
Real-time Implementation of RMNv2 Classifier in
NXP Bluebox 2.0 and NXP i.MX RT1060

Maneesh Ayi
Department of ECE

Purdue School of Engineering and Tech.
Indianapolis, USA

maayi@iu.edu

Mohamed El-Sharkawy
Department of ECE

Purdue School of Engineering and Tech.
Indianapolis, USA

melshark@iupui.edu

Abstract—With regards to Advanced Driver Assistance
Systems in vehicles, vision and image-based ADAS is
profoundly well known since it utilizes Computer vision
algorithms, for example, object detection, street sign
identification, vehicle control, impact cautioning, and so on., to
aid sheltered and smart driving. Deploying these algorithms
directly in resource-constrained devices like mobile and
embedded devices etc. is not possible. Reduced Mobilenet V2
(RMNv2) is one of those models which is specifically designed
for deploying easily in embedded and mobile devices. In this
paper, we implemented a real-time RMNv2 image classifier in
NXP Bluebox 2.0 and NXP i.MX RT1060. Because of its low
model size of 4.3MB, it is very successful to implement this
model in those devices. The model is trained and tested with
the CIFAR10 dataset.

Index Terms—Convolution Neural Network (CNN), Deep Neural
Network (DNN), CIFAR-10, NXP Bluebox 2.0, NXP i.MX RT1060,
RTMaps, S32v234, Teraterm.

I. INTRODUCTION

Computer Vision, which is abbreviated as CV is
characterized as a field of concentrate that creates strategies
to enable computers to comprehend the content involved in
digital images such as images and videos. The convolutional
neural network is the most important and popular topic in
the field of Computer vision. CNN’s are introduced in the
year 2012 when Alexnet[6] winning the Imagenet
Challenge[7]. There have been several neural networks
developed and introduced later on.

In this paper, we have used Reduced MobilenetV2.
Reduced MobilenetV2 abbreviated as RMNv2[17] is the
modified version of Mobilenet V2. It includes changes like
changing strides, Heterogenous Kernel-based Convolution
block[3], mish activation function[4], and
autoaugmentation[5]. These changes were done in particular
to CIFAR10 dataset so that the model size is decreased by
52% without much affecting the performance of the model.
The architectural representation of RMNv2 is shown below
in Table 1,

The flowchart representation of RMNv2 architecture is
shown below in Figure 1.

Some of the key features of RMNv2 is shown in Table 2.

Input operator t c n s
2242 × 3 Conv2D - 32 1 1

1122 × 32 Bottleneck 1 16 1 1
1122 × 16 Bottleneck 6 24 2 1
562 × 24 Bottleneck 6 32 3 1
282 × 32 Bottleneck 6 64 4 2
142 × 64 Bottleneck 6 96 3 1
142 × 96 Bottleneck 6 160 3 2
72 × 160 Bottleneck 6 320 1 1
72 × 320 Conv2D - 1280 1 1

72 × 1280 AvgPool - - 1 -
12 × 1280 Conv2D - k -

TABLE I: Architectural representation of RMNv2

Fig. 1: Flowchart representation of RMNv2 Architecture

978-1-7281-8386-2/20/$31.00 ©2020 IEEE This is the author's manuscript of the work published in final edited form as:

Ayi, M., & El-Sharkawy, M. (2020). Real-time Implementation of RMNv2 Classifier in
NXP Bluebox 2.0 and NXP i.MX RT1060. 2020 IEEE Midwest Industry Conference
(MIC), 1, 1–4. https://doi.org/10.1109/MIC50194.2020.9209615

Model Accuracy 92.4%
#parameters 1.0691M
Model Size(in MB) 4.3 MB

TABLE II: Key features of RMNv2

In applications such as ADAS systems, robotics etc. we
need a framework that is easy to understand and should be
flexible to make the application work faster. One of those
frameworks is RTMaps. It is often called as real-time
multi-sensor applications. It is made of a different module to
be utilized in various settings - RTMaps Runtime Engine,
RTMaps Studio, The RTMaps Component Library and
RTMaps SDK. It gathers information from various devices
such as cameras, radars and lidars etc. RTMaps V4.5.0
makes the software run on embedded targets. So, one of
those high computational targets is NXP Bluebox 2.0. The
RTMaps embedded available on NXP Bluebox 2.0 helps us
to develop applications such as ADAS systems etc. NXP
Bluebox 2.0 is a development platform that gives required
performance, reliable functionality to design an autonomous
vehicle. NXP Bluebox 2.0 consists of S32V234 for car
vision and sensor fusion microprocessor, the LS2084A
embedded computer processor and the S32R27 radar
microcontroller. The proposed algorithm in host PC uses an
SSL connection to deploy in NXP Bluebox 2.0 .

NXP i. MX RT1060 is the first crossover MCU series. It
is supported by NXP’s MCUXpresso Software’s and tools. It
can compute computer vision algorithms with low latency. The
eIQ machine learning software helps us developing machine
learning algorithms in i. MX RT1060.

II. PRIOR WORK

There have been many architectures introduced after
Alexnet. Some of those networks are VGG[11],
Inception[12][13] etc. These are more accurate than Alexnet
but also complicated. In order to implement these
architectures in real-time is not possible because of the high
model size. Then, there has been a lot of active research
going on to develop architectures that are compatible to
deploy in real-time devices without compromising on
accuracy. Out of which, two methods are described in
developing these small models. One is developing a small
model from scratch or compressing a large network.
Quantization[8], hashing[9], Pruning, vector quantization and
Huffman encoding[10] etc. These methods are used to
Compress a large network. Networks like Squeezenet[14]
and Squeezenext[15] are small models that are developed
from scratch. These networks didn’t focus on speed.
Mobilenet V1[1] and Mobilenet V2[2] are introduced which
are not only small in size but also focused on speed as well.
[16] provides some insights into various applications with
RTMaps and blue box.

III. IMPLEMENTATION

In this section, we discuss the implementation of the
RMNv2 Image classifier in real-time devices like NXP
Bluebox 2.0 and NXP i.MX RT1060.

A. RMNv2 Classifier in NXP Bluebox 2.0

The python component in RTMaps will allow us to
develop and integrate computer vision algorithms for ADAS
applications like Image classification, sign identification, and
driving assistance etc. The python component in RTMaps has
an editor in it that allows users to create, develop and deploy
their python scripts. In this editor, there are three main
functions that are important to know in order to implement
users python script in hardware. Birth(), Core() and Death()
are the three functions that are available in the editor. Birth()
is executed once at the beginning to initialize and set up the
code. Core() is a function that runs in an infinite loop.
Therefore, the user’s code can be defined in this section that
allows code to run continuously. Death() is defined at the
end and it is called when the program is halted.

The python componenet in RTMaps is shown in the below
figure 2.

Fig. 2: Python Component representation in RTMaps

This structure of writing code makes it easier for the user to
prototyping and developing their own code with respect to the
application. Once the scripting is done, the user can use the
RTMaps Embedded to run their application on the Bluebox
Platform. Figure-3 shows the diagrammatic representation of

RTMaps setup with Bluebox 2.0. The connection between the
host pc and the target Bluebox is TCP/IP. After connecting to
host pc, the user can check correct COM ports in the device
manager. Then user should setup Teraterm for LS2 interface
and S32V interface. In this paper, the classifier is trained only
in GPU but tested in NXP Bluebox 2.0.

Fig. 3: Diagrammatic representation of RTMaps with NXP
Bluebox 2.0

B. RMNv2 Classifier in NXP i.MX RT1060

Implementing RMNv2 classifier in NXP i.MX RT1060
involves two steps, first to convert our model to Tensorflow
lite model and deploying that tensorflow lite model into the
board.

1) Converting into Tensorflow lite Model: NXP provides
a machine learning software development environment called
eIQ. It is specifically designed to develop computer vision
algorithms in embedded platforms like i. MX RT processors.
NXP eIQ ML Software development environment has
inference engines like OpenCV, Tensorflow lite, ARM NN
and CMSIS-NN. In the TensorFlow lite inference engine, we
have our pre-trained RMNv2 Keras model that is converted
to tf lite model using tf lite converter. Flowchart
representation of this process is shown in Figure-4.

Fig. 4: Flow chart representation of RMNv2 classifier
implementation in i.MX RT1060

2) Deploying in i.MX RT1060: The MCU Xpresso SDK
is specifically designed by NXP to accelerate application
development in i. MX RT crossover processors. Latest
version of the SDK includes the updated eIQ libraries and
demos. This SDK additionally supports UART debug
console to run the application on Teraterm. TFlite model is
converted into a C array (.h) header file that can be called in
an embedded project. The API call is used in the code to
load the model using this header file. Then, the model is
debugged and we can view the output in Teraterm.

IV. RESULTS

In this paper, we have taken a pretrained RMNv2 model.
The model is trained and tested for the CIFAR10 dataset.
The model is trained in Nvidia Geforce GTX 1080Ti GPU.

The original model is trained using the Pytorch framework
with a total number of epochs to 200 and with a decreasing
learning rate of 0.1, 0.01 and 0.001. We have used
Stochastic gradient descent (SGD) optimizer. The batch size
for training the network is 128 and for the test set, it is 64.
We have replicated a similar configuration to the model with
Keras as well. Let us see the results of RMNv2 image
classifier with corresponding boards.

A. With NXP Bluebox 2.0

Here, we are attempting to make classifier work correctly
in NXP Bluebox 2.0. So, the model is fed with some
random images taken from the test dataset with correct
ground truth values and asking the model to predict those
random images. The RTMaps Console output is shown
below in Figure 5. The bluebox output can be seen using

Fig. 5: RTMaps Console output of RMNv2 Classifier

Teraterm terminal. The Teraterm output can be seen below in
figure 6. The model is given some random input images like

Fig. 6: Teraterm output of RMNv2 Classifier for NXP Bluebox
2.0

cat, ship and plane. It correctly predicts those images in
NXP Bluebox 2.0 embedded platform.

B. With NXP i.MX RT1060

In this section, we tried to give some random images like cat
and ship and asking the model to predict them. Generally, we
gave cat and ship because these classes belong to the CIFAR10
dataset and our model is only trained to this dataset. The output
can be seen in Teraterm terminal. Our model is correctly able
to classify cat and ship image correctly in NXP i.MX RT1060
embedded platform along with inference times shown in the
figures 7 and 8.

Fig. 7: Teraterm output corresponding to Cat Image

Fig. 8: Teraterm output corresponding to Ship Image

V. CONCLUSION

Finally, we have presented some real-time image classifier
application in high computational and flexible embedded
platforms like NXP Bluebox 2.0 and NXP i. MX RT1060.
These devices are highly suitable for autonomous
applications like ADAS systems etc. However, the model can
be further reduced using techniques like model pruning,
model compression and quantization etc. Also, in this paper,
we did not perform any hyperparameter tweaking like
changing an alpha parameter or changing the resolution
multiplier. The model can also be developed further for
applications like object detection and object tracking etc.
The applications can also be developed and tested on other
NXP Platforms like other i.MX family like i.MX 8M family
etc. The inference time can be further reduced as well.

REFERENCES

[1] Howard, Andrew G., et al. ”Mobilenets: Efficient convolutional
neural networks for mobile vision applications.” arXiv preprint
arXiv:1704.04861 (2017).

[2] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
Liang-Chieh Chen. ”MobileNetV2: Inverted Residuals and Linear
Bottlenecks.” arXiv preprint arXiv:1801.04381v4 (2019)

[3] Pravendra Singh, Vinay Kumar Verma, Piyush Rai, Vinay P. Namboodiri.
”HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs”
arXiv preprint arXiv:1903.04120v2 (2019)

[4] Diganta Misra, ”Mish: A Self Regularized Non-Monotonic Neural
Activation Function” arXiv preprint arxiv:1908.08681 (2019)

[5] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, Quoc
V. Le ´Google Brain, ”AutoAugment: Learning Augmentation Strategies
from Data” arXiv preprint arXiv:1805.09501v3 (2019)

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ” Imagenet classification
with deep convolutional neural networks” In Advances in neural
information processing systems, pages 1097–1105, 2012.

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large
scale visual recognition challenge, International Journal of Computer
Vision, 2015

[8] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. ”Quantized convolutional
neural networks for mobile devices”. arXiv preprint arXiv:1512.06473,
2015.

[9] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y.
Chen. ”Compressing neural networks with the hashing trick”. CoRR,
abs/1504.04788, 2015

[10] S. Han, H. Mao, and W. J. Dally.”Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding”.
CoRR, abs/1510.00149, 2, 2015.

[11] Karen Simonyan, Andrew Zisserman. ”VERY DEEP
CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE
RECOGNITION” arXiv preprint arXiv:1409.1556v6 (2015)

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
”Rethinking the inception architecture for computer vision.” arXiv
preprint arXiv:1512.00567, 2015.

[13] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4, inception-resnet
and the impact of residual connections on learning. arXiv preprint
arXiv:1602.07261, 2016

[14] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K.
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and¡ 1mb model size. arXiv preprint arXiv:1602.07360, 2016.

[15] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue,
Peter Jin, Sicheng Zhao, Kurt Keutzer SqueezeNext: Hardware-Aware
Neural Network Design arXiv preprint arXiv:1803.10615v2

[16] Sreeram Venkitachalam, Surya Kollazhi Manghat, Akash Sunil Gaikwad,
Niranjan Ravi, Sree Bala Shruthi Bhamidi and Mohamed El-Sharkawy.
Realtime Applications with RTMaps and Bluebox 2.0, ICAI’18

[17] Maneesh Ayi.(2020). RMNv2: Reduced Mobilenet V2 An Efficient
Lightweight Model For Hardware Deployment [Master’s Thesis,
IUPUI]. ScholarWorks Electrical and Computer Engineering department
Theses and Dissertations Publishing.

