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Open classical and quantum systems with effective parity-time (PT ) symmetry, over the past five years,
have shown tremendous promise for advances in lasers, sensing, and nonreciprocal devices. And yet, how
such effective PT -symmetric non-Hermitian models emerge out of Hermitian quantum mechanics is not
well understood. Here, starting from a fully Hermitian microscopic Hamiltonian description, we show that a
non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot (DQD) circuit-QED setup, which can be
controllably tuned to the PT -symmetric point. This effective Hamiltonian governs the dynamics of two coupled
circuit-QED cavities with a voltage-biased DQD in one of them. Our analysis also reveals the effect of quantum
fluctuations on the PT -symmetric system. The PT transition is, then, observed both in the dynamics of cavity
observables as well as via an input-output experiment. As a simple application of the PT transition in this setup,
we show that loss-induced enhancement of amplification and lasing can be observed in the coupled cavities. By
comparing our results with two conventional local Lindblad equations, we demonstrate the utility and limitations
of the latter. Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system
with a gain medium in the quantum regime, as well as its potential applications for quantum technology.
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I. INTRODUCTION

For an isolated (quantum) system, the Hamiltonian is the
generator of its time evolution. A fundamental postulate of
the quantum theory is that this Hamiltonian is Hermitian. It
ensures real energy eigenvalues and a unitary time evolution
for the system. About two decades ago, Bender and co-
workers discovered a large class of non-Hermitian, continuum
Hamiltonians on an infinite line with purely real spectra [1],
thereby explicitly showing Hermiticity is not necessary for
real energy eigenvalues. The key feature shared by all of these
Hamiltonians is an antilinear symmetry; i.e., they are invariant
under the combined operations of parity (P) and time reversal
(T ). This antilinear symmetry, [PT ,H] = 0, ensures that the
eigenvalues of the Hamiltonian H are either purely real or
occur in complex conjugate pairs [2,3]. When the eigenvalue
λ is real, the eigenstate |ψλ〉 is also a simultaneous eigenstate
of the PT operator with eigenvalue one. When λ is complex,
the PT operator maps the eigenstate onto the eigenstate for
its complex conjugate λ∗, i.e., PT |ψλ〉 = |ψ∗

λ 〉. Therefore,
a PT -symmetric Hamiltonian spectrum shows a transition,
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known as the PT -symmetry breaking transition, when it
changes from purely real to complex. In addition to the eigen-
values, corresponding eigenstates also become degenerate at
the PT transition point, and therefore the non-Hermitian
Hamiltonian is defective at this exceptional point [4,5]. Over
the years, it has become clear that PT -symmetric Hamiltoni-
ans faithfully model open, classical, zero-temperature systems
with balanced, spatially separated gain and loss; the PT -
symmetric phase with real eigenvalues thus represents an
open, quasiequilibrium system, whereas the PT -broken phase
with amplifying and decaying eigenvectors represents a sys-
tem far removed from equilibrium.

The subject of non-Hermitian, PT -symmetric Hamiltoni-
ans and their exceptional point degeneracies has evolved into
a rich and active field. In the classical domain, effective non-
Hermitian systems have been theoretically and experimentally
studied in waveguides [6,7], fiber loops [8], resonators [9,10],
electrical circuits [11–15], mechanical oscillators [16,17],
viscous fluids [18], magnonics [19–21], acoustics [22–24],
optomechanics [25,26], and optical lattices [27]. Occurrence
of exceptional points has been used in device applications
like sensing [23,24,28–30], single-mode lasing [31], uni-
directional invisibility [32], loss-induced transparency [33],
loss-induced lasing [34], etc. (see recent reviews [35–39] for
further details and references). A wide variety of physically
motivated one-dimensional (for example, [40–49]), and two-
dimensional (for example, [50–54]) condensed-matter lattice
models have also been studied. From a fundamental per-
spective, exploration of topological aspects of non-Hermitian
systems has been gaining ground both theoretically (for ex-
ample, [25,40,45,53–57]) and experimentally [13,27,58–60].

2643-1564/2020/2(4)/043075(24) 043075-1 Published by the American Physical Society

https://orcid.org/0000-0002-6204-7280
https://orcid.org/0000-0002-3222-1436
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043075&domain=pdf&date_stamp=2021-07-29
https://doi.org/10.1103/PhysRevResearch.2.043075
https://creativecommons.org/licenses/by/4.0/


PURKAYASTHA, KULKARNI, AND JOGLEKAR PHYSICAL REVIEW RESEARCH 2, 043075 (2020)

In the quantum domain, realization of systems governed
by effective non-Hermitian Hamiltonians and exploration of
the effect of exceptional points has only been possible very
recently. Quantum non-Hermitian systems have been exper-
imentally realized in linear optical circuits [60,61], quantum
photonics [62], ultracold atoms [63,64], a diamond NV center
[65], superconducting circuits [66,67], atom-light interacting
systems [68], and a lossy quantum point contact [69]. How-
ever, all the realizations in the quantum regime are in cases
where the overall system is dissipative. In particular, none of
the realizations feature a gain medium. To our knowledge,
transitions across exceptional points for balanced-gain-loss
systems, featuring a gain medium in the quantum regime, have
not been realized yet, although there has been a theoretical
proposal [83].

The dynamics generated by a non-Hermitian Hamiltonian
is not unitary, and such dynamics can result from an open
quantum system coupled to one or more environments (baths).
Non-Hermitian Hamiltonians arising out of phenomenolog-
ical Lindblad equations have been theoretically explored in
several recent works (for example, [84–88]). However, a com-
plete microscopic theory of an open quantum system showing
the emergence of a non-Hermitian Hamiltonian with a PT
transition starting from a fully Hermitian Hamiltonian de-
scription of a system coupled to multiple baths has not yet
been explored. In microscopic theories of open quantum sys-
tems, the full setup of system + baths is taken to be an isolated
system described by a Hermitian Hamiltonian. Then the evo-
lution equation for the system degrees of freedom is obtained
by integrating out the bath degrees of freedom. The resulting
equation describes the nonunitary dynamics of the system. In
the usual cases with a thermal bath, such an analysis leads to
a dissipative (lossy) system, but, by clever bath engineering,
it can also lead to a gain [71–73,77,89–95]. However, due
to the unitary nature of the underlying dynamics of the full
setup, each bath, in addition to providing loss or gain, gener-
ates a noise that is consistent with the fluctuation-dissipation
theorem [15,96–98]. In the low-temperature limit, the noise
generated by the lossy bath can be ignored depending on sys-
tem parameters and timescales, but due to the quantum limits
on linear amplifiers [96,97], a gain bath leads to noise down to
zero temperature. Therefore, whether truly balanced-gain-loss
PT -symmetric quantum systems are possible, at the field-
operator level [99], at the level of bosonic-field expectation
values, or at the level of expectation values of bilinears of
bosonic fields, is an open question. In particular, a funda-
mental analysis of a quantum system with gain and loss at
low temperatures must take into account quantum fluctuations
[100].

In this work, starting from a completely microscopic Her-
mitian Hamiltonian description, we theoretically show that a
state-of-the-art open quantum system can be tuned to observe
the PT transition. The setup we consider consists of a solid-
state double quantum dot (DQD) connected to two coupled
circuit-QED (cQED) cavities. In recent years, a DQD in a
cQED cavity has been well characterized both theoretically
and experimentally [75–77,89,92,93,101–103]. It is known
that when the DQD is voltage biased via electronic leads under
suitable conditions, it can be population inverted and can act
as a widely controllable gain medium [70,72,93–95]. This has

led to the realization of an on-chip laser in the microwave
regime [71,73].

In our analysis, the DQD is modeled by two fermionic
sites, with hopping between them and strong repulsive inter-
actions. The hopping strength and the on-site energies of the
fermionic sites can be tuned widely in state-of-the-art real-
izations. Each fermionic site is also connected to an external
fermionic lead (bath), which allows us to apply a voltage bias
across the DQD. Further, to model the DQD accurately, one
should consider its coupling to the phonons in the substrate.
We show here that a setup of two coupled cavities with a DQD
in one of them can be tuned so that time evolution of the
cavity operators is governed by an effective PT -symmetric
Hamiltonian. This happens when the effective gain from the
DQD balances the cavity losses. However, the quantum fluc-
tuations of the DQD leads to an additional noise term in the
effective equations of motion for the two coupled cavities,
which we derive from the microscopic model of the entire
setup. Thus, in this work, we propose an on-chip realization
of a quantum PT -symmetric system in which the effects of
quantum fluctuations of the gain medium can be controllably
studied.

Our proposal is very different from a recent proposal
for the realization of a PT -symmetric system in the cQED
system by Quijandría et al. [83]. The latter considered two
cQED cavities, each coupled to a qubit whose frequency
is modulated via a coherent drive, and showed that the
expectation values of the cavity field operators, in an ap-
propriate parameter regime, are governed by an effective
PT -symmetric Hamiltonian. The DQD voltage bias in our
model acts as an incoherent drive, and our analysis extends
to equations of motion for the cavity field operators and
their bilinear combinations. This allows us to study the ef-
fect of quantum fluctuations on the cavities, which was not
explored in Ref. [83]. As a simple application of the PT
transition in our setup, we further show the possibility of
loss-induced enhancement of amplification and lasing. We
further show loss-induced increase in average photon number
in absence of any coherent drive in the cavities. This particular
feature requires a gain medium with quantum fluctuations,
and cannot be observed either in the classical systems with
negligible fluctuations from the gain medium, or in the
existing dissipative quantum system experiments without a
gain medium discussed previously. Finally, we compare our
results with more conventional local Lindblad approaches,
highlighting universal features and the importance of the
microscopic understanding, as well as pointing to the mini-
mal Lindblad equation required to describe realistic quantum
PT -symmetric systems reasonably accurately in a parameter
regime.

The paper is arranged as follows. In Sec. II, we describe
the microscopic model of the setup and give the parameter
regime where it should be operated. In Sec. III we obtain
the effective equations of motion for the field operators of
the coupled cavities, and show how effective PT symmetry
can be obtained. In Sec. IV we explore the PT -symmetric
dynamics of the coupled cavities and the effect of quantum
fluctuations when the cavity losses are balanced by the gain
from the DQD. In Sec. V we show that effects of a PT tran-
sition can be observed even when the losses of the cavities are
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FIG. 1. (a) Schematic diagram of the setup we consider. (b) The equivalent circuit diagram. The setup consists of two cavities each of
frequency ω0 and losses κ1,2, connected to each other with coupling λ. This is shown in (b) as two resonators of capacitance Cc and inductance
Lc, which are inductively coupled to each other via Lλ and capacitively coupled to sources of loss via C1 and C2. Additionally a DQD is
located in the left cavity. The DQD is modeled by two fermionic sites (charge islands LD and RD in the circuit diagram) with a detuning ε

between the on-site energies (controlled by the gate voltages VLP, VRP, VL , and VR), a hopping between the sites with strength tc (controlled
by the gate voltage VC), and a strong repulsive interaction of strength V between the sites. It is coupled to source (S) and drain (D) fermionic
leads with coupling � (controlled by VLP, VRP) via which a source-drain voltage bias of μ1 − μ2 is applied across it. The DQD is coupled with
the left cavity via dipole coupling of strength g0 (shown in the circuit diagram by capacitive coupling Cg). To model experimental conditions
accurately, we also consider the coupling of the DQD to the substrate phonons of spectral density Jph. The voltage-biased DQD is configured
to be population inverted, making it an effective gain medium [70–73]. We show that ε and tc can be tuned so that the net gain in the left
cavity is equal to the loss in the right cavity. Under this condition, the dynamics of the two cavities is governed by an effective PT -symmetric
Hamiltonian. We further explore signatures of exceptional points on tuning the coupling between cavities λ and the loss at the right cavity κ2.
This setup can be realized in state-of-the-art circuit QED platforms [74–78]. In situ tuning of coupling between cQED resonators, as well as
of the resonator losses, has been reported previously in experiments [67,79–82].

more than the gain from the DQD. We explore input-output
experiments, effects of quantum fluctuations on them, as well
as loss-induced lasing and enhancement of amplification in
this section. In Sec. VI we compare our results with more
conventional local Lindblad approaches. In Sec. VII we sum-
marize our main results and give the consequences of our
work and future directions. Certain details of the analytical
calculations are delegated to the appendices.

II. MICROSCOPIC HAMILTONIAN FOR THE DQD
COUPLED TO CIRCUIT-QED CAVITIES

The schematic of the setup we consider, along with the
circuit diagram, is given in Fig. 1. It consists of two, identical
coupled cavities, with a DQD in the left one. The cavity with
the DQD is an existing experimental setup explored in a series
of recent experiments [70–73,77,78,102–105]. The parame-
ters of the DQD are widely tunable in experiment and, under
a voltage bias, the DQD can be population inverted, thereby
making it a tunable gain medium for the cavity. The main idea
of this paper follows from the observation that when coupled
to another cavity, the gain from the DQD can be tuned, within
current state-of-the-art experimental parameters, to exactly
match the cavity losses, thereby realizing a PT -symmetric
system.

We consider a completely microscopic model of the en-
tire setup. The main parts of the setup consist of the DQD
and the two cavities. These are described by the following

Hamiltonians:

ĤDQD = ε

2
(ĉ†

1ĉ1 − ĉ†
2ĉ2) + tc(ĉ†

1ĉ2 + ĉ†
2ĉ1) + V ĉ†

1ĉ1ĉ†
2ĉ2,

ĤC = ω0(b̂†
1b̂1 + b̂†

2b̂2) + λ(b̂†
1b̂2 + b̂†

2b̂1),

ĤDQD-C = g0�(t )(ĉ†
1ĉ1 − ĉ†

2ĉ2)(b̂†
1 + b̂1), (1)

where �(t ) is the Heaviside function. Here, ĉ†
1,2 denote

fermionic creation operators for sites 1 and 2 that model the
DQD, ε is the energy difference between the two sites, tc is the
hopping amplitude between the two sites, and V > 0 denotes
the capacitive charging energy between the two sites. b̂1,2 rep-
resent the bosonic creation operators for the two cavities, each
with frequency ω0, that are coupled via a number-conserving
hopping process with amplitude λ. Closely following the ex-
perimental setups, the DQD is dipole-coupled to the (first)
cavity with strength g0 when the cavity is switched on at time
t = 0. Thus, Eq. (1) captures the microscopic model of the
DQD and the two cavities.

Each of the three main components (two cavities and one
DQD) is connected to multiple baths. The two bosonic baths,
one for each cavity, are described by the Hamiltonian

ĤB =
∞∑

s=1

(	s1B̂†
s1B̂s1 + 	s2B̂†

s2B̂s2), (2)

where B̂†
s1 (B̂†

s2) is the bosonic creation operator of the sth
mode of the bath attached to the first (second) cavity, and 	s1

(	s2) is the energy that mode. The baths are coupled to the
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respective cavities as

ĤC-B =
2∑


=1

∞∑
s=1

κs
(B̂†
s
b̂
 + b̂†


B̂s
), (3)

where κs
 is the coupling of the sth mode of the bath attached
to the 
th cavity. Each fermionic site of the DQD is connected
to its respective lead, are described by the Hamiltonian

ĤL =
∞∑

s=1

(Es1â†
s1âs1 + Es2â†

s2âs2), (4)

where â†
s1 (â†

s2) is the fermionic creation operator of the sth
mode of the source (drain) lead attached to the first (second)
dot, and Es1 (Es2) is the energy of that mode. The fermionic
leads are bilinearly coupled to the DQD via

ĤDQD-L =
2∑


=1

∞∑
s=1

�s
(â†
s
ĉ
 + ĉ†


 âs
), (5)

where �s
 is its coupling of the sth mode of the fermionic
lead attached to the DQD site 
. To model experimental setup
consistently, we also have to consider that the DQD is dipole-
coupled to a phononic bath in the substrate on which it is
located [102]. The phonon bath and the coupling Hamiltoni-
ans are given by

Ĥph =
∞∑

s=1

	ph
s B̂ph†

s B̂ph
s ,

ĤDQD-ph = (ĉ†
1ĉ1 − ĉ†

2ĉ2)
∞∑

s=1

λph
s

(
B̂ph†

s + B̂ph
s

)
, (6)

where B̂ph
s is the phonon annihilation operator for the sth mode

of the phononic bath, and λ
ph
s is its coupling to the DQD

dipole operator. While this piece of the microscopic Hamil-
tonian is not necessary for the physics that we will discuss,
it is unavoidable, and relevant, in some of the state-of-the-art
experimental setups [70–73,102,103,105].

The two bosonic baths for the two cavities, the two
fermionic leads, and the phonon bath are characterized by
their frequency-dependent spectral functions,

J
(ω) =
∞∑

s=1

|κs
|2δ(ω − 	s
) � κ
, ∀ω � 0,

J
f

 (ω) =

∞∑
s=1

|�s
|2δ(ω − Es
) = �,

Jph(ω) =
∞∑

s=1

∣∣λph
s

∣∣2
δ
(
ω − 	ph

s

)
= γbω[1 − sinc(ω/ωc)]e−ω2/2ω2

max . (7)

Here J
(ω) is the spectral function of the bosonic bath coupled
to 
th cavity, J f


 (ω) is the spectral function of the fermionic
lead coupled to 
th site in the DQD, and Jph(ω) is the spectral
function of the phononic bath. For simplicity, we consider
both fermionic leads to be in the “wide-bath limit”; that gives
rise to a constant spectral function denoted by �. The spectral
functions for the bosonic baths of the two cavities give rise to

individual decay rates κ
. The effect of the substrate phonons
on the DQD, as well as the spectral function for the phonons,
can vary depending on the platform. They have been well
characterized in literature both theoretically [102,106,107]
and experimentally [103,108]. The spectral function Jph(ω)
in Eq. (7) is known to be a good description for gate-defined
DQDs on a GaAs substrate [102,106]. The frequency ωc

is given by ωc = cn/d , where cn is the speed of sound in
GaAs and d is the distance between the two quantum dots.
The frequency ωmax is the upper cutoff that provides spectral
damping at frequencies much higher than the repetition rate
of phonon travel between the two dots. We take ωmax = 10ωc.
For a DQD with GaAs substrate, cn ≈ 3 × 104 m/s, and
d ≈ 150 nm, this gives ωc = 20 GHz. The dimensionless
parameter γb controls the coupling between the DQD and
the phonons. We would like to mention that although not
required, microscopic models giving rise to all the spectral
functions given in Eq. (7) can be written down assuming finite
but large hard cutoffs in frequency [109].

The initial state of the whole setup is the direct product of
arbitrary states of the DQD and the cavities, and equilibrium
thermal states of the baths with their respective temperatures
and chemical potentials. We consider all the baths at the same
inverse temperature β, but the chemical potentials for the two
fermionic leads are given by μ1 	= μ2 (see Appendix A). This
creates a voltage bias across the DQD, thereby driving the
DQD to a nonequilibrium steady state. We consider that the
connection between the DQD, the fermionic leads, and the
phononic substrate is switched on at a time t = t0 
 0. On
the other hand, the two cavities are connected to the DQD and
the bosonic baths at time t = 0. Further, as we discuss below,
we make assumptions on the various energy scales appearing
in the full setup.

The DQD Hamiltonian is diagonalized by rotating to a new
basis,

Â
 =
∑

′

R†
y (θ )

′ ĉ
′ , Ry(θ ) = exp(−iθσy/2),

θ = arctan(2tc/ε), (8)

where σy is the Pauli y matrix. In the rotated basis, the DQD
Hamiltonian becomes

ĤDQD = ωq

2
(N̂1 − N̂2) + V N̂1N̂2, (9)

where ωq = √
ε2 + 4t2

c and N̂
 = Â†

Â
 (
 = 1, 2). We look

at the parameter regime that ensures a resonant DQD at low
temperature,

ω0 = ωq, βω0 � 1, (10)

a weak cavity-DQD coupling, i.e.,

g0
√

nphotons � �, (11)

where nphotons is the average number of photons in the cavity
coupled to the DQD, and

ω0/2 
 −μ2, μ1 
 V,

κ1, κ2 
 λ 
 � 
 ω0. (12)

In experiments, the widely controllable parameters of the
DQD are ε and tc, which thereby allow us to tune ωq and θ .
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Thus, for a ω0, the resonant condition ω0 = ωq can be satisfied
by tuning ε and tc. Under this condition, since the DQD-cavity
coupling is weak, we can simplify the dipole coupling Hamil-
tonian through the rotating wave approximation to

ĤDQD-C = −g�(t )(Â†
2Â1b̂†

1 + Â†
1Â2b̂1), (13)

where the effective coupling is given by

g = g0(2tc/ω0) = g0 sin θ. (14)

It is possible to tune θ while maintaining the DQD-cavity
resonance condition ω0 = ωq by varying ε and tc along the
ellipse defined by ω2

0 = ε2 + 4t2
c . As we will see below, this

freedom allows us to tune the system such that the effective
dynamics of the two cavities is described by a PT -symmetric
Hamiltonian.

III. EFFECTIVE HAMILTONIAN AND EMERGENT
PT SYMMETRY

We can obtain effective equations of motion for the bosonic
cavity operators by integrating out the rest of the setup (see
Appendix A). When we are in the appropriate parameter
regime [see Eqs. (11), (12)], this leads to

i
d

dt

(
b̂1

b̂2

)
= Heff

(
b̂1

b̂2

)
+

(
ξ̂A

0

)
− E0e−iωd t

(0
1

)
, (15)

where, for future reference, we have additionally added a
coherent drive of strength E0 and frequency ωd in the cavity
without the DQD. The 2 × 2 non-Hermitian Hamiltonian is
given by

Heff =
[
ω0 − i κ1

2 + i�δ λ(1 − δ)
λ ω0 − i κ2

2

]
, (16)

where

δ = g2�Nss/�
2, (17)

δ < 1 by the choice of our parameters and �Nss = 〈N̂1〉ss −
〈N̂2〉ss, is the steady-state population inversion in the DQD in
the absence of cavities. The operator ξ̂A(t ) embodies the noise
resulting from the presence of the DQD, in accordance with
the fluctuation-dissipation theorem. It has a Lorentzian power
spectrum,

〈ξ̂ †
A (t )ξ̂A(t ′)〉 �

∫ ∞

−∞

dω

2π
P(ω)eiω(t−t ′ ),

P(ω) = g2〈N̂1〉ss
2�

(ω − ω0)2 + �2
, (18)

and a mean value, 〈ξ̂A(t )〉 = g〈Â†
2Â1〉ss, where 〈Â†

2Â1〉ss is
the steady-state coherence of the DQD in absence of the
two cavities. Note that the properties of the noise operator
are not phenomenological, but are microscopically derived
from our model. The noise is not delta-correlated in time,
as sometimes assumed in semiclassical approaches (for ex-
ample, in Ref. [100]). Under our assumptions on energy
scales [Eqs. (11), (12)] 〈Â†

2Â1〉ss ∝ �, so that g〈Â†
2Â1〉ss/ω0 �

(�/ω0)2 
 1. In this condition, it can be checked from
Eq. (16) that 〈ξ̂A(t )〉 has a negligible effect on the dynamics

of the cavities as long as
√

nphotons � g〈Â†
2Â1〉ss/ω0. (19)

So, assuming this, we can set

〈ξ̂A(t )〉 ≈ 0. (20)

In all of the equations above, the expectation value represents
quantum statistical average, i.e., 〈O〉 = Tr(ρtotO), where ρtot

is the density matrix for the initial state of the whole setup
(see Appendix A). We have also numerically checked that
Eq. (20) holds in our chosen parameter regime. On the other
hand, as we will see, 〈ξ̂ †

A (t )ξ̂A(t ′)〉, which embodies the quan-
tum fluctuations due to the DQD, cannot be neglected. The
bosonic baths that provide dissipation for the two cavities
also lead to thermal noise. However, it can be shown that
at low temperatures, i.e., for βω0 � 1, their contribution is
negligible compared the fluctuations coming from the DQD
(see Appendix A 5). So, we have ignored them in Eq. (15).

We note that Heff is non-Hermitian in two ways. First,
its diagonal elements have imaginary parts that represent the
coupling-to-the-bosonic bath losses κ
 and the gain �δ for the
first cavity which houses the DQD. Second, the population
inversion in the DQD has suppressed the hopping from the
second cavity to the first one, leading to real, asymmetric
off-diagonal elements. The presence of two non-Hermiticities
makes Heff different from the most commonly studied 2 ×
2 PT -symmetric Hamiltonians. It is straightforward to obtain
the quadratic characteristic equation for Heff and check that it
is purely real if and only if

κ1 + κ2 = 2�δ = 2(g0 sin θ )2�Nss/� (21)

(balanced gain-loss).

Equation (21) ensures that the eigenvalues of Heff are either
purely real or occur in complex conjugate pairs, and thus
endows Heff with some antilinear symmetry. With this con-
straint, the eigenvalues �± of the effective, non-Hermitian
Hamiltonian, Eq. (16), are given by

�± = ω0 ±
√

λ2(1 − δ) −
(κ2

2

)2
(22)

(for balanced gain-loss),

with an exceptional point degeneracy occurring at

λEP = κ2/(2
√

1 − δ) (for balanced gain-loss). (23)

When the gain and loss cavities are strongly coupled, λ � λEP,
the system is in the PT -symmetric phase (real spectrum);
a weak gain-loss coupling, λ < λEP, drives the system into
the PT -broken region (complex conjugate spectrum). These
properties are reminiscent of the standard PT transition; how-
ever, Heff is not parity-time symmetric when parity exchanges
the cavity labels 1 ↔ 2, and time reversal is just the complex
conjugation operation K. To obtain the corresponding antilin-
ear PT operator for this model, we express Heff as a linear
combination of identity and Pauli matrix components,

Heff = ω012 + λ

2
(2 − δ)σx − i

λδ

2
σy + i

κ2

2
σz. (24)

It follows from Eq. (24) that the Hamiltonian can be cast into
the traditional form with a rotation Rx(φ) = exp(−iφσx/2),
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TABLE I. This table gives our chosen parameters for nu-
merical calculations. These values fall within the window of
parameters in state-of-the-art experiments on DQD-cQED systems
[72,77,78,102,103,105].

Parameter Value

ω0 8 GHz
g0 60 MHz
� 90 MHz
μ1 = −μ2 30 GHz
β 10 GHz−1

where φ = arctan(λδ/2κ2). In the transformed basis, the
Hamiltonian H ′ = R†

x (φ)HeffRx(φ) becomes

H ′ = ω012 + λ(1 − δ/2)σx + i
κ2

2
sec(φ)σ ′

z . (25)

The traditional Hamiltonian H ′ is symmetric under
interchange of cavity labels (parity) and complex conjugation
operation K (time reversal). Due to the antilinear nature of the
latter, though, in the original basis, the PT operator becomes

PT = Rx(φ)[σxK]R†
x (φ) = Rx(2φ)σxK. (26)

It is straightforward to check that the antilinear operator
in Eq. (26) commutes with the non-Hermitian Hamiltonian
Heff . Thus, the DQD circuit-QED setup provides a nontrivial
example of the antilinear symmetry that arises from the
steady-state population inversion, δ = 2g2�Nss/�

2 	= 0.
Having established the antilinear symmetry of the
non-Hermitian Hamiltonian Heff under the constraint of
Eq. (21), we now show that the constraint can be satisfied.
Since the steady-state population inversion �Nss(θ ) depends
on the DQD parameters, we recast Eq. (21) as

�Nss sin2 θ = �(κ1 + κ2)

2g2
0

, (27)

where the θ -dependent quantities are only present on the
left-hand side of the equation. We consider a realistic set of
parameters for the system (Table I), and plot both sides of
Eq. (27) as a function of θ . Figure 2 shows the θ dependence
of two sides of Eq. (27), with the flat line indicating the
right-hand side. The DQD on-site energy ε and hopping
amplitude tc necessary to satisfy Eq. (27) and make the setup
PT symmetric are shown in the same figure. These values are
within the reach of state-of-the-art experiments. For a given
value of κ2, there can be two values of ε and tc which satisfy
the balanced-gain-loss condition. It is interesting to note that
these two conditions can have widely different values of
population inversion. For our choice of parameters, we have

�Nss = 0.846 for ε = 7.760 GHz, tc = 0.973 GHz,

�Nss = 0.087 for ε = 5.208 GHz, tc = 3.036 GHz.
(28)

In particular, the second condition has a very low population
inversion. Because of the sin2 θ factor, both these values
of population inversion give the same value of δ, thereby
leading to the same Heff . However, the strength of quantum
fluctuations of the gain medium depends on g2〈N̂1〉ss [see
Eq. (18)], and will be different in the two cases.

0.00 0.25 0.50

θ/(2π)

−0.6

−0.4

−0.2

0.0

0.2

Δ
N

ss
si

n
2
(θ

)

PT -symmetric points:

ε (GHz) tc (GHz)

7.760 0.973

5.208 3.036

FIG. 2. Numerically obtained �Nss sin2 θ as a function of θ ob-
tained by varying ε and tc while maintaining the resonance condition
for the DQD, i.e., ωq = ω0. Here, we have chosen κ1 = κ2 = 2 MHz.
The other system parameters are given in Table I. The horizontal line
shows the right-hand side of Eq. (27). The dynamics of the coupled
cavities is governed by an effective PT -symmetric Hamiltonian
at the intersection points of the curve and the line. Corresponding
values of ε and tc are listed in the table given here. These values fall
within accessible parameter values in state-of-the-art DQD-cQED
experiments [72,77,78,102,103,105].

If Eq. (21) is not satisfied, Heff is no longer PT symmetric
and both of its eigenvalues are shifted by an imaginary con-
stant,

�± = ω0 − i
κ1 + κ2 − 2�δ

2

±
√

λ2(1 − δ) −
(

κ2 − κ1 + 2�δ

4

)2

. (29)

However, the exceptional point degeneracy at

λEP = |κ2 − κ1 + 2�δ|
4
√

1 − δ
(30)

is still present, and the transition across it is manifest by the
two nonorthogonal eigenmodes of Heff having different decay
(or amplification) rates at weak coupling λ < λEP, and a com-
mon decay (or amplification) rate at strong coupling, λ > λEP

[12,63]. Thus, the key features of the PT -symmetry break-
ing transition, including the coalescence of the eigenmodes,
survives even if the constraint in Eq. (21) is not fulfilled [66].

Lastly, we discuss the limitations of our analysis. Our ef-
fective Hamiltonian Heff is obtained via a linearized theory
that works only when the number of photons in the two
cavities are not too large. Whenever at least one the eigen-
values of Heff has a positive imaginary part, the linearized
theory predicts an exponential growth for the photon num-
ber associated with that eigenmode. This can happen either
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because Heff is PT symmetric and λ > λEP, or because the
net gain resulting from the DQD in the first cavity exceeds the
loss in the second cavity, i.e., 2�δ > κ1 + κ2. Either of these
scenarios essentially points to breakdown of the linearized
theory. Nevertheless, their identification is important because
such behavior in the linearized theory points to onset of lasing
in the actual experiment. Though not necessary, a PT tran-
sition is thus intimately linked with onset or suppression of
lasing in the two coupled cavities.

In the following, we will be looking at the dynamics of ex-
pectation values of the field operators or complex quadratures
〈b̂
(t )〉 (
 = 1, 2), and those of the cavity-field bilinears like
cavity photon numbers 〈n̂
(t )〉 = 〈b̂†


(t )b̂
(t )〉, and the inter-
cavity photon current I (t ) = λ Im〈b̂†

2(t )b̂1(t )〉. The dynamics
of these quantities can be obtained from Eq. (15). The formal
solution of Eq. (15) is given by(

b̂1(t )
b̂2(t )

)
= e−iHeff t

(
b̂1(0)
b̂2(0)

)

− i
∫ t

0
dt ′e−iHeff (t−t ′ )ξ̂A(t ′)

(1
0

)

+ E0e−iωd t (1 − e−i(Heff −ωdI )t )

Heff − ωdI
(0

1

)
, (31)

where I is the 2 × 2 identity matrix. The dynamics of the
complex quadratures are obtained by taking expectation value
of the above equation. The dynamics of the cavity bilinears are
obtained from dynamics of the 2 × 2 equal-time correlation
matrix, whose elements are given by

C

′ (t ) = 〈b̂†

(t )b̂
′ (t )〉. (32)

The expression for C(t ) is obtained by taking the transpose
of Eq. (31) and multiplying on the left by its Hermitian
conjugate. Assuming that the initial state of the cavities is a
coherent state, which satisfies 〈b̂†


(0)b̂
′ (0)〉 = 〈b̂†

(0)〉〈b̂
′ (0)〉,

the expression for the correlation matrix can be written as

C(t ) = C(cl)(t )

+
∫ t

0
dt ′

∫ t

0
dt ′′e+iH∗

eff (t−t ′ )M(t ′, t ′′)e−iHT
eff (t−t ′′ ), (33)

where H∗
eff denotes the complex conjugate of Heff , HT

eff de-
notes the transpose of Heff , C(cl)(t ) is a 2 × 2 matrix which
contains the uncorrelated part, C(cl)



′ (t ) = 〈b̂†

(t )〉〈b̂
′ (t )〉, and

M(t ′, t ′′) is a 2 × 2 matrix whose only nonzero element is
given by the Fourier transform of the noise power spectrum,

M11(t ′, t ′′) =
∫ ∞

−∞

dω

2π
P(ω)eiω(t−t ′ ). (34)

In absence of quantum fluctuations, we would have C(t ) =
C(cl)(t ), which would be consistent with the classical predic-
tions. Thus the connected part of the correlation functions,
given by C(t ) − C(cl)(t ), embodies the quantum fluctuations.
We see from Eq. (18) that P(ω) ∝ 〈N̂1〉ss, which is the steady-
state occupation of the higher energy mode of the DQD. If
the DQD is configured to act as a gain medium, it must be
population inverted, which means, 〈N̂1〉ss ∼ O(1). Thus, the
quantum fluctuations cannot be neglected and, as we will
see below, have nontrivial effects on dynamics of cavity-field
bilinears.

0 1 2 3 4 5

t/T

0

1

2

3

(a)

|〈b̂1(t)〉|2
|〈b̂2(t)〉|2

〈n̂1(t)〉 − |〈b̂1(t)〉|2
〈n̂2(t)〉 − |〈b̂2(t)〉|2

0 1 2 3 4 5

t/T

0.0

0.5

1.0

I
(t

)/
λ

(b)

FIG. 3. Oscillatory dynamics of the cavity operator expectation
values in the PT -symmetric regime (λ > λEP). The initial condition
is given in Eq. (36). (a) The quadrature magnitudes show oscillations
with period T� = 2π/(�+ − �−). On the other hand, quantum fluc-
tuations, determined by diagonal elements of the matrix C(t ), show
a linear growth with superimposed oscillations with the same period.
(b) Dynamics of the photonic current I (t ), determined by the off-
diagonal elements of the matrix C(t ), also shows linear growth with
superimposed oscillations. These results are for α = 1, λ = 10 MHz,
and other parameters as in Table I and Eq. (35). The corresponding
oscillation period is T� = 320 ns.

IV. DYNAMICS OF THE BALANCED
GAIN-LOSS CAVITIES

In this section, we look at the the dynamics of cavity
observables when the setup is tuned so that the Hamiltonian
Heff is PT symmetric, i.e., Eq. (21) is satisfied. We ensure
this by fixing

κ1 = κ2 = 2 MHz, ε = 7.760 GHz, tc = 0.973 GHz, (35)

along with the parameters in Table I. We assume that initially
the second, lossy cavity is empty and the first, DQD-gain
cavity is in a coherent state,

〈b̂1(0)〉 = α,

〈b̂†
1(0)b̂1(0)〉 = α2. (36)

We further assume in this section that there is no addi-
tional coherent drive, i.e., E0 = 0. Satisfying Eq. (19) under
these conditions requires α � g〈Â†

2Â1〉ss/ω0 ∼ 10−4 for our
choice of parameters. Under these conditions, we calculate
the dynamics complex quadratures, cavity photon numbers
〈n̂
(t )〉 = 〈b̂†


(t )b̂
(t )〉, and the intercavity photon current
I (t ) = λ Im〈b̂†

2(t )b̂1(t )〉.
The most remarkable effect of having PT symmetry,

Eq. (26), for the Hamiltonian Heff is the possibility that an
open system shows periodic dynamics when λ > λEP, i.e.,
when the cavities are strongly coupled. Figure 3(a) shows the
numerically obtained results for the amplitude of the complex
quadratures with dashed lines. We get oscillatory dynamics
with period T� = 2π/(�+ − �−). Thus, they indeed show
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the signatures of a PT -symmetric phase. In contrast, when
it comes to cavity-field bilinears, i.e., photon numbers and the
intercavity current, the oscillatory behavior is superseded by
the effects of quantum fluctuations at long times.

To see this surprising result, we note that away from
the exceptional point, the non-Hermitian Hamiltonian can
be diagonalized by a similarity transformation. Let HT

eff =
R�R−1, where R has right eigenvectors of HT

eff and � is
a 2 × 2 diagonal matrix with real eigenvalues �±. In this
skewed basis, the elements of the correlation matrix C̃(t ) =
R−1C(t )R can be explicitly calculated. For times t � �−1,
we get

C̃

(t ) = C̃

(0) + 2g2〈N̂1〉ssm̃



�2

{
�t

1 + [(�+ − �−)/2�]2

− 1 − [(�+ − �−)/2�]2

{1 + [(�+ − �−)/2�]2}2

}
, (37)

C̃12(t ) = ei(�+−�− )t C̃12(0) − g2〈N̂1〉ssm̃12

�2

×
{

−2i�

(�+ − �−)

(1 − ei(�+−�− )t )

1 + [(�+ − �−)/2�]2

+ 1 + ei(�+−�− )t

1 + [(�+ − �−)/2�]2

}
, (38)

where m̃

′ = [R−1(12 + σz )R/2]

′ . We see from Eqs. (37)
and (38) that while C̃12(t ) oscillates with period T�, the
diagonal elements C̃

(t ) grow linearly with time due to
the quantum fluctuations arising from the DQD. This linear
growth in the eigenmode occupation numbers will eventually
make the assumption g

√
nphotons � O(�) (weak cavity-DQD

coupling) invalid. So, starting in the PT -symmetric region,
due to quantum fluctuations the system will be eventually
driven out of the region of validity of a PT -symmetric ef-
fective Hamiltonian description. For our choice of parameters
in Table I, g

√
nphotons � O(�) corresponds to nphotons � 50.

To explicitly show the effect of quantum fluctuations, we
plot 〈n̂
(t )〉 − |〈b̂
(t )〉|2 (solid lines) in Fig. 3(a). While the
amplitudes of the complex quadratures show perfect periodic
oscillations of period T�, the quantum fluctuations show small
oscillations about a linear growth, as discussed above. Fig-
ure 3(b) shows dynamics of the photonic current I (t )/λ. This
also shows a linear growth but with a much smaller slope,
along with large oscillations of period T . These larger oscilla-
tions and weaker linear growth in the photon current are due
to the larger weight of the oscillatory off-diagonal elements
C̃12(t ), Eq. (38), and smaller weight of the linearly growing
diagonal elements C̃

(t ), Eq. (37).

Next, let us see the dynamics of system at the exceptional
point λ = λEP. At the exceptional point, HT

eff is not diagonal-
izable, but can be brought into a Jordan normal form via a
similarity transform S−1HT

effS = ω0(12 + σ+), where σ+ =
(σx + iσy)/2. Multiplying on the left by S and on the right
by S−1, we have, HT

eff = ω0(12 + Sσ+S−1). This means that
the Hamiltonian satisfies the characteristic equation (HT

eff −
ω012)2 = 0, at this point. So, the time-evolution operator
Taylor expansion terminates at first order, i.e.,

e−iHT
eff t = e−iω0t

[
(1 + iω0t )12 − iHT

efft
]
. (39)

102 103 104
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(2.5e − 12)[ω0t]

3

FIG. 4. Power-law dynamics of the cavity operator expectation
values at λ = λEP = κ2/

√
1 − δ. The results are for α = 0.1 and

other parameters as in Table I and Eq. (35), which leads to λEP =
1 MHz. The maximum time shown here corresponds to when there
are ∼50 photons in the cavities, above which the linearized model
cannot be applied for our choice of parameters. For the initially
empty, lossy cavity |〈b2(t )〉|2 grows quadratically with time, while
the quantum fluctuations in quadrature amplitude grow as t3. For the
cavity initially in coherent state, |〈b1(t )〉|2 remains constant at times
t 
 1/κ2, and tends to a quadratic growth as t � 1/κ2. The quantum
fluctuations in quadrature amplitude of this cavity also tend to a t3

behavior at these times.

Therefore, with our initial conditions, the time-dependent
complex quadratures become

〈b̂1(t )〉 = αe−iω0t (1 + κ2t/2), (40)

〈b̂2(t )〉 = −iαe−iω0t (λEPt ). (41)

Thus, the empty, lossy cavity has a quadratic growth, i.e.,
|〈b̂2(t )〉|2 ∝ t2. In the gain cavity, |〈b̂1(t )〉|2 remains flat for
small times t 
 1/κ2, but switches to quadratic growth at
times t � 1/κ2. Similarly, it can be shown that at long
times t � 1/κ2, photon numbers in both cavities, 〈n̂1(t )〉 and
〈n̂2(t )〉, scale as t3. The numerically obtained results for the
quadrature magnitude (squared) (dashed lines) and quantum
fluctuations (solid lines) are shown in Fig. 4. The dotted
line shows the quadratic fit to the empty cavity |〈b2(t )〉|2,
Eq. (41), while the dot-dashed line shows the cubic fit for
the quantum fluctuation results. We remind the reader that our
model remains valid only at times when nphotons � 50, and that
determine the time range chosen in Fig. 4.

Lastly, we consider the system’s behavior in the PT -
symmetry broken region, i.e., for λ < λEP. Here, due to the
presence of the amplifying eigenmode that is delocalized over
the two sites, the photon numbers in both gain and loss cavities
grow exponentially at small times, and provide a short-time
cutoff beyond which the linearized theory fails. As mentioned
before, identifying this regime is important because such be-
havior in the linearized system points to onset of lasing in the
actual experimental setup.
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V. SIGNATURES OF EXCEPTIONAL POINTS FOR
DISSIPATIVE CAVITIES

In the previous section, we have seen the dynamics of the
cavities, including the effects of quantum fluctuations, when
the gain from the DQD unit is balanced by the losses of the
cavities, Eq. (21). In this section, we look at dissipative cav-
ities, where the combined loss from the two cavities exceeds
the DQD gain in the first cavity, i.e.,

κ1 + κ2 > 2�δ. (42)

Even under this condition, this system can traverse across
exceptional points on tuning either the coupling between the
cavities or one of the losses of one of the cavities. We show
that this can be observed in particular input-output experi-
ments through transmission, phase response, and fluctuations,
and may lead to interesting applications like loss-induced
lasing. Note that in situ tuning of coupling between cQED
resonators, as well as of the resonator losses, has already been
demonstrated experimentally [67,79–82].

A. Individually lossy cavities

First, we consider the case where each cavity is individ-
ually lossy, with same dissipation rate. In particular, we will
assume, starting from a PT -symmetric condition, the dissi-
pation rate in each cavity is increased by the same amount
κ . Therefore, the effective non-Hermitian Hamiltonian in
Eq. (24) changes to

Heff =
(
ω0 − i

κ

2

)
12 + λ

2
(2 − δ)σx − i

λδ

2
σy + i

κ2

2
σz, (43)

while Eq. (21) is still satisfied for κ1 and κ2. The eigenvalues
of the effective Hamiltonian now have an additive imaginary
part �± → �± − iκ/2, where �± are given in Eq. (22).
However, the real parts of the eigenvalues remain the same.
The overall dissipation will cause the system to reach a time-
independent nonequilibrium steady state. The system will
show a passive PT transition as a function of λ, with λEP still
given by Eq. (23), where the real parts bifurcate [12,63,66].
In what follows, we show that when κ = 2κ2, properties of
this steady state capture the passive PT transition. This is
accomplished via a standard input-output experiment where a
weak, coherent drive E0e−iωd t with amplitude E and frequency
ωd is applied to one of the cavities and the steady-state trans-
mitted signals are observed in either cavity. We will assume
that the coherent drive is in the cavity without the DQD in
it. We first go to the rotating frame with respect to the drive
frequency, b̂rot


 (t )eiωd t = b̂
(t ). The transmitted signals T
 at
the two cavities are given by the expectation value of the long-
time solution of Eq. (31) scaled properly by the dissipation
rates and E0,[

T1/(κ1 + κ )

T2/(κ2 + κ )

]
= lim

t→∞
1

E0

[〈
b̂rot

1

〉
〈
b̂rot

2

〉
]

= i(Heff − ωd12)−1

[
0

1

]
. (44)

We write the transmitted signal at 
th cavity as T
 =
|T
|eiφ
 , where |T
| is the amplitude of the transmitted

FIG. 5. (a) The transmission amplitude in the lossy cavity with
coherent drive |T2| as a function of drive frequency ωd and the
coupling between the cavities λ shows a clear signature of the excep-
tional point λEP through bifurcation of the transmission peak. (b) The
phase response of the lossy cavity φ2 in units of π is plotted as
function of ωd and λ. The real parts of eigenvalues of (Heff − ω012)
are plotted as dashed lines in both plots. It is clear from both panels
that the passive PT transition is detectable in an input-output exper-
iment. Parameters κ1 = κ2 = 2 MHz, κ = 4 MHz, ε = 7.760 GHz,
and tc = 0.973 GHz; others are the same as in Table I.

signal and φ
 is the phase response, φ
 ∈ [−π/2, π/2]. Both
the transmission amplitude and the phase response can be
experimentally measured [77,78,102,104]. Explicit expres-
sions for both the amplitude and the phase response can be
obtained (see Appendix C). When λ > λEP and ωd = ω0 ∓
(�+ − �−), we observe that the phase response of the second
cavity is given by

φ2 = tan−1

(
κ2 ± 4(�+ − �−)

±(�+ − �−)(2κ2 − κ )

)
. (45)

Thus, when κ = 2κ2, the phase response becomes ±π/2. This
means that there will be a phase change of ±π when ωd

is tuned across values equal to ω0 ∓ (�+ − �−). Further, it
can also be checked that det(Heff − ωd12) has a minimum at
ωd = ω0 ∓ (�+ − �−) under this condition. So, when κ =
2κ2, both the transmission amplitude and the phase response
of the lossy cavity will accurately capture the bifurcation of
real parts of eigenvalues of Heff across a passive PT tran-
sition. This is shown in Fig. 5, where both the transmission
amplitude |T2| and the phase response φ
 detected at the lossy,
second cavity as a function of ωd and λ are shown with color
coding. The real parts of the eigenvalues are also plotted as
functions of λ for comparison. The passive PT transition and
the location of the exceptional point are completely clear both
in the transmission amplitude and in the phase response. The
transmission amplitude peaks when the drive frequency ωd is
equal to the real parts of the eigenvalues of Heff , while the
phase response undergoes a change of π when ωd is changed
across these values.

Note that even without the gain medium (i.e., in absence
of the DQD), the passive PT transition in lossy cavities can
be seen, through input-output experiments, if the two losses
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FIG. 6. (a) Steady-state values of photon occupation numbers of
the left (〈n̂1〉) and the right (〈n̂2〉) cavities, as well as the photon
current (I) from the left to the right cavity as a function of λ for the
dissipative cavities in absence of any additional coherent drive. The
horizontal dash-dotted line is 〈n̂1〉λ=0. The position of the exceptional
point, λEP = 1 MHz, is shown by the vertical solid line, and the
vertical dashed line is at λ = g, where g is the effective coupling
between the left cavity and the DQD. (b) Plot of the 〈n̂1〉|λ=0 − 〈n̂1〉
with λ for λ < λEP. System parameters are the same as in Fig. 5.

are different. In Eq. (16), this corresponds to setting δ = 0.
However, the difference of that situation with the one with a
gain will be seen in the quantum fluctuations of the complex
quadratures. As we will see below, the steady-state photon
number will encode quantum fluctuations from the DQD gain,
thus distinguishing between a purely lossy setup and the setup
with a gain DQD.

To see the effect of quantum fluctuations, as before, we will
be interested in the steady-state values, 〈n̂
〉 − |〈b̂
〉|2 (
 =
1, 2). As can be seen from Eq. (33), the quantum fluctuations
are independent of the presence of the coherent drive. So it
suffices to look at the case where the coherent drive is absent.
In that case, because the overall cavities are dissipative, ex-
pectation values of the field operators in steady state are zero.
So, we look at the steady-state photon numbers 〈n̂
〉, and the
photon current I as a function of λ. We numerically calculate
these quantities using Eq. (33), and obtain the result at time
t � 1/κ . These results are shown in Fig. 6.

At zero coupling, there are no steady-state photons in the
second cavity and there is no photon current. However, due
to the presence of the DQD in the left cavity there is a steady-
state photon occupation in the first cavity when κ1 + κ > 2�δ.
As the coupling is increased to values λ < λEP, steady-state
value photon numbers in the second cavity and the photon cur-
rent both increase quadratically with λ. The quadratic growth
slows down and the photon number in the DQD-cavity is
suppressed when λ → λEP. For g � λ � λEP, where g is the
effective coupling between the DQD and the first cavity, the
photon numbers in both the cavities approach the same value,
and photon current approaches maximum [Fig. 6(a)]. As λ is
further increased, the occupations of both cavities still remains
almost the same, but they decrease with λ. The current also
decreases correspondingly. This is because, in this regime,

the relative strength of coupling to the DQD decreases. The
suppression of the photon number in the DQD-cavity with
increasing λ is shown in Fig. 6(b). It, too, shows a quadratic
scaling that is expected from a perturbation theory in λ. We
remind the reader that the nonzero steady-state values are
due to the presence of quantum fluctuations from the DQD.
Without them, the dissipative cavities would be empty in the
steady state.

B. Loss-induced lasing and amplification

In the previous subsection, we investigated the passive PT
transition as a function of intercavity coupling λ. A similar
transition can occur if the loss in one of the cavities is in-
creased, giving way to the counterintuitive phenomenon of
loss-induced lasing [34,110]. In this subsection, we show that
this phenomenon can be observed in our setup. We further
argue that it is a consequence of having a PT -symmetric
phase in this setup.

To see this, we consider the loss κ2 in the second cavity
as the tunable parameter, whereas the rest of the setup is
kept fixed. Note that transition across the exceptional point
via tuning the loss in coupled cQED resonators has been
recently shown experimentally [67], but in absence of any gain
medium. For concreteness, in our setup, let us consider that κ2

is adiabatically increased starting from a balanced gain-loss
PT -symmetric condition. On slight increase of κ2 the system
becomes dissipative and approaches a steady state in the long-
time limit. However, as κ2 is increased further, from Eq. (30),
we see that an exceptional point is reached when

κ2 = κEP
2 = κ1 − 2�δ + 2λ

√
1 − δ. (46)

For κ2 < κEP
2 , (�+ − �−) is real [see Eq. (29)], and hence,

the imaginary parts of the eigenvalues of Heff are the same.
But for κ2 > κEP

2 , (�+ − �−) is imaginary. In this case, the
imaginary parts of the two eigenvalues of Heff bifurcate into
two different values. On further increasing κ2, the system
remains dissipative as long as

κ2 + κ1 − 2�δ >

√
(κ2 − κ1 + 2�δ)2 − 4λ2(1 − δ)

⇒ κ2 < κ th
2 , κ th

2 = 4λ2(1 − δ)

2�δ − κ1
. (47)

If κ2 is increased beyond κ th
2 , the imaginary part of one of the

eigenvalues of Heff becomes positive. Thus, starting from a
condition when the overall system is dissipative, on increasing
the loss of the right cavity beyond the threshold value, the
system gets an overall effective gain, which points to onset
of lasing. This is the rather counterintuitive phenomenon of
loss-induced lasing that occurs in this setup. It can be shown
that this is a consequence of existence of a PT -symmetric
phase with balanced gain-loss. To see this, we note that
the exceptional point κEP

2 given in Eq. (46) is only possible
if λ > (2�δ − κ1)/(2

√
1 − δ). Under balanced gain-loss,

κ2 = 2�δ − κ1, and this regime of λ corresponds to the
PT -symmetric phase [see Eq. (23)]. This shows that it was
necessary that we started adiabatically increasing κ2 from
the PT -symmetric phase of the balanced gain-loss system.
Further, going back to Eq. (29), it is possible to see that there
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FIG. 7. The real and imaginary parts of the eigenvalues of Heff

are plotted as a function of the loss at the right cavity κ2. The vertical
continuous black line shows the position of κ2 = κ th

2 , where the
imaginary part of one of the eigenvalues become zero. The vertical
dashed blue line shows the exceptional point κ2 = κEP

2 . The vertical
dash-dotted green line shows κ2 = 2�δ − κ1, which is the balanced-
gain-loss condition. For κ2 > κ th

2 , the system gets an overall gain
pointing to onset of loss-induced lasing. Parameters: λ = 2 MHz,
κ1 = 2 MHz, ε = 7.760 GHz, and tc = 0.973 GHz. Other parameters
are the same as in Table I.

is another exceptional point possible with κ2 as the only tuning
parameter. This occurs when κ2 = κ1 − 2�δ − 2λ

√
1 − δ.

Since κ2, λ > 0, occurrence of this exceptional point requires
κ1 − 2�δ > 0. Under this condition, both cavities are lossy,
and hence, there can be neither lasing nor a balanced gain-loss
PT -symmetric phase. This can also be seen from Eq. (47),
which shows that a necessary condition to see loss-induced
lasing in our setup is κ1 − 2�δ < 0. Thus, the phenomenon
of loss-induced lasing that can be observed in this setup is a
consequence of having a PT -symmetric phase with balanced
gain-loss. (Note that in other setups loss-induced lasing can
occur without any exceptional point [111].) This explicitly
requires a gain medium and cannot be observed in the existing
experiments in the quantum regime [60–69], none of which
features a gain medium. The real and imaginary parts of
the eigenvalues of Heff as a function of κ2 are plotted in
Fig. 7. The positions of κEP

2 , κ th
2 , and κ2 corresponding to the

balanced gain-loss PT -symmetric condition are shown.
Our linearized theory allows us to explore the case κ2 <

κ th
2 . In this case, since the overall system is dissipative, there

is a unique time-independent nonequilibrium steady state. As
before, we look at an input-output experiment with a coherent
drive at the second, lossy cavity. We look at the amplitude
of the transmitted signal as well as the phase response at the
lossy cavity. The results for the transmitted signal at the lossy
cavity are shown in Fig. 8. Figure 8(a) shows the transmission
amplitude |T2|. The first point to note is that |T2| > 1. Thus,
there is amplification of the transmitted signal in the lossy
cavity. The peak in the transmission amplitude as a function
of ωd and κ2 approximately tracks the transition across the
exceptional point. Moreover, the amplification of signal at the
lossy cavity at resonant drive ωd = ω0 increases with increase

FIG. 8. The top panel shows in color code (a) amplitude |T2| and
(b) phase response φ2 of the transmitted signal at the lossy cavity
for an input-output experiment, as a function of the loss at the right
cavity κ2 and drive frequency ωd . The phase response is given in units
of π . Here, the input drive is at the right cavity. The PT transition on
increasing κ2 is approximately tracked by the amplitude response of
the input-output experiment, but the phase response does not tack the
transition. The real parts of the eigenvalues are also shown by dashed
lines for comparison. The bottom panel (c) shows the average steady-
state photon numbers of the two cavities and the photon current as a
function of κ2, in absence of any coherent drive. Parameters are the
same as in Fig. 7.

in the loss of the cavity. Thus, in this system, we have a
novel microwave amplifier [70,93,94,112] with loss-induced
enhancement of amplification facilitated by transition across
an exceptional point.

Figure 8(b) shows the phase response at the lossy cavity.
The phase response does not capture the transition across
the expectational point. Nevertheless, the phase response does
show some interesting features. There occurs a phase change
of π at specific values of ωd , independent of κ2. These values
are given by

ωd = ω0, ω0 ±
√

λ2(1 − δ) − (κ1 − 2�δ)2/4. (48)

On the other hand, the phase response φ2 is zero at values
which depend on κ2. These values are given by

ωd = ω0 + κ

2�δ − κ1

±
√(

κ

2�δ − κ1

)2

+
(

κ

2

)2

+ (�+ − �−)2, (49)

where κ = (κ2 + κ1 − 2�δ)/2. We would like to mention that
even though loss-induced suppression and revival of lasing
has been experimentally observed in classical setups previ-
ously [34,110], to our knowledge, the phase response has not
been previously measured. This measurement is experimen-
tally possible in our DQD-cQED setup (see, for example,
[77,78,102,104]).

To see the effect of quantum fluctuations, as before, we plot
the steady-state photon numbers of the two cavities, and the
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photon current in absence of any coherent drive in Fig. 8(c).
They show nonmonotonic behavior with κ2. Thus, the photon
number of the two cavities and the photon current between
the two cavities first decrease but then increase with increase
in κ2, even in absence of any coherent drive. We remind
the reader once again that, since there is overall dissipation,
without the effect of quantum fluctuations from the DQD,
the steady-state photon numbers would be zero in absence of
any coherent drive. Thus, the loss-induced increase in average
photon number of the cavities in absence of any coherent
drive is a feature possible only in a non-Hermitian system
with a gain medium having quantum fluctuations. This feature
of the nonequilibrium steady state thereby distinguishes our
proposed setup from previous experiments involving gain in
classical systems [35–39], as well as the existing experiments
in the quantum regime which do not feature a gain medium
[60–69].

VI. COMPARISON WITH LOCAL LINDBLAD RESULTS

All the results above are obtained from a complete micro-
scopic Hamiltonian modeling of our setup via an equation of
motion approach. A much more common way of modeling
gain-loss systems in quantum optics is via phenomenologi-
cally writing down Lindblad quantum master equations with
local creation and annihilation operators of the cavities as
Lindblad operators. To highlight the importance of our mi-
croscopic derivation, in this section we compare results from
our completely microscopic equation of motion approach with
two such local Lindblad equations. We show that such lo-
cal Lindblad equations can capture some qualitative features
correctly, while missing some other qualitative aspects and
predicting different results quantitatively.

The first local Lindblad equation that we consider can be
microscopically derived for our setup (see Appendix D) using
the Born-Markov approximation, the conditions on energy
scales in Eqs. (10), (11), (12), along with the following ap-
proximation,

b̂
(t ) � e−iω0t b̂
(0) + O(λ), (50)

which is consistent with λ 
 ω0. This Lindblad equation is
given by

∂ρ

∂t
= i[ρ, ĤC] + 2g2〈N̂1〉ss

�

(
b̂†

1ρb̂1 − 1

2
{b̂1b̂†

1, ρ}
)

+
(

2g2〈N̂2〉ss

�
+ κ1

)(
b̂1ρb̂†

1 − 1

2
{b̂†

1b̂1, ρ}
)

+ κ2

(
b̂2ρb̂†

2 − 1

2
{b̂†

2b̂2, ρ}
)

, (51)

where ĤC is the Hamiltonian of the two coupled cavities
[see Eq. (1)], and {P̂, Q̂} = P̂Q̂ + Q̂P̂ is the anticommutator.
Multiplying the above equation by the corresponding oper-
ators and taking the trace, the following equations for the
expectation values of the cavity field operators and the cavity
bilinears can be obtained,

i
d

dt

(〈b̂1〉
〈b̂2〉

)
= H(2)

eff

(〈b̂1〉
〈b̂2〉

)
, (52)
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FIG. 9. The real and imaginary parts of the eigenvalues of ef-
fective Hamiltonian Heff [Eq. (16)] obtained by equations of motion
approach (EOM) and those from the effective Hamiltonian H(2)

eff

[Eq. (54)] obtained from local Lindblad quantum master equation
(QME) are plotted as a function of the loss at the right cavity κ2.
Parameters are the same as in Fig. 7.

dC
dt

= iH(2)†

eff C − iCH(2)
eff + g2〈N̂1〉ss

�
(12 + σz ), (53)

where

H(2)
eff =

[
ω0 − i κ1

2 + i�δ λ

λ ω0 − i κ2
2

]
, (54)

the matrix C is as defined in Eq. (32), and δ is as defined in
Eq. (17). Comparing the above equation with Eq. (16), we
see that the asymmetric off-diagonal terms are not captured
by this local Lindblad approach. This will cause exceptional
points of H(2)

eff to be slightly shifted from those of Heff . This
will, in turn, also shift other important values, like the thresh-
old value of κ2 for loss-induced lasing. But, for our choice
of parameters, δ 
 1, so this shift is small. This is shown in
Fig. 9. Further, the formal solution of Eq. (53) is given by

C(t ) = eiH(2)†

eff t C(0)e−iH(2)
eff t

+ g2〈N̂1〉ss

�

∫ t

0
dt ′eiH(2)†

eff t ′
(12 + σz )e−iH(2)

eff t ′
. (55)

Comparing this with Eq. (33), we see that the effect of
quantum fluctuations from the gain medium is not exactly
the same. Nevertheless, if δ 
 1 and λ 
 ω0, since both
approaches are microscopic, one can expect to get an approx-
imate quantitative agreement between results from Eq. (53)
and the more accurate results from Eq. (31). We would like
to stress that obtaining Eq. (51) required one more approx-
imation, Eq. (50), which was not required in obtaining the
results by our microscopic equations of motion approach. It
is this additional approximation that leads to the difference
between the two approaches. A more accurate quantum master
equation can be derived without making this approximation,
but that will not be of local Lindblad form [113–115].
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For a given value of 2�δ − κ1 > 0, H(2)
eff describes an ef-

fective Hamiltonian of the coupled cavities with gain in the
first site and loss in the second site. In many cases (for exam-
ple, [44,86,87,116]), when the objective is to model such an
effective Hamiltonian with a given amount of gain and loss,
a completely phenomenological Lindblad equation is written
down as follows,

∂ρ

∂t
= i[ρ, ĤC] + (2�δ − κ1)

(
b̂†

1ρb̂1 − 1

2
{b̂1b̂†

1, ρ}
)

+ κ2

(
b̂2ρb̂†

2 − 1

2
{b̂†

2b̂2, ρ}
)

. (56)

This equation cannot be microscopically derived for our
setup, unless the DQD is completely population inverted, i.e.,
〈N̂1〉ss = 1, 〈N̂2〉ss = 0, and the first site has no intrinsic loss,
i.e., κ1 = 0. For given amount of loss in the second cavity,
κ2, this condition need not be satisfied for obtaining PT
symmetry in the effective Hamiltonian. Further, while the
phenomenological local Lindblad equation is designed such
that the equations for the expectation values of the cavity field
operators are exactly the same as in Eq. (52), that for the cavity
bilinears is given by

dC
dt

= iH(2)†

eff C − iCH(2)
eff +

(
�δ − κ1

2

)
(12 + σz ),

⇒ C(t ) = eiH(2)†

eff t C(0)e−iH(2)
eff t

+
(

�δ − κ1

2

)∫ t

0
dt ′eiH(2)†

eff t ′
(12 + σz )e−iH(2)

eff t ′
.

(57)

Clearly, the strength of quantum fluctuations of the gain
medium, embodied in the second term in above equation, is
completely different from what is seen in both the microscopic
derivations. Thus, the purely phenomenological approach will
severely underestimate the strength of quantum fluctuations,
unless under very special conditions. This is despite the fact
that the complex quadratures 〈b̂1(t )〉, 〈b̂2(t )〉 from all three
approaches will be almost the same if δ 
 1.

The formal solutions for C(t ) in Eqs. (55) and (57) are
of the same form. For any equation of that form, it can be
checked by direct calculation that if the eigenvalues of H(2)

eff are
real (PT -symmetric phase), the inhomogeneous part will lead
to a linear divergence with time in C. It can also be checked
that the inhomogeneous part will lead to a t3 divergence when
H(2)

eff is at the exceptional point, and will lead to exponential
divergence if one of the eigenvalues of H(2)

eff have a positive
imaginary part (PT -broken phase). This behavior with time
is exactly the same as described in Sec. IV via our equation of
motion approach. Thus, even though both the Lindblad equa-
tions do not capture the location of the exceptional point and
the strength of quantum fluctuations accurately, both of them
capture the qualitative behavior with time correctly on either
side of the PT transition, as well as at the exceptional point.
Features of dissipative exceptional points, like loss-induced
increase in average photon number in absence of any coherent
drive, will also be captured qualitatively by both Lindblad
equations, though not quantitatively. This shows that these
effects of quantum fluctuations are actually more general
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FIG. 10. (a) The plot shows PT -symmetric dynamics of
|〈b̂2(t )〉|2 as obtained from equations of motion approach (EOM),
Eq. (15), and as from the local Lindblad approach (QME), Eq. (52).
The initial condition, the parameters, and the period of oscillation
T are the same as in Fig. 3. (b) The plot shows the amplitude of
transmitted signal at the right cavity for an input-output experiment
with a weak coherent drive also at the right cavity, as a function of
the loss at the right cavity κ2, at resonance ωd = ω0. The results
obtained both from the equations of motion approach (EOM) and
local Lindblad approaches (QME) are shown. The parameters are
exactly the same as in Fig. 7.

than the setup we have considered, and will generically hold.
However, from our microscopic modeling, we know that all
such results from linearized descriptions are valid only when
g
√

nphotons � O(�) can be satisfied. Beyond this regime, non-
linear effects need to be considered, and none of the linearized
descriptions, including our linearized microscopic equation
of motions approach, hold. This fact would not be clear in
a purely phenomenological approach.

Now we numerically check the results obtained from both
the Lindblad quantum master equations against the equation
of motion approach. In Fig. 10, we compare properties which
depend on the expectation values of the complex quadra-
tures. In Fig. 10(a) we compare PT -symmetric dynamics
of |〈b̂2(t )〉|2 starting from a coherent state in the left cavity,
and an empty state in the right cavity. Since our choice of
λ = 10 MHz, ω0 = 8 GHz (the same as in Fig. 3) satisfies
λ 
 ω0, the results obtained from the local Lindblad equation
match quite well with those from the microscopic equations
of motion. However, the small mismatch grows with increase
in time. In Fig. 10(b) we compare the loss-induced enhance-
ment of amplification for a weak coherent drive at resonance
ωd = ω0 as obtained from both approaches. The results agree
well for smaller values of κ2, while the difference between
them increases with increase in κ2. In both these cases, the
difference between the results stem from the presence of
asymmetric hopping in Heff [Eq. (16)], which is absent in
H(2)

eff [Eq. (54)]. We remind the reader that both the micro-
scopically derived local Lindblad equation, Eq. (51), and the
purely phenomenologically written local Lindblad equation,
Eq. (56), give exactly the same results for these quantities,
governed by H(2)

eff [Eq. (54)].
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FIG. 11. The figure compares the effect of quantum fluctuations
of the gain medium as obtained from the microscopic equations
of motion approach (EOM), Eq. (15), with those from the micro-
scopically derived local Lindblad approach (QME1), Eq. (51), and
from the purely phenomenological local Lindblad approach (QME2),
Eq. (56). (a) Quantum fluctuations in the PT -symmetric dynamics
of the complex quadrature of the right cavity as a function of time,
for parameters the same as in Fig. 3. (b) Exactly the same as in (a),
except for different values of ε and tc, corresponding to the second
balanced-gain-loss condition (see Fig. 2). (c) The average photon
number of the right cavity in steady state as a function of the loss of
the right cavity κ2, in absence of any coherent drive. The parameters
are as in Fig. 7. (d) Exactly the same as in (c), except for different
values of ε and tc.

In Fig. 11, we compare the quantum fluctuations in the
complex quadrature of the right cavity as obtained from the
three approaches. Here, we look at both of the two choices of ε

and tc that lead to a balanced-gain-loss condition (see Fig. 2).
As mentioned before in Sec. III, these two conditions have
widely different values of population inversion �Nss, given
in Eq. (28), leading to the same Heff . However, the strength
of quantum fluctuations of the gain medium is different in
these two cases. This is shown in Figs. 11(a) and 11(b) where
the PT -symmetric dynamics of 〈n̂2(t )〉 − |〈b̂2(t )〉|2 is shown
for both cases from all three approaches. It is clear that the
strength of quantum fluctuations is different in the two cases.
Since our choice of parameters (the same as in Fig. 3 and
Fig 10) satisfies λ 
 ω0, the results from the microscopic
Lindblad equation (51) match quite well with those from the
microscopic equation of motion approach. But, since the left
cavity with gain also has an intrinsic loss, the results from
the purely phenomenological approach Eq. (56) do not agree
with the other two approaches. The discrepancy between the
purely phenomenological approach and the two microscopic
approaches is even more for the second choice of ε and tc.
This is because this choice corresponds to small population
inversion. However, all three approaches show the linear di-
vergence with time for both values of ε and tc. Note that the
dynamics of |〈b̂2(t )〉|2 for both choices of ε and tc will be
the same and as given in Fig. 10(a). Figures 11(c) and 11(d)
show the nonmonotonic behavior of the steady-state average
photon number of the right cavity 〈n̂2〉 as a function of κ2 in

absence of any coherent drive for the two different choices
of ε and tc. In this case, also, the purely phenomenological
approach severely underestimates 〈n̂2〉, which depends on the
quantum fluctuations of the gain medium, for the same rea-
sons as above. The microscopic Lindblad equation also does
not agree well with microscopic equation of motion results,
especially at larger values of κ2, although λ = 20 MHz still
satisfies λ 
 ω0. It fails to capture the slightly steeper rise in
〈n̂2〉 with increase in κ2. However, all three approaches capture
the qualitative feature of nonmonotonic behavior of average
photon number of second cavity with increase in loss at the
second cavity.

The analysis in this section highlights the importance of
complete microscopic modeling of experimental setups for
exploring non-Hermitian physics in quantum regime. In most
experimental setups with coupled gain and loss cavities, the
cavity with effective gain will have also have some loss rate,
which has to be compensated by the gain rate to achieve the
effective gain. The results in this section show that a phe-
nomenological quantum master equation of the form Eq. (56)
with a gain term in Lindblad form in one cavity and a loss
term in Lindblad form in the other cavity is inadequate to
accurately describe any such system. Even when the gain
and loss parameters are chosen to give the expectation values
of complex quadratures accurately, such phenomenological
Lindblad equations will always severely underestimate the
quantum fluctuations in the complex quadratures. A minimal
phenomenological model to describe such a system in terms
of a local Lindblad equation has to have the form of Eq. (51),
with three parameters, viz., the gain rate of one cavity, and
the loss rates of both the cavities. As long as the coupling
between the cavities is small, such a Lindblad equation can
reasonably accurately capture both the expectation values and
the quantum fluctuations in the complex quadratures of the
cavities. However, even such a Lindblad equation will not
capture the effect of the asymmetric hopping, and will under-
estimate the loss-induced increase in average photon number.
Nevertheless, some universal qualitative features will be cap-
tured correctly by all approaches.

VII. SUMMARY AND OUTLOOK

In this paper, we have shown that a setup of two coupled
cQED cavities with a DQD in one of them can be used to
explore the physics of the PT -symmetry breaking transition,
including the effect of quantum fluctuations. As has already
been established in several experiments [70–73,102], a DQD
in a cavity can act as a highly tunable gain medium for the
cavity. In this work, under a reasonable approximation on vari-
ous energy scales consistent with state-of-the-art experiments,
we have microscopically derived an effective non-Hermitian
Hamiltonian, along with the quantum noise term, which
governs the dynamics of bosonic complex quadratures that
describe the cavity. This derivation requires a linearization
of the nonlinear interaction between the DQD and the cavity
and only holds if the number of photons in the cavity is not
too large. We have also kept track of the quantum fluctua-
tions coming from the presence of the DQD. We have thus
obtained the signatures of the PT transition in the expecta-
tion values of the field operators (complex quadratures), and
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signatures of quantum fluctuations in the expectation values
of field-operator bilinears (cavity photon numbers and inter-
cavity current). In both the PT -symmetric phase and at the
exceptional point, we have found that quantum fluctuations
lead to a linear-in-time factor over the classical predictions for
photon numbers and photon current. These signatures are then
generalized to dissipative cavities that reach a steady state.
Here, the passive PT transition is marked by the bifurcation
of the decay rates for the two dissipative eigenmodes of the
system. We have shown that this can be accurately tracked in
a particular input-output experiment. We have further shown
that loss-induced enhancement of amplification and lasing can
be observed in the setup as a consequence of a transition
across an exceptional point. We have identified loss-induced
increase of average photon number in absence of any coherent
drive as a particular property of a quantum non-Hermitian
system featuring a gain medium. Finally, we have highlighted
the importance of our microscopic derivation, by comparing
our results with two different local Lindblad equations. Our
analysis has also pointed at some model-independent univer-
sal features of quantum fluctuations in gain-loss systems as
well as at the minimal Lindblad equation required to describe
a realistic quantum PT -symmetric system reasonably accu-
rately in a parameter regime.

This work has several important consequences. The setup
of a DQD in a cQED cavity is already state-of-the-art
[70–73,77,78,102–105] and connecting several cavities is also
a standard technique in cQED experiments [117]. We have
shown that the resulting setup provides a highly tunable
system where the exotic physics of exceptional point degen-
eracies in the quantum regime can be explored, along with
a systematic study of quantum fluctuations that accompany
any gain medium [96,99]. This setup is potentially scalable
[118,119]. Moreover, since a completely controllable gain
can be introduced in an arbitrary cavity simply with a DQD
in that cavity, our work presents the possibility of creating
non-Hermitian bosonic systems with arbitrarily distributed
gain and loss in the quantum regime. This is of particular
importance for extending the forefronts of non-Hermitian
topological systems [13,25,27,40,45,53–60] into the quantum
domain, as well as their possible applications in quantum
technology [98,120].

It is important to emphasize that a rigorous description
showing the emergence of an effective parity-time symmet-
ric non-Hermitian Hamiltonian starting from a microscopic
Hermitian Hamiltonian model of open quantum system has
been missing so far. Most models [35–39] start with a non-
Hermitian Hamiltonian (containing complex frequencies) that
is applicable only in the classical limit where the number
of energy quanta is much larger than one. For dissipative
open quantum systems, one can write down a Lindblad
equation from which one can get a non-Hermitian Hamilto-
nian by ignoring quantum jumps [62,66,84,85,88,121,122].
This approach has been generalized to gain-loss systems,
with and without neglecting the quantum jumps, by writing
down Lindblad terms for gain and loss phenomenologically
[44,86,87,116,123]. More microscopic approaches, which
involve modeling the gain medium, also start from phe-
nomenological local Lindblad descriptions of various losses
involved in the setup [83,124]. Our work starting from a

completely microscopic Hermitian Hamiltonian of a state-of-
the-art experimental setup is therefore a major step forward
from all such phenomenological constructions. Such a micro-
scopic description in terms of operator equations of motion
also facilitates calculation of two-time correlations, which is
often a challenge in the master equation approaches. Further,
it opens the possibility of exploring the quantum thermo-
dynamics of effective PT -symmetric systems theoretically
as well as experimentally. Though both technologically and
fundamentally important, this is a completely uncharted ter-
ritory at present, and impossible to explore with previous
phenomenological techniques. We will investigate these direc-
tions in future works. Although our work was based on using a
voltage-biased DQD as a gain medium, our findings and meth-
ods can be adapted to other potential quantum non-Hermitian
systems with a gain medium governed by population inver-
sion.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
NON-HERMITIAN

HAMILTONIAN FOR THE CAVITY UNIT

1. Isolated cavities

We first solve for the dynamics of the two cavities in
isolation, i.e., without coupling to bosonic baths or the DQD.
To this end, we note that the Hamiltonian governing the two
cavities can be written as

Ĥb
S = (b̂†

1 b̂†
2)HS

(
b̂1

b̂2

)
,

HS = ω0I + λσx, (A1)

where I is the 2 × 2 identity matrix and σx is the usual
Pauli matrix. The matrix HS is diagonalized by the following
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orthogonal matrix,

�bT
HS�

b =
(

ω1 0

0 ω2

)
, �b = 1√

2

(
1 −1

1 1

)
,

ω1 = ω0 + λ, ω2 = ω0 − λ. (A2)

The isolated dynamics of the two cavities is then given by

b̂
(t0) =
2∑

p,α=1

�b
α
�

b
αpeiωα (t−t0 )b̂p(t ). (A3)

Now, we go ahead to find effective evolution equations for
the cavity operators in the presence of bosonic baths and the
DQD, by integrating out everything other than the cavities.

2. Setting the relative strength of various energy scales

In order to integrate out everything other than the cavities,
we need to keep track of the relative strengths of various
energy scales. To keep track of relative strengths of various
energy scales, we introduce a dimensionless small parameter
ε 
 1 and consider

κs
 → ε2κs
, �sl → ε�sl , λph
s → ελph

s , g0 → ε2g0. (A4)

Our goal is to integrate out the bosonic baths as well as the
DQD unit to obtain effective equations of motion for the two
coupled cavities up to O(ε4). In the following, we do this part
by part.

3. Integrating out bosonic baths

The cavities are assumed to be coupled to the bosonic baths
as well as to the DQD unit at time t = 0. The state of the entire
setup unit at time t = 0 is taken to be

ρtot (0) = ρDQD(0)
e−βĤ(1)

B

Zb
1

ρb
S

e−βĤ(2)
B

Zb
2

, (A5)

where β is the inverse temperature of the baths, Ĥ(
)
B =∑∞

s=1 	s
B̂†
s
B̂s
 is the Hamiltonian of the bath attached to 
th

cavity, Zb

 is the partition function of the initial state of the


th bath, and ρDQD(0) is the state of the DQD at time t = 0.
The initial state of the two coupled cavities is ρb

S , which is
arbitrary.

To integrate out the bath degrees of freedom, let us first
write down the Heisenberg equations of motion for all the
bosonic system operators,

db̂1

dt
= −iω0b̂1 − iλb̂2 − iε2

∞∑
s=1

κs1B̂s1 − iε2g�(t )Â†
2Â1,

db̂2

dt
= −iω0b̂2 − iλb̂1 − iε2

∞∑
s=1

κs2B̂s2. (A6)

The formal solution for the bosonic bath operators is given by

B̂s
(t ) = e−i	s
t B̂s
(0) − iε2κs


∫ t

0
dt ′e−i	s
(t−t ′ )b̂
(t ′). (A7)

Using these formal solutions in Eq. (A6), we obtain

db̂1

dt
= − iω0b̂1 − iλb̂2 − iε2g�(t )Â†

2Â1 − iε2ξ̂ b
1 (t )

− ε4
∫ t

0
dt ′

∫ ∞

0

dω

2π
J1(ω)e−iω(t−t ′ )b̂1(t ′),

db̂2

dt
= − iω0b̂2 − iλb̂1 − iε2ξ̂2(t )

− ε4
∫ t

0
dt ′

∫ ∞

0

dω

2π
J2(ω)e−iω(t−t ′ )b̂2(t ′), (A8)

where

ξ̂ b

 (t ) =

∞∑
s=1

κs
e−i	s
t B̂s
(0). (A9)

Because of our chosen initial state, we get〈
ξ̂ b

 (t )

〉 = 0,

〈
ξ̂

b†

 (t )ξ̂ b

m(t ′)
〉 = δ
m

∫ ∞

0

dω

2π
J
(ω)nB(ω)eiω(t−t ′ ), (A10)

where

nB(ω) = 1

eβω − 1
(A11)

is the Bose distribution. Now, using the definitions in
Eq. (A2), we note that

b̂
(t ′) =
2∑

p,α=1

�b
α
�

b
αpeiωα (t−t ′ )b̂p(t ) + O(ε2). (A12)

So we obtain up to O(ε4),

ε4
∫ t

0
dt ′

∫ ∞

0

dω

2π
J
(ω)e−iω(t−t ′ )b̂
(t ′) � ε4

2∑
p=1

vb

p(t )b̂p(t ),

vb

p(t ) =

2∑
α=1

�b
α
�

b
αp

∫ t

0
dt ′

∫ ∞

0

dω

2π
J
(ω)e−i(ω−ωα )t ′

.

(A13)

Let τB

be the time in which

∫ ∞
0

dω
2π
J
(ω)e−iωt ′

decays to O(ε).
Then, for t � τB


, we have

vb

p(t ) � vb


p(∞) ≡ vb

p. (A14)

If J
(ω) is such that it is nearly flat around ω0 on a scale
much larger than λ, and is given by J
(ω) � κ
, then to a good
approximation, we can write

vb

p � κ


2
δ
p. (A15)

So, finally, we obtain

db̂1

dt
=−iω0b̂1 − iλb̂2 − iε2g�(t )Â†

2Â1 − iε2ξ̂ b
1 (t ) − ε4 κ1

2
b̂1,

db̂2

dt
=−iω0b̂2 − iλb̂1 − iε2ξ̂ b

2 (t ) − ε4 κ2

2
b̂2. (A16)

In the above effective equations of motion, we have the dissi-
pative terms coming from the bosonic baths. If there were no
boson-fermion coupling, i.e., g = 0, we would have had time
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evolution by an effective non-Hermitian dissipative Hamil-
tonian. However, there would be an inhomogeneous part to
the equation coming from the “noise” terms, ξ̂ b


 (t ), associated
with the corresponding dissipations. The relevant noise cor-
relations are given in Eq. (A10). The “noise” and dissipation
coming from the baths satisfy the fluctuation-dissipation rela-
tions and embody quantum, as well as thermal, fluctuations.
The connection to the DQD unit is coming from the term
iε2gÂ†

2Â1 in the above equation. Next we will integrate out
the DQD unit.

4. Integrating out fermions

The DQD is assumed to be connected to the fermionic
leads and the phononic substrate at time t = t0, with t0 
 0.
The state of the DQD unit at time t = t0 is taken to be

ρ
DQD
tot (t0) = e−β(Ĥ(1)

L −μ1N̂ (1)
L )

Z f
1

ρDQD(t0)

× e−β(Ĥ(2)
L −μ2N̂ (2)

L )

Z f
2

e−βĤph

Zph
, (A17)

where Ĥ(1)
L = ∑∞

s=1 Esl â
†
s
âs
 is the Hamiltonian of the

fermionic lead attached to the 
th site of the DQD, N̂ (1)
L =∑∞

s=1 â†
s
âs
 is the total number operator of the lead, Z f


 ,
Zph are corresponding partition functions, and β, μ1, and μ2

are the corresponding inverse temperature and the chemical
potentials. The initial state of the DQD is ρDQD, which is
arbitrary.

Following exactly similar steps as for the bosons, the ef-
fective equation of motion for Â†

2Â1, after integrating out the
fermionic baths, can be written up as

d (Â†
2Â1)

dt
= − iωqÂ†

2Â1 − ε2�Â†
2Â1 − iε2g�(t )(N̂1 − N̂2)b̂1

− iε

ωq
[2εÂ†

2Â1 − 2tc(N̂1 − N̂2)]

×
∞∑

s=1

λph
s

(
B̂ph†

s + B̂ph
s

)
− iε

(
Â†

2ξ̂
f

1 − ξ̂
f †

2 Â1
)
, (A18)

where,

ξ̂
f

 (t ) =

∞∑
s=1

�s
e−iEs
t âs
(0). (A19)

The formal solution of this equation can be written as

Â†
2(t )Â1(t ) = e−(iωq+ε2�)t Â†

2(t0)Â1(t0)

− iε
∫ t

t0

dt ′e−(iωq+ε2�)(t−t ′ )[Â†
2(t ′)ξ̂ f

1 (t ′)

− ξ̂
f †

2 (t ′)Â1(t ′)
]

−
∫ t

t0

dt ′e−(iωq+ε2�)(t−t ′ ) iε

ωq
{2εÂ†

2(t ′)Â1(t ′)

− 2tc[N̂1(t ′) − N̂2(t ′)]}

×
{ ∞∑

s=1

λph
s

[
B̂ph†

s (t ′) + B̂ph
s (t ′)

]}

− iε2g
∫ t

t0

dt ′�(t )e−(iωq+ε2�)(t−t ′ )

× [N̂1(t ′) − N̂2(t ′)]b̂1(t ′). (A20)

Now, we note that the first four lines of the above equation
give the formally exact time evolution of Â†

2Â1, when the DQD
unit is not connected to the cavity unit, i.e., with g0 = 0. Let
us now define

ξ̂A(t ) = g[Â2(t )†Â1(t ) |g0=0]

= geiĤ f (t−t0 )Â2(t0)†Â1(t0)e−iĤ f (t−t0 ),

Ĥ f = ĤDQD + ĤL + ĤDQD-L + Ĥph + ĤDQD-ph. (A21)

With this definition, Eq. (A20) becomes

Â†
2(t )Â1(t ) = ξ̂A(t )/g

− iε2g
∫ t

0
dt ′e−(iωq+ε2�)(t−t ′ )

× [N̂1(t ′) − N̂2(t ′)]b̂1(t ′). (A22)

Using the above equation in the equation of motion of b̂1

[Eq. (A16)], we have

db̂1

dt
= − iω0b̂1 − iλb̂2 − iε2ξ̂A(t ) − iε2ξ̂ b

1 (t ) − ε4 κ1

2
b̂1

+ ε4g2
∫ t

0
dt ′e−(iωq+ε2�)(t−t ′ )[N̂1(t ′) − N̂2(t ′)]b̂1(t ′).

(A23)

It can be checked that N̂
(t ′) = N̂
(t ) + O(ε2), so that, up to
O(ε4), we have the following simplification in the second line
of the above equation,

ε4g2
∫ t

0
dt ′e−i(ωq+ε2�)(t−t ′ )[N̂1(t ′) − N̂2(t ′)]b̂1(t ′)

� ε4g2�N̂ (t )
2∑

p,α=1

�b
α
�

b
αpb̂p(t )

∫ t

0
dt ′e−(iωq−iωα+ε2�)t ′

,

(A24)

where �N̂ (t ) ≡ N̂1(t ) − N̂2(t ), and again, we have used the
definitions in Eq. (A2). Since the term is already O(ε4), we
can ignore the boson-fermion coupling in obtaining �N̂ (t ).
Up to O(ε0), �N̂ (t ) is a conserved quantity. This means,
assuming our initial state was a product of cavity and DQD
units, in the above equation, we can write

�N̂ (t ) � 〈�N̂ (t )〉|g=0

= Tr
(
ρ tot

DQDeiĤ f (t−t0 )�N̂ (t0)e−iĤ f (t−t0 )
)
. (A25)

This can only be done if the DQD-cavity coupling is small.
We are interested in time (t − t0) � 1/(ε2�). In this time

regime, the DQD, when not connected to the cavity unit,
will reach a nonequilibrium steady state (NESS). We thus
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have

db̂1

dt
� − iω0b̂1 − iλb̂2 − iε2ξ̂A(t ) − iε2ξ̂ b

1 (t ) − ε4 κ1

2
b̂1

+ ε4g2�Nss

2∑
p,α=1

�b
α
�

b
αp

i(ωq − ωα ) + ε2�
b̂p(t ), (A26)

where

�Nss = lim
t→∞ Tr

[
ρ tot

DQDeiĤ f (t−t0 )�N̂ (t0)e−iĤ f (t−t0 )
]

(A27)

is the NESS expectation value of �N̂ (t ) with g = 0. Thus, in
Eq. (A26), we have an effective gain coming from the DQD
if �Nss > 0. In other words, the DQD needs to be population
inverted. This is achievable in the DQD setup for the detuning
ε > 0 if conditions given in Eq. (12) are satisfied, as can be
separately checked. Associated with the gain is a fluctuation
term, ε2ξ̂A(t ), coming from the DQD, thereby satisfying the
fluctuation dissipation relation. We are interested in obtaining
the dynamics of expectation values of cavity field operators
and the cavity bilinears. For obtaining the expectation value
of the cavity field operators, we need

〈ξ̂A(t )〉 = g〈Â†
2Â1〉ss, (A28)

where 〈. . .〉ss refers to NESS expectation value in absence of
coupling to the cavity. For obtaining the cavity bilinears, we
will require the following correlation function,

〈ξ̂ †
A (t1)ξ̂A(t2)〉 = g2〈Â†

1(t1)Â2(t1)Â†
2(t2)Â1(t2)〉|g0=0. (A29)

To evaluate the above correlation function, we note the fol-
lowing result which can be derived using Eq. (A20), and
integrating out the fermionic leads following a procedure quite
analogous to the one used in the previous section for integrat-
ing out the bosonic baths,

Â†
2(t )Â1(t ) = e−(iωq+ε2�)(t−t ′ )Â†

2(t ′)Â1(t ′) + O(ε2), (A30)

with t > t ′. In the above, we have kept the factor ε2� in the
exponent even though it is O(ε2). This is because (ε2�)−1

gives the timescale for the DQD to reach steady state, which
in turn gives the linewidth to the power spectrum of the noise
appearing in the cavity due to the DQD. As we will see be-
low, this leads to an O(ε2) contribution in 〈ξ̂ †

A (t1)ξ̂A(t2)〉. The
equivalent equation for Â†

1(t )Â2(t ) is obtained by taking the
Hermitian conjugate. Now, to evaluate the correlation function
in Eq. (A29), we consider two cases, t1 < t2 and t1 > t2, sep-
arately. If t1 < t2, we use above formula to relate Â†

2(t2)Â1(t2)
to Â†

2(t1)Â1(t1). If t1 > t2, we use the Hermitian conjugate of
the above formula to relate Â†

1(t1)Â2(t1) to Â†
1(t2)Â2(t2). For

t1 − t0, t2 − t0 � 1/(ε2�), the combined result for both cases
can then be written as

〈ξ̂ †
A (t )ξ̂A(t ′)〉 �

∫ ∞

−∞

dω

2π
P(ω)eiω(t−t ′ ),

P(ω) = g2〈N̂1〉ss
2ε2�

(ω − ωq)2 + ε4�2
, (A31)

where we have used fermionic commutation relations for sim-
plification and used the fact that for V � μ1 � ωq

2 , the DQD
cannot be doubly occupied, so 〈N̂1N̂2〉ss = 0. In the above,

P(ω) is the power spectral density of the noise appearing in
the cavity due to the presence of the DQD. Note that the
leading contribution in the integral comes from P(ωq ) ∝ ε−2.
Thus, ε4〈ξ̂ †

A (t )ξ̂A(t ′)〉 ∝ ε2, as we previously said.
So, finally, after integrating out the bosonic baths, as well

as the DQD unit, we have the following effective equation of
motion of the cavity operators,

d

dt

(
b̂1

b̂2

)
= −iHeff

(
b̂1

b̂2

)
− i

(
ξ̂ b

1 (t ) + ξ̂A(t )

ξ̂ b
2 (t )

)
,

Heff = HS − ivB + ivA,

vB =
(κ1 + κ2

4

)
I +

(κ1 − κ2

4

)
σz, vA =

(
vA

11 vA
12

0 0

)
,

vA
11 = g2�Nss

2∑
α=1

(
�b

1α

)2

i(ωq − ωα ) + �
,

vA
12 = g2�Nss

2∑
α=1

�b
1α�b

2α

i(ωq − ωα ) + �
, (A32)

where we have dropped the ε’s for notational convenience.
The above equation can be simplified to Eq. (16) of the main
text using Eq. (A2), the fact that ωq = ω0, λ 
 �, and ne-
glecting ξ̂ b


 (t ). We justify the reason for neglecting ξ̂ b

 (t ) of

the bosonic baths in following subsection.

5. Reason for fluctuations of bosonic baths being negligible

The quantities ξ̂ b

 (t ) embody the thermal and quantum

fluctuations due to the presence of the bosonic baths. Since
〈ξ̂ b


 (t )〉 = 0, they do not play any role in obtaining expectation
values of cavity field operators. However, they do play a
role in obtaining cavity bilinears via their two-time correlator
[Eq. (A10)]. But, at low temperatures, we can write their
two-time correlator as

〈
ξ̂

b†

 (t )ξ̂ b

m(t ′)
〉 � δ
m

∫ 1/β

0

dω

2π
J
(ω)nB(ω)eiω(t−t ′ ), (A33)

where the upper limit of the integral has been replaced by
1/β because the Bose distribution suppresses the contribution
from βω � 1. Since we assume that the frequency of the cav-
ities ω0 satisfies βω0 � 1, this means the main contribution
of the fluctuations comes from bath frequencies which are
extremely off-resonant with the cavity frequency. On the other
hand, the DQD is in resonance with the cavity frequency, since
ωq = ω0. As a result, the contribution from fluctuations of the
gain medium is always much larger than that from the loss
medium, i.e., the bosonic baths. This is why, for the choice
of energy scales in our problem, we can neglect ξ̂ b


 (t ). We
have also numerically confirmed this by keeping the thermal
fluctuations, and observing that they make no change in the
results.
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APPENDIX B: OBTAINING NESS RESULTS FOR
DQD UNIT

1. The general Redfield quantum master equation

To obtain the NESS results for DQD unit without the
cavity unit, we will take the approach of the Redfield quantum
master equation (RQME). For an arbitrary setup of a system
connected to a bath, the full setup can be taken as isolated and
described via the full system+bath Hamiltonian Ĥ = ĤS +
ĤSB + ĤB. Here ĤS is the system Hamiltonian, ĤB is the bath
Hamiltonian, and ĤSB is the system-bath coupling Hamilto-
nian. The system-bath coupling can be written in the general
form ĤSB = ε

∑

 Ŝ
B̂
, where Ŝ
 is some system operator, B̂


is some bath operator, and ε is a small parameter controlling
the strength of system-bath coupling. The initial density ma-
trix of the setup ρtot (0) is considered to be in product form
ρtot (0) = ρ(0) ⊗ ρB, where ρ(0) is some initial state of the
system, and ρB is the initial state of the bath. The initial state

of the bath is often taken to be the thermal state with respect to
the bath Hamiltonian. The RQME is obtained by writing down
the equation of motion for the reduced density matrix of the
system up to O(ε2) under the Born-Markov approximation.
If 〈B̂
〉B = 0, where 〈. . .〉B refers to the average taken only
with respect to the bath, is satisfied initially, then the RQME
is given by

∂ρ

∂t
= i[ρ, ĤS]

− ε2
∑

,m

∫ ∞

0
dt ′{[Ŝ
, Ŝm(−t ′)ρ(t )]〈B̂
B̂m(−t ′)〉B

+ [ρ(t )Ŝm(−t ′), Ŝ
]〈B̂m(−t ′)B̂
〉B}, (B1)

where Ŝm(t ) = eiĤSt Ŝme−iĤSt , B̂m(t ) = eiĤBt B̂me−iĤBt . This
gives the leading-order dissipative term. Note that if the
system-bath coupling Hamiltonian is O(ε), the dissipative part
of the RQME is O(ε2).

2. The RQME for the DQD unit

We define the following quantities,

m =
( cos(θ ) − sin(θ )
− sin(θ ) − cos(θ )

)
, � =

( cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
,

Fαν (ω) =
2∑


=1

�α
�ν
J
f

 (ω)nF


 (ω)

2
, nF


 (ω) = 1

eβ(ω−μ
 ) + 1
,

fαν (ω) =
2∑


=1

�α
�ν
J
f

 (ω)

2
,

F�
αν (ω) = P

∫
dω′

π

Fαν (ω′)
ω′ − ω

, f �
αν (ω) = P

∫
dω′

π

fαν (ω′)
ω′ − ω

, (B2)

where θ is as defined in Eq. (8).
The RQME for the DQD unit, when not connected to the cavity, is obtained by using Eq. (B1) and simplifying. The RQME

is given by

∂ρDQD

∂t
= i[ρDQD, ĤS] − ε2LphρDQD − ε2L f ρDQD,

LphρDQD =
∑

α,ν,γ ,δ

(
mανmγ δ[Â†

γ Âδ, Â†
αÂνρDQD]FB

(
ω f

α − ω f
ν

) + H.c.
)
,

L f ρDQD =
∑
α,ν

([Â†
α, Ĝαν ÂνρDQD] + [ρDQDF̂αν Âν, Â†

α] + H.c.), (B3)

where ρDQD is the density matrix of the DQD, H.c. refers to the Hermitian conjugate, and

ω
f
1 = ωq

2
, ω

f
2 = −ωq

2
, (B4)

FB
(
ω f

α − ω f
ν

) =
∫ ∞

0
dt

∫ ∞

0

dω

2π
e−i(ω f

α−ω
f
ν )tJph(ω)

[
coth

(
βω

2

)
cos(ωt ) − i sin(ωt )

]
,

Ĝαν = f̂αν − F̂αν,

F̂αν = Fαν (ων )(1 − N̂ν̄ ) + N̂ν̄Fαν (ων + V ),

Fαν (ω) = Fαν (ω) + iF�
αν (ω),

f̂αν = fαν (ων )(1 − N̂ν̄ ) + N̂ν̄fαν (ων + V ),

fαν (ω) = fαν (ω) + i f �
αν (ω). (B5)
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Here ν̄ is the complement of ν (i.e., if ν = 1, ν̄ = 2 and vice versa; this convention will be followed throughout). We are interested
in the regime V � μ1, μ2. In this regime, there is negligible probability for double occupancy of the DQD, so 〈N̂1N̂2〉 � 0.
Assuming this, and taking expectation values, we have

d〈N̂γ 〉
dt

= −
2∑

ν=1

{
mγ γ̄

[
mγ̄ νFB

(
ω

f
γ̄ − ω f

ν

)〈Â†
γ Âν〉 − mγ νFB

(
ω f

γ − ω f
ν

)〈Â†
γ̄ Âν〉 + H.c.

]}
− 2

[
�〈N̂γ 〉 + Fγ γ

(
ω f

γ

)
(1 − N̂γ̄ )

]
, γ = {1, 2}, γ̄ = {2, 1}, (B6)

d〈Â†
1Â2〉

dt
= − iωq〈Â†

1Â2〉 −
2∑

α,ν=1

{
m2α

[
mανFB

(
ω f

α − ω f
ν

)〈Â†
1Âν〉 − m1νF ∗

B

(
ω

f
1 − ω f

ν

)〈Â†
ν Âα〉] + (1 ↔ 2)†

}

− [
�〈Â†

1Â2〉 − F21
(
ω

f
1

)
(1 − 〈N̂2〉) + F∗

12

(
ω

f
1

)
(1 − 〈N̂1〉)

]
, (B7)

where again we have dropped the ε’s for notational convenience. To obtain 〈N̂1〉ss, 〈N̂2〉ss, 〈Â†
1Â2〉ss, the above equations are

solved with the left-hand side set to zero. 〈Â†
2Â1〉ss is the complex conjugate of 〈Â†

1Â2〉ss.

APPENDIX C: GENERAL RESULTS FOR INPUT-OUTPUT EXPERIMENT

Here we give the general expressions for the transmitted signal in either cavity in an input-output experiment with a coherent
drive of frequency ωd and strength E at the second (lossy) cavity [see Eq. (15)]. To this end, first we rewrite the effective
Hamiltonian [Eq. (16)] in the rotating frame as

Heff =
(
ω0 − ωd − iκ

2

)
12 + λ

2
(2 − δ)σx − i

λδ

2
σy + i

κ̃

2
σz, (C1)

with the following definitions,

κ = κ2 − κ1
eff

2
, κ̃ = κ2 + κ1

eff

2
, κeff

1 = 2�δ − κ1. (C2)

The input-output experiment requires that the two coupled cavities are overall dissipative, so that they reach a steady state. The
transmitted signals T
 at the two cavities are given by[

T1/κ1

T2/κ2

]
= i(Heff − ωd12)−1

[
0

1

]
. (C3)

The transmitted signal at the 
th cavity can be written as T
 = |T
|eiφ
 , where |T
| is the transmission amplitude, and φ
 is the
phase response. The explicit expression for the transmission amplitudes are given by

|T1| = κ1λ(1 − δ)√[
(ω0 − ωd )2 − (

κ
2

)2 − (�+ − �−)2
]2 + κ2(ω0 − ωd )2

,

|T2| = κ2
[
(ω0 − ωd )2 + ( κeff

1
2

)2]√[
(ω0 − ωd )2 − (

κ
2

)2 − (�+ − �−)2
]2 + κ2(ω0 − ωd )2

. (C4)

The explicit expressions for the phase response are given by φ1 and φ2, which are extracted from the following equations,

tan(φ1) = κ (ω0 − ωd )

(ω0 − ωd )2 − (
κ
2

)2 − (�+ − �−)2
,

tan(φ2) = κeff
1

[
(ω0 − ωd )2 − (

κ
2

)2 − (�+ − �−)2
] + 2κ (ω0 − ωd )

2(ω0 − ωd )
[
(ω0 − ωd )2 − (

κ
2

)2 − (�+ − �−)2 − κeff
1 κ

2

] . (C5)

The above results were used in deriving Eqs. (45), (48), (49).

APPENDIX D: DERIVATION OF LOCAL LINDBLAD EQUATION FOR THE CAVITIES

In this Appendix, we give the microscopic derivation of Eq. (51). In order to derive this equation, we use Eq. (B1) treating
the two cavities as the system, and the rest of the setup as the bath. This gives

∂ρ

∂t
= i[ρ, ĤC] − ε4

∫ ∞

0
dt

{
[b̂1, b̂†

1(−t )ρ]〈ξ̂ †
A (0)ξ̂A(−t )〉 +

∑

=1,2

[b̂
, b̂†

(−t )ρ]

〈
ξ̂ b†


 (0)ξ̂ b

 (−t )

〉 + H.c.

}
, (D1)
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where H.c. refers to the Hermitian conjugate, b̂
(t ) = eiĤCt b̂
e−iĤCt , ĤC is the Hamiltonian of the two coupled cavities, ξ̂A(t ) is
defined in Eq. (A21), ξ̂ b


 (t ) is defined in Eq. (A9), and we have again explicitly put the small parameter ε. Now, we assume that
the coupling between the two cavities is also small,

λ → ελ, (D2)

so that, to O(ε4), the hybridization between the two cavity modes can be ignored in the nonunitary part of the quantum master
equation. So we use

b̂(t ) � e−iω0t b̂ + O(ε) (D3)

in Eq. (D1). This gives

∂ρ

∂t
= i[ρ, ĤC] −

∫ ∞

0
dt

{ ∫ ∞

−∞

dω

2π
P(ω)ei(ω−ω0 )t [b̂1, b̂†

1ρ] +
∑

=1,2

∫ ∞

0

dω

2π
J
(ω)nB(ω)ei(ω−ω0 )t [b̂
, b̂†


ρ] + H.c.

}
, (D4)

where, again, for notational convenience we have dropped ε, and have used Eqs. (A10) and (A31). Evaluating this equation,
along with the same approximation on bosonic bath spectral densities as discussed before Eq. (A15), gives Eq. (51).
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