ is composed of a series of complicated approximations. 
The first approximation may be given by Δ~𝜁𝜁 � 𝑁𝑁

𝑐𝑐+𝑁𝑁
�𝛼𝛼𝑇𝑇/5 and where 𝜁𝜁 is a dimensionless constant 

dependent on the nature of the gas molecule’s scattering and 𝛼𝛼𝑇𝑇 is the thermal diffusion factor, a parameter 
that relates the diffusion coefficient to the thermal diffusion coefficient (Annis, Malinauskas, & Yun, 1970; 
E. Mason, Malinauskas, & Evans Iii, 1967; Monchick et al., 1963). With all accounted for, an expression 
for the mobility can be written as: 

 𝑍𝑍𝑝𝑝 =
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And where the 𝜁𝜁𝑖𝑖 variables are given by: 

 𝜁𝜁1 = 9𝑃𝑃𝐴𝐴
4Ω�1,1

    ; 𝜁𝜁2 = �𝑁𝑁𝛼𝛼𝑄𝑄𝑑𝑑𝑝𝑝𝑚𝑚𝑐𝑐̅�(𝜇𝜇𝛼𝛼𝐿𝐿)   ; 𝜁𝜁3 = �1 − 1
5
𝜁𝜁𝛼𝛼𝐿𝐿� 𝜁𝜁2 (34a-c) 

Here 𝑐𝑐̅ = (8𝑘𝑘𝑇𝑇/𝜋𝜋𝑚𝑚 )1/2     is the average gas thermal velocity and 𝛼𝛼𝑄𝑄 and 𝛼𝛼𝐿𝐿 are the Lorentzian and quasi-
Lorentzian values of the thermal diffusion factor related to the thermal diffusion factor by: (𝑁𝑁 + 𝐾𝐾)/𝛼𝛼𝑇𝑇 =
𝑁𝑁/𝛼𝛼𝐿𝐿 + 𝐾𝐾/𝛼𝛼𝑄𝑄(E. Mason et al., 1967). These values are also dependent on the nature of the scattering and 
therefore their value is difficult to assess except for particular cases, e.g. specular collisions. In all, the 𝜁𝜁𝑖𝑖 
parameters should be treated like adjustable constants. When compared to the 𝐴𝐴𝑖𝑖 parameters from Stokes-
Millikan, a correlation can be made: 

𝜁𝜁1 = 𝐴𝐴1  ;   𝜁𝜁2 =
𝐴𝐴1 + 𝐴𝐴2
𝐴𝐴1𝐴𝐴3

     ;    𝜁𝜁3 = 1/𝐴𝐴3 

While Annis’s result does not seem to improve upon the result of Millikan, it presents an additional 
description of the parameters that did not previously exist and gives further validity to the model.  

Within the free molecular regime, further improvements may be implemented to increase the accuracy of 
the Stokes-Millikan equation. To account for potential interactions, Mason and Chapman initially proposed 
an enhancement factor 𝛺𝛺�1,1 = 𝜉𝜉𝑃𝑃𝐴𝐴(1 + 𝑆𝑆/𝑇𝑇) where 𝑆𝑆 is the Sutherland constant (Edward A Mason & 
Chapman, 1962).  This concern was later picked up by Tammet (Tammet, 1995), who, taking into account 
the results from Epstein and Millikan, offered a correction for the collision cross section similar to eq. (7), 
but with an enhancement factor. Given that the longest range interaction is that of the ion-induced dipole 
potential, with 𝑈𝑈𝑝𝑝𝑐𝑐𝑝𝑝 = −2𝛼𝛼𝑝𝑝(𝑧𝑧𝑧𝑧)2/𝜋𝜋𝜖𝜖0�𝑑𝑑𝑝𝑝 + 𝑑𝑑𝑔𝑔�

4 with 𝛼𝛼𝑝𝑝 being the polarizability of the gas, Tammet 
proposes a ∞− 4 potential correction for eq. (7) as: 

 Ω�1,1(𝑇𝑇) = (𝜉𝜉 + Ω�∗∞−4 − 1)𝑃𝑃𝐴𝐴 (35) 

Here 𝑃𝑃𝐴𝐴 is now assumed to contain the non-negligible addition of the gas diameter 𝑑𝑑𝑔𝑔 for small particles, 
and where Ω�∗∞−4 is as a function of the dimensionless potential 𝜑𝜑𝑒𝑒 =  𝑈𝑈

𝑘𝑘𝑇𝑇
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with 
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To get eq. (36), Tammet used the tables provided by McDaniel and Mason(McDaniel & Mason, 1973). 
Considering the reduced mass, Tammet proposed a modified Stokes-Tammet-Millikan equation: 

 𝑍𝑍𝑝𝑝 = 𝑓𝑓1𝑓𝑓2
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Here 𝑓𝑓1 = �1 + 𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔
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  and the second factor relates to the effects of scattering and potential interactions: 

 𝑓𝑓2 = 9/4
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 (38) 

Tammet used empirical data from Kilpatrick to get an expression for 𝜉𝜉 proving the validity of eq. (37) for 
a range of masses from 35.5-2122 Da(Kilpatrick, 1971). Tammet also assumed a correction from mass 
diameter to mobility diameter through an additional increment he labeled “extra distance”. 

Larriba-Andaluz and Hogan proposed a similar correction to that of Tammet regarding the interaction 
potential(Larriba & Hogan, 2013b). They did so through their own numerical calculations, focusing only 
on the free molecular regime. They suggested a potential correction ℒ that takes into account the ion-
induced ion potential providing the approximation: 

  Ω�1,1(𝑇𝑇) = ℒ𝜉𝜉𝑃𝑃𝐴𝐴 (39)  

Where ℒ is given by: 
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When compared to eq. (28), ℒ  also includes the coupling of scattering effects and potential interactions as 
well as the effect of grazing gas molecules, i.e., gas molecules that do not directly impinge on the charged 
particle but are still deflected and cause a momentum transfer. The results of eq. (39) have been shown to 
be in agreement with experiments for a series of tetralkylammonium salts and other non-spherical ions. 

3. Electrical Mobility of particles with arbitrary shape: Analytical 
and Computational approaches. 

3.1. Calculations of non-spherical entities in the Transition regime. 
Prior to treating the electrical mobility of an arbitrary particle within the transition regime, it is perhaps 
beneficial to briefly describe the process in the continuum regime. In principle, the mobility of a particle of 
arbitrary shape can be calculated in the continuum regime by solving the Stokes (i.e., creeping flow) 
equations for the flow field around the particle and use the solution to integrate the calculated viscous and 
pressure forces over the wetted surface to obtain the value of the drag force (Filippov, 2000; Landau & 
Lifshitz, 1975). The latter naturally leads to the definition, via the Stokes Law in Eq. (1), of a hydrodynamic 
diameter (𝑑𝑑𝑝𝑝) which is the diameter of a perfect sphere that would experience the same hydrodynamic drag 
force of the particle under investigation. In theory and with sufficient computational resources to solve the 
Stokes equation, the approach could be extended to the near-continuum portion of the transition regime, if 



one can pre-determine appropriate slip boundary condition at the particle wetted surface. In reality, the 
applicability of the Stokes continuum approach is limited not only by the complexity of determining the 
(spatial distribution of the) slip boundary conditions but also to the existence of multiple length scales when 
dealing with particles of arbitrary geometry (e.g., fractals). Indeed the Stokes equation of motion of a 
continuum fluid may not be an acceptable model in some bay zones of the particle whose size is comparable 
to the mean free path of the gas, even when the overall size of the particle is much larger and well within 
the continuum regime.  

Progressing into arbitrary particles well within the transition regime, one can no longer fully rely directly 
on the Stokes-Millikan equation, despite its extensive success, as its validity is, at least in principle, limited 
to spherical particles. However, it is quite possible that, with proper corrections, one could arrive at 
variations of the equation that may yield acceptable results. To understand the corrections involved, it is 
necessary to first define at least one characteristic size for the arbitrary charged particle (DeCarlo, Slowik, 
Worsnop, Davidovits, & Jimenez, 2004). While many different definitions exist of such parameters, we 
shall limit ourselves here to four different definitions, the physical diameter (𝑑𝑑𝑐𝑐), the volume equivalent 
diameter (𝑑𝑑𝑣𝑣𝑒𝑒), the mobility diameter (𝑑𝑑𝑝𝑝) and the hydrodynamic diameter (𝑑𝑑𝑝𝑝). The physical diameter, 
𝑑𝑑𝑐𝑐 , is the simplest characterization of a geometric parameter. Unless the particle is spherical, 𝑑𝑑𝑐𝑐 does not 
have a precise definition. It may be defined as the diameter of a sphere that would yield the same size 
measurement as the particle under consideration. This physical diameter will therefore depend on the type 
of measurement. The volume-equivalent diameter, 𝑑𝑑𝑣𝑣𝑒𝑒, is the diameter of a sphere that has the same volume 
as the particle in consideration. This volume is quite useful in the sense that the resulting volume of the 
sphere relates mass and density through the well-known relation 𝜌𝜌 = 𝑚𝑚𝑤𝑤/𝑉𝑉𝑝𝑝. The mobility diameter, 𝑑𝑑𝑝𝑝, 
is defined as the diameter of a sphere with the same drift velocity as the charged particle migrating through 
a buffer gas by means of an electric field. If employed in the continuum, e.g. eq. (3), 𝑑𝑑𝑝𝑝 agrees with the 
hydrodynamic diameter 𝑑𝑑𝑝𝑝, which establishes a physical descriptor of the object independent of the fluid 
properties (Chen, Weakliem, & Meakin, 1988; Hubbard & Douglas, 1993). However, if 𝑑𝑑𝑝𝑝 is employed in 
the free molecular regime, it is better associated to the closest physical descriptor of the CCS, which would 
be the orientationally averaged Projected Area (PA).  

While the definition of 𝑑𝑑𝑝𝑝 may seem precise, this is far from being the case. The reason is that the value of 
𝑑𝑑𝑝𝑝 depends on the type of Stokes-Millikan approximation used to obtain it, and the set of conditions 
considered e.g., pressure, temperature, electric fields, regime, etc... When dealing with non-spherical 
particles, instead of using 𝑑𝑑𝑝𝑝 to loosely describe a particle with a particular electrical mobility, it is 
reasonable that both 𝑑𝑑𝑣𝑣𝑒𝑒 and 𝑑𝑑𝑝𝑝 could be used as a physical descriptor parameter within the Stokes-Millikan 
equation. With the inclusion of these physical descriptors, an additional correction is necessarily required, 
something that Tammet referred to as the “extra distance”. To do so, a correction labeled the dynamic shape 
factor 𝜒𝜒𝑓𝑓 initially discussed by Fuchs was introduced into the Stokes-Millikan equation, (N. A. Fuchs et 
al., 1965). The approach was subsequently explored by Dahneke through what he termed adjusted sphere 
approximations (B. E. Dahneke, 1973a, 1973b, 1973c). The dynamic factor may be defined as the ratio of 
the drag force of the non-spherical particle to the drag on the volume-equivalent sphere (Hinds, 1999): 

 𝜒𝜒𝑓𝑓(𝐾𝐾𝐾𝐾) = 𝐹𝐹𝐷𝐷
𝐹𝐹𝐷𝐷𝑣𝑣𝑟𝑟

 (40) 

The Stokes-Fuchs-Dahneke-Millikan equation thus becomes: 

 𝑍𝑍𝑝𝑝 = 𝑧𝑧𝑒𝑒
3𝜋𝜋𝜋𝜋(𝑑𝑑𝑣𝑣𝑟𝑟)𝜒𝜒𝑚𝑚(𝐾𝐾𝑐𝑐)

�1 + 2𝜆𝜆
𝑑𝑑𝑣𝑣𝑟𝑟

�𝐴𝐴1 + 𝐴𝐴2 𝑧𝑧𝑒𝑒𝑒𝑒 �−
𝐴𝐴3𝑑𝑑𝑣𝑣𝑟𝑟
𝜆𝜆
��� (41) 



There are some interesting repercussions to this equation. If the dynamic shape factor 𝜒𝜒𝑓𝑓 and electrical 
mobility are known, the resulting diameter calculated from eq. (41) could be directly related to its mass and 
density. The difficulty in eq. (41) comes from identifying adequate relations for 𝜒𝜒𝑓𝑓, as the dynamic factor 
changes not only with particle shape and flow regime (CHENG, 1991), but also with orientation (B. E. 
Dahneke, 1973a; Hinds, 1999). The orientation phenomenon itself is something very difficult to 
characterize as it is generally accepted that streamlined nonsymmetrical shapes or charged particles with 
strong dipole moments may orient themselves in the flow. Nonetheless, even in these simplest cases, the 
particle orientation would fluctuate around the preferred spontaneous direction because of its unavoidable 
Brownian/thermal rotational diffusion. 

A few numerical approaches have been proposed for modeling the mobility of non-spherical aggregates 
across the entire Knudsen range. Given that two limiting physical descriptors in the continuum and free 
molecular regimes are the hydrodynamic diameter and the PA of the particle, respectively, one can try to 
provide a universal law for all aggregates by making use of a modified Knudsen number in the Stokes-
Millikan equation (Zhang, Thajudeen, Larriba, Schwartzentruber, & Hogan Jr, 2012): 

 𝑍𝑍𝑝𝑝 = 𝑧𝑧𝑧𝑧
1+𝐾𝐾𝑐𝑐𝑚𝑚𝑣𝑣𝑟𝑟�𝐴𝐴1+𝐴𝐴2𝑒𝑒𝐵𝐵𝑝𝑝�−
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2𝑃𝑃𝐴𝐴
 (42) 

The purpose of the modified Knudsen number is clear. It is meant to provide asymptotically correct 
descriptions of any aggregate throughout any flow condition using a single equation. If 𝐾𝐾𝐾𝐾𝑓𝑓𝑐𝑐𝑑𝑑~0, then the 
electrical mobility is given by Stokes law using the hydrodynamic diameter. If on the contrary 𝐾𝐾𝐾𝐾𝑓𝑓𝑐𝑐𝑑𝑑 ≫
1, one arrives at the free molecular expression in eq. (4).  This will happen as long as the condition 
𝛺𝛺1,1~1.36𝑃𝑃𝐴𝐴 holds true in the free molecular region, something further addressed in the next section.  
Based on the assumption that the modified Knudsen number 𝜆𝜆𝜋𝜋𝑑𝑑𝑝𝑝/2𝑃𝑃𝐴𝐴  must asymptotically match both 
the continuum and the free molecular regime, perhaps one can propose an improvement of the Stokes 
Millikan equation that more closely follows the expected results of the free molecular regime, for example 
considering a CCS of the type Ω1,1~ℒ𝜉𝜉𝑃𝑃𝐴𝐴. This correction would suggest a secondary expression for the 
Knudsen number 𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 = 𝜆𝜆𝑑𝑑𝑝𝑝/2Ω1,1 that may be employed for a more universal characterization. 

 
Figure 4. A) Calculated slip correction factors for different aggregates as a function of the modified Knudsen number (eq. (42)) 
and where Θ−1 = 𝑍𝑍/𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓. Symbols refer to the DSMC results from Zhang et al(Zhang et al., 2012). Lines are results from 
Corson et al. (Corson, Mulholland, & Zachariah, 2017). B) Shown as a color scheme is the ratio of drag force on an aggregate 
sphere to the drag force on the same sphere isolated from the aggregate. Open and closed aggregates are shown for two different 
Knudsen numbers. Both figures have been adapted from Ref. (Corson et al., 2017). 



For this reason, the use of 𝐾𝐾𝐾𝐾𝑓𝑓𝑐𝑐𝑑𝑑 together with Stokes-Millikan in eq. (42) should work to numerically 
describe any aggregate’s mobility that is assumed to have a predominantly diffuse reflection of the gas 
molecules. In fact, the calculation of 𝑑𝑑𝑝𝑝 and PA would result in the same accuracy as the more theoretically 
convoluted methods described below. 

A valid approach to describe the electrical mobility and other transport related quantities of non-spherically 
shaped particles is through the use of Direct Simulation Monte Carlo (DSMC) simulations (Zhang et al., 
2012). Zhang et al. show that the numerical calculation of the drag through DSMC leads to a close 
agreement with eq. (42) (Zhang et al., 2012), as shown in Figure 4A. Given that DSMC is meant to be used 
in rarified gases, the calculation becomes rather computationally expensive for small Knudsen numbers and 
might underpredict the results due to statistical errors as the continuum regime is approached. However, 
the simulations are quite accurate for larger Knudsen numbers typical of transition and free molecular 
regime. The fact that different non-spherical particles can be grouped into a single equation, suggests the 
broad applicability of a correction factor, at least to a degree.  

Aside from DSMC simulations, there are a number of theories regarding the calculation for aggregates 
within the transition regime (Melas, Isella, Konstandopoulos, & Drossinos, 2014, 2015; Sorensen, 2011). 
Perhaps, most prominent are those making use of the Kirkwood-Riseman (KR) theory to calculate the drag 
on fractal aggregates composed of spherical elements. While the KR theory was initially meant to be used 
within the continuum regime (Kirkwood & Riseman, 1948), it has been recently extended to be used in the 
transition regime (Corson et al., 2017). The idea behind the KR theory consists in calculating the drag on 
individual spherical chain elements and then adding them together. However, the drag on each element 
should necessarily depend on the surrounding elements in such a manner that the interior elements may 
partially be hydrodynamically shielded from the outside flow and hence contribute less to the overall drag. 
This shielding effect will depend on the Knudsen number and distance between spheres, with the shielding 
efficiency decreasing with both higher Kn and relative distance. In general, the drag on the lth element of 
an aggregate that is held in place in a gas flowing with uniform velocity 𝑈𝑈∞𝑖𝑖 maybe given by: 

𝐹𝐹𝐷𝐷𝑝𝑝𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑣𝑣𝑑𝑑𝑖𝑖 = 𝑓𝑓𝑓𝑓(𝑣𝑣𝑝𝑝𝑖𝑖 − 𝑢𝑢𝑝𝑝𝑖𝑖) (43) 

In the above equation, 𝑣𝑣𝑝𝑝𝑖𝑖 represents the velocity that the fluid would possess at the location of the lth sphere 
in the absence of the sphere and 𝑢𝑢𝑝𝑝𝑖𝑖 represents the velocity of the lth element with respect to the fixed 
position, i.e. the relative velocity due to the rotation or flexible deformation of the aggregate. Assuming 
that the velocity of rotation is negligibly small and that the aggregate is rigid, an approximation that is 
regularly done in aerosols is to consider 𝑢𝑢𝑝𝑝𝑖𝑖 to be 0, at least on average. The fluid velocity 𝑣𝑣𝑝𝑝𝑖𝑖 may be 
calculated as the sum of the unperturbed velocity 𝑈𝑈∞𝑖𝑖 in the absence of the aggregate minus the sum of the 
shielding perturbations 𝑣𝑣𝑝𝑝𝑘𝑘′  created by the rest of the kth elements of the aggregate. To provide an expression 
for 𝑣𝑣𝑝𝑝𝑘𝑘′ , one can use the Oseen tensor formula, which provides the velocity perturbation on the surface of 
the lth element caused by the presence of the kth element drag force, 𝐹𝐹𝐷𝐷𝐾𝐾  (Burgers, 1938). In all, the 𝐹𝐹𝐷𝐷𝑝𝑝𝑖𝑖
may be rewritten as: 

𝐹𝐹𝐷𝐷𝑝𝑝𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑣𝑣𝑝𝑝𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑈𝑈∞𝑝𝑝𝑖𝑖 − ∑ 𝑓𝑓𝑓𝑓𝑣𝑣𝑝𝑝𝑘𝑘′ 𝑖𝑖
𝑐𝑐
𝑝𝑝≠𝑘𝑘  ;  𝑣𝑣𝑝𝑝𝑘𝑘′ 𝑖𝑖 = 𝑇𝑇𝑝𝑝𝑘𝑘𝑗𝑗𝑖𝑖 ∙ 𝐹𝐹𝐷𝐷𝑘𝑘𝑗𝑗 (43’) 
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where 𝑇𝑇𝑝𝑝𝑘𝑘 is the modified Oseen tensor, 𝑎𝑎 is the radius of the spheres composing the aggregates, 𝑟𝑟𝑝𝑝𝑘𝑘 is the 
vector distance between the centers of the lth element to the kth element, and 𝑟𝑟 is the magnitude of said 
distance. The original Oseen tensor was different from eq. (44), and was equivalent to assuming a single 



point force (𝑎𝑎 → 0) in eq. (44). However, as noted by Rotne and Prager and Yamakawa, it was not positive 
definite (Rotne & Prager, 1969; Yamakawa, 1970). When the force is distributed uniformly on a spherical 
surface of radius 𝑎𝑎, the solution for the hydrodynamic interaction tensor requires a Taylor series around 
𝑎𝑎 → 0. If only a first order correction is taken into account, the hydrodynamic tensor is very similar to that 
of eq. (44) but the second term is missing a factor of 2. The factor of 2 appears in the first order correction 
term when the interaction is considered to be between two spheres of radius 𝑎𝑎, instead of a single sphere. 
Other authors have studied higher order corrections and multi-body interaction tensors as well (Carrasco & 
Garcıa de la Torre, 1999; Goldstein, 1985; Mazur & van Saarloos, 1982; Reuland, Felderhof, & Jones, 
1978).  

Due to the convoluted nature of the shielding effects, the drag forces on each individual sphere must all be 
calculated simultaneously by solving a linear system of equations (43). The total drag force on the aggregate 
is then inferred by summing of all the forces from individual spheres. Chen, Deutch and Meakin used these 
results to obtain the overall translational friction coefficient of the aggregate (Chen, Deutch, & Meakin, 
1984; Meakin, Chen, & Deutch, 1985) and where the individual friction factor 𝑓𝑓𝑓𝑓 was assumed equal to the 
6𝜋𝜋𝜋𝜋𝑎𝑎 value expected in the continuous regime. However, the same approach may perhaps be expanded to 
include the transition and free molecular regime conditions by using the friction factor 𝑓𝑓𝑓𝑓 represented by 
the Stokes-Millikan equation of a single sphere, and hence mobility and/or diffusion may then be calculated 
for the entire Knudsen range using an extended KR theory.  However, the modified Oseen tensor, which 
was inferred for the continuum regime, does not provide a correct interpretation of the perturbations within 
the transition and free molecular regimes and a corrected perturbation tensor must be employed. 

Instead of using the Stokes-Millikan equation to obtain 𝑓𝑓𝑓𝑓, another option is to obtain the friction factor 𝑓𝑓𝑓𝑓 
by solving the BGK equation that describes a perturbed gas flow over a sphere. A numerical value of 𝑓𝑓𝑓𝑓 for 
a sphere using the BGK approach was obtained by Loyalka et al. and by Takata et al. following the results 
of Cercignani (Law & Loyalka, 1986; Lea & Loyalka, 1982; Takata, Sone, & Aoki, 1993). The difference 
between the results for the friction factors of the two approaches is around 2-3% which validates the BGK 
approach (Corson et al., 2017). Interestingly enough, the BGK approach allows one to describe the 
perturbation over a sphere as a function of the Knudsen number. This perturbation may then be used as a 
substitute of 𝑣𝑣𝑝𝑝𝑘𝑘′ 𝑖𝑖 and replacing the Oseen Tensor and force in eq. (43). This perturbation is only for the 
presence of a single sphere and not for a sphere-sphere hydrodynamic interaction but the similarity shown 
in the continuum between the two effects is sufficient to consider this approach.  Corson et al. used the 
results from Loyalka and Takata together with the KR theory to obtain the drag on aggregates for any 
Knudsen number (Corson et al., 2017). The results from Corson et al. are compared to those of Zhang et al. 
in Figure 4A for different aggregates to support the validity of both approaches, so that the use of the 
modified perturbation seems to be an acceptable approximation. To visualize the effect that the perturbation 
of the aggregate has on individual spheres, Corson et al. provides a ratio of the drag from eq. (43) to the 
drag corresponding to each isolated sphere (first term of eq. 43) as shown in Figure 4B. One can easily 
observe how the flow interaction between the different individual spheres becomes progressively less 
important as one gets closer to the free molecular regime. 

It is interesting to note here that the work from Corson et al.’s work makes use of eq. (25), instead of eq. 
(26), to provide an orientationally averaged value for the mobility assuming that all orientations are 
considered to be equally probable. However, in  the presence of strong fields within the transition regime, 
the assumption that all orientations are equally probable is most likely no longer be satisfied. Corson et al. 
expanded on their work to calculate the mobility of a perfectly conducting particle by adding a polarizability 
tensor to the calculation which would affect particle orientation (Corson, Mulholland, & Zachariah, 2018). 



3.2. Use of the slip correction to calculate collision kernels for particles of 
arbitrary shape. 

An interesting use of the Stokes-Millikan approach that is worth mentioning here due to its success and 
broad applicability, is its use in the calculation of collision kernels between particles in the transition regime. 
The existing calculations, however, are mostly based on understanding coagulation between two aerosol 
particles rather than electrical mobility(Rogak & Flagan, 1992). In the transition and continuum regimes, 
the collision frequency, 𝛽𝛽𝑖𝑖𝑗𝑗, is defined using diffusion coefficients 𝐷𝐷𝑖𝑖 rather than electrical mobility:  

 𝛽𝛽𝑖𝑖𝑗𝑗 = 4𝜋𝜋�𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑗𝑗�〈𝑑𝑑𝑖𝑖𝑗𝑗〉𝜒𝜒𝑘𝑘(𝐾𝐾𝐾𝐾)   ;    𝐷𝐷𝑖𝑖 = 𝑘𝑘𝑇𝑇𝑍𝑍𝑝𝑝𝑖𝑖/𝑧𝑧𝑧𝑧 (45a-b) 

Where 〈𝑑𝑑𝑖𝑖𝑗𝑗〉 is an equivalent average diameter of the two colliding entities and 𝜒𝜒𝑘𝑘(𝐾𝐾𝐾𝐾) is a correction 
factor, similar to the dynamic factor, that is a function of the Knudsen number or a seemingly related 
dimensionless quantity (Diffusion Knudsen or momentum transfer Kudsen number). The exact values of 
the correction factor 𝜒𝜒𝑘𝑘(𝐾𝐾𝐾𝐾)  are a subject of debate and multiple equivalent formulas have been used. The 
factor was initially calculated by Fuchs through the flux-matching model (N. Fuchs, 1963; N. A. Fuchs et 
al., 1965). A simpler approximation was provided later on by Dahneke (B. Dahneke, 1983). Other 
modifications have surfaced (Fuks & Sutugin, 1970; Veshchunov, 2010a, 2010b), including 
approximations in the free molecular regime, some of them quite complex but very successful even for non-
spherical entities (M Zurita-Gotor & Rosner, 2002). Gopalakrishnan and Thajudeen et al. provide the most 
recent additions for collision kernels for the complete Knudsen range making use of the Langevin equation 
(Gopalakrishnan & Hogan Jr, 2011; Gopalakrishnan, Thajudeen, & Hogan Jr, 2011).  

3.3. Calculations of non-spherical ions and charged nanoclusters in the 
Free-Molecular Regime. 

3.3.1. Background and discrepancies between aerosol and analytical chemistry fields 

Due to the set of simplifications that arise in the free molecular regime, and the realization that the 
momentum transfer of each individual gas molecule collision is independent of the rest, the calculation of 
electrical mobility for non-spherical ions is much more feasible than in the transition regime. As such, there 
are plenty of different approximations to the calculation of mobilities using gas kinetic theory. As 
previously introduced, two methodologies stand out which arise from the study of ion/electrical mobility 
from the point of view of two different scientific fields, analytical chemistry, and aerosol science. While 
the results from the two approaches may seem to differ at first, it turns out that many of the results from 
both fields are equivalent to each other, the largest disparities being related to the distinct concerns of the 
two fields. It is sufficient to say at this point that while analytical chemistry focuses on small ions with 
strong potential interactions and for which the diffuse accommodation assumption has been shown to break 
down (especially in light gases such as He), aerosol science focuses on relatively larger singly charged 
nanoclusters, fractals, and particles, for which the effect of interaction potentials and reduced masses are 
mostly negligible. Additionally, the diffuse reflection assumption is unequivocally and somewhat 
arbitrarily chosen so as to match the Millikan results in the transition regime. As a result, the perceived 
differences between the two fields mostly originates from how the different approaches tackle the transition 
from specular to diffuse collisions, although there is little doubt that the transition exists (C. Larriba-
Andaluz, Fernandez-Garcia, Ewing, Hogan, & Clemmer, 2015; Z. Li & Wang, 2003a, 2005). How this 
transition occurs is a subject of debate although a majority agrees that the modality depends on the buffer 
gas, the conditions of the electric field, the size of the ions, as well as the mass of the individual atoms 
compared to the mass of the gas molecule.  



In either case, the necessity of aerosol science to study nucleation, coagulation and surface growth in detail 
requires the characterization of particles of ever-decreasing sizes, together with the necessity for analytical 
chemistry to provide more accurate and efficient calculations for macro-ions and large biomolecules, has 
led to a greater interaction between the two fields and the procurement of common ground.  A detailed 
study of the approach from the analytical chemistry perspective is out of the scope of this review but a brief 
summary is provided here for the sake of completeness although the reader is prompted to consult the 
relevant literature, if required. 

3.3.2. Free Molecular Mobility/Drag analytical and numerical calculations for non-
spherical particles. 

Equation (23) is one of the most general expressions that may be used when dealing with the calculation of 
drag in the free molecular regime. Since no potential interactions are used to obtain eq. (23), as long as the 
wetted area of the charged particle is known, the equation can be solved analytically for a given 
accommodation coefficient, but not without certain complications. Following the Epstein’s approach, 
Dahneke produced an analytical study of different convex particles including discs, cylinders, prolate and 
oblate spheroids and cubes (B. E. Dahneke, 1973b). Garcia-Ybarra and Rosner studied sphero-cylindrical 
particles (cylinders with spherical caps at the end)(Garcia‐Ybarra & Rosner, 1989), de la Mora made a 
comprehensive study of different convex polyhedra with a focus on how the existence of principal axis of 
the molecule facilitates the calculation process (Fernández de la Mora, 2002), and Larriba and de la Mora 
provided analytical calculations for beads on a string configurations to study polymer structures in the gas 
phase (Larriba & Fernandez de la Mora, 2012). Except perhaps for the bead on string polymeric studies, all 
the structures studied analytically are convex. The reason for the prevalence of convex structures is that 
concave surface elements may prevent some of the surface area from being accessible to gas molecules 
while also leading to the possibility of multiple scattering. Both effects are significantly difficult to assess 
analytically but need to be considered in the calculation of the overall drag force. Perhaps the only available 
analytical solution of a free molecular transport property for particles which can be locally concave has 
been given by Zurita-Gotor (Mauricio Zurita-Gotor, 2006). Chan and Dahneke, on the basis of some results 
by Chahine (Chahine, 1961), observed that the analytical calculation of such effects on concave structures 
is futile in a practical way (Chan & Dahneke, 1981) and proposed the use of a Monte Carlo technique, 
previously described by Bird (Bird, 1976), to deterministically predict the scattering within the concave 
regions. This Monte Carlo approach led to a lot more flexibility on the types of structures that could be 
calculated and was later picked up by Zurita-Gotor and Mackowski who applied it to fractals to calculate 
thermophoretic and electrohydrodynamic drag forces (Mackowski, 2006; Zurita, 2004). In the Monte Carlo 
approach, the particle is fixed inside of a cuboid domain assumed to have a constant drift velocity. The 
particle is not flexible and is not allowed to rotate. From the assumed velocity distributions (eqs. 8 and 10), 
fluxes of gas molecules entering the domain through the walls of the cuboid are calculated analytically 
using higher order moments. With the provided fluxes, hundreds of thousands of gas molecules are then 
statistically inserted in the domain and allowed to traverse and interact with the particle until they leave the 
domain. The drag force is therefore calculated as the total momentum transfer (final minus initial) per unit 
time of the sum of all the gas molecules studied: 
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Here 𝑁𝑁𝑡𝑡 is the total number of gas molecules and 𝜏𝜏𝑡𝑡 is the total time that it takes for all 𝑁𝑁𝑡𝑡 molecules to 
enter the domain. This method of drag calculation has been known in other fields as the momentum-transfer 
theory for how the momentum balance plays an important role in the calculation (Edward A. Mason & 
McDaniel, 1988). The calculation is repeated for three perpendicular directions so that a drag tensor maybe 



provided akin to that of eq. (24) and appropriately averaged to obtain the mobility. Mackowski used the 
algorithm to calculate only diffuse or specular interactions for fractals. However, this Monte Carlo approach 
allows for potential interactions to be added as well, which will become necessary when studying molecular 
and entities with resolved atomic structure. A cartoon of the Monte Carlo domain approach is provided in 
Figure 5A. 

At this stage of the discussion, one may be able to appreciate some of the calculations that were performed 
in the field of analytical chemistry which consider, almost exclusively, entities with resolved atomic 
structure that are strictly within the free molecular regime. While, in principle, the quadrature in eq. (9) 
may be calculated analytically for very basic structures and potentials, the calculation of the deflection 
angle 𝜒𝜒𝑑𝑑𝑒𝑒𝑓𝑓 for complex structures is too cumbersome to be carried out efficiently. For this reason, eq. (9) 
is almost exclusively calculated numerically using Monte Carlo simulations. As seen previously, a very 
simple calculation that replaces eq. (9) consists in assuming an averaged Projection Approximation (PA) 
for the ion (Von Helden, Hsu, Kemper, & Bowers, 1991). This would exclude any scattering or potential 
interaction as depicted in blue in figure 5B. The calculation of the PA is equivalent to projecting the shadow 
of the particle in multiple random directions and averaging the total result. When compared to eq. (23), PA 
would yield equivalent results if 𝛼𝛼 = 0 and the particle was convex. If the particle were not convex, the 
results from PA would be equivalent to calculating eq. (23) using the convex hull as the surface area and 
𝛼𝛼 = 0.  

 
Figure 5. A) Depiction of the Monte Carlo domain approach to deterministically calculate the drag force and electrical mobility of 
a particle in the free molecular regime by calculating the momentum transfer of gas molecules entering and exiting the cuboid. 5 
B) Basic CCS calculation methods to solve eq. (9), which include the Trajectory Method (TM), the Exact Hard Sphere Scattering 
(EHSS), and the Projection Approximation (PA). TM Method considers a 4-6-12 interaction, EHSS considers elastic specular 
scattering, and PA only differentiates between collisions and fly-by unperturbed trajectories. Figure 5B has been extracted from 
Ref. (Gabelica & Marklund, 2018). 

The first widely used calculator that took full advantage of eq. (9) was MOBCAL by Jarrold and co-workers 
(Shvartsburg & Jarrold, 1996). Aside from the PA method, two different calculations are possible in 
MOBCAL, the Exact Hard Sphere Scattering (EHSS) and the Trajectory Method (TM)(Mesleh, Hunter, 
Shvartsburg, Schatz, & Jarrold, 1996). In the EHSS method, the all-atom structure is fixed in space and 
oriented randomly, and gas molecules are sampled from randomly oriented plane assuming rectilinear 
trajectories perpendicular to the plane. Collisions with the structure are assumed to be specular and elastic 

A) B) 



as depicted in Figure 5B in light green. Upon reflection, the gas molecules are allowed to collide with the 
structure again multiple times (referred to as multiple scattering). The multiple scattering has an enhancing 
effect of the momentum transfer that most of the time increases the value of the CCS compared to that of 
PA. After several gas molecules are sampled, the structure is re-oriented and the process is repeated. Once 
sufficient orientations are considered, an average drag is calculated assuming all orientations are equally 
probable. Given that eq. (9) comes from a quadrature where a condition of elasticity has been utilized, 
diffuse/inelastic collisions are slightly harder to implement and hence no diffusive version may be 
performed within MOBCAL. EHSS has been shown to provide accurate CCS calculations for Helium gas 
for a wide range of particle sizes but fails to produce reasonable predictions for heavier and diatomic gases, 
including Argon, Nitrogen, and Air, which seem to require more inelastic and diffuse collisions. This 
suggests that the global modality of reflection of gas molecules is different depending on the gas. 
Additionally, given that an accommodation coefficient of ~0.91 has been used successfully for large 
charged particles even in He (Eglin, 1923; Ishida, 1923; Rader, 1990), it appears that, even within the same 
gas, there must be an evolution from specular to “effectively” diffuse collision as the Knudsen number is 
decreased.  

 
Figure 6. Comparison of different CCS from different gases. Figures were directly taken from Refs. (Gabelica & Marklund, 2018; 
Leaptrot, May, Dodds, & McLean, 2019; Matz, Hill, Beegle, & Kanik, 2002). A) CCS in Helium and Nitrogen for different sets of 
ions. B) CCS for C60 and Ubiquitin Native and Open (see legend) states in Nitrogen and Helium at different temperatures. C) CCS 
of several amphetamines under Helium, Argon, Nitrogen and Carbon Dioxide environments (see legend). 

In the TM method, gas molecules are subject to interaction potentials with the different elements composing 
the ion or particle. The interaction potentials Φ were initially limited to the induced-dipole potential and 
Lennard-Jones (L-J) potentials(Mesleh et al., 1996): 
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Here, 𝑟𝑟𝑖𝑖 = (𝑒𝑒𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) is the relative distance between the gas molecule and the ith atom/subunit/charge, 𝛼𝛼𝑝𝑝 
is the polarization constant of the gas, 𝑞𝑞𝑖𝑖 is the ith charge, 𝐾𝐾𝑡𝑡 is the total number of atoms/subunits, 𝐾𝐾𝑧𝑧 is 
the total number of charges, and 𝜎𝜎 and 𝜖𝜖 are the zero cross and well-depth parameters for the L-J potentials. 
Similar to the EHSS case, the potential interaction is always elastic being the deflection angle 𝜒𝜒𝑑𝑑𝑒𝑒𝑓𝑓 the sole 
quantity obtained from the Monte Carlo simulation.  The implementation of the TM to calculate CCS from 
small to medium ions has been incredibly successful in gases such as He and N2. However, its success relies 
on the correct determination of the parameters of the L-J potentials for every atom/subunit composing the 
ion or particle. When these parameters are correctly optimized, the CCS results are regularly within 4% of 
the experimentally measured ones(Campuzano et al., 2012). 

Given the diatomic nature of N2, the effect of the quadrupole potential has been considered as an additional 
potential in eq. (47) (Kim et al., 2008). In it, the diatomic nitrogen molecule charge is divided into three 
charges, with a negative charge of 0.4825e on each nitrogen and a positive charge at the center of the 
molecule of 0.965e while assuming an interatomic distance of 1.0975 Angstroms. The quadrupole 
interaction potential, when reducing the quadrupole tensor to one term due to the linearity of the charges, 
is given by: 
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Here 𝑟𝑟𝑖𝑖𝑗𝑗 denotes the distance from any 𝑖𝑖 atom to the one of the 3 𝑗𝑗 charges in the N2 molecule. Since the N2 
molecule is constantly rotating, the effect of the quadrupole is only important at very close range. An 
appropriately weighted parameter is used to take into account the relative orientation of the nitrogen 
molecule. A basic depiction of how the TM method interacts with an all-atom structure is represented using 
lime trajectories in Figure 5B (Gabelica & Marklund, 2018).  

An interesting approach would be to adapt the domain approach of Chan and Dahneke and of Mackowski 
while considering interaction potentials. Larriba-Andaluz and Hogan followed Mackowski’s approach and 
created a software suite labeled Ion Mobility Software (IMoS) with spherical as well as cuboid 
domains(Coots, Gandhi, Onakoya, Chen, & Andaluz, 2020; Larriba & Hogan, 2013a, 2013b), and where 
interaction potentials and entities with resolved atomic structure are considered. Aside from the EHSS, TM 
and PA calculations, IMoS is able to perform other multiple calculations, including rotational effects for 
diatomic gases (C. Larriba-Andaluz & Hogan, 2013). Since inelastic collisions may be introduced in the 
Monte Carlo domain approach, IMoS allows for a hybrid method that includes induced dipole potential and 
diffuse inelastic hard sphere scattering which is referred to as the Trajectory Diffuse Hard Sphere Scattering 
(TDHSS) method. When using this approach, the user can select the value of the accommodation coefficient 
𝛼𝛼 as well as the distribution of reemission velocities. The flexibility of this adjustment, when compared 
with other methods and experimental results, may shed light on how 𝛼𝛼 varies within the free molecular 
regime and for different gases. The software was later parallelized and can perform calculations of particles 
composed of hundreds to thousands of atoms in seconds to minutes (Shrivastav, Nahin, Hogan, & Larriba-
Andaluz, 2017a). When the same potential interactions are chosen with the same parameters, the results 
provided are within 1% of those of MOBCAL, but are obtained at a fraction of the computational cost.  

To arrive at accuracies better than 4% for the prediction of CCS of entities with resolved atomic structure 
using the TM method, one must use well-defined model structures and optimized L-J parameters. The 
model structures should be obtained through ab-initio calculations or Density Functional Theory (DFT) 
(Hohenberg & Kohn, 1964). The DFT model structures, together with carefully obtained experimental CCS 



values, can then be used to optimize the L-J parameters for every gas-atom pair (Campuzano et al., 2012; 
Wu, Derrick, Nahin, Chen, & Larriba-Andaluz, 2018). The tuned L-J parameters may then be used 
generally for similar substances. Once reliable numerical calculations are widespread and most CCS can be 
inferred within a few percent of the experimental counterpart, one has the possibility of testing the validity 
of the diffuse collision assumption of the Stokes-Millikan with relatively solid footing.  

 
Figure 7. Dimensionless CCS as a function of the square root of the equivalent volume diameter for EMIM-N(CN)2 under He and 
N2 environments. The symbols correspond to numerical calculations performed with IMoS using several collision models (see 
legend). Taken from Ref. (C. Larriba-Andaluz et al., 2015). 

Regarding the diffuse assumption, given the success of elastic approaches within the TM, the first question 
that arises pertains to how the accommodation coefficient 𝛼𝛼 is related to the ion-induced dipole and L-J 
potential interactions. The fact that experimental results for macromolecules in N2 agree with TDHSS using 
𝛼𝛼 = 0.91 as well as with results of TMLJ (4-6-12 interaction) (Shrivastav, Nahin, Hogan, & Larriba-
Andaluz, 2017b), suggests that the collective effect of the attractive portion of the interaction potential on 
a sufficiently large molecule, causes the reflection to be “effectively” diffuse. This may be caricaturized as 
shown in Figure 3D where atoms adjacent to the one colliding with the molecule affect the gas trajectories 
through potential interactions resulting in a quasi-random direction of emission and without the need of 
imposing an arbitrary diffuse direction as it is done through the use of 𝛼𝛼. If such is the case, as the ion 
becomes smaller, the effect becomes smaller and the reflection becomes naturally more specular. In this 
descriptive framework, it is also possible that different gases – and different atoms- behave in different 
ways given that the interaction potentials may be quite different from each other.  The effects that different 
gases have on the CCS have been extensively characterized and Figure 6 shows a few results comparing 
CCS of different ions for different gases and different temperatures (Gabelica & Marklund, 2018; Leaptrot 
et al., 2019; Matz et al., 2002). While part of the deviations between different gases may be associated with 
distinct polarizabilities, this cannot be the only factor providing the difference, especially for large singly 
charged entities. For example, Figure 6A shows the CCS as a function of the mass to charge ratio of several 
different types of analytes in He and Nitrogen gases. While the polarizability effect should be quite 
important for small mass to charge values (~100 Thomsons), it should become almost negligible for larger 
values, expecting its value to be lower than 3% in N2 compared to He for ~1000 Thomsons. A similar trend 



is also noticeable in Figure 6B. On the top of the figure, C60 fullerene CCS with 1 and 4 elementary charges 
are compared between He and N2 gases as a function of the temperature. While the discussion below only 
focuses on room temperature, similar arguments may be used for other temperatures. The contribution of 
the ion induced dipole potential for a singly charged C60 at room temperature is approximately 5-6% larger 
in N2 compared to He as calculated by IMoS. This is in contrast with the large difference of 70% observed 
experimentally. In the unlikely event that the 70% difference could be fully attributed to the ion-induced 
dipole potential, the same dipole effect would require that the difference would be much larger than 125% 
when 4 charges are present. The effect may be noticed also in the bottom panels of Figure 6B, where the 
difference between the CCS in He and N2 is still about 20% even for a macromolecule such as Ubiquitin in 
its compact state at room temperature. Interestingly enough, when comparing all the results in Figure 6B, 
the difference between CCS in He and N2 seems to be quite smaller for larger macromolecules even when 
correcting for the effect of the ion-induced dipole potential. This could indicate that the percentage of 
collisions that result in diffuse scattering becomes more similar for both gases as the size of the particles 
increases. Finally, even though the ion-induced dipole potential is not the sole effect that differentiates 
gases, its effect cannot be neglected especially for small molecules. As an example, Figure 6C shows the 
difference in CCS for different amphetamines in He, Ar, N2 and CO2.  

Perhaps the best way to analyze how the scattering effect evolves in different gases is to employ a family 
of analytes that can be studied for a large range of mobility sizes. Ionic liquids may be used for such a 
purpose with the advantage that they form relatively spherical ions which may carry multiple charges. 
Studies by Larriba-Andaluz, de la Mora, and Clemmer using different Ionic Liquids in He and Nitrogen 
environments investigated the diffuse scattering effect (C. Larriba-Andaluz et al., 2015). One relevant result 
has been reproduced in Figure 7 for 1-3 Ethyl-Methyl-Imidazolium dicyanamide (EMIM-N(CN)2) ion. 
Figure 7 plots the dimensionless CCS Ω/𝑃𝑃𝐴𝐴 = ℒ𝜉𝜉 for EMIM-N(CN)2 as a function of the square root of 
the volume equivalent diameter in Helium and Nitrogen gases. In the plot, within the resolved colored data, 
each of the vertical lines corresponds to an ion of a known mass (a certain number of neutrals and charges). 
The purpose of the choice of the square root of the diameter was to try to increase the visual separation of 
the smaller ions without the need to resort to logarithmic plots.  When looking at the portion of the data 
measured in N2, one can see that the value of Ω/𝑃𝑃𝐴𝐴 remains fairly constant from 2nm (𝑑𝑑1/2 = 1.44) to 
8nm and where ℒ𝜉𝜉~1.42. Given that the ion-induced dipole potential effect is around 5-10% for the 
size/charge ranges being measured, the results suggests that 𝜉𝜉~1.33 − 1.36 which agrees with the expected 
diffuse reflection from Stokes-Millikan and 𝛼𝛼 = 0.9− 0.91. On the other hand, the ℒ𝜉𝜉 value seems to 
decrease for charge states 1 and 2 in Nitrogen. Given that one would expect the effect of the ion-induced 
dipole to become increasingly more important with the reduction of size, the results appear to give the 
impression that the collisions become more specular as the ion is reduced in size. This is also corroborated 
by the numerical calculations done with IMoS and where TDHSS and TM agree to within 2-4% for the 
cases studied.   

The results in Helium presented in Figure 7 are quite different from those presented in Nitrogen. The first 
thing to notice is that 𝜉𝜉~1.36 is not reached in the range of mass-equivalent diameter values accessed 
experimentally. Moreover, for singly charged entities and ions close to 1nm, the results seem to suggest 
ℒ𝜉𝜉~1 and hence specular calculations or equivalently 𝛼𝛼~0. The value of ℒ𝜉𝜉 increases steadily with the 
diameter of the ion hinting at an asymptotic value far from the observed experimental values. When 
compared to the numerical calculations from IMoS, the experimental values seem to agree quite well with 
the regular EHSS with ion-induced dipole interaction (TEHSS). Given that the potential interaction is 
minimal, most of the increment must be due to the increasing occurrence of diffuse scattering, i.e. multiple 
collisions occur for the same gas molecule, most likely due to the increasing roughness of the surface of 
the molecule. The numerical calculations performed suggest that the fraction of collisions resulting in 



diffuse scattering will continue to increase with increasing size past our experimental data to a value of 1.3. 
Solely because of the multiple scattering on the surface, one can predict that eventually, the interaction may 
be considered “effectively” diffuse, matching the prediction of Stokes-Millikan and the asymptotic results 
for cases in the transition regime. Other authors, such as Li and Wang, have explained the specular to diffuse 
collision behavior through gas molecule trapping on the particle surface as observed from Molecular 
Dynamics simulation (Z. Li & Wang, 2005).  

The fact that TDHSS agrees with TM in N2 and that TEHSS qualitatively agrees with TM in He, seems to 
suggest that diffuse scattering effects may be embedded into the L-J parameters without loss of generality. 
However, the diffuse scattering effects may come in part from inelastic collisions (exchange of translational 
and ro-vibrational energies), especially in the case of N2 and CO2 where the gas molecule is much heavier 
than most of the individual atoms of an organic molecule such as an Ionic Liquid. Upon impact of a heavy 
gas molecule, it is very likely that the ion may deform in the region close to the collision, reducing the 
chances of a specular collision. This raises the question of whether heavier atoms could lead to more 
specular collisions for the same gas.  Ouyang et al. studied this effect on alkali metal iodine salt clusters 
using cations of increasing mass in N2. The results clearly show that, for very heavy atoms such as those in 
Cs-I and Rb-I salts, the resulting collisions are more specular while for less heavy atoms such as Na-I, the 
collisions become more diffuse (H. Ouyang, Larriba-Andaluz, Oberreit, & Hogan, 2013). This suggests 
that further studies using Molecular Dynamics instead of the presently used fixed structures should be 
important to ascertain the effects of inelastic collisions correctly. 

The success of MOBCAL and IMoS has resulted in numerous other mobility calculators, mostly focused 
on optimizing and parallelizing MOBCAL, such as Collidoscope, HPCCS and Mobcal-MPI (Ewing, Donor, 
Wilson, & Prell, 2017; Ieritano, Crouse, Campbell, & Hopkins, 2019; Zanotto, Heerdt, Souza, Araujo, & 
Skaf, 2018). Mobcal-MPI changes the L-J parameters to a Buckingham type-based repulsion in an attempt 
to improve the accuracy of the calculation. Other calculators stem from convex to concave shape factor 
ratios such as the Projection Superposition Approximation (PSA), where the shape factor ratio directly 
multiplies the PA to give a relatively good approximation to the CCS(Bleiholder, Wyttenbach, & Bowers, 
2011). Interestingly, this shape factor for large macromolecules varies around 1.3-1.39 on average, which 
suggests that, regardless of the gas or particle shape used, any appropriately large molecule will have 
multiple scattering events on its surface that are sufficient to result in an effectively diffuse collision 
(Wyttenbach, Bleiholder, & Bowers, 2013). Molecular Dynamics calculations in the presence of an electric 
field have been tested to calculate electrical mobilities in order to try and incorporate ro-vibrational degrees 
of freedom of gas and particles into the calculations (Lai, Dodds, & Li, 2018; Tamadate et al., 2019). While 
the results from these simulations are not as accurate as those of the DFT calculations, once the modeling 
parameters are optimized, they might become the new computational tool to study both the free molecular 
and transition regimes. 

4.  Conclusions 
A consolidation effort to provide a coherent review of the various size-mobility relationships over the entire 
Knudsen range has been attempted. Despite the clear success of the different relations for spherical and 
non-spherical particles, and in particular of the Stokes-Millikan relationship, there is still a wide margin for 
improvements in accuracy and efficiency of the calculations, as well as in the conditions of applicability of 
the results. This is exceptionally true within the transition regime, for which no definitive computationally 
viable theory rooted only in fundamental principles is known and where experimentally derived parameters 
are still necessary to arrive at accurate mobility predictions. Given the success of numerical calculators 
within the free molecular regime and of DSMC calculators for much of the Knudsen range, it seems logical 



that new calculators will soon become available with very accurate predictions within the transition regime. 
As more computational power becomes available, it is also logical to expect complex electrical mobility 
studies using Molecular Dynamics simulations that take into account the rotational and vibrational degrees 
of freedom of both charged particles and gas molecules. These studies will very likely shed some light into 
the specular vs. diffuse unresolved dilemma.  

Overall, the study of electrical mobility and other transport properties in the field of aerosol science has 
reached a healthy maturity. With the emergence of increasingly accurate instrumentation and the rising 
need to better understand nucleation, coagulation and surface growth, as well as transport, filtration and 
toxicity of aerosol particles,  aerosol science should make an effort to push the boundaries of the 
fundamental understanding of gas phase transport phenomena in the free molecular to transition region, a 
feat that, while not easy, is within the reach of the community.  

5.  Acknowledgements 
Carlos Larriba-Andaluz would like to acknowledge support from the NSF Division of Chemistry under 
grant No. 1904879 (Prof. Kelsey Cook, Program Manager) and Kanomax Holdings Inc. for their support. 
Francesco Carbone would like to acknowledge support from the NSF CBET grant No. 2013382 (Prof. 
Harsha K. Chelliah, Program Manager). 

6. About this Review 
This article is an editor-invited review article. Editor-Invited review articles began in 2020 to commemorate 
the 50th anniversary of the Journal of Aerosol Science. 

7.  Biographies 
Francesco Carbone is an Assistant Professor at the University of Connecticut. 
He earned his Ph.D. in Chemical Engineering and M.Sc. in Mechanical 
Engineering from the University of Naples Federico II (Italy) and got 
postgraduate training in Mechanical, Materials and Aerospace Engineering at 
Yale University and the University of Southern California. He is specialized in 
interrogating the detailed structure of reacting flows with a broad variety of 
experimental techniques and the assistance of modeling tools, and his studies 
contribute to the understanding of nanoparticle formation in flames. 

 

Carlos Larriba-Andaluz got his bachelor’s degree in Aerospace at the 
Universidad Politecnica de Madrid. He moved to the States after an abridged 
stay at Iberia Airlines. He got his Ph.D. in Mechanical Engineering from Yale 
University in 2010 followed by a postdoctoral Associate and Ramon Areces 
Fellow at the University of Minnesota in the department of Mechanical 
Engineering. In 2015 he started a tenure-track position at the Purdue University 
School of Engineering and Technology in Inidianapolis. His main area of 
research is steered towards Ion Mobility Spectrometry (IMS) coupled with 
Mass Spectrometry (MS).  

  



References 
Agarwal, P., & Girshick, S. L. (2012). Sectional modeling of nanoparticle size and charge distributions in 

dusty plasmas. Plasma Sources Science and Technology, 21(5), 055023.  
Alam, M., & Flagan, R. (1986). Controlled nucleation aerosol reactors: production of bulk silicon. Aerosol 

science and technology, 5(2), 237-248.  
Allen, M., & Raabe, O. (1982). Re-evaluation of Millikan's oil drop data for the motion of small particles 

in air. Journal of Aerosol Science, 13(6), 537-547.  
Allen, M. D., & Raabe, O. G. (1985). Slip correction measurements of spherical solid aerosol particles in 

an improved Millikan apparatus. Aerosol Science and Technology, 4(3), 269-286.  
Annis, B. (1971). Stress induced diffusion in monatomic gases and gas suspensions. The Physics of Fluids, 

14(2), 269-277.  
Annis, B., Malinauskas, A., & Mason, E. (1972). Theory of drag on neutral or charged spherical aerosol 

particles. Journal of Aerosol Science, 3(1), 55-64.  
Annis, B., Malinauskas, A., & Yun, K. (1970). Composition Dependence of the Thermal‐Diffusion Factor 

of a Dusty Gas. The Journal of Chemical Physics, 52(4), 1992-1996.  
Basset, A. B. (1888). A treatise on hydrodynamics: with numerous examples (Vol. 2): Deighton, Bell and 

Company. 
Bird, G. A. (1976). Molecular gas dynamics. NASA STI/Recon Technical Report A, 76.  
Bleiholder, C., Wyttenbach, T., & Bowers, M. T. (2011). A novel projection approximation algorithm for 

the fast and accurate computation of molecular collision cross sections (I). Method. International 
Journal of Mass Spectrometry, 308(1), 1-10.  

Bowden, F. P., & Harbour, P. (1966). The aerodynamic resistance to a sphere rotating at high Mach numbers 
in the rarefied transition regime. Proceedings of the Royal Society of London. Series A. 
Mathematical and Physical Sciences, 293(1433), 156-168.  

Buckley, R., & Loyalka, S. (1989). Cunningham correction factor and accommodation coefficient: 
interpretation of Millikan's data. Journal of aerosol science, 20(3), 347-349.  

Burgers, J. (1938). Second report on viscosity and plasticity. Nordemann, New York, 113.  
Campuzano, I., Bush, M. F., Robinson, C. V., Beaumont, C., Richardson, K., Kim, H., & Kim, H. I. (2012). 

Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison 
of theoretical and experimentally derived nitrogen collision cross sections. Analytical chemistry, 
84(2), 1026-1033.  

Canzani, D., Laszlo, K. J., & Bush, M. F. (2018). Ion mobility of proteins in nitrogen gas: effects of charge 
state, charge distribution, and structure. The Journal of Physical Chemistry A, 122(25), 5625-5634.  

Carbone, F., Canagaratna, M. R., Lambe, A. T., Jayne, J. T., Worsnop, D. R., & Gomez, A. (2019). 
Exploratory analysis of a sooting premixed flame via on-line high resolution (APi–TOF) mass 
spectrometry. Proceedings of the Combustion Institute, 37(1), 919-926.  

Carrasco, B., & Garcıa de la Torre, J. (1999). Improved hydrodynamic interaction in macromolecular bead 
models. The Journal of chemical physics, 111(10), 4817-4826.  

Cercignani, C., & Pagani, C. D. (1968). Flow of a rarefied gas past an axisymmetric body. I. General 
remarks. The Physics of Fluids, 11(7), 1395-1399.  

Cercignani, C., Pagani, C. D., & Bassanini, P. (1968). Flow of a rarefied gas past an axisymmetric body. 
II. Case of a sphere. The Physics of Fluids, 11(7), 1399-1403.  

Chahine, M. T. (1961). Free molecule flow over non-convex surfaces. Paper presented at the XIth 
International Astronautical Congress Stockholm 1960/XI. Internationaler Astronautischer 
Kongress/XIe Congrès International D’Astronautique. 

Chan, P., & Dahneke, B. (1981). Free‐molecule drag on straight chains of uniform spheres. Journal of 
applied physics, 52(5), 3106-3110.  

Chang, C. W., Uhlenbeck, G., & de Boer, J. (1964). The Heat Conductivity and Viscosity of Poly-Atomic 
Gases: Studies in Statistical Mechanics: North-Holland Publishing Co., Amsterdam. 



Chapman, S., & Cowling, T. G. (1970). The mathematical theory of non-uniform gases: an account of the 
kinetic theory of viscosity, thermal conduction and diffusion in gases: Cambridge university press. 

Chen, Z. Y., Deutch, J., & Meakin, P. (1984). Translational friction coefficient of diffusion limited 
aggregates. The Journal of chemical physics, 80(6), 2982-2983.  

Chen, Z. Y., Weakliem, P. C., & Meakin, P. (1988). Hydrodynamic radii of diffusion‐limited aggregates 
and bond‐percolation clusters. The Journal of chemical physics, 89(9), 5887-5889.  

CHENG, Y.-S. (1991). Drag forces on nonspherical aerosol particles. Chemical Engineering 
Communications, 108(1), 201-223.  

Coots, J., Gandhi, V., Onakoya, T., Chen, X., & Andaluz, C. L. (2020). A parallelized tool to calculate the 
electrical mobility of charged aerosol nanoparticles and ions in the gas phase. Journal of Aerosol 
Science, 105570.  

Corson, J., Mulholland, G. W., & Zachariah, M. R. (2017). Friction factor for aerosol fractal aggregates 
over the entire Knudsen range. Physical Review E, 95(1), 013103.  

Corson, J., Mulholland, G. W., & Zachariah, M. R. (2018). The effect of electric-field-induced alignment 
on the electrical mobility of fractal aggregates. Aerosol Science and Technology, 52(5), 524-535.  

Cunningham, E. (1910). On the velocity of steady fall of spherical particles through fluid medium. 
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and 
Physical Character, 83(563), 357-365.  

Dahneke, B. (1983). Theory of dispersed multiphase flow: Academic Press, New York. 
Dahneke, B. E. (1973a). Slip correction factors for nonspherical bodies—I Introduction and continuum 

flow. Journal of Aerosol Science, 4(2), 139-145.  
Dahneke, B. E. (1973b). Slip correction factors for nonspherical bodies—II free molecule flow. Journal of 

Aerosol Science, 4(2), 147-161.  
Dahneke, B. E. (1973c). Slip correction factors for nonspherical bodies—III the form of the general law. 

Journal of Aerosol Science, 4(2), 163-170.  
Davies, C. (1945). Definitive equations for the fluid resistance of spheres. Proceedings of the Physical 

Society, 57(4), 259.  
Davis, S. G., Joshi, A. V., Wang, H., & Egolfopoulos, F. (2005). An optimized kinetic model of H2/CO 

combustion. Proceedings of the combustion Institute, 30(1), 1283-1292.  
de la Mora, J. F., De Juan, L., Liedtke, K., & Schmidt-Ott, A. (2003). Mass and size determination of 

nanometer particles by means of mobility analysis and focused impaction. Journal of aerosol 
science, 34(1), 79-98.  

DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., & Jimenez, J. L. (2004). Particle morphology 
and density characterization by combined mobility and aerodynamic diameter measurements. Part 
1: Theory. Aerosol Science and Technology, 38(12), 1185-1205.  

Derieux, J. B. (1918). The Use of Mercury Droplets in Millikan's Experiment. Physical Review, 11(3), 203.  
Eglin, J. M. (1923). The coefficients of viscosity and slip of carbon dioxide by the oil drop method and the 

law of motion of an oil drop in carbon dioxide, oxygen, and helium, at low pressures. Physical 
Review, 22(2), 161.  

Ehn, M., Junninen, H., Schobesberger, S., Manninen, H. E., Franchin, A., Sipilä, M., . . . Mirme, A. (2011). 
An instrumental comparison of mobility and mass measurements of atmospheric small ions. 
Aerosol Science and Technology, 45(4), 522-532.  

Einstein, A. (1905). On the motion of small particles suspended in liquids at rest required by the molecular-
kinetic theory of heat. Annalen der physik, 17(549-560), 208.  

Epstein, P. S. (1924). On the resistance experienced by spheres in their motion through gases. Physical 
Review, 23(6), 710.  

Ewing, S. A., Donor, M. T., Wilson, J. W., & Prell, J. S. (2017). Collidoscope: an improved tool for 
computing collisional cross-sections with the trajectory method. Journal of The American Society 
for Mass Spectrometry, 28(4), 587-596.  



Fang, J., Wang, Y., Attoui, M., Chadha, T. S., Ray, J. R., Wang, W.-N., . . . Biswas, P. (2014). Measurement 
of sub-2 nm clusters of pristine and composite metal oxides during nanomaterial synthesis in flame 
aerosol reactors. Analytical chemistry, 86(15), 7523-7529.  

Fernández-García, J., & de la Mora, J. F. (2013). Measuring the effect of ion-induced drift-gas polarization 
on the electrical mobilities of multiply-charged ionic liquid nanodrops in air. Journal of the 
American Society for Mass Spectrometry, 24(12), 1872-1889.  

Fernández-García, J., & de la Mora, J. F. (2014). Electrical mobilities of multiply charged ionic-liquid 
nanodrops in air and carbon dioxide over a wide temperature range: Influence of ion-induced dipole 
interactions. Physical Chemistry Chemical Physics, 16(38), 20500-20513.  

Fernández de la Mora, J. (2002). Free-molecule mobility of polyhedra and other convex hard-bodies. 
Journal of aerosol science, 33(3), 477-489.  

Filippov, A. (2000). Drag and torque on clusters of N arbitrary spheres at low Reynolds number. Journal 
of colloid and interface science, 229(1), 184-195.  

Friedlander, S. K. (2000). Smoke, dust, and haze (Vol. 198): Oxford University Press New York. 
Fuchs, N. (1963). On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. 

Geofisica pura e applicata, 56(1), 185-193.  
Fuchs, N., Stechkina, I., & Starosselskii, V. (1962). On the determination of particle size distribution in 

polydisperse aerosols by the diffusion method. British Journal of Applied Physics, 13(6), 280.  
Fuchs, N. A., Daisley, R., Fuchs, M., Davies, C., & Straumanis, M. (1965). The mechanics of aerosols. 

Physics Today, 18, 73.  
Fuks, N. A., & Sutugin, A. G. (1970). Highly dispersed aerosols.  
Gabelica, V., & Marklund, E. (2018). Fundamentals of ion mobility spectrometry. Current opinion in 

chemical biology, 42, 51-59.  
Gamero-Castano, M., & de la Mora, J. F. (2002). Ion-induced nucleation: Measurement of the effect of 

embryo’s size and charge state on the critical supersaturation. The Journal of chemical physics, 
117(7), 3345-3353.  

Garcia‐Ybarra, P., & Rosner, D. E. (1989). Thermophoretic properties of nonspherical particles and large 
molecules. AIChE Journal, 35(1), 139-147.  

Girshick, S. L., Chiu, C.-P., & McMurry, P. H. (1990). Time-dependent aerosol models and homogeneous 
nucleation rates. Aerosol Science and Technology, 13(4), 465-477.  

Girshick, S. L., & Chiu, C. P. (1990). Kinetic nucleation theory: A new expression for the rate of 
homogeneous nucleation from an ideal supersaturated vapor. The journal of chemical physics, 
93(2), 1273-1277.  

Goldberg, R. (1954). The Slow Flow of a Rarified Gas Past a Spherical Obstacle. New York University, 
Graduate School of Arts and Science.    

Goldstein, R. F. (1985). Macromolecular diffusion constants: a calculational strategy. The Journal of 
chemical physics, 83(5), 2390-2397.  

Gopalakrishnan, R., & Hogan Jr, C. J. (2011). Determination of the transition regime collision kernel from 
mean first passage times. Aerosol Science and Technology, 45(12), 1499-1509.  

Gopalakrishnan, R., & Hogan Jr, C. J. (2012). Coulomb-influenced collisions in aerosols and dusty plasmas. 
Physical Review E, 85(2), 026410.  

Gopalakrishnan, R., Thajudeen, T., & Hogan Jr, C. J. (2011). Collision limited reaction rates for arbitrarily 
shaped particles across the entire diffusive Knudsen number range. The Journal of chemical 
physics, 135(5), 054302.  

Gotts, N. G., von Helden, G., & Bowers, M. T. (1995). Carbon cluster anions: structure and growth from 
C5− to C62−. International journal of mass spectrometry and ion processes, 149, 217-229.  

Happel, J., & Brenner, H. (2012). Low Reynolds number hydrodynamics: with special applications to 
particulate media (Vol. 1): Springer Science & Business Media. 

Henderson, C. B. (1976). Drag coefficients of spheres in continuum and rarefied flows. AIAA journal, 14(6), 
707-708.  



Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of airborne particles: 
John Wiley & Sons. 

Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., & Mayer, M. G. (1964). Molecular theory of gases and 
liquids (Vol. 165): Wiley New York. 

Hirsikko, A. E., Nieminen, T. J., Gagne, S., Lehtipalo, K., Manninen, H. E., Ehn, M. K., . . . McMurry, P. 
(2010). Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and 
Physics Discussions.  

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864.  
Hoppel, W., Frick, G., & Larson, R. (1986). Effect of nonprecipitating clouds on the aerosol size 

distribution in the marine boundary layer. Geophysical Research Letters, 13(2), 125-128.  
Hubbard, J. B., & Douglas, J. F. (1993). Hydrodynamic friction of arbitrarily shaped Brownian particles. 

Physical Review E, 47(5), R2983.  
Ieritano, C., Crouse, J., Campbell, J. L., & Hopkins, W. S. (2019). A parallelized molecular collision cross 

section package with optimized accuracy and efficiency. Analyst, 144(5), 1660-1670.  
Iida, K., Stolzenburg, M., McMurry, P., Dunn, M. J., Smith, J. N., Eisele, F., & Keady, P. (2006). 

Contribution of ion‐induced nucleation to new particle formation: Methodology and its application 
to atmospheric observations in Boulder, Colorado. Journal of Geophysical Research: Atmospheres, 
111(D23).  

Ishida, Y. (1923). Determination of viscosities and of the Stokes-Millikan law constant by the oil-drop 
method. Physical Review, 21(5), 550.  

Ivanov, S., & Yanshin, A. (1980). Forces and moments acting on bodies rotating about a symmetry axis in 
a free molecular flow. Fluid Dynamics, 15(3), 449-453.  

Jung, H., Han, K., Mulholland, G. W., Pui, D. Y., & Kim, J. H. (2013). Effect of the surface energy of 
particle materials on the accommodation of gas molecules to the particle surfaces. Journal of 
aerosol science, 65, 42-48.  

Kihara, T. (1953). The mathematical theory of electrical discharges in gases. B. Velocity-distribution of 
positive ions in a static field. Reviews of Modern Physics, 25(4), 844.  

Kilpatrick, W. (1971). An experimental mass-mobility relation for ions in air at atmospheric pressure. 
Paper presented at the Proc. Annu. Conf. Mass Spectrosc. 19th. 

Kim, H., Kim, H. I., Johnson, P. V., Beegle, L. W., Beauchamp, J., Goddard, W. A., & Kanik, I. (2008). 
Experimental and theoretical investigation into the correlation between mass and ion mobility for 
choline and other ammonium cations in N2. Analytical chemistry, 80(6), 1928-1936.  

Kirkwood, J. G., & Riseman, J. (1948). The intrinsic viscosities and diffusion constants of flexible 
macromolecules in solution. The Journal of Chemical Physics, 16(6), 565-573.  

Knudsen, M. (1950). The Kinetic Theory of Gases, Methuen and Co. and John Wiley and Sons. Inc., New 
York.  

Knudsen, M., & Weber, S. (1911). Luftwiderstand gegen die langsame Bewegung kleiner Kugeln. Annalen 
der Physik, 341(15), 981-994.  

Knutson, E., & Whitby, K. (1975). Aerosol classification by electric mobility: apparatus, theory, and 
applications. Journal of Aerosol Science, 6(6), 443-451.  

Kruger, C. H., & Vincenti, W. (1965). Introduction to physical gas dynamics. John Wlley & Sons.  
Ku, B. K., & de la Mora, J. F. (2009). Relation between electrical mobility, mass, and size for nanodrops 

1–6.5 nm in diameter in air. Aerosol Science and Technology, 43(3), 241-249.  
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., . . . Rantala, P. 

(2013). Direct observations of atmospheric aerosol nucleation. Science, 339(6122), 943-946.  
Kusaka, I., Wang, Z. G., & Seinfeld, J. (1995). Ion‐induced nucleation: A density functional approach. The 

Journal of chemical physics, 102(2), 913-924.  
Laakso, L., Mäkelä, J. M., Pirjola, L., & Kulmala, M. (2002). Model studies on ion‐induced nucleation in 

the atmosphere. Journal of Geophysical Research: Atmospheres, 107(D20), AAC 5-1-AAC 5-19.  
Lai, R., Dodds, E. D., & Li, H. (2018). Molecular dynamics simulation of ion mobility in gases. The Journal 

of chemical physics, 148(6), 064109.  



Landau, L., & Lifshitz, E. (1975). Fluid Mechanics 1st ed (Course of Theoretical Physics vol 6): Pergamon 
Press. 

Langevin, M. (1905). Une formule fondamentale de théorie cinétique. Paper presented at the Annales de 
chimie et de physique, Series. 

Larriba-Andaluz, C., Fernandez-Garcia, J., Ewing, M. A., Hogan, C. J., & Clemmer, D. E. (2015). Gas 
molecule scattering & ion mobility measurements for organic macro-ions in He versus N-2 
environments. Physical Chemistry Chemical Physics, 17(22), 15019-15029.  

Larriba-Andaluz, C., & Hogan, C. (2013). Novel interfaced approach to mobility calculations with diffuse 
scattering and Maxwell rotational distributions for diatomic gases in the free molecular regime. 
Abstracts of Papers of the American Chemical Society, 246.  

Larriba-Andaluz, C., Nahin, M., & Shrivastav, V. (2017). A contribution to the amaranthine quarrel 
between true and average electrical mobility in the free molecular regime. Aerosol Science and 
Technology, 51(7), 887-895.  

Larriba, C., & Fernandez de la Mora, J. (2012). The gas phase structure of coulombically stretched 
polyethylene glycol ions. The Journal of Physical Chemistry B, 116(1), 593-598. 

Larriba, C., & Hogan, C. J. (2013a). Free molecular collision cross section calculation methods for 
nanoparticles and complex ions with energy accommodation. Journal of Computational Physics, 
251, 344-363.  

Larriba, C., & Hogan, C. J. (2013b). Ion Mobilities in Diatomic Gases: Measurement versus Prediction 
with Non-Specular Scattering Models. Journal of Physical Chemistry A, 117(19), 3887-3901. 

Larriba, C., Hogan Jr, C. J., Attoui, M., Borrajo, R., Garcia, J. F., & De La Mora, J. F. (2011). The mobility–
volume relationship below 3.0 nm examined by tandem mobility–mass measurement. Aerosol 
Science and Technology, 45(4), 453-467.  

Lassalle, L. J. (1921). On the motion of a sphere of oil through carbon dioxide and a determination of the 
coefficient of viscosity of that gas by the oil drop method. Physical Review, 17(3), 354. 

Law, W., & Loyalka, S. (1986). Motion of a sphere in a rarefied gas. II. Role of temperature variation in 
the Knudsen layer. The Physics of fluids, 29(11), 3886-3888.  

Lea, K., & Loyalka, S. (1982). Motion of a sphere in a rarefied gas. The Physics of Fluids, 25(9), 1550-
1557.  

Leaptrot, K. L., May, J. C., Dodds, J. N., & McLean, J. A. (2019). Ion mobility conformational lipid atlas 
for high confidence lipidomics. Nature communications, 10(1), 1-9.  

Lee, J. Y. (1914). Determination of the Value of" e," by Millikan'S Method, Using Solid Spheres. Physical 
Review, 4(5), 420.  

Lenard, P., Weick, W., & Mayer, H. F. (1920). Über Elektrizitätsleitung durch freie Elektronen und Träger. 
III: Wanderungsgeschwindigkeit kraftgetriebener Partikel in reibenden Medien, mit Beiträgen von 
W. Weick und Hans Ferd. Mayer. Annalen der Physik, 366(8), 665-741.

Li, C., Singh, N., Andrews, A., Olson, B. A., Schwartzentruber, T. E., & Hogan Jr, C. J. (2019). Mass, 
momentum, and energy transfer in supersonic aerosol deposition processes. International Journal 
of Heat and Mass Transfer, 129, 1161-1171.  

Li, M., Mulholland, G. W., & Zachariah, M. R. (2014). Understanding the mobility of nonspherical particles 
in the free molecular regime. Physical Review E, 89(2), 022112. 

Li, Z.-H., Peng, A.-P., Zhang, H.-X., & Yang, J.-Y. (2015). Rarefied gas flow simulations using high-order 
gas-kinetic unified algorithms for Boltzmann model equations. Progress in Aerospace Sciences, 
74, 81-113.  

Li, Z., & Wang, H. (2003a). Drag force, diffusion coefficient, and electric mobility of small particles. I. 
Theory applicable to the free-molecule regime. Physical Review E, 68(6), 061206. 

Li, Z., & Wang, H. (2003b). Drag force, diffusion coefficient, and electric mobility of small particles. II. 
Application. Physical Review E, 68(6), 061207.  

Li, Z., & Wang, H. (2005). Gas-nanoparticle scattering: A molecular view of momentum accommodation 
function. Physical review letters, 95(1), 014502.  

Liu, C., & Sugimura, T. (1969). Rarefied gas flow over a sphere at low Mach numbers. 



Liu, V. C., Pang, S. C., & Jew, H. (1965). Sphere Drag in Flows of Almost‐Free Molecules. The Physics of 
Fluids, 8(5), 788-796.  

Loth, E. (2008). Compressibility and rarefaction effects on drag of a spherical particle. AIAA journal, 46(9), 
2219-2228.  

Mackowski, D. W. (2006). Monte Carlo simulation of hydrodynamic drag and thermophoresis of fractal 
aggregates of spheres in the free-molecule flow regime. Journal of aerosol science, 37(3), 242-259.  

Mason, E., & Hahn, H.-s. (1972). Ion drift velocities in gaseous mixtures at arbitrary field strengths. 
Physical Review A, 5(1), 438.  

Mason, E., Malinauskas, A., & Evans Iii, R. (1967). Flow and diffusion of gases in porous media. The 
Journal of Chemical Physics, 46(8), 3199-3216.  

Mason, E. A., & Chapman, S. (1962). Motion of small suspended particles in nonuniform gases. The 
Journal of Chemical Physics, 36(3), 627-632.  

Mason, E. A., & McDaniel, E. W. (1988). Transport properties of ions in gases. New York: John Wiley & 
Sons. 

Mason, E. A., & Schamp Jr, H. W. (1958). Mobility of gaseous lons in weak electric fields. Annals of 
physics, 4(3), 233-270.  

Mattauch, J. (1925). Eine experimentelle Ermittlung des Widerstandsgesetzes kleiner Kugeln in Gasen. 
Zeitschrift für Physik, 32(1), 439-472.  

Matz, L. M., Hill, H. H., Beegle, L. W., & Kanik, I. (2002). Investigation of drift gas selectivity in high 
resolution ion mobility spectrometry with mass spectrometry detection. Journal of the American 
Society for Mass Spectrometry, 13(4), 300-307.  

Mazur, P., & van Saarloos, W. (1982). Many-sphere hydrodynamic interactions and mobilities in a 
suspension. Physica A: Statistical Mechanics and its Applications, 115(1-2), 21-57.  

McCoy, B., & Cha, C. (1974). Transport phenomena in the rarefied gas transition regime. Chemical 
Engineering Science, 29(2), 381-388.  

McDaniel, E. W., & Mason, E. A. (1973). Mobility and diffusion of ions in gases.  
McMurry, P. (1983). New particle formation in the presence of an aerosol: Rates, time scales, and sub-0.01 

μm size distributions. Journal of colloid and interface science, 95(1), 72-80.  
Meakin, P., Chen, Z. Y., & Deutch, J. (1985). The translational friction coefficient and time dependent 

cluster size distribution of three dimensional cluster–cluster aggregationa), b). The Journal of 
chemical physics, 82(8), 3786-3789.  

Melas, A. D., Isella, L., Konstandopoulos, A. G., & Drossinos, Y. (2014). Friction coefficient and mobility 
radius of fractal-like aggregates in the transition regime. Aerosol Science and Technology, 48(12), 
1320-1331.  

Melas, A. D., Isella, L., Konstandopoulos, A. G., & Drossinos, Y. (2015). A methodology to calculate the 
friction coefficient in the transition regime: Application to straight chains. Journal of Aerosol 
Science, 82, 40-50.  

Mesleh, M. F., Hunter, J. M., Shvartsburg, A. A., Schatz, G. C., & Jarrold, M. F. (1996). Structural 
information from ion mobility measurements: Effects of the long-range potential. Journal of 
Physical Chemistry, 100(40), 16082-16086.  

Metzig, G. (1984). The motion of small particles in air—a new approach based on thereflection mode'of 
molecules. JAerS, 15(3), 256-258.  

Millikan, R. (1920). The resistance of a gas to the motion of a sphere when the mean free path is large in 
comparison with the diameter of the sphere. Phys. Rev, 15, 544-545.  

Millikan, R. A. (1911). The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction 
of Stokes's Law. Physical Review (Series I), 32(4), 349.  

Millikan, R. A. (1923a). Coefficients of slip in gases and the law of reflection of molecules from the surfaces 
of solids and liquids. Physical review, 21(3), 217.  

Millikan, R. A. (1923b). The general law of fall of a small spherical body through a gas, and its bearing 
upon the nature of molecular reflection from surfaces. Physical Review, 22(1), 1.  

Mönch, G. C. (1933). Zum Widerstandsgesetz kleiner Kugeln in Luft. Zeitschrift für Physik, 34, 77.  



Monchick, L., Pereira, A., & Mason, E. (1965). Heat conductivity of polyatomic and polar gases and gas 
mixtures. The Journal of Chemical Physics, 42(9), 3241-3256.  

Monchick, L., Yun, K., & Mason, E. (1963). Formal kinetic theory of transport phenomena in polyatomic 
gas mixtures. The Journal of Chemical Physics, 39(3), 654-669.  

Ouyang, H., Larriba-Andaluz, C., Oberreit, D. R., & Hogan, C. J. (2013). The Collision Cross Sections of 
Iodide Salt Cluster Ions in Air via Differential Mobility Analysis-Mass Spectrometry. Journal of 
the American Society for Mass Spectrometry, 24(12), 1833-1847.  

Ouyang, H., Larriba-Andaluz, C., Oberreit, D. R., & Hogan Jr, C. J. (2013). The collision cross sections of 
iodide salt cluster ions in air via differential mobility analysis-mass spectrometry. Journal of the 
American Society for Mass Spectrometry, 24(12), 1833-1847.  

Pao, Y. p., & Willis, D. R. (1969). Asymptotic Theory of Nearly Free‐Molecular Flows. The Physics of 
Fluids, 12(2), 435-446.  

Phillips, W. F. (1975). Drag on a small sphere moving through a gas. The Physics of Fluids, 18(9), 1089-
1093.  

Pratsinis, S. E. (1988). Simultaneous nucleation, condensation, and coagulation in aerosol reactors. Journal 
of Colloid and Interface Science, 124(2), 416-427.  

Rader, D. J. (1990). Momentum slip correction factor for small particles in nine common gases. Journal of 
aerosol science, 21(2), 161-168.  

Reuland, P., Felderhof, B., & Jones, R. (1978). Hydrodynamic interaction of two spherically symmetric 
polymers. Physica A: Statistical Mechanics and its Applications, 93(3-4), 465-475.  

Rogak, S. N., & Flagan, R. C. (1992). Coagulation of aerosol agglomerates in the transition regime. Journal 
of Colloid and Interface Science, 151(1), 203-224.  

Rose, M. H. (1964). Drag on an Object in Nearly‐Free Molecular Flow. The Physics of Fluids, 7(8), 1262-
1269.  

Rotne, J., & Prager, S. (1969). Variational treatment of hydrodynamic interaction in polymers. The Journal 
of Chemical Physics, 50(11), 4831-4837.  

Schmitt, K. H. (1959). Untersuchungen an schwebstoffteilchen im temperaturfeld. Zeitschrift für 
Naturforschung A, 14(10), 870-881.  

Shrivastav, V., Nahin, M., Hogan, C. J., & Larriba-Andaluz, C. (2017a). Benchmark comparison for a 
multi-processing ion mobility calculator in the free molecular regime. Journal of the American 
Society for Mass Spectrometry, 28(8), 1540-1551.  

Shrivastav, V., Nahin, M., Hogan, C. J., & Larriba-Andaluz, C. (2017b). Benchmark Comparison for a 
Multi-Processing Ion Mobility Calculator in the Free Molecular Regime. Journal of The American 
Society for Mass Spectrometry, 1-12.  

Shvartsburg, A. A., & Jarrold, M. F. (1996). An exact hard-spheres scattering model for the mobilities of 
polyatomic ions. Chemical physics letters, 261(1-2), 86-91.  

Silvey, O. (1916). The fall of mercury droplets in a viscous medium. Physical Review, 7(1), 106.  
Smoluchowski, M. (1906). The kinetic theory of Brownian molecular motion and suspensions. Ann. Phys, 

21, 756-780.  
Sorensen, C. (2011). The mobility of fractal aggregates: a review. Aerosol Science and Technology, 45(7), 

765-779.
Stacy, L. J. (1923). A determination by the constant deflection method of the value of the coefficient of slip 

for rough and for smooth surfaces in air. Physical Review, 21(3), 239.  
Stokes, G. G. (1851). On the effect of the internal friction of fluids on the motion of pendulums (Vol. 9): 

Pitt Press Cambridge. 
Sugimura, T. (1968). Rarefied Gas Flow over a Sphere.  
Takata, S., Sone, Y., & Aoki, K. (1993). Numerical analysis of a uniform flow of a rarefied gas past a 

sphere on the basis of the Boltzmann equation for hard‐sphere molecules. Physics of Fluids A: 
Fluid Dynamics, 5(3), 716-737.  



Tamadate, T., Orii, T., Higashi, H., Otani, Y., Kumita, M., & Seto, T. (2019). Conformation-dependent 
dynamics of macromolecular ions in the gas phase under an electrostatic field: A molecular 
dynamics simulation. Aerosol Science and Technology, 53(3), 260-267.  

Tammet, H. (1995). Size and mobility of nanometer particles, clusters and ions. Journal of Aerosol Science, 
26(3), 459-475. 

Van Dyke, K. S. (1923). The coefficients of viscosity and of slip of air and of carbon dioxide by the rotating 
cylinder method. Physical Review, 21(3), 250.  

Veshchunov, M. (2010a). A new approach to the Brownian coagulation theory. Journal of aerosol science, 
41(10), 895-910.  

Veshchunov, M. (2010b). On the theory of Brownian coagulation. Journal of Engineering Thermophysics, 
19(2), 62-74.  

Viehland, L. A., & Mason, E. (1975). Gaseous lon mobility in electric fields of arbitrary strength. Annals 
of Physics, 91(2), 499-533.  

Viehland, L. A., & Mason, E. (1978). Gaseous ion mobility and diffusion in electric fields of arbitrary 
strength. Annals of Physics, 110(2), 287-328.  

Viehland, L. A., & Mason, E. A. (1995). Transport Properties of Gaseous-Ions over a Wide Energy-Range 
.4. Atomic Data and Nuclear Data Tables, 60(1), 37-95. doi: DOI 10.1006/adnd.1995.1004 

Von Helden, G., Hsu, M. T., Kemper, P. R., & Bowers, M. T. (1991). Structures of carbon cluster ions from 
3 to 60 atoms: Linears to rings to fullerenes. The journal of chemical physics, 95(5), 3835-3837.  

Waldmann, L. (1959). Über die Kraft eines inhomogenen Gases auf kleine suspendierte Kugeln. Zeitschrift 
für Naturforschung A, 14(7), 589-599.  

Wannier, G. H. (1953). Motion of gaseous ions in strong electric fields. The Bell System Technical Journal, 
32(1), 170-254.  

Wiedensohler, A. (1988). An approximation of the bipolar charge distribution for particles in the submicron 
size range. Journal of aerosol science, 19(3), 387-389.  

Wu, T. Y., Derrick, J., Nahin, M., Chen, X., & Larriba-Andaluz, C. (2018). Optimization of long range 
potential interaction parameters in ion mobility spectrometry. Journal of Chemical Physics, 148(7). 
doi: Artn 074102 10.1063/1.5016170 

Wyttenbach, T., Bleiholder, C., & Bowers, M. T. (2013). Factors contributing to the collision cross section 
of polyatomic ions in the kilodalton to gigadalton range: application to ion mobility measurements. 
Analytical chemistry, 85(4), 2191-2199.  

Yamakawa, H. (1970). Transport properties of polymer chains in dilute solution: hydrodynamic interaction. 
The Journal of Chemical Physics, 53(1), 436-443.  

Zanotto, L., Heerdt, G., Souza, P. C., Araujo, G., & Skaf, M. S. (2018). High performance collision cross 
section calculation—HPCCS. Journal of computational chemistry, 39(21), 1675-1681.  

Zhang, C., Thajudeen, T., Larriba, C., Schwartzentruber, T. E., & Hogan Jr, C. J. (2012). Determination of 
the scalar friction factor for nonspherical particles and aggregates across the entire Knudsen number 
range by direct simulation Monte Carlo (DSMC). Aerosol Science and Technology, 46(10), 1065-
1078.  

Zurita-Gotor, M. (2006). Size-and structure-independence of the thermophoretic transport of an aerosol 
particle for specular boundary conditions in the free molecule regime. Journal of aerosol science, 
37(3), 283-291.  

Zurita-Gotor, M., & Rosner, D. (2002). Effective diameters for collisions of fractal-like aggregates: 
Recommendations for improved aerosol coagulation frequency predictions. Journal of colloid and 
interface science, 255(1), 10-26.  

Zurita, G. M. (2004). Rational numerical simulations in sol reaction engineering. 




