
This is the author's manuscript of the article published in final edited form as:

Shah, P., & El-Sharkawy, M. (2020). R-MnasNet: Reduced MnasNet for Computer Vision. 2020 IEEE International IOT, Electronics and Mechatronics
Conference (IEMTRONICS), 1–5. https://doi.org/10.1109/IEMTRONICS51293.2020.9216434

https://doi.org/10.1109/IEMTRONICS51293.2020.9216434

of-the-art CNN models. They are extensively used for mobile
vision applications. MnasNet is such architecture which was
designed to accomplish such goals.

A. MnasNet Architecture

They have introduced a neural architecture search approach
which optimized accuracy and latency on mobile devices using
reinforcement learning. By using this approach, they propose
architectures based on real world latency and accuracy trade-
offs. They show that diversity of layers in such resource-
constrained models yield better trade-offs between accuracy
and latency of the model. They have shown results confirming
better performance of their model then other models like Mo-
bileNet [1], SqueezeNext [16], ShuffleNet [23], MobileNetV2
[7], NASNet [30] and many other models.

Figure 1 shows the architecture of MnasNet. It uses Convo-
lution Ops, depthwise separable convolution, mobile inverted
bottleneck layers to extract features. It uses RMSProp opti-
mizer [31], Batch Normalization [27] and Dropout regulariza-
tion [32]. Table I shows the MnasNet architecture which is
trained with CIFAR-10 dataset.

MnasNet Architecture
Layers Convolutions t c n s
322 × 3 Conv2d 3×3 - 32 1 1
1122 × 32 SepConv 3×3 1 16 1 2
1122 × 16 MBConv3 3×3 3 24 3 2
562 × 24 MBConv3 5×5 3 40 3 2
282 × 40 MBConv6 5×5 6 80 3 2
142 × 80 MBConv6 3×3 6 96 2 1
142 × 96 MBConv6 5×5 6 192 4 1
72 × 192 MBConv6 3×3 6 320 1 1
72 × 320 FC,Pooling 10

TABLE I
WHERE T: EXPANSION FACTOR, C: NUMBER OF OUTPUT CHANNELS, N:

NUMBER OF BLOCKS AND S: STRIDE

III. R-MNASNET ARCHITECTURE

This section will explain the proposed R-MnasNet architec-
ture and the modifications made to the baseline architecture
(MnasNet) to reduce the model size and increase the accuracy.
Table II shows the R-MnasNet architecture.

A. Convolution Layers

To increase the accuracy of the model, the convolution
layers must extract features in an efficient way. MnasNet
uses Depthwise Separable Convolutions to extract features.
Depthwise separable convolutions have two layers of con-
volution. First, a depthwise convolution layer which extracts
the features along the spatial dimensions of the input tensor.
Second, a 1x1 pointwise convolution layer which covers the
depth of the input tensor. In these convolutional layer, the
spatial dimensions remain constant.

In order to extract features more efficiently, new convolu-
tional layers were added in the baseline model. These layers
are known as Harmonious Bottleneck Layers [2]. Along with
channel transformations, these layers take spatial dimensions

R-MnasNet Architecture
Layers Convolutions t c n s
322 × 3 Conv2d 3×3 - 32 1 1
1122 × 32 SepConv 3×3 1 16 1 2
1122 × 16 MBConv3 3×3 3 24 3 2
1122 × 4 Harmonious Bottleneck 2 36 1 1
562 × 36 MBConv3 5×5 3 40 3 2
1122 × 40 Harmonious Bottleneck 2 72 1 2
282 × 72 MBConv6 5×5 6 80 3 2
1122 × 80 Harmonious Bottleneck 2 96 4 2
142 × 96 MBConv6 3×3 6 96 2 1
1122 × 80 Harmonious Bottleneck 2 192 1 2
1122 × 80 Harmonious Bottleneck 2 96 4 2
142 × 96 MBConv6 5×5 6 192 4 1
1122 × 80 Harmonious Bottleneck 2 288 1 1
72 × 192 MBConv6 3×3 6 320 1 1
72 × 320 FC,Pooling 10

TABLE II
WHERE T: EXPANSION FACTOR, C: NUMBER OF OUTPUT CHANNELS, N:

NUMBER OF BLOCKS AND S: STRIDE

Fig. 2. Comparison of Depthwise Separable Convolution Layer and Harmo-
nious Bottleneck Layer. [2]

into consideration as well. They change the spatial feature
scale along composite layers of the network. As a result, the
balance between capability of representation and computations
is improved.

As shown in Figure 2, there is contraction-expansion of
spatial dimensions and expansion-contraction of channel di-
mensions in the harmonious bottleneck layer. First, the channel
dimensions remain constant and features get extracted from the
spatial dimensions. Second, the spatial dimensions are kept
constant and features are extracted from channel dimensions.
This makes the convolution layer more efficient and increases
the accuracy of the model. It also results in decreasing the
computational cost of the model. The model size decreases
and makes the model lightweight.

Figure 2 shows the comparison of depthwise separable
convolutional block and harmonious bottleneck layer. The
spatial size of input/output feature maps is (H x W), C1/C2
are input/output feature channels, (K x K) is the kernel size
and s denotes stride.
The total cost of depthwise separable convolution is

(H ×W × C1×K ×K) + (H ×W × C1× C2) (1)

The total cost of harmonious bottleneck layer is

B/s2 + (H/s×W/s× C1 +H ×W × C2)×K2 (2)

where, B is the computational cost of the blocks inserted
between the spatial contraction and expansion operations. It
is evident that by squeezing the channel expansion-contraction
component and using a pair of spatial transformations yields a
slimmed spatial size of wide feature maps in each stage which
reduces the computational cost.

In this paper, six harmonious bottleneck layers were added
to the MnasNet architecture. The model is described in table II.
After adding these layers, the accuracy of the model increased
by 9.34% whereas the model size decreased from 12.7 MB to
3 MB. The comparison is shown in Table III.

B. Learning Rate Annealing or Scheduling

Different learning rates are used while training the network.
There are various methods to choose the learning rate for
particular epochs during training. Time-based decay, step
decay and exponential decay are some of the methods which
are used to determine learning rates during training. Figure 3
illustrates that step decay based learning rate performs better
than other learning rate schedule methods. Adaptive learning
rate methods are also used instead of manually scheduling the
learning rates. In this paper, the step decay method proved to
be more efficient. Therefore, this method is used for training
R-MnasNet.

Fig. 3. Comparision of different LR scheduling methods.

C. Optimization

There are various optimization techniques which are used to
optimize CNNs. Some commonly used optimizers are Adap-
tive Learning Rate Method (Adadelta) [31], Adaptive Gra-
dient Learning Algorithm (Adagrad) [31], Adaptive Moment
Estimation (Adam) [31], Stochastic Gradient Descent (SGD)
[31], Root Mean Square Propagation (RMSprop). RMSprop
was used to optimize the MnasNet architecture. In this paper,
we have used SGD with varying values of learning rates and
momentum=0.9 for better optimization.

D. Data Augmentation

AutoAugment [3] was used for data augmentation. Au-
toAugment learns the best augmentation policies for a given
dataset with the help of Reinforcement Learning (RL). A
policy consists of 5 sub-policies and each sub-policy applies 2
image operations in sequence. Each of those image operations
has two parameters: The probability of applying it and the
magnitude of the operation (e.g. rotate 20 degrees in 65% of
cases). There is a controller that decides the best data augmen-
tation policy at that instant and tests the generalization ability
of that policy by running a child model experiment on a small
subset of a particular dataset. After the child experiment is
finished the controller is updated with the validation accuracy
as the reward signal, using a policy gradient method called
Proximal Policy Optimization algorithm (PPO). In this paper,
AutoAugment is used on CIFAR-10 dataset. The accuracy
of R-MnasNet was 88.54% but after using AutoAugment the
accuracy increased to 90.14%.

E. Mish Activation Function

Activation functions are used to introduce non-linearity
in neural networks. They determine the correct non-linear
relation between the input and output signals. In 2019, Mish
[35] was introduced and it outperformed all other activation
functions. It is a new type of gated softplus function. The
softplus activation function can be represented as:

ς(x) = ln (1 + x) (3)

Mathematically, Mish can be written as,

f(x) = x · tanh (ς(x)) (4)

Figure 6 shows the graphical representation of Mish. For
comparison, Figure 7 shows commonly used activation func-
tions along with the graph of Mish activation.

Mish [35] avoids saturation due to near zero gradients,
strong regularization effects, preserves small negative gradi-
ents and has effective optimization and generalization. After
implementing it in R-MnasNet, the acurracy of the model
increased from 90.14% to 91.13%.

IV. HARDWARE AND SOFTWARE USED

• Intel i9 9th generation processor with 32 GB RAM
• Aorus Geforce RTX 2080Ti GPU
• Python version 3.6.7.
• Pytorch version 1.0.
• Spyder version 3.6.
• Livelossplot

V. RESULTS

The accuracy of baseline architecture is 80.8% when trained
with CIFAR-10 [4] dataset with a model size of 12.7 MB.
After introducing new layers, the accuracy became 88.84%
and the model size reduced to 3 MB. AutoAugment was im-
plemented to further incerase the accuracy. It was evident that
the accuracy increased from 88.54% to 90.14%. Furthermore,

Fig. 4. Mish Activation Function

Fig. 5. Common Activation Functions

ReLU6 activation function was replaced with Mish activation
function. This resulted with the model accuracy of 91.13%.

The aforementioned modifications were made to the base-
line architecture. The model was trained with CIFAR-10 [4]
dataset on Aorus Geforce RTX 2080Ti GPU using PyTorch
framework for 200 epochs. The data was divided into batch
size of 128 for training set and batch size of 64 for validation
set.

Figure 6 and figure 7 shows the plots of log loss and
accuracy of their respective models. The graphs were plotted
using livelossplot visualization library.

The trade-off between model size and accuracy is shown in
table III

Fig. 6. Baseline

Fig. 7. R-MnasNet

Comparison of models
Architecture Model Accuracy Model size (in MB)
MnasNet 80.8% 12.7
R-MnasNet 91.13% 3

TABLE III

Table IV shows the results obtained by scaling the model
with different values of width multiplier.

Scaling R-MnasNet with width multiplier
Width Multiplier Model Accuracy Model size
1.4 92.49% 5.6 MB
1.0 91.13% 3 MB
0.75 90.03% 2 MB
0.5 87.5% 1.3 MB
0.35 84.9% 837.6 KB

TABLE IV

VI. CONCLUSION

In this paper, a new architecture, R-MnasNet, is introduced
by modifying its baseline architecture. The goal was to make
the model more compact and having a fair trade-off between
model size and accuracy. The accuracy of R-MnasNet is
91.14% with a size of 3 MB. It outperforms its baseline archi-
tecture MnasNet which has an accuracy of 80.8% and model

Authorized licensed use limited to UPU Downloaded on October 07 2021 at 16 09 25 UTC from EEE Xplore Restrictions apply

size of 12.6 MB. New Harmonious Bottleneck layers were
added to the baseline architecture. Mish activation was used
to improve the optimization of the network. AutoAugment was
used to further increase the accuracy of the model. This model
can be deployed on mobile devices and various embedded
systems. It can be used for embedded vision applications.
Depending on the application and hardware, a particular
variant of R-MnasNet can be deployed by scaling it with width
multiplier to achieve specific model size and accuracy.

REFERENCES

[1] Mingxing Tan, Bo Chen, et al. ”MnasNet: Platform-Aware Neural
Architecture Search for Mobile” arXiv:1807.11626v3 [cs.CV] 29 May
2019

[2] Duo Li, Aojun Zhou, Anbang Yao. ”HBONet: Harmonious Bottleneck
on Two Orthogonal Dimensions” arXiv:1908.03888v1 [cs.CV] 11 Au-
gust 2019

[3] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, QuocV.
Le Google Brain, ”AutoAugment: Learning Augmentation Strategies
from Data” arXiv:1805.09501v3 (2019)

[4] https://www.cs.toronto.edu/ kriz/cifar.html
[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ” Imagenet classifica-

tion with deep convolutional neural networks” In Advances in neural
information processing systems, pages 10971105, 2012.

[6] Howard, Andrew G., et al. ”Mobilenets: Efficient convolutional neural
networks for mobile vision applications.” arXiv:1704.04861 (2017).

[7] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
Liang-Chieh Chen. ”MobileNetV2: Inverted Residuals and Linear Bot-
tlenecks.” arXiv:1801.04381v4 (2019)

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. ”Imagenet largescale visual
recognition challenge”, International Journal of Computer Vision, 2015.

[9] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. ”Quantized
convolutionalneural networks for mobile devices”. arXiv preprint
arXiv:1512.06473,2015.

[10] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y.Chen. ”Com-
pressing neural networks with the hashing trick”. CoRR,abs/1504.04788,
2015

[11] S. Han, H. Mao, and W. J. Dally.”Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding”.CoRR, abs/1510.00149, 2, 2015.

[12] Karen Simonyan, Andrew Zisserman.”VERY DEEP CONVOLU-
TIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNI-
TION” arXiv preprint arXiv:1409.1556v6 (2015)

[13] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. ”Re-
thinking the inception architecture for computer vision.” arXiv preprint
arXiv:1512.00567, 2015.

[14] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4, inception-resnet
and the impact of residual connections on learning. arXiv preprint-
arXiv:1602.07261, 2016

[15] Sebastian Ruder. ”An overview of gradient descent optimization algo-
rithms.” arXiv preprint arXiv:1609.04747, 2017

[16] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K.Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and 1MB model size. arXiv preprint arXiv:1602.07360,
2016.

[17] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue,
Peter Jin, Sicheng Zhao, Kurt Keutzer ”SqueezeNext: Hardware-Aware
Neural Network Design.” arXiv preprint arXiv:1803.10615v2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun ”Deep Residual
Learning for Image Recognition.” arXiv preprint arXiv: 1512.03385
(2015).

[19] Chen Wang, Yang Xi. Convolutional Neural Network for Image Classi-
fication.

[20] MD. ZAKIR HOSSAIN, FERDOUS SOHEL, MOHD FAIRUZ SHI-
RATUDDIN, HAMID LAGA (2018). ”A Comprehensive Survey
of Deep Learning for Image Captioning.” arXiv preprint arXiv:
1810.04020.

[21] Zhong-Qiu Zhao, Shou-tao Xu, and Xindong Wu. ”Object Detec-
tion with Deep Learning: A Review.” arXiv preprint arXiv:1807.05511
(2019).

[22] Abien Fred M. Agarap. ”Deep Learning using Rectified Linear Units
(ReLU).” arXiv preprint arXiv:1803.08375v2[cs.NE], 2019

[23] Xiangyu Zhang, Xinyu Zhou, Mengxiao LinJian, Sun. ”ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile.” arXiv
preprint arXiv:1707.01083v2, 2017

[24] Francois Chollet (2017). ”Xception: Deep Learning with Depthwise
Separable Convolutions. arXiv preprint arXiv:1610.02357

[25] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, Yi Yang (2017).
”Random Erasing Data Augmentation.” arXiv preprint arXiv:1708.04896

[26] Barret Zoph, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon
Shlens, Quoc V (2019). Le. ”Learning Data Augmentation” arXiv
preprint arXiv: 1906.11172

[27] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift.” arXiv
preprint arXiv: 1502.03167, 2015

[28] Timothy Dozat (2016). ”INCORPORATING NESTEROV MOMENTU-
MINTO ADAM.” Workshop track-ICLR 2016.

[29] Diederik Kingma and Jimmy Ba. ”Adam: A method for stochastic
optimization.” arXiv preprint arXiv:1412.6980, 2014

[30] Barret Zoph, Vijay Vasudevan, Jonathon Shlens and Quoc V. Le,
”Learning Transferable Architectures for Scalable Image Recognition”,
arXiv:1707.07012v4 [cs.CV] 11 Apr 2018.

[31] Sebastian Ruder, ”An overview of gradient descent optimization algo-
rithms*”,arXiv:1609.04747v2 [cs.LG] 15 Jun 2017

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
Ruslan Salakhutdinov, ”Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”, Journal of Machine Learning Research 15
(2014) 1929-1958, Submitted 11/13; Published 6/14.

[33] https://towardsdatascience.com/learning-rate-schedules-and-adaptive-
learning-rate-methods-for-deep-learning-2c8f433990d1

[34] http://www.image-net.org/
[35] Diganta Misra, ”Mish: A Self Regularized Non-Monotonic Neural

Activation Function”, arXiv preprint arxiv:1908.08681 (2019)

