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Abstract 

 Climate change is already being felt on local levels, with historical records from the 

State of Indiana (USA) revealing warmer winters, and more extreme precipitation events. 

To refine our understanding of climate change impacts on human health, we conducted a 

state-level assessment of future climate change impacts on human health using outputs 

from advanced climate model projections for this century. Future projections show a steep 

increase in extreme heat events, leading to greater potential vulnerability to heat disasters 

for Indiana communities. Additionally, a 2- to 4-fold increase in days with “uncomfortable 

night” conditions by the end of the century will strongly impact the cardiopulmonary 

health of more vulnerable populations (i.e., elderly, those with pre-existing conditions, 

children, and those with inadequate access to cooling). 

Continued trends for warmer winters and more flooding suggest a much greater risk 

for the expansion and virulence of a number of vector-borne diseases, such as Lyme 

disease, West Nile Virus, and “tropical” diseases for which the mosquito vectors will thrive. 

Higher temperatures will also drive more frequent and severe harmful algal blooms in 

lakes and reservoirs, with implications for human and animal health. Food systems will _______________________________________________
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also be impacted, particularly with increased risk of contamination by bacteria and 

mycotoxins due to elevated heat and humidity.  

 

1. Introduction 

 Climate change is already negatively impacting human health and well-being, and 

these impacts are expected to worsen with future climate change (Luber and McGeehin, 

2008; Bell et al., 2017). Evidence of the links between climate and health range from 

extreme heat event morbidity and mortality analyses (e.g., Luber and McGeehin, 2008; 

Hess et al., 2014; Saha et al., 2015; Lay et al., 2018) to extreme precipitation effects 

(Pendergrass and Knutti, 2018; Witze, 2018). Studies have also increasingly used regional 

models of future climate change through 2100 to predict, and potentially better prepare 

for, future conditions at the local level (e.g., Johnson et al., 2012; Schramm et al., 2014; 

Conlon et al., 2016; Moulton and Schramm, 2017). In general, these regional climate 

projections tend to include higher general temperatures and particularly higher numbers 

of extreme heat days (Lulla et al., 2015; Conlon et al., 2016) as well as greater intensity of 

precipitation in any given rainfall event (e.g., Prein et al., 2017; Liu et al., 2017; Patricola 

and Wehner, 2018; Witze, 2018).  

Adverse health impacts from climate change are generally related to the direct 

consequences of temperature and precipitation patterns, such as heat stroke and flood 

injuries and mortalities, and indirect effects, such as changes in the growing seasons for 

allergen sources and expanding mosquito population (Ebi et al., 2018). A series of climate 

change reports prepared through the Congressionally-mandated US National Climate 

Assessment process (e.g., Melillo et al., 2014; USGCRP, 2017, 2018) break climate impacts 

and projections into regional and sectorial analyses. Projections for the Midwest are 

particularly grim, with estimates that heat-related deaths will increase more in this region 

than anywhere else in the country (Ebi et al., 2018). Given this backdrop, a reasonable next 

stage in this granularity of outcomes and impacts is to move toward state-level 

assessments, given that in the US at least, much of the infrastructure and health services 

responses that will be most closely coupled to climate change require state-level actions. 
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Some efforts have been made to develop these more granular products, such as the CDC 

BRACE program (CDC, 2018) which supported a number of state and city level 

vulnerability assessments. Other targeted plans have either been conducted (e.g., the City 

of Chicago’s Climate Action Plan largely in response to the deadly 1994 heat wave) or are 

being developed. But all these plans depend largely on the regional climate models, rather 

than on state-level climate projections (e.g., U.S. EPA, 2017a). 

 As part of a multi-sectorial climate impact assessment, we report on the most 

relevant impacts of climate change on human health in the State of Indiana, USA. We first 

discuss temperature, including extreme heat, extended heat waves, and the impacts that 

this has on human health via heat stress, air quality, and the interactions between extended 

warm seasons and proliferation of noxious weeds and pests. We then cover the role that 

extreme precipitation has on direct flooding impacts on communities as well as the role 

that ponded water plays in the lifecycles of disease vectors such as mosquitoes. This 

analysis may provide an effective approximation more broadly for the Midwest region as a 

whole, which largely has a similar topography (moderate to low relief), hydrogeology 

(glacially-modified and till-dominated surface runoff and aquifer systems), and population 

structure (widely distributed and low density urban centers separated widely among 

largely agricultural landscapes). 

II. Methods 

Climate Analysis 

We adapted a full-spectrum approach to our analysis of climate change and human 

health from the Human Health section of the Fourth National Climate Assessment report 

(Ebi et al., 2018), which includes climate drivers, exposure pathways, and health outcomes. 

Future climate projections presented here are based on averages from 10 global climate 

models that are the most likely outcomes for a given emissions scenario for Indiana (Byun 

and Hamlet, 2018; Angel et al., 2018; Hamlet et al., 2019). The 30-year climate projection 

windows are the 2020s (2011 to 2040), 2050s (2041 to 2070) and 2080s (2071 to 2100). 

Two future greenhouse gas concentrations were considered as most meaningful to bracket 

climate trajectories over this century— “low” and “high,” following Representative 
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Concentration Pathways (RCPs) 4.5 and 8.5, respectively, which have been used to develop 

many existing projections summarized by the Intergovernmental Panel on Climate Change 

(IPCC). RCP4.5 (“low”) projects net greenhouse gas (GHG) emissions peaking in 2040 and 

declining after then and end of century temperatures reaching 2.4°C over pre-industrial 

levels. RCP8.5 (“high”) projects emissions continuing to rise throughout the 21st century 

and end of century temperatures reaching 4.9°C over pre-industrial levels (Moss et al., 

2010; Rogelj et al., 2012). The lowest-bound scenario, RCP2.6 which assumes that 

emissions peak between 2010 and 2020 and decline substantially thereafter, is not 

modeled here as it was considered unlikely given current high and increasing carbon 

emission rates toward the end of this “peak assumption window” (Hamlet et al., 2019).  

Temperature, Ozone and Volatile Organic Compounds Analysis 

We created a map of the Indianapolis area urban heat island at a census tract level to 

visualize the spatial distribution of max land surface temperature using a 30x30m 

resolution Landsat 8 imagery data downloaded from the USGS EarthExplorer website 

(http://earthexplorer.usgs.gov/). We aggregated the image pixels to census tract polygons 

and overlaid this map with the VOC maps to identify specific non-mobile sources of VOCs 

within Indiana and Marion. Unlike the MODIS products which capture images daily, but at a 

worse spatial resolution (1km), the Landsat imagery is captured at 30x30m resolution 

every 16 days. This is important for the spatial granularity of urban heat island effects in a 

city. Specifically, we downloaded all Level 1 GeoTIFF data products for June-August in 2014 

from specific satellite bands, which cover Marion County. We re-projected these Landsat 

raster images in ArcMap to convert to the NAD 1983 StatePlane Indiana East FIPS 1301 

Feet projection. Using a method similar to that described in the MODIS Land Surface 

Temperature Products Collection 5 Users' Guide, the six raster images taken during the 3 

months from band 10 were used to create a composite of a nearly cloud-free image. We 

repeated the same process for the 6 raster images from band 11. The resulting two cloud-

free raster images were then combined using a split-window algorithm similar to that used 

to create the MODIS land surface temperature product areas of higher total VOC 

concentrations from all sources.  

http://earthexplorer.usgs.gov/


5 
 

 5 

Ozone (O3)concentrations were predicted by O3 formation potential conversion, using 

amount and type of Volatile Organic Compound (V0C) obtained at the census tract level 

from the EPA Toxic Release Inventory database from (2005-2015). We used a total of 13 

ambient VOC concentrations, including both mobile and non-mobile sources, and summed 

for O3 formation potential after calculating the photochemical reactivity weighted 

concentration for each VOC.  

Health Impacts Approach 

 The approach used in this study considers climate variables temperature and 

precipitation, both as independent variables as well as interacting variables. From the 

perspective of air quality and health, temperature impacts cardiovascular systems via heat 

stress, allergies and asthma via plant allergen season length, pulmonary disease (asthma, 

etc.) via O3, carbon monoxide (CO), and to some extent particulate matter production (Ebi 

et al., 2018). Precipitation impacts flood-related morbidity and mortality, mental health 

through disaster-related stress, water quality degradation, mold production, and the 

population levels of mosquitos (e.g., U.S. EPA 2017b). Table 1 illustrates the two climate 

variables considered in hindcasting recent climate change and forecasting future change 

based on state-specific climate model outputs.  
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3. Temperature Impacts on Health 

3.1 Historical records 

The observed record of temperature in Indiana since 1895 collected from National 

Oceanic and Atmospheric Administration (NOAA, Climate at a Glance Database, 2017) 

provides an important context with which to view future climate change. The annual 

average temperature has increased 0.4°F/decade since 1960 (Widhalm et al., 2018). 

Average summer temperatures have also increased, by 0.2°F/decade since 1960, although 

overall there is no detectable trend for the entire record from 1895 to 2017 (Widhalm et 

al., 2018). Average summer temperatures for Indiana vary around a long-term average of 

72.5°F, with some five-year intervals as low as 71°F and others reaching 74.5°F (Frankson 

et al., 2017). Heat-stress-related morbidity and mortality are related most strongly to 

extreme heat events, particularly events where evenings remain very warm for several 

days in a row (Sheridan and Lin, 2014). The historical record in Indiana reveals an average 

of about 2 days per year when nighttime temperatures do not drop below 75°F. The 1930’s 

were exceptionally warm in the context of 20th century, experiencing 4-5 days per year 

with excessive heat. This was before the widespread adoption of air conditioning, and thus 

would likely to have had an impact on human health, although little analysis has been done 

on this issue. More recently, the late 1990’s and 2005-15 saw 2.5-3.5 days per year of very 

warm evenings, slightly over the 2.0-day historical average. Very warm nights occurred at 

or above the long-term norm in every interval but one since 1980 (Frankson et al., 2017). 

 Several observations arise from the historical temperature record (Widhalm et al., 

2018): 

• Observed spring temperatures have largely been substantially higher than normal 

since 1990  

• The spring warming signal is the strongest among all the seasons.  

• Warming trends have accelerated in the latter half of the record (annually and in all 

seasons).  

• Overnight/minimum temperatures are warming more quickly than daytime/high 

temperatures.  
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• Frost-free period is lengthening, with the majority of the extension happening in the 

spring.   

• In latter half of the record (since 1960), declines occurred in extreme cold but no 

trend is present in extreme heat. 

Based on the historical temperature record, we observed a pattern of warmer spring 

temperatures, with the highest values of the record occurring from 2010-2015 and earlier 

onset of spring based on last frost dates (Frankson et al., 2017). These trends have resulted 

in a longer spring allergy season with the lengthening of the ragweed pollen production 

season (Ziska et al., 2011), as well as other nuisance allergens. Moreover, Chiu et al. (pers. 

communication) found a total lengthening in the frost-free season in Indiana by more than 

2 weeks from 1960-2013, with much of that extension occurring in the spring. 

 One “natural” driver of pest control is very cold winter temperature, which kills 

pests and offspring living in the surface soil. The historical record reveals an average of 

about 5 days per year with minimum temperatures below 0°F (Frankson et al., 2017). 

There has been one to almost three fewer very cold nights (minimum temperatures below 

0°F) than average since 1990, which should result in more pests overwintering successfully 

into the next spring and summer. Of particular concern is the number and range of pests 

that are disease vectors, such as mosquitoes and ticks. Climate conditions can affect over-

winter survival of both the bacterium that causes Lyme disease as well as the tick that 

serves as its vector (Beard et al., 2016). The US Midwest and Northeast have seen a 

significant increase in the number and geographic extent of reported Lyme disease 

incidence, with cases increasing about 300% nationally over the past 15 years (USGCCRP, 

2016). Projected changes include an increased range of transmission, lengthened season of 

transmission, and higher tick densities (Luber et al., 2014). Southwestern Indiana may be 

most affected by extended tick habitats; however, impacts on Indiana are projected to be 

relatively small compared to those in other parts of the Midwest such as Illinois or 

Kentucky (Brownstein et al., 2005). 
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3.2 Temperature projections and health impacts 

 The extreme heat projections for both low and high atmospheric concentrations 

show substantial increases over the century (Fig. 1). The modeled baseline (1915-2013) of 

summer days with temperatures above 95°F ranges from 0-12 across the state. This 

number increases to 26-66 days for low emissions and 30 to over 100 days for high 

emissions by 2071-2100. Note that the increase is substantial even in the 2020’s projection 

(Fig. 1), indicating that heat stress is not a distant scenario but rather a more immediate 

one.  Furthermore, the number of consecutive days with Tmax above above 86°F (one 

measure of heat wave duration) rises from 3-5 in the historical record to 6-9 by mid-

century (Bowling et al., 2018). This increase is a critical factor, given the links between 

prolonged heat and heat wave-induced morbidity and mortality events (e.g., the Chicago 

Heat Wave of 1995).  
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Figure 1. Spatial variability of projected ensemble extreme heat days based on 

RCP4.5 (top row) and RCP8.5 (bottom row) for 2020s (left column), 2050s (middle 

column) and 2080s (right column) relative to the historical baseline period (1915-2013).  

 

 Another key parameter for heat stress and cardio-pulmonary morbidity and 

mortality are evening temperatures, and thus we examined the projected occurrence of 

“uncomfortable nights” (days with minimum temperatures above 68°F). Uncomfortable 

nights are dominated by higher temperatures and typically high humidity, making most 

passive cooling systems (i.e., open windows) ineffective. The modeled baseline (1915-

2013) for this parameter ranges from 10-40 days across the state (Hamlet et al., 2019). 

This increases to 40-80 days for low emissions and 60-110 days for high emissions by the 

end of the 21st century. This increase poses clear health risks, especially for vulnerable 

populations (i.e., elderly, those with pre-existing conditions, children, and those with 

inadequate access to cooling). Based on research by Schwartz et al. (2015), the number of 

heat deaths in the U.S. will increase by 10,000-15,000 individuals by 2050 and 20,000-

27,000 by 2100. These increases in heat deaths will be somewhat offset by decreases in 

cold deaths, but the net will still be significantly higher mortality incidences from climate 

change impacts on temperature (Figure 2). Narrowing in on Indianapolis, Schwartz et al. 

(2015) calculated a net annual increase in deaths of 81.9 by 2100 due to warming (Figure 

2).  
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Figure 2. Climate change-driven mortality projections for three cities in Indiana (data 

from Schwartz et al., 2015). The projected increase in deaths due to warming in the 

summer months (April-September), the projected decrease in deaths due to warming in the 

winter months (October-March), and the projected net change in deaths compared to a 

1990 baseline, using two climate models (CFDL-CM3, MIROC5; medium emissions RCP 6.0 

scenario) 

 

3.3 Temperature and health impacts of air quality 

Climate change will affect air pollution, and thus potentially human health, through 

several processes. In the last few decades, air pollution has been identified as a key cause of 

mortality and morbidity in the U.S. and worldwide. It is estimated that about 200,000 

premature deaths in the U.S. are caused by fine particulate air pollution and about 10,000 

deaths are caused by O3 pollution air pollution every year (Caiazzo et al., 2013). The 

prediction of the effects of climate change on air pollutant concentrations is complex 

because they are affected by many factors, including natural sources of air pollutants and 

precursors which themselves may be impacted by climate change, as well as direct 
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anthropogenic sources such as pollutant emissions rates. In the case of fine particulate 

matter smaller than 2.5 microns in diameter (PM2.5), the emissions are primarily those 

from combustion processes taking place in vehicle engines and power plants. In the case of 

O3, the emissions of importance are the nitrogen oxides (NOx) and volatile organic 

compounds (VOCs) emitted by vehicle engines and industrial processes which are the 

precursors for O3 formation in the atmosphere (Ebi et al., 2018). These emissions are 

themselves determined by a variety of factors including the state of the economy, systems 

of individual and mass transportation, and regulatory policies and enforcement (Landrigan 

et al., 2018).  

Increased loss of life due to worsening air quality is highly likely (Filippelli and Taylor, 

2018; Filippelli et al., 2020), but estimates differ on how many deaths will occur. One study 

predicted 4,000 more annual U.S. deaths by 2050 due to increased PM 2.5 and another 300 

deaths from increased O3 exposure (Tagaris et al., 2009), coming to about 82 and six for 

Indiana, respectively. Another study suggested PM2.5 and O3 together will lead to 2,000 to 

4,000 more deaths per year throughout the country for every 1°C (1.8°F) of warming, or 

about 42- 84 more per year in Indiana (Jacobson, 2008).  

Still another approach examined the United States on a county-by-county basis and 

estimated all deaths tied to O3 exposure during summer months. In Indiana, this comes to 

between 32 and 130 deaths per year by 2050 (Alexeeff et al., 2016), with the range 

accounting for uncertainties between O3 and health effects and potential future O3 

concentrations under a high emission scenario.  

 Controlling precursor emissions, primarily NOx and VOCs, is one of the most 

essential elements for limiting ground-level O3 formation. VOCs, methane (CH4), and CO 

react with the hydroxyl radical (OH) to form intermediate species that interact with NOx, 

ultimately producing ground-level O3. (Murazaki and Hess, 2006). Mobile fossil fuel 

combustion in the urban environment generates large amounts of NOx and, with elevated 

surface temperatures in the urban environment due to climate change, VOC volatilization 

from natural sources and anthropogenic activities may be elevated, as well. Additionally, 
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locally higher temperatures due to urban heat island can lead to shallow mixing heights in 

the atmosphere which has been linked to increased ground-level O3 formation.  

To illustrate that elevated urban heat could potentially lead to higher levels of O3, thus 

exacerbating pulmonary issues, we demonstrate that census tracts located in an urban heat 

island within Indianapolis have higher VOC emissions from both mobile and non-mobile 

sources. Higher total VOC emissions are mostly in downtown and in urban heat islands 

with high temperature, thus these areas may have more intense O3 formation. As global 

temperature in urban environment arises, more O3 will be formed in general. Thus, these 

areas have higher O3-forming potential given the important role of VOCs as a precursor in 

O3 formation (Fig. 3). Our analysis demonstrates the correlation between elevated 

temperature in urban heat islands and potentially higher O3 formation (Fig. 3). 
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Figure 3. Predicted O3 concentrations (circles) overlain on a map of Indianapolis 

maximum land surface temperature. Larger circle size indicates higher O3 concentration, 

and darker colors indicate higher temperatures.  

 

It is important to note that climate change-related health outcomes will not impact all 

individuals from Indiana evenly. Negative health impacts from worsening air quality will 

especially affect children because their lungs are still developing (Black et al., 2017). 

Children also have relatively faster breathing rates, which increase their exposure to air 

pollutants such as O3 and PM 2.5. Adults with chronic, pre-existing health conditions will 

also face more risk, as will those who live in heavy transit corridors or near industrial 

activity.  

 

 

4. Precipitation Impacts on Health 

4.1 Historical records 

 One of the most significant changes in Indiana climate has been in the amount and 

intensity of precipitation over the past 25 years and longer. Total annual precipitation 

averaged 40 inches over the historical record but has consistently been about 5-15% 

higher than the long-term average since 1990 (Frankson et al., 2017; Widhalm et al., 2018). 

Higher precipitation coupled with warmer temperatures over longer periods could offer 

better conditions for mosquito abundance in general. But probably even more concerning 

is the increasing trend in precipitation intensity. Importantly from a flood-control 

perspective, the number of extreme precipitation events has increased from the long-term 

average of about 1.8 per year to 2.0-2.7 events per year (Frankson et al., 2017). Extreme 

precipitation was also the focus of the Indiana state-specific assessment (Hamlet et al., 

2019). In this case, the number of days that exceed 25 mm was the metric used for this 

parameter, and exhibited a historical baseline (1915-2013; effectively a century of record 
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starting when accurate measurements began and ending with the final complete reported 

year of data before the model runs were initiated) that ranged from 9 days in the northern 

part of the state to 12.5 days in the southern part.  

4.2 Precipitation projections  

Flooding and extreme weather events are usually associated with negative public 

health consequences, especially when there is evacuation and population displacement 

(WHO, 2017). Flood-related health problems range from immediate health impacts 

resulting from violent direct physical effects on humans (drowning, traumas, hypothermia, 

and animal bites) to longer term effects associated with health care services (personnel, 

drugs and supplies) and infrastructure (Ahern et al., 2005; Du et al, 2010). Among these 

longer term effects are poor mental health, poisoning, starvation, infected wounds, and 

transmission of water-associated diseases (related to disruption in the infrastructure of 

sanitation and water supply). These diseases are classified by the World Health 

Organization (WHO) in four categories: water-borne, water-washed, water-based, and 

water-related (Coussens, 2009). We will focus most of our analysis here to water-related 

health impacts, namely those linked to ponded water and warmer conditions, resulting in 

both the proliferation of pests (e.g., mosquitos) and ideal growing conditions for harmful 

algae.  

 Total annual precipitation for Indiana shows substantial increases over the century 

(Figure 4; Hamlet et al. 2019). The modeled baseline (1915-2013) of precipitation ranges 

from 40-52 inches across the state (note that Hamlet et al. intentionally use a precipitation 

gauge undercatch bias correction, and thus baseline is slightly different from that of 

Frankson et al., 2017). This number increases to 44-54 inches for low emissions and 44-58 

inches for high emissions by 2071-2100. This projects that seasonal precipitation will 

increase by 17% in spring and 32% in winter in the high emissions projection for 2071-

2100 (Hamlet et al, 2019). For Indianapolis, this represents an increase of 2.5-5 inches of 

annual precipitation by 2100. Given the low elevation relief of Indiana, and particularly the 

flat topography in the northern half of the state (Barrett, 1912), these increases suggest a 

higher potential for flooding, possibly resulting in direct overall damage to property and 

the health care industry (including emergency medical services) as evidenced by past 
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records (Ho-Oh et al., 2010), as well as indirect impacts related to standing water, to be 

detailed next.  

 

 

 

 

 

 

Figure 4. Total annual precipitation for Indiana based on atmospheric GHG 

concentrations under RCP4.5 (top row) and RCP8.5 (bottom row) for 2020s (left column), 

2050s (middle column) and 2080s (right column) relative to the historical baseline period 

(1915-2013), using a precipitation gauge undercatch bias correction (Hamlet et al., 2019. 

 

4.3 Climate Impacts on Disease Vectors 
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Although literally the term vector could be applied to any living organism 

transmitting an infective pathogen, it conventionally refers to insects such as mosquitoes, 

ticks, and fleas. The term ‘water-related’ is used by the WHO to refer the diseases caused by 

the pathogens transmitted by such vectors as mosquitos, which require water as a 

breeding media or have some connection with water during their life cycle (Coussens, 

2009). Mosquito abundance and transmission of the pathogens they carry are conditions 

likely sensitive to flooding and extreme weather events for several reasons such as 

increased stagnant waters and disruption of health and housing infrastructure (Porphyre 

et al, 2005). Diseases such as Malaria and Yellow Fever were endemic in the United States 

in the past (Patterson 2009), and a host of other diseases are still endemic in Latin America 

and Southeast Asia, such as dengue, chikungunya or Zika (Paixão et al, 2018). Many of these 

would be unlikely to take hold in the United States today (or remerge in the case of Malaria 

and Yellow Fever) because of better socioeconomic conditions and public health 

infrastructure, but could eventually be a concern if the protective effect of good housing 

and health infrastructure gets compromised as a result of floods or other disasters 

(Moreno-Madriñán and Turell, 2017; 2018). 

A present concern in regard to mosquito-borne viruses are zoonotic diseases such as 

West Nile Virus (WNV) since their cycles can be completed in animals such as birds despite 

the protective effect of good living conditions and health infrastructure for humans 

(Moreno-Madriñán and Turell, 2018). The most concerning climate change factor 

influencing the prevalence of West Nile Virus (WNV) are increased temperatures. 

Depending on the optimal window of temperature for the mosquito vector and the virus, 

climatic change may differently affect parameters such as larval development, extrinsic 

incubation period, and the duration of the gonotrophic cycle (Rueda et al., 1990; Dodson et 

al., 2012; Garcia-Rejón et al., 2008). In general, for conditions of Indiana, more rapid 

development of these processes and shorter periods between mosquito bites are expected 

with warmer temperatures (Garcia-Rejón et al., 2008; Hartley et al., 2012). Such conditions 

translate into more efficiency of the mosquito as vectors (more vectoral capacity), resulting 

in more epidemic potential (Dohm et al., 2002; Reisen et al., 2006). 
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Based on results from all mosquito species collected from 20 light traps during the 

1981-2016 time period by the Mosquito Control Department of Marion County, Indiana, an 

increase occurred over this time period (Supplementary Information). This increase is 

consistent with historical changes in annual precipitation, extreme precipitation, and 

temperature in Indiana noted earlier. Given model projections for these factors over this 

century, it is likely that these increases in mosquito populations, and thus potential for 

mosquito-borne disease transmission, will persist into the future (Patterson, 2009; 

(Kraemer et al., 2015a, b; Messina et al., 2016; Monaghan et al., 2016). For example, under 

the high emission scenario for Indiana, the number of days over 25 mm of precipitation 

was expected to increase by about 20% uniformly across the state (Hamlet et al., 2019). 

This could even be a more serious trigger for mosquito-transmitted diseases as compared 

to just a growing amount of precipitation because floods can affect the housing 

infrastructure and lifestyle, making people more exposed to mosquito bites. It is estimated 

that good housing and sanitation, and not climate, are currently the main protective factors 

against transmission of anthroponotic mosquito-transmitted diseases such as dengue, 

Yellow fever, chikungunya and Zika virus in the Unites States (Moreno-Madriñán and Turel, 

2017). 

Of particular concern is the recent arrival of non- Ae. aegypti mosquito strains in 

Indiana. Aedes albopictus (Skuse), arrived into the United States in 1987 (Moore and 

Michell, 1997) and has been reported to be present in Indianapolis by the Marion County 

mosquito control program. In laboratory studies, this mosquito has been a more competent 

vector than Ae. aegypti for both dengue (Brady et al., 2014) and chikungunya (Turell et al., 

1992) viruses. Furthermore, it was the main chikungunya vector during the 2004-2007 

major outbreak on islands in the Indian Ocean. Other studies have shown this mosquito to 

be a competent vector for Zika virus (Wong et al., 2013; Aliota et al., 2016; Chouin-Carneiro 

et al., 2016). Due to its better adaptation to colder temperatures, Ae. albopictus is expected 

to reach further north than Ae. aegypti (Kraemer et al. 2015a, b). Aedes japonicus 

(Theobald) is another recently introduced species of mosquito that is a competent vector of 

dengue and chikungunya viruses (Schaffner et al., 2011). It was first detected in New York 

and New Jersey in 1998 (Peyton et al., 1999). Fortunately, despite the better suitability to 

https://en.wikipedia.org/wiki/Frederick_Vincent_Theobald
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carry, replicate, and transmit dengue, chikungunya and Zika viruses (vector competency), 

these two mosquitos have less vectoral capacity as compared with Ae. aegypti as they are 

less likely to feed repeatedly on humans (Richards et al., 2006, Lambrechts et al., 2010) and 

the three viruses cannot complete their cycles in animals other than humans.  

4.4 Climate impacts on water-associated diseases 

The occurrence of blue-green algae, also known as cyanobacteria, in aquatic systems 

is a growing environmental and public health concern. If the environment is favorable, 

cyanobacteria can form harmful algae blooms (HABs), which consequently increase their 

biomass forming scum on the water surface (Paerl and Huisman, 2008). Although HABs are 

responsible for the loss of aesthetic conditions and production of taste and odor 

compounds, the main public health concern is related to their capability to produce toxins 

known as cyanotoxins that have been a worldwide concern for human and environmental 

health (Carmichael et al., 2001; Funari and Testai, 2008). 

Since future climatic scenarios are predicting heavy rainfall and warm temperatures 

for Indiana, HABs are also expected for Indiana’s aquatic systems. Recently a framework 

using different climate change projections, two greenhouse gas concentrations, and two 

cyanobacterial scenarios showed that for all possible combinations, cyanobacteria will 

increase in the state of Indiana (Chapra et al. 2017). Therefore, the evaluation of how HABs 

will respond to climate variability is an important concern for human and environmental 

health. To analyze this in one Indiana-relevant system, we used data from the Indiana 

Department of Environmental Management from Brookville Lake, Indiana, from 2012-

2016. We found several climate-related trends in algae cell counts and HAB concentrations, 

namely positive linear trends in temperature, cyanobacterial cell counts, and 

concentrations of the algal-produced toxin Microcystin-LR (supplementary information). 

These observations agree with Paerl and Huisman’s (2008) findings in which cyanobacteria 

growth is related to the increase of air temperature, and add to this finding an increased 

propensity for toxin production. Although the effects of microcystin on human health are 

not well understood, research suggests that the main target organ in mammals is the liver 

(Sivonen and Jones, 1999; Azevedo et al., 2002). 
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5. Climate Impacts on Food and Food Safety 

Our food system is a highly complex, global network; much of the food we eat is grown in 

other countries or even continents. Thus, impacts of food production around the globe are 

likely to impact the food supply and food security within Indiana. Although the exact 

impacts are difficult to predict, in general, researchers agree that reductions or 

uncertainties in food production on a global scale are anticipated to result in increased 

variability of decline in crop yields (Porter and Semenov, 2005), which can result in 

decreased food availability and increased prices (Wheeler and von Braun, 2013). These, in 

turn, may lead to food insecurity (Coleman-Jensen et al., 2017). Meanwhile, studies from 

Australia suggest drought-related financial stress may be associated with poor mental 

health and suicide among farmers (Ellis and Albrecht, 2017; Austin et al., 2018). Several 

lines of evidence suggest that Indiana agricultural communities may already be at risk: 

Indiana farmers’ income has been decreasing (Hurt 2017) and suicide rates in rural areas 

have been increasing faster than in metropolitan areas (Ivey-Stephenson et al., 2017). 

Food quality may also be reduced due to climate change. Increasing evidence suggests 

that increased atmospheric CO2 levels results in reduced concentrations of iron, 

magnesium, zinc, and other micronutrients (Ziska et al., 2016; Loladze 2014) and protein 

(Ziska et al., 2016; Taub et al., 2007) in plants. Nutritional deficiencies are already of 

concern in Indiana. An estimated 7% of Indianans already had limited access to healthy 

foods in 2015 (County Health Rankings, 2018). Iron deficiency is already of concern among 

children and women of childbearing age in the United States, with even higher rates among 

non-Hispanic blacks and Mexican Americans (U.S. Centers for Disease Control and 

Prevention, 2012). In 2003, the prevalence of anemia was 13.2% among white Indiana 

children and 23.5% among black Indiana children (Indiana State Department of Health, 

2018).  

Food pathogens are highly dependent on temperature, precipitation and extreme 

weather (Ziska et al., 2016), which are all anticipated to increase in Indiana from climate 

change. It is important to remember that food systems are complex, and contamination of 

the food supply can occur at several different points, including production, transportation, 

storage, and preparation (Ziska et al., 2016). Microbial contamination of food by 
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Salmonella, E coli, and Campylobacter is a leading cause of foodborne illness, a situation 

that tends to increase with increased temperature and humidity (Patz et al., 2008; Kim et 

al., 2015). Additionally, floodwaters can be contaminated with sewage or manure and then 

travel to groundwater or irrigation water, providing another route for contamination of the 

food supply (Patz et al., 2008). As noted earlier, increased flooding is predicted in Indiana 

as a result of climate change.   

Mycotoxins are toxic chemicals produced by molds growing on crops; mycotoxins 

result in a variety of health effects including renal disease and cancer (Wu et al., 2014). 

Conditions of increased temperature and humidity are likely to increase the risk of fungal 

growth and mycotoxin production (Cotty and Jaime-Garcia, 2007; Paterson and Lima, 

2010). Corn, the top agricultural crop produced in Indiana, is particularly susceptible to 

mycotoxin production (Cotty and Jaime-Garcia, 2007). Although routine screening of foods 

for mycotoxins does occur in the United States and in Indiana, it is of some concern that 

climate change could increase the risk of mycotoxin contamination. 

A greater risk of metal and chemical contamination of food is anticipated with climate 

change via extreme weather, increased temperatures, and changing agricultural practices. 

In situations where chemicals are not securely stored, extreme weather and flooding can 

introduce these compounds into the food chain through mechanisms similar to above or 

from remobilization of historical pollutants within soils (Ciszewski and Grygar, 2016; 

Luber et al., 2014). Chemical and microbial contamination of the food supply was observed 

due to flooding from Hurricane Katrina (Presley et al., 2006). Chemicals that can readily 

enter the food chain include polychlorinated biphenyls, persistent organic pollutants, 

pesticides, and heavy metals (Foulds et al., 2014; Carrie et al., 2010; Umlauf et al., 2002). 

Methylmercury is a neurotoxicant that can affect adult and child neurodevelopment, 

even at low levels of exposure (Karagas et al., 2012). The most common route of exposure 

to methylmercury is through fish and seafood. This is part of a complex process: elemental 

or inorganic mercury is released into the environment and eventually finds its way into 

water bodies, where specialized bacteria in water convert the mercury into 

methylmercury, which is then incorporated into fish and seafood. The presence of mercury 

in Indiana waters is well documented; in some areas, concentrations are already high 
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enough to pose health concerns if fish from these waters are consumed (Filippelli et al., 

2015). Higher water temperatures may result in increased uptake of methylmercury into 

tissues, thus potentially increasing toxic levels in fish consumed by humans (Carrie et al., 

2010; Dijkstra et al., 2013). 

 

6. Conclusions and Recommendations 

 Climate change has affected and will continue to affect a number of processes that 

ultimately result in human health impacts over this century. On balance, the net direct 

impact on human health from extreme heat events will be moderate so long as cooling 

options are available for vulnerable populations, whereas secondary processes that impact 

pest ranges and activity, and air quality, will likely have a substantial, and negative, impact 

on human health in Indiana. Additionally, changes in precipitation patterns will result in 

greater chances of flooding, which can directly impact people, as well as secondary impacts 

on ponded water, which increases mosquito populations and thus the potential for 

expansion in the range of vector-borne diseases. Degraded water quality has the potential 

to cause increased rates of contact-related diseases. Increased extreme precipitation causes 

myriad direct and indirect health issues.  

Given these climate projections, it is important to consider building protective 

measures into environmental health, health access, and food distribution systems to make 

Indiana residents and communities more resilient to climate. Several strategies should 

receive priority at the state and local level to build resilience. First priorities should include 

the development of robust extreme heat plans, particularly for the southern portion of the 

state and any of the urban centers, which will see extreme heat event impacts first. 

Additionally, infrastructure and systems should be implemented for transporting and 

housing residents at risk during substantial precipitation events, particularly in the more 

vulnerable northern portion of the state. Finally, a robust early warning system should be 

adopted to identify vector-borne diseases outbreaks and HABs before they become major 

public health events. 
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Figure 1. 1981-2016 temporal trend line of mosquito trapped in 20 light traps 
during the 1981-2016 time period in Marion County, Indiana (data from Marion 
County Public Health Department). 
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Figure 2, A) Air temperature for the Brookville weather station from 2012 to 2016; 
B) Cyanobacteria cell count from Brookville Lake collected by IDEM during summer 
from 2012 to 2016; C) Microcystin-LR concentrations from Brookville Lake 
collected by IDEM during summer from 2012 to 2016. Data from the Indiana 
Department of Environmental Management. In the United States, no regulations 
exist for cyanotoxins levels in the Safe Drinking Water Act (SDWA) or in the Clean 
Water Act (CWA) (USEPA, 2015a). Since the SDWA provides the authority for the 
United States Environmental Protection Agency (USEPA) to publish health 
advisories (HAs) for agents that do not have any national drinking water regulation. 
Therefore, USEPA is the agency that is responsible for the implementing and 
enforcing of the guidelines, standards or HAs related to cyanotoxins. Based on this, 
during summer 2015, the USEPA issued a 10-day HA for two cyanotoxins: 
microcystin-LR (USEPA, 2015b) and cylindrospermopsin (USEPA, 2015c). For these 
two cyanotoxins, USEPA recommended HA levels in drinking water at or below 0.3 
µg/L for microcystin-LR for children pre-school age (USEPA, 2015b); and 0.7 µg/L 



of cylindrospermopsin for the same age range (USEPA, 2015c). These levels are 
higher for the rest of the population with HA levels for drinking water for 
microcystins at or below 1.6 µg/L (USEPA, 2015b); and for cylindrospermopsin at 
or below 3.0 µg/L (USEPA, 2015c). Besides the publication of Federal HAs by the 
USEPA, some U.S. States have implemented their own guidelines for the monitoring 
of cyanotoxins.  

 

 
Figure 3. State-wide tropical night projections for Indiana under two climate 
scenarios. A key parameter for heat stress and cardio-pulmonary morbidity and 
mortality are evening temperatures, and thus we projected a tropical nights (days 
with minimum temperatures above 65°F) scenario. These tropical nights are 
dominated by higher temperatures and typically extremely high humidity, making 
most passive cooling systems (i.e., open windows) ineffective.  
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