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Abstract Allowing several imperfect repairs before a perfect repair can lead to a highly reliable and efficient system by
reducing repair time and repair cost. Assuming exponential lifetime and exponential repair time, we determine the optimal
probability p of choosing a perfect repair over an imperfect repair after each failure. Based on either the limiting availability
or the limiting average repair cost per unit time, we determine the optimal number of imperfect repairs before conducting a
perfect repair.
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1. Introduction

An imperfect repair has earned its popularity as an important maintenance strategy since the 1980s. See [2], [3],
[6], [7], [8],[17], [18], etc. A perfect repair is certainly desirable because it returns the failed system to a perfect
state “as good as new.” But a perfect repair is usually costly and time consuming. On the other hand, an imperfect
repair is a more economical and faster way to revive the system to a functioning—though weaker—state. The state
is weaker because an imperfect repair shrinks the next lifetime and/or extends the next repair times. A balanced
strategy, which utilizes the advantages of both perfect repair and imperfect repair, is vital to maintain a reliable and
efficient system.

A well-studied method of combining perfect repair and imperfect repair is to permit the option to conduct a
perfect repair on a failed system with probability p, and an imperfect repair with probability (1− p). This is the
so called (p, q) rule method or BP model that was first proposed by Brown and Proschan ([7]) in 1986 . Later
Block et al. ([5]) generalized the (p, q) model to incorporate the age t of the component so that the probability of
perfect and imperfect repair is state-dependent, resulting in the (p(t), q(t)) model. Shaked and Shanthikumar ([22])
considered the multivariate case of the (p, q) model. Later there came the [p(n, t), q(n, t), s(n, t)] model ([14])
which considers parameter n, the number of failures since replacement. This model considers a third possibility
that the repair could be unsuccessful. These models have been very well studied since then, incorporated with
various factors and extended to more complicated systems ([9], [10], [11], [16], [19], [20], [21], [22], [25], etc.). In
these models, the probability p is fixed. Lim et al. ([12]) proposed the bayesian imperfect repair model, in which
p is not fixed but a random variable with a prior distribution. In practice, however, it is hard to pre-specify p and
there hasn’t been a efficient solution to determine p.

With this in mind, we are motivated to obtain a calculable formula of p to help us decide which repair mode
to choose when system fails. In literature, it has been popular to consider cost and reliability measure such as

∗Correspondence to: Haixia Smithson (Email: haixia.smithson@gmail.com)

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright c⃝ 2021 International Academic Press



H. SMITHSON AND J. SARKAR 177

availability to optimize system maintenance model, see [23] and [24] for a literature review of various system
optimization models. In this paper, we focus on the (p, q) model for a one-unit system having an exponential
lifetime and an exponential repair time, the goal is to determine p based on two criteria—the limiting availability
and the limiting average cost per unit time.

There have been many studies on system maintenance with options of imperfect repairs before a perfect repair.
For example, Biswas et al. [4] investigated a periodically inspected system that is maintained through a fixed
number of imperfect repairs before it is replaced or perfectly repaired. Wang and Pham [26] considered imperfect
repairs after the first few (a predetermined number of) failures, and then they permitted a perfect repair done in
a negligible amount of time (or they replaced the system with a brand new one). Badie and Berrade [1] designed
a bivariate policy that takes into account the inspection times along with the allowed number of failures before
a perfect repair. They obtained the optimal time interval between successive periodic inspections as well as the
optimal number of failures prior to the final perfect repair.

We, on the other hand, determine the optimal probability p of choosing a perfect repair over an imperfect repair
after each system failure. Thus, in our formulation, the number of imperfect repairs is endogenous to the problem
(and not exogenously given). Indeed, our optimal choice of p after each failure, based on either of the two criteria
mentioned above, leads to determining the optimal number of imperfect repairs before conducting a perfect repair.
Moreover, imitating reality, we do not treat any repair time as negligible.

We begin with a list notation. In section 2, we formulate the problem, specifying the assumptions and detailing
the stochastic process. Section 3 derives the formulas for the limiting availability, and maximizes it by determining
the probability of choosing a perfect repair after each failure. Specifically, Proposition 3.1 states the conditions for
choosing a perfect repair over an imperfect repair after each failure. Section 4 solves the optimization problem of
determining the number of imperfect repairs before a perfect repair either to maximize the limiting availability,
or to minimize the limiting average repair cost per unit time. Section 5 gives numerical results illustrating the
optimization procedure. Section 6 concludes the paper.

Notation

λ1: expected first lifetime of the system before any failure
µ1: expected perfect repair time if performed after the first failure
ν1: expected imperfect repair time if performed after the first failure
α: shrinkage factor of lifetime after each imperfect repair
β: expansion factor of perfect repair time after each imperfect repair
γ: expansion factor of imperfect repair time after each imperfect repair
K: maximal number of imperfect repairs before a perfect repair must be performed
k: the ordinal number of the permitted imperfect repair, k = 1, 2, ...,K
K∗: optimal number of imperfect repairs to maximize limiting availability
K#: optimal number of imperfect repairs to minimize limiting average repair cost per unit time
λk: expected lifetime after (k − 1) imperfect repairs and before k-th failure
µk: expected perfect repair time after k-th failure
νk: expected imperfect repair time after k-th failure
pk: probability of choosing a perfect repair after k-th failure
b0: overhead cost per unit time for a perfect repair
b1: increment in perfect repair cost per unit time after each failure
Bk: cost of perfect repair per unit time after k-th failure; assume Bk = b0 + b1 k
c0: overhead cost per unit time for an imperfect repair
c1: increment in imperfect repair cost per unit time after each failure
Ck: cost of imperfect repair per unit time after k-th failure; assume Ck = c0 + c1 k
N: state of the system at time t = 0, when the system is brand new
Pk: state of the system undergoing a perfect repair after k-th failure
Ik: state of the system undergoing an imperfect repair after k-th failure
Uk: state of the system operating after k-th imperfect repair
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2. Statement of the problem

We consider a one-unit system whose lifetime has an exp(λ1) distribution, where λ1 denotes the mean lifetime, and 1/λ1
denotes the constant failure rate. When the system fails for the first time, we have a choice to carry out either a perfect repair
(with probability p1), or an imperfect repair (with probability 1− p1). We want to determine the optimal value of p1.

Following the first system failure, if a perfect repair is undertaken, then after an exp(µ1) perfect repair time, the system
becomes as good as new. On the other hand, following the first failure, if an imperfect repair is performed, then after an
exp(ν1) imperfect repair time, the system becomes functional, but weaker; and it operates for an exp(λ2) duration (which
we call its second lifetime) until it fails again. At that time, we must decide between a perfect repair (with probability p2)
and an imperfect repair (with probability 1− p2). Then this pattern repeats (we allow at most K imperfect repairs), until
eventually a perfect repair is chosen, following which the system becomes as good as new (the original state). This epoch is
called the renewal time. The duration between successive renewal times is called a cycle time. The stochastic behavior of the
system within each cycle is exactly the same. Thus, we model the stochastic behavior of the system as a renewal process.

A perfect repair is completely thorough, in the sense that it restores the system to a functionally brand-new state. However,
the duration of a perfect repair is much larger than that of an imperfect repair; that is, µ1 >> ν1. Also, the cost of a perfect
repair per unit time, in terms of actual cost to repair and the loss of revenue due to stoppage of production while under
repair, is much higher than that of an imperfect repair; that is, B1 >> C1. On the other hand, though an imperfect repair
is much faster and costs less, after an imperfect repair, the system will not function for the same duration as a new system.
The imperfectly repaired unit will have an overall shorter lifetime. Moreover, after an imperfect repair, the next time the
system fails, a repair (perfect or imperfect, whichever we decide to do) will take on average longer time compared to the
corresponding times after each previous failure.

If an imperfect repair has been chosen each time after the first (k − 1) failures (where k = 1, 2, ...), then the k-th lifetime
of the system is exp(λk), where λk = αk−1 λ1. After the k-th failure, if a perfect repair is chosen (with probability pk), then
the perfect repair time is exp(µk), where µk = βk−1 µ1, with β > 1 being the expansion factor for perfect repair time. On
the other hand, after the k-th failure, if an imperfect repair is chosen (with probability 1− pk), then the imperfect repair time
is exp(νk), where νk = γk−1 ν1, with γ > 1 being the expansion factor for imperfect repair time. And so on, until eventually
a perfect repair is chosen, at the completion of which the system is restored to the brand-new state. More generally, our
method works under milder conditions: λ1 ≥ λ2 ≥ . . ., ν1 ≤ ν2 ≤ . . ., and µ1 ≤ µ2 ≤ . . ..

We first determine the optimal value of pk, the probability of choosing a perfect repair over an imperfect repair after
the k-th failure, given that (k − 1) imperfect repairs have already been chosen since the last perfect repair. The optimal
value is chosen with two criteria in mind—maximizing the limiting availability, and minimizing the limiting average repair
cost per unit time. It turns out that, if we wish to maximize the limiting availability, then the optimal value of pk is 0
for k = 1, 2, . . . ,K∗, and 1 for k = K∗ + 1,K∗ + 2, . . . ,K. Likewise, if we wish to minimize the limiting average repair
cost per unit time, then the optimal value of pk is 0 for k = 1, 2, . . . ,K#, and 1 for k = K# + 1,K# + 2, . . . ,K. Thus,
we endogenously determine the optimal number of imperfect repairs (K∗ or K# depending on the criterion we choose to
optimize) before conducting a perfect repair.

3. Choosing pk to maximize limiting availability

Figure 1. Transition diagram when at most K = 1 imperfect repair is permitted
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When K = 1, only one imperfect repair is allowed. We can choose to forgo this option and conduct a perfect repair
after the very first failure. Or, we can choose to exercise the option, and carry out an imperfect repair after the first failure.
Thereafter, we must necessarily conduct a perfect repair after the second failure. Suppose that we assign a probability p1 of
choosing a perfect repair and a probability (1− p1) of choosing an imperfect repair, after the first failure. We must determine
an optimal value of p1 to maximize the limiting availability. Let us, therefore, express the limiting availability as a function
of p1.

When K = 1, the stochastic process has five states: N , P1, I1, U1 and P2. See Figure 1. Let us denote the steady
state probabilities as PN , PP1

, PI1 , PU1
and PP2

. Let P be the vector of these steady state probabilities; that is,
P = (PN , PP1

, PI1 , PU1
, PP2

)′. To find P, we solve the state equations

M ·P = 0; and P′1 = 1

where 1 is a vector of all entries one, and M is the transition rate matrix

M =


−1/λ1 1/µ1 0 0 1/µ2
p1/λ1 −1/µ1 0 0 0

(1− p1)/λ1 0 −1/ν1 0 0
0 0 1/ν1 −1/λ2 0
0 0 0 1/λ2 −1/µ2

 .

We express each steady state probability as a multiple of PN as follows:

PP1
=

p1µ1

λ1
PN ; PI1 =

(1− p1)ν1
λ1

PN ; PU1
=

(1− p1)λ2
λ1

PN ; PP2
=

(1− p1)µ2

λ1
PN .

Substituting these multiples in P′1 = 1, we obtain

PN =

{
1 +

p1µ1

λ1
+

(1− p1)(ν1 + λ2 + µ2)

λ1

}−1

. (1)

Hence, the limiting system availability simplifies to

A1(p1) = PN + PU1
=

(
1 +

(1− p1)λ2
λ1

)
PN

=
λ1 + (1− p1)λ2

λ1 + p1µ1 + (1− p1)(ν1 + λ2 + µ2)

=
p1λ1 + (1− p1)(λ1 + λ2)

p1(λ1 + µ1) + (1− p1)(λ1 + ν1 + λ2 + µ2)
. (2)

As p1 varies between 0 and 1, A1(p1) takes values between (λ1 + λ2)/(λ1 + ν1 + λ2 + µ2) and λ1/(λ1 + ν1). Furthermore,
A1 is a decreasing, a constant, or an increasing function of p1 according as

λ1
λ1 + µ1

<=>
λ1 + λ2

λ1 + λ2 + ν1 + µ2
, (3)

Thus, if “greater” holds in (3), we always choose a perfect repair; and thereafter the system becomes as good as new.
On the other hand, if “less” holds in (3), we never choose a perfect repair after the first failure; we must always choose an
imperfect repair. When equality holds in (3), we are indifferent between perfect and imperfect repairs after the first failure.

Interpretation of Condition (3): From Figure 1, we note that if we choose a perfect repair after the first failure, then
between successive renewal times, the mean system up time (MSUT) is λ1, the mean system down time (MSDT) is µ1, and
the limiting availability is given by the left-hand side of (3). On the other hand, if we choose an imperfect repair after the first
failure followed by a perfect repair after the second failure, then between successive renewal times, the MSUT is (λ1 + λ2),
the MSDT is (ν1 + µ2), and the limiting availability is given by the right hand side of (3). Hence, by comparing the two
sides of (3) we can determine which type of repair is preferable after the first failure.

Next, suppose that K = 2; that is, we are allowed to carry out at most two imperfect repairs, and after the third failure
we must do a perfect repair. Of course, if “greater” holds in Condition (3), we surely do a perfect repair after the first
failure. Thereafter, the system is renewed. Therefore, suppose that “less” holds in Condition (3). Then we surely carry out
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Figure 2. Transition diagram when at most K = 2 imperfect repairs are permitted

an imperfect repair after the first failure. The imperfectly repaired unit will operate for an exp(λ2) duration until it fails
again. What should we do after this second failure—a perfect repair or an imperfect repair? We consider these two options,
assigning probability p2 to a perfect repair and probability (1− p2) to an imperfect repair, which lead to the state transition
diagram given in Figure 2. The steady state probabilities of the seven states are denoted by PN , PI1 , PU1

, PP2
, PI2 , PU2

and
PP3

, with P denoting their row vector.
For K = 2, the rate matrix is

M =



−1/λ1 0 0 1/µ2 0 0 1/µ3
1/λ1 −1/ν1 0 0 0 0 0
0 1/ν1 −1/λ2 0 0 0 0
0 0 p2/λ2 −1/µ2 0 0 0
0 0 (1− p2)/λ2 0 −1/ν2 0 0
0 0 0 0 1/ν2 −1/λ3 0
0 0 0 0 0 1/λ3 −1/µ3

 .

As in the case of K = 1, to solve the steady state equations M ·P = 0 and P′1 = 1, we express each steady state
probability as a known multiple of PN :

PI1 =
ν1
λ1

PN , PU1
=

λ2
λ1

PN , PP2
=

µ2p2
λ1

PN ,

PI2 =
ν2(1− p2)

λ1
PN , PU2

=
λ3(1− p2)

λ1
PN , PP3

=
µ3(1− p2)

λ1
PN .

Again, from P ′1 = 1, we obtain

PN =

{
1 +

ν1 + λ2 + µ2p2
λ1

+
(1− p2)(ν2 + λ3 + µ3)

λ1

}−1

. (4)

We have already seen that if an imperfect repair is followed by a perfect repair, then between successive renewal
times, the MSUT is Λ2 = λ1 + λ2 and the MSDT is ν1 + µ2 = Ñ2, say. Likewise, if two successive imperfect repairs
are followed by a perfect repair, then between successive renewal times, the MSUT is Λ3 = λ1 + λ2 + λ3 and the MSDT is
ν1 + ν2 + µ3 = Ñ3, say. Using these notation, the limiting system availability is

A2(p2) = PN + PU1
+ PU2

=
λ1 + λ2 + (1− p2)λ3

λ1 + ν1 + λ2 + p2µ2 + (1− p2)(ν2 + λ3 + µ3)

=
p2Λ2 + (1− p2)Λ3

p2(Λ2 + Ñ2) + (1− p2)(Λ3 + Ñ3)
(5)
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As p2 varies between 0 and 1, A2(p2) varies between Λ3/(Λ3 + Ñ3) and Λ2/(Λ2 + Ñ2). Also, A2 is a decreasing, a constant,
or an increasing function of p2 according as

Λ2

Λ2 + Ñ2

<=>
Λ3

Λ3 + Ñ3

. (6)

Interpretation of Condition (6): Suppose that we have already chosen an imperfect repair after the first failure; and we
are contemplating whether to perform a perfect repair right after the second failure, or to do an imperfect repair after the
second failure followed by a perfect repair after the third failure. In view of Figure 2, the two sides of (6) give the limiting
availabilities under these two choices. Hence, by comparing the two sides of (6), we can determine which type of repair is
preferable after the second failure, if an imperfect repair is done after the first failure and a perfect repair must be done after
the third failure.

Notice the similarities between corresponding formulas when K = 1 and K = 2. Next, we extend the results to any
arbitrary positive integer K, which denotes the maximum number of imperfect repairs permitted before a perfect repair. See
Figure 3 for the transition diagram. Let us also extend the notation for cumulative life- and repair times: If (k − 1) imperfect
repairs are followed by a perfect repair, then the expected cumulative lifetime and the expected cumulative repair time are

Λk = λ1 + . . .+ λk (7)
Ñk = ν1 + . . .+ νk−1 + µk (8)

Along similar lines of reasoning, but omitting the details, we establish Proposition 3.1, which generalizes the three results:

(1) the limiting availability if, given (k − 1) imperfect repairs, we choose to conduct another imperfect repair after the
k-th failure with probability pk;

(2) the condition under which, given (k − 1) imperfect repairs, it is preferable to conduct another imperfect repair after
the k-th failure; and

(3) the maximum value of the limiting availability if we choose pk optimally.

Figure 3. Transition diagram when at most K imperfect repairs are permitted

Proposition 3.1
Let K denote the maximum number of imperfect repairs allowed. For k = 1, 2, ...,K, having chosen (k − 1) imperfect
repairs in succession, suppose that after the k-th failure, a perfect repair will be chosen with probability pk and an imperfect
repair with probability (1− pk), with the understanding that if an imperfect repair is chosen, then after the (k + 1)-st failure,
surely a perfect repair will be chosen. Then the system limiting availability is

Ak(pk) = PN + PU1
+ . . .+ PUk

=
pkΛk + (1− pk)Λk+1

pk(Λk + Ñk) + (1− pk)(Λk+1 + Ñk+1)

(9)

which is a decreasing, a constant, or an increasing function of pk according as

Λk

Λk + Ñk

<=>
Λk+1

Λk+1 + Ñk+1

. (10)
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According as the three cases in (10) hold, Ak(pk) attains a maximum value

Λk+1

Λk+1 + Ñk+1

(at pk = 0); if “ <′′ holds in (10)

Λk

Λk + Ñk

(at pk = 1); if “ >′′ holds in (10)

λk+1

λk+1 + Ñk+1 − Ñk

(at any pk ∈ [0, 1]); if “ =′′ holds in (10)

Note that in case an inequality holds in Condition (10), the optimum pk is a corner solution (either pk = 0, or pk = 1),
and in case an equality holds, we can choose either one of the two corner solutions to maximize Ak.

Interpretation of Condition (10): Suppose that we have already chosen imperfect repairs after the first (k − 1) failures;
and we are contemplating whether to perform a perfect repair after the k-th failure, or perform an imperfect repair after the
k-th failure followed by a perfect repair after the (k + 1)-st failure. Then the two sides of (10) give the limiting availabilities
under these two choices.

The next corollary establishes that, under a mild condition on the perfect repair times (satisfied, in particular, by the
geometric perfect repair times), the choice between imperfect and perfect repairs after successive failures is self-correcting.
That is, if after the k-th failure it is optimal to choose a perfect repair, but we erroneously choose to carry out an imperfect
repair, then after the (k + 1)-st failure the optimal choice will be a perfect repair. Equivalently, if after the k-th failure it is
optimal to choose an imperfect repair, then it must be true that after each previous failure the optimal choice was an imperfect
repair.

Corollary 3.2
Suppose that the conditions of Proposition 3.1 hold. Further, assume the increments in perfect repair times are increasing in
k; that is,

µk+1 − µk < µk+2 − µk+1 for all k = 1, 2, ...,K − 2. (11)

Then, a “>” in (10) for some k ≥ 1 implies a “>” in (10) for (k + 1); or equivalently, after some algebraic manipulations

Λk

Λk+1
>

Ñk

Ñk+1

=⇒
Λk+1

Λk+2
>

Ñk+1

Ñk+2

. (12)

Equivalently, a “<” in (10) for some k ≥ 2 implies a “<” in (10) for (k − 1); or

Λk

Λk+1
<

Ñk

Ñk+1

=⇒
Λk−1

Λk
<

Ñk−1

Ñk

.

Proof. Suffices it to prove (12). By dividendo, Λk
Λk+1

> Ñk

Ñk+1
if and only if Λk

λk+1
> Ñk

Ñk+1−Ñk
. Since λk is decreasing in

k, we have

Λk+1

λk+2
=

λk+1

λk+2

(
Λk

λk+1
+ 1

)
>

Ñk

Ñk+1 − Ñk

+ 1 =
Ñk+1

Ñk+1 − Ñk

(13)

Next, since νk is increasing in k and assumption (11) holds, we have

Ñk+1 − Ñk = νk + µk+1 − µk < νk+1 + µk+2 − µk+1 = Ñk+2 − Ñk+1.

Hence, from (13), we have
Λk+1

λk+2
>

Ñk+1

Ñk+2 − Ñk+1

,

whence, by dividendo, we have Λk+1

Λk+2
>

Ñk+1

Ñk+2
. This completes the proof of (12).
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4. The optimum number of imperfect repairs

In Section 3, Proposition 3.1 solves the optimal choice of pk that maximizes Ak for k = 1, 2, . . . ,K. If it turns out
optimal to choose pk = 0 for all k = 1, 2, . . . ,K, then we conduct K imperfect repairs followed by a perfect repair after
the (K + 1)-st failure. The transition diagram is given in Figure 4; and from (9), the limiting availability in this case is
ΛK+1/[ΛK+1 + ÑK+1].

Figure 4. Transition diagram when K imperfect repairs are performed followed by a perfect repair after the (K + 1)-st failure

In Proposition 3.1 we established that in order to maximize the limiting availability Ak, the optimum choice of probability
pk of conducting a perfect repair after the k-th failure, is always a corner solution (either pk = 0, or pk = 1); and in Corollary
3.2 we showed that pk’s are non-decreasing. We simply note down K∗, the smallest k such that pk = 1. This K∗ is the
optimal number of imperfect repairs such that AK∗ is the largest among {A1, A2, . . . , AK}. Thus, we have solved the
problem of determining endogenously the optimal number of imperfect repairs that must be performed before performing a
perfect repair in order to maximize the limiting availability.

In Section 2 , we assumed the following relations among the parameters:

λk = αk−1λ1, (0 < α < 1),

µk = βk−1µ1, (β > 1),

νk = γk−1ν1, (γ > 1).

In other words, the lifetimes shrink and the repair times expand geometrically as k increases. We assume further that β < γ;
that is, after several imperfect repairs when the system fails again, the next perfect repair time does not increase as fast as
the next imperfect repair time. Under these assumptions, we can rewrite the results in Proposition 3.1:

The system limiting availability is

Ak(pk) =
pk

1−αk

1−α λ1 + (1− pk)
1−αk+1

1−α λ1

pk

(
1−αk

1−α λ1 + γk−1−1
γ−1 ν1 + βk−1 µ1

)
+ (1− pk)

(
1−αk+1

1−α λ1 + γk−1
γ−1 ν1 + βk µ1

)
(14)

which is a decreasing, a constant, or an increasing function of pk according as

1− αk

1− αk+1
<=>

(γk−1 − 1) ν1 + (γ − 1)βk−1 µ1

(γk − 1) ν1 + (γ − 1)βk µ1
. (15)

According as the three cases in (15) hold, Ak(pk) attains a maximum value

1−αk+1

1−α λ1
1−αk+1

1−α λ1 + γk−1
γ−1 ν1 + βk µ1

(at pk = 0); if “ <′′ holds in (15)

1−αk

1−α λ1
1−αk

1−α λ1 + γk−1−1
γ−1 ν1 + βk−1 µ1

(at pk = 1); if “ >′′ holds in (15)

αk λ1
αk λ1 + γk−1 ν1 + βk−1(β − 1)µ1

(at any pk ∈ [0, 1]); if “ =′′ holds in (15)
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Suppose that the cost per unit time of a perfect repair (and that of an imperfect repair) increases linearly depending
on the number of imperfect repairs already made on a brand-new unit. To elaborate, for k = 1, 2, . . . ,K, suppose that
(k − 1) imperfect repairs have been made on the unit. Then after the k-th failure, the cost per unit time of a perfect repair is
Bk = b0 + b1 k; and that of an imperfect repair is Ck = c0 + c1 k, where b0, b1, c0, c1 > 0 are known parameters.

Suppose now that our criterion for optimization is to minimize the limiting average repair cost per unit time. Along similar
lines of reasoning as in Section 3, we can determine how to choose optimally between a perfect and an imperfect repair after
the k-th failure, if we have already chosen an imperfect repair after each of (k − 1) failures and in case an imperfect repair
is chosen, we will follow it up with a perfect repair after the (k + 1)-st failure. We simply compare ξk and ξk+1, the average
repair cost per unit time between successive renewal times under these two options; and choose the type of repair that attains
min{ξk, ξk+1}, where

ξ1 =
B1µ1

λ1 + µ1
, ξ2 =

C1ν1 +B2µ2

λ1 + λ2 + ν1 + µ2
, . . . ,

ξk+1 =
C1ν1 + C2ν2 + · · ·+ Ckνk +Bk+1µk+1

Λk+1 + Ñk+1

(16)

Let K# denote that value of k (k = 1, 2, . . . ,K) such that ξK# achieves the minimum value among {ξ1, ξ2, . . . , ξK+1}.
Thus, if our objective is to minimize the limiting average repair cost per unit time (or equivalently, to maximize the limiting
average profit per unit time), then we must conduct K# imperfect repairs followed by a perfect repair after the (K# + 1)-st
failure.

When K# and K∗ turn out to be equal (or nearly equal), we optimize (or nearly optimize) both the desirable objectives
of maximizing the limiting availability and minimizing the limiting average repair cost per unit time. However, oftentimes
(depending on the values of the parameters) the optimal number of imperfect repairs under these two criteria may differ,
causing us to look for a compromise.

5. Numerical results

We compute both the limiting availability and the average repair cost per unit time, under different parameter values,
to determine the number of imperfect repairs before the ultimate perfect repair. We choose the following values of the
parameters:

λ1 = 100, α = 0.96; µ1 = 40, β = 1.05; ν1 = 10, 4, 1, γ = 1.2;

b0 = 40, b1 = 5; c0 = 10, c1 = 2.

We first evaluate Condition (10) after the k-th failure, k = 1, 2, .... Recall that if “<” holds in Condition (10), then we
choose an imperfect repair after the k-th failure in order to maximize the limiting availability. We present the results in Table
1. For ν = 10, we choose imperfect repairs after each of the first three failures; but after the fourth failure, we choose a
perfect repair. Similarly, for ν = 4, we choose imperfect repairs after each of the first 5 failures, and a perfect repair after the
sixth failure; and for ν = 1, we choose imperfect repairs after the first 8 failures, and a perfect repair after the ninth failure.

Next, we calculate the limiting availability using (14), and the average cost per unit time using (16) and plot these
quantities in Figure 5. For ν1 = 10, we note that K∗ = 4 = K#. Thus, there is no conflict between the two desirable criteria
to optimize—maximize the limiting availability and minimize the average cost per unit time. However, when ν1 = 4, we
have K∗ = 6 ̸= 5 = K#; the maximal limiting availability is A6 = .870, which is .230% more than A4 = .868; and the
average cost per unit time is ξ6 = 6.628, which is 1.554% higher than ξ5 = 6.525. In this case, we may choose K∗ = 6
imperfect repairs before a perfect repair, if the 1.554% increase of limiting average repair cost per unit time is within the
budget; otherwise, we may choose K# = 5 imperfect repairs before a perfect repair, if we are willing to sacrifice a .230%
limiting availability. Similarly, when ν1 = 1, we have K∗ = 9 ̸= 6 = K#; the maximal limiting availability is A9 = .911,
which is .878% more than A6 = .903; and the limiting average cost per unit time is ξ9 = 6.570, which is 6.682% higher than
ξ6 = 6.131.
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Figure 5. Either maximize the limiting availability Ak (top panel), or minimize the limiting average repair cost per unit time
ξk (bottom panel).
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6. Conclusion

In an attempt to device an efficient maintenance policy that will increase limiting availability and reduce repair cost, we
permit system maintenance using a relatively quick and inexpensive imperfect repair after a few failures, followed by an
eventual perfect repair that brings the system back to “as good as new.” First, we address the problem of determining the
probability of choosing a perfect repair over an imperfect repair to maximize the limiting availability (or minimize the
average repair cost per unit time). We exhibit that the optimal probability is 0 after the first few failures and thereafter it
is 1 after each additional failure. We determine a straight-forward condition whose evaluation determines these optimal
probabilities. Furthermore, we show that if the condition indicates that a perfect repair is optimal, but we mistakenly conduct
an imperfect repair, then after the next failure, the condition will again indicate that a perfect repair is optimal. Thus, we
can determine endogenously the number of failures after which imperfect repairs must be done followed by a perfect repair
after the next failure, to either maximize the limiting availability or minimize the average cost per unit time. It would be
ideal if these two criteria to optimize lead to the same or nearly the same number of imperfect repairs. Otherwise, we have
to compromise either on the limiting average repair cost or on the limiting availability.

Throughout the paper we have assumed both lifetime and repair times are exponentially distributed. It is imperative that a
future study incorporate more general life- and/or repair time distributions.
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