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Abstract

Background: Coronavirus disease 2019 (COVID-19) pandemic has changed public health policies and personal lifestyles
through lockdowns and mandates. Governments are rapidly evolving policies to increase hospital capacity and supply personal
protective equipment to mitigate disease spread in distressed regions. Current models that predict COVID-19 case counts and
spread, such as deep learning, offer limited explainability and generalizability. This creates a gap for highly accurate and robust
outbreak prediction models which balance parsimony and fit.

Objective: We seek to leverage various readily accessible datasets extracted from multiple states to train and evaluate a
parsimonious predictive model capable of identifying county-level risk of COVID-19 outbreaks on a day-to-day basis.

Methods: Our methods use the following data inputs: COVID-19 case counts per county per day and county populations. We
developed an outbreak gold standard across California, Indiana, and Iowa. The model was trained on data between
3/1/20-8/31/20, then tested from 9/1/20 to 10/31/20 against the gold standard to derive confusion matrix statistics.

Results: The model reported sensitivities of 92%, 90%, and 81% for Indiana, Iowa, and California respectively. The precision in
each state was above 85%, and the specificity and accuracy were generally greater than 95%.

Conclusions: The parsimonious model provide a generalizable and simple alternative approach to outbreak prediction. Our
methodology could be tested on diverse regions to aid government officials and hospitals with resource allocation.
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Abstract (450)

Background:
Coronavirus disease 2019 (COVID-19) pandemic has changed public health policies and human
and community behaviors through lockdowns and mandates. Governments are rapidly evolving
policies  to  increase  hospital  capacity  and  supply  personal  protective  equipment  and  other
equipment to mitigate disease spread in affected regions. Current models that predict COVID-
19  case  counts  and  spread  are  complex  by  nature  and  offer  limited  explainability  and
generalizability.  This  has  highlighted the need for  accurate  and robust  outbreak prediction
models which balance model parsimony and performance.
Objective:
We sought to leverage readily accessible datasets extracted from multiple states to train and
evaluate a parsimonious predictive model capable of identifying county-level risk of COVID-19
outbreaks on a day-to-day basis. We sought to leverage readily accessible datasets extracted
from  multiple  states  to  train  and  evaluate  a  parsimonious  predictive  model  capable  of
identifying county-level risk of COVID-19 outbreaks on a day-to-day basis. 
Methods:
Our modeling approach leveraged the following data inputs: COVID-19 case counts per county
per day and county populations. We developed an outbreak gold standard across California,
Indiana, and Iowa. The model utilized a per capita running seven-day sum of the case counts
per county per day and cumulative case count mean to develop baseline values. The model was
trained on data recorded between 3/1/20 to 8/31/20, and tested on data recorded between
9/1/20 to 10/31/20.
Results:
The  model  reported sensitivities  of  81%,  92%,  and 90% for  California,  Indiana,  and  Iowa,
respectively. The precision in each state was above 85% while specificity and accuracy scores
were generally > 95%.
Conclusion:
Our parsimonious model provides a generalizable and simple alternative approach to outbreak
prediction.  This  methodology could be  applied to  diverse  regions to  aid  state  officials  and
hospitals with resource allocation, and to guide risk management, community education and
mitigation strategies. 

Keywords: COVID-19; predictive modeling; coronavirus; modeling disease outbreak; precision
public health; emerging outbreak
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Introduction

The Coronavirus disease 2019 (COVID-19) pandemic has impacted the health and wellbeing of
individuals, communities, and economies across the globe at a hitherto unprecedented scale[1-
3].  On  March  11th,  2020,  the  World  Health  Organization  (WHO)  declared  COVID-19  as  a
worldwide  pandemic  with  over  118,000  confirmed  cases  and  4,291  deaths  in  over  114
countries[4]. To date, the pandemic has resulted in over 170 million confirmed cases, with over
3.5 million deaths globally[5]. In the United States, COVID-19 has infected 33 million people
and claimed more than 600,000 lives[5]. 

At the height of the pandemic, waves of viral outbreaks placed health systems across the globe
under extended strain leading to shortages in hospital beds, personal protective equipment,
and healthcare personnel,  causing significant disruptions to  healthcare delivery and loss of
life[2 6]. Experts estimate the cumulative financial costs of the COVID-19 pandemic related to
lost output and health reduction at  $16 trillion,  or approximately 90% of the annual gross
domestic product of the US[7].

In contrast to historical pandemics, the availability of public and population health information
systems has  enabled researchers  to  collaborate  on many research activities  in  response to
COVID-19[8  9].  Since  the  onset  of  the  pandemic,  data  scientists  have  partnered  with
governmental organizations to create various public-facing COVID-19 dashboards that provide
easy access to descriptive statistics and other metrics[10 11]. Information on COVID-19 related
mortality,  utilization  of  healthcare  resources,  and  recovery  has  been  crucial  in  increasing
situational  awareness  to inform ongoing pandemic response efforts  across  communities[12
13]. 

Most recently, COVID infection rates have started to fall in response to increased vaccinations
and public education efforts[14 15]. To date, 40% of the US population is fully vaccinated[16].
These  improvements  have  led  to  an  interest  in  relaxing  or  revoking  various  restrictions
enforced at state and county levels. While important to the well-being of both communities and
economies, such decisions may be dangerous if undertaken without adequate pre-planning and
awareness of potential risks. As such, effective identification of potential outbreaks of COVID-
19 offers the ability to inform decision-makers across governmental and public health sectors
on how to open up their communities to normal day-to-day life activities and deploy limited
human and treatment resources to where they are most needed[17]. 

Prior research has demonstrated the potential to apply analytical models to identify potential
outbreaks in response to other diseases[18]. However, these methods rely on large, complex
datasets  extracted  from  a  specific  health  system  or  region[19-21].  Such  datasets  may  be
challenging and time-consuming to collect, leading to delays in generating timely predictions.
Further, models trained using locale-specific datasets may not be generalizable across other
locations[22], hindering the potential of re-using such models across other patient populations
and regions. A variety of models are trained using complex algorithmic approaches such as
neural  networks  and  deep  learning  models.  Such  machine  learning  approaches  may  yield
superior  results  but  fail  to  achieve  widespread  acceptance[23] due  to  challenges  in
explainability and interpretation[24]. 

In  contrast,  a  less  complex  modeling  approach that  uses  a  subset  of  easily  obtainable  key
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elements widely captured across broad geographic regions may be less challenging to develop.
Further,  such models  may also deliver  adequate  predictive performance without  sacrificing
explainability  and interpretability.  Such parsimonious models may also present less risk of
overfitting on training datasets, allowing for greater generalizability[25]. 

Objective:

We seek to leverage various readily accessible datasets extracted from multiple states to train
and  evaluate  a  parsimonious  predictive  model  capable  of  identifying  county-level  risk  of
COVID-19 outbreaks on a day-to-day basis. 

Methods

We selected three states for our COVID-19 outbreak prediction modeling efforts:  California,
Indiana,  and Iowa.  These states were selected based on geographical  factors,  governmental
regulations,  and  availability  of  datasets  for  public  use.  For  example,  Indiana  and  Iowa  are
similar in number of counties and total populations[26]. In contrast, California represented a
more populous, urban state[26]. We also considered the general completeness of reporting, the
quality of basic COVID-19 data sources, and the accuracy of state tracking systems[27]. 

Data extraction and cleaning:

For each state, we extracted a variety of county-level data elements captured daily between
March 1st, 2020 and October 31st, 2020. Data for the state of Indiana were obtained from the
Indiana  State  Department  of  Health,  while  data  for  the  states  of  Iowa and  California  were
obtained from the New York Times online repository[5 28]. We selected March 1st as a start
date as most states began collecting COVID-19 data at this time. October 31st marked the end of
our analysis time period. Each dataset was organized by county, state, and date reported using
R programming software[29]. Several errors or omissions in the datasets were addressed as
follows; days with negative case counts were changed to 0 and a county labeled as ‘unknown’
reported by Iowa and California were removed from further evaluation. 

Preparation of a Gold Standard:

We created a gold standard indicating if each county under study was at an outbreak on any
given day. A human expert reviewer created the gold standard by assigning an outbreak label
(yes/no) to each county/date combination considering the following criteria:

 How do case counts trend in each county? Is there a general baseline of cases over time?
 How  large  is  the  county’s  population  size  (counties  with  more  people  report  more

cases)
 Duration of outbreak to assign a binary indicator of ‘outbreak detected’ or ‘outbreak not

detected’ to each day and county. 

Based on our approach, a county could have multiple outbreaks over time. Outbreaks lasted a
minimum of three days to account for testing lags as data were not always reported on the
same day, especially during the initial phases of the pandemic[30]. Furthermore, lower case
counts at the end of an outbreak and on weekends due to closed testing centers were also taken
into consideration using seven-day average metrics. 

Model Building:

We created a heuristic outbreak prediction model using the training datasets obtained from all
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three  states  and  evaluated  its  performance  across  the  holdout  test  datasets  and  the  gold
standard. For each county, data collected between March 1st, 2020 and August 31st, 2020 were
labelled as the train dataset, while data collected between September 1st,  2020 and October
31st,2020 were labeled as the test dataset. As a preliminary step towards model development,
we  considered  features  used  in  other  common  models,  including  susceptible-infected-
recovered (SIR) epidemic[31] and time delay[32] models, severity of lockdown measures[33],
cumulative  cases  (both  reported  and  not  reported)[34],  and  daily  test  reports[35].
Furthermore,  predictive  models  for  infectious  diseases  such  as  SIRs  provide  guidance  on
disease transmission and outbreak causation. The State of Wisconsin’s COVID-19 dashboard
used a Case Rate metric defined as a per capita running seven-day sum of the case counts per
county per  day[36].  Case  Rate  standardizes  COVID-19  severity  across  counties  of  differing
populations while  also accounting for  data  lags  and providing insight  on transmission.  We
plotted Case Rate vs.  Indiana county populations to generate a general trendline that could
differentiate  between  ‘outbreak  detected’  or  ‘outbreak  not  detected’  days.  Our  logarithmic
graph semi-accurately depicted a horizontal line that separated outbreak days. The following
steps were to leverage and apply the trendline results  on states and counties with various
populations. 

We  started  building  the  model  by  dividing  counties  based  on  population  size,  initially  at
100,000 population intervals. Since Case Rate is more sensitive to less populated counties, we
added  intervals  for  counties  under  100,000 people.  Each population interval  was given an
assigned Case Rate baseline value that served as a binary indicator for outbreak determination.
We implemented a criterion where counties were under outbreak if they were four standard
deviations above the cumulative mean to account for data lag. As depicted in the system flow
diagram (Figure 1), we established these parameter values and trained the model rules on the
train datasets (data sets reported between March 1st, 2020 and August 31st, 2020). The train to
test  partition  was  roughly  71%  to  29%,  respectively,  which  is  close  to  optimal  for  large
datasets[37].  Then,  the  model  was  tested  against  the  gold  standard  with  the  test  datasets
(datasets reported between September 1st, 2020 and October 31st, 2020). 

Figure 1 presents a flow diagram depicting our study approach.

Figure 1:  Flow diagram for an overview of the study methodology.

Results

We collected data  on a total  of  249 counties from across all  three states.  Table 1 presents
descriptive  statistics  on  each  state  including  number  of  counties,  population  sizes,  and
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urbanization  to  highlight  each  state’s  fundamental  differences[26].  Previous  research  has
identified multiple  factors  in  determining urban vs.  rural  areas,  including total  population,
population density, and commuting flow[38]. 

Indiana and Iowa have similar county population distributions, with both having a majority of
counties less than 100,000 people. However, Indiana has more midsize counties with its largest
close to 1 million people, while California has several counties with populations greater than 1
million.  Moreover,  California has the largest percentage of urban population (94.95%), with
Indiana (72.44%) and Iowa (64.02%) far behind.  

Table 1: Table 1 shows state and county population sizes and population statistics based on
census counts.

Indiana Iowa California
County-level Statistics
Number of Counties 92 99 58
Counties  where  population  <
100,000 

75 93 23

Counties  where  population  >=
100,000 and < 500,000 

16 6 19

Counties  where  population  >=
500,000 and < 1,000,000

1 0 7

Counties  where  population  >
1,000,000

0 0 9

Population of Smallest County 5,875 3,602 1,129
Population of Largest County 964,582 490,161 10,039,107
Percentage of Urban Population 72.44% 64.02% 94.95%
Household Median Income ($) 59,892 68,718 70,489
Case Counts Per Day
Average (St. Dev) 7.98 (21.02) 6.18 (15.75) 70.33 (231.86)

Figure 2 presents an example visualization of outbreak determination in Cass County, Indiana,
and Santa Barbara County, California for gold standard preparation. Cass and Santa Barbara
counties reported populations of 37,689 and 446,499 respectively[26]. 

Figure 2: Visualization of the COVID-19 case counts in Cass County, Indiana, and Santa Barbara
County,  California,  between March 1st,  2020 and October 31st,  2020. Days determined to be
outbreak are colored red while normal days are black. 
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Table 2 shows the prevalence of the number of outbreaks and their durations in each state over
the train, test, and total time periods. In Indiana and Iowa the number of outbreaks doubled
from the train to the test date range, despite the train data set being almost three times as large
as the test data set. Furthermore, the percentage of days in an outbreak between the train and
test ranges quadrupled to 22.6% and 20.1% for Indiana and Iowa, respectively. The percentage
of outbreak days in California remained relatively stable while the average outbreak duration
decreased from 47 to 19 days. Because counties were our unit of analysis and since California
had  fewer  and  more  populated  counties  than  Indiana  or  Iowa,  we  believe  these  factors
contributed to the reduced number of outbreaks in California. 

Table 2: COVID-19 outbreak prevalence descriptors from the gold standard. Indiana, Iowa, and
California  datasets  were  divided  by  train  (March  1st,  2020  and  August  31st,  2020),  test
(September 1st,  2020 and October 31st,  2020),  and total  (March 1st,  2020 and October  31st,
2020) date ranges to characterize the outbreak periods.

Indiana Iowa California
Train Test Total Train Test Total Train Test Total

Number  of
Outbreaks

26 65 83 43 85 114 35 26 40

Average
Duration  of
outbreak

25 19.18 22.86 18.18 14.62 15.79 47.29 19.31 53.92

Total  Days
in Outbreak

650 1247 1897 727 1199 1926 1655 502 2157

Outbreak
Days (%)

3.86
%

22.59
%

8.45% 4.01% 20.15% 7.97% 15.59% 14.43% 5.24%

Model Rules:

Using the above datasets, we developed model parameters to predict COVID-19 outbreaks. 
Figure 3 presents a top-down decision tree our model behavior. Rules and the assigned case
rate associated with each population band used in the decision making process are further
outlined in Appendix 1.
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Figure 3: Heuristic model decision making process. The current Case Rate is defined as the per
capita running seven-day sum of the case counts per county per day.

As  described  in  Figure  3,  the  heuristic  model  determined  that  counties  experienced  an
outbreak through the following methods:

 For the specified population band, a county’s Case Rate on a given day was greater than
the minimum case rate assigned to that population.

 The county’s  case  count  on a  specific  day was greater  than 12 and was 4 standard
deviations above the rolling COVID-19 county case count mean.

If  a  county  on  a  specific  day  met  either  requirement,  then  the  county  was  labeled  as  “in
outbreak”. By combining these rules with the gold standard previously developed, a confusion
matrix was utilized to provide an analysis on the model’s performance. 

Table  3 shows the confusion matrix  results  when the prediction model  was applied to  the
curated gold standard during the test date range from September 1st,  2020 to October 31st,
2020.  Sensitivity  is  the  proportion  of  correctly  identified  positives,  while  specificity  is  the
proportion  of  correctly  identified  negatives.  All  four  key  confusion  matrix  statistics  --
sensitivity, specificity, precision, and accuracy-- were above 80% in each state during the test
range.  The  model  specificity  and  accuracy  were  both above  94%  for  each state.  This  was
attributed  to  most  days  being  classified  as  true  negatives,  which  are  fundamentally  more
straightforward to detect than true positives. Model sensitivity for Indiana and Iowa was 10%
greater  than  California.  However  their  precision  was  11%  and  7%  lower,  respectively.  For
Indiana and Iowa, this means the model computed fewer false negative readings, which could
be  attributed  to  having  more  and  more  prolonged  outbreaks  (Table  1).  California’s  higher
precision  but  lower  sensitivity  means  the  model  was  more  precise  in  predicting  when
outbreaks happened but was less successful in capturing all outbreaks. 

Table 3: Test data set model results against gold standard. 
Indiana Iowa California

Test Date Range 9/1/20-10/31/20 9/1/20-10/31/20 9/1/20-10/31/20
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Sensitivity 92.33% 90.05% 80.86%
Specificity 95.56% 97.40% 99.57%
Precision 85.04% 89.83% 96.96%
Accuracy 94.86% 95.91% 96.85%

Discussion

Our efforts resulted in the development of a heuristic model capable of detecting COVID-
19  outbreaks  with  predictive  measures  between  80%  and  99%.  The  model  reported
sensitivities  of  92%,  90%,  and  81%  for  Indiana,  Iowa,  and  California  respectively.  This
demonstrated that the model was capable of identifying a clear majority of outbreaks across
each state. The model also reported precision scores of 85%, 89%, and 96% for Indiana, Iowa,
and California, demonstrating that a majority of positive predictions made by the model were
accurate. These performance metrics indicate that the model is fit for use in real-life settings.
Additionally, the train and test periods displayed distinct outbreak characteristics due to the
increased spread of COVID-19. 

These performance metrics are also notable given that prevalence of outbreaks in train
datasets was considerably low, and could have resulted in weak predictive models had we used
more traditional classification based modelling approaches which significantly underperform
when  trained  using  unbalanced  datasets[39  40].  As  the  pandemic  progressed,  each  state
worked to enhance their data reporting systems. As described by Khakharia et al., some regions
reported  sudden  and  significant  changes  in  case  counts,  making  it  difficult  for  models  to
forecast future cases[41]. Though outbreaks are not fundamentally different, the train and test
data sets can be characterized separately.  Despite the test range being shorter, Indiana and
Iowa both reported twice as many outbreaks during the test period. This can be attributed to a
second  wave  of  COVID-19  cases  that  occurred  during  the  test  period  as  schools  started,
governors  relaxed  state  lockdown  laws,  and  citizens  returned  to  work[42].  For  example,
California was one of the last states to begin lifting restrictions in midsize and large counties,
which may have contributed to relatively fewer outbreaks than Indiana and Iowa[43 44]. Thus,
counties reentered or for the first time realized outbreak periods during the test period. 

California remains a state of interest due to the characterization of its outbreaks as well
as  predictive  performance  results  on  the  holdout  test  dataset.  Unlike  Indiana  and  Iowa,
California has several counties with populations over 1,000,000 people,  and furthermore,  it
was the only state with fewer outbreaks and percentage of days in outbreak between the train
and test  periods.  The California  model  revealed a  significantly  lower sensitivity but  higher
precision.  Thus,  to  Indiana  and  Iowa,  the  California  model  captured  proportionally  fewer
outbreaks but predicted the subset with greater precision. 

This parsimonious prediction model is easily replicable in other states, as it only utilizes
county population and COVID-19 cases per day per county data. States can detect and predict
outbreaks  with  high  accuracy  following  the  model’s  rules.  Current  outbreak  prediction
approaches center around machine learning algorithms. Though they generally have very high
accuracies, these models incorporate a variety of data points and can overfit models[22]. The
heuristic  model’s  data  simplicity  enables  it  to  be  easily  implemented  in  other  regions,
especially  those  with  limited  reported  systems.  It  is  also  an  understandable  and  accurate
method to relay a county’s current state of COVID-19 to the general public, who are not as
informed  in  health  metrics.  In  addition  to  public  and  internal  communication,  forecasting
models can be applied to aid in outbreak preparation and community mitigation methods[45].

In addition to a high performing heuristic model, our efforts also led to the development
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of a well curated gold standard dataset consisting of outbreak status for each county on a day to
day basis. we share this dataset as an appendices (Appendix 2) to enable additional research
around this significant line of research.

Limitations:

Our work was impacted by limitations in data collection systems currently deployed by
each state. The inconsistency of data reporting presented a significant systematic challenge for
model  building  activities.  For  instance,  states  closed  most  COVID-19  testing  centers  on
weekends, leading to lower case count values on Saturdays and Sundays. Further, many states
did not publish most of their own COVID-19 data, meaning we pulled cases per day per county
data  from  the  New  York  Times  instead  of  a  state’s  Department  of  Health  which  is  more
accurate.  New York Times would retroactively change case data,  making it  more unreliable
since there were days with negative values. 
 The lack of prior research on curating gold standards on disease outbreaks also presents
limitations. With no industry standard on defining an outbreak, we created the gold standard
based on intuition and the specified criteria outlined above. Therefore, this process could have
been subject to confounding that may have influenced our model’s results. Furthermore, the
rule-based model approach is subject to several limitations. Since the model incorporated a
seven-day moving Case Rate, there was a lag at the tails of outbreaks as the increased case
counts were not initially detected. Even with a parsimonious approach, the parameters derived
from our results can greatly differ when applied to other regions.  This uncertainty,  formed
through parameters, social mandates, and vaccination, is a feature of any prediction model. We
helped lessen this uncertainty through our generalizable approach demonstrated in diverse
states.

Future Work:

The ongoing global pandemic has led to most major institutions allocating tremendous
resources for its resolution. The model would benefit from a larger sample size of US states and
possibly international regions, to test generalizability on a more expansive scale. Additionally,
we could expand the model’s  data range for  the  third wave of  cases  and as  the  COVID-19
vaccine is  distributed to  a  majority of  the  populace  to  determine its  functionality  past  the
study’s  scope.  Study  results  could  also  be  translated  to  provide  a  clearer  outlook  of
epidemiological diseases. Since the model can predict outbreaks with high accuracy, it could be
tested on historical COVID-19 data to determine when most outbreaks occurred in a region
easily. Moreover, trends and patterns could be found across outbreaks between various factors
such as lockdown policies, air pollution levels, and civilian obedience. Understanding outbreak
causation  presents  interesting  research  on  public  policy  adaptation  in  current  and  future
situations.

Conclusion:

This  paper  presents  an  accurate,  generalizable,  and  explainable  COVID-19  outbreak
prediction model. The model reported sensitivity scores > 90% in Indiana and Iowa, and > 80%
in California. Furthermore, model specificity and accuracy scores were > 94% in every state.
These results, coupled with the minimal data inputs required, creates an explainable and easy
to  implement  model  that  governments  and  policy-makers  can  utilize  to  assess  COVID-19
severity across diverse geographic regions. Future work includes testing the model in other
states and countries using more recent data. Moreover, the model should be used to identify
outbreaks to investigate correlations between external factors such as socioeconomic risks, air
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pollution, county level laws and outbreak development.
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Flow diagram for an overview of the study methodology.
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Visualization of the COVID-19 case counts in Cass County, Indiana, and Santa Barbara County, California, between March 1st,
2020 and October 31st, 2020. Days determined to be outbreak are colored red while normal days are black.
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Heuristic model decision making process.
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Population bands with their respective minimum case rates.
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