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Non-Hermitian systems with parity-time (PT ) symmetry give rise to exceptional points (EPs) with ex-
ceptional properties that arise due to the coalescence of eigenvectors. Such systems have been extensively
explored in the classical domain, where second- or higher-order EPs have been proposed or realized. In contrast,
quantum information studies of PT -symmetric systems have been confined to systems with a two-dimensional
Hilbert space. Here, by using a single-photon interferometry setup, we simulate the quantum dynamics of a
four-dimensional PT -symmetric system across a fourth-order exceptional point. By tracking the coherent,
nonunitary evolution of the density matrix of the system in PT -symmetry unbroken and broken regions, we
observe the entropy dynamics for both the entire system, and the gain and loss subsystems. Our setup is scalable
to the higher-dimensional PT -symmetric systems, and our results point towards the rich dynamics and critical
properties.
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I. INTRODUCTION

A fundamental postulate of quantum theory is that the
Hamiltonian of an isolated system is Hermitian. This Her-
miticity ensures real eigenvalues and a coherent, unitary time
evolution for the system. This conventional wisdom was
upended two decades ago by Bender and co-workers, who
showed that a non-Hermitian Hamiltonian with parity-time
(PT ) symmetry can exhibit entirely real spectra [1–4]. Over
time, it has become clear that non-Hermitian Hamiltonians
with PT symmetry can provide an effective description for
systems with balanced, spatially separated gain and loss [5].
This concept has been extensively, and fruitfully, explored in
classical (wave) systems where the number of energy quanta
is much larger than one [6–15]. A PT -symmetric system is
described by an effective, non-Hermitian Hamiltonian HPT
that is invariant under the combined parity and time-reversal
operation [16]. As the gain-loss strength is increased, the spec-
trum of HPT changes from real into complex conjugate pairs,
and the corresponding eigenvectors cease to be eigenvectors
of the PT operator. This PT -symmetry-breaking transition
occurs at an EP of order n (EPn), where n eigenvalues, as
well as their corresponding eigenvectors, coalesce [17–19].
The PT transition and the nonunitary time evolution gen-
erated by HPT have been observed in classical systems
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with EP2 [6–14,20–26], EP3 [15], and higher-order EPs
[27,28].

Due to the quantum limit on noise in linear (gain) ampli-
fiers [29], creating a photonic system with balanced gain and
loss in the quantum domain is not possible [30]. However,
the EP degeneracies also occur in dissipative systems with
mode-selective losses. Such passive PT -symmetric systems
have been realized in the quantum domain with lossy, single
photons [31–38], ultracold atoms [39], and a superconduct-
ing transmon [40]. These realizations are limited to effective
two-dimensional Hamiltonians with second-order EPs, and
their quantum information studies are confined to global
properties [34]. Here, we present the experimental quantum
simulation of entropy dynamics in a four-dimensional, passive
PT -symmetric system with an EP4.

II. IMPLEMENTING PT -SYMMETRIC
QUDIT WITH AN EP4

Let us consider an open, four-mode system described by a
4 × 4 Hamiltonian

HPT = −JSx + iγ Sz, (1)

where Sx and Sz are spin-3/2 representations of the SU(2)
group. It can be written in the matrix form as

HPT = 1

2

⎛
⎜⎜⎜⎜⎝

3iγ −√
3J 0 0

−√
3J iγ −2J 0

0 −2J −iγ −√
3J

0 0 −√
3J −3iγ

⎞
⎟⎟⎟⎟⎠

(2)
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FIG. 1. Experimental setup. (a) Illustration of a four-mode PT -symmetric qudit. (b) Schematic of the optical circuit used for simulating dy-
namics in the four-mode, passive PT -symmetric system. Heralded single photons are generated via spontaneous parametric down-conversion
and prepared in arbitrary qudit states using a polarizing beam splitter (PBS), wave plates with certain setting angles, and a beam displacer
(BD). The coherent, lossy, nonunitary time evolution is realized by BDs, HWPs, and sandwich-type QWP-HWP-QWP setups, along with
single-photon loss. For detection, projective measurements and quantum-state tomography are selected depending on the purpose, either of
which is performed, both of which are realized by a PBS and (or) wave plates and a BD. Avalanche photodiodes (APDs) detect the signal and
heralding photons.

in the computational basis {|1〉, |2〉, |3〉, |4〉}, and represents
a PT -symmetric qudit with d = 4. The Hamiltonian HPT
commutes with the antilinear PT operator where the parity
operator is P = antidiag(1, 1, 1, 1) and a time-reversal oper-
ator is given by complex conjugation, T = ∗. It follows from
Eq. (2) that the first two computational modes represent the
“gain sector” and the last two represent the “loss sector” in
the system. The four equally spaced eigenvalues of HPT are
given by λk = {−3/2,−1/2,+1/2,+3/2}

√
J2 − γ 2 (k =

1, 2, 3, 4), which give rise to an EP4 at the PT -breaking
threshold γ = J . The advantage of choosing Hamiltonian (1)
is that it can be easily generalized to an arbitrary dimensional
system where it still remains analytically solvable and has an
EP with the order equal to the system dimension [15,41,42].
Since HPT has a single energy gap � =

√
J2 − γ 2, it follows

that the PT -symmetric qudit has a sinusoidal dynamics in
the PT -symmetry unbroken region (γ < J), and a mono-
tonic, exponential growth behavior in the PT -broken region
(γ > J).

The coherent, nonunitary time evolution operator for the
system is given by U (t ) = exp(−iHPT t ), where we have set
h̄ = 1. For γ = 0, the system is Hermitian and the fermionic
nature of the spin-3/2 representation is manifest in the an-
tiperiodicity of U , i.e., U (T ) = −I4, where T (0) = 2π/J for
γ = 0. In this case, the mode occupations Pk (t ) = |〈k|ψ (t )〉|2
of the four modes obey a shifted mirror symmetry with
Pk (t ) = P5−k (t + T/2), which indicates a perfect state trans-
fer occurring from mode k to mode (5 − k) at T/2. Here,
|ψ (t )〉 = U (t )|ψ (0)〉 is the time-evolved state. For γ < J ,
the system is in the PT -symmetry unbroken region, and
the dynamical evolution is antiperiodical with period T (γ ) =
2π/�. At the EP4 (γ = J), U (t ) ceases to be periodic and
has an operator norm that grows as t6, reflecting the fourth
order of the EP. In the PT -symmetry broken region, the
mode occupations grow exponentially with time. However,
the quantum information metrics, such as the von Neumann
entropy, are defined with respect to the instantaneously nor-
malized state (indicating postselection that eliminates the
quantum jumps [38,40,42]). Therefore, at the EP and in the
PT -broken region, these quantities reach a steady-state value.

These results are applicable to all finite-dimensional represen-
tation of the SU(2) group.

The four-dimensional Hamiltonian HPT is particularly
interesting because it can be viewed as a system of two in-
teracting, non-Hermitian qubits. This mapping is provided by
the identities 2Sx = σx ⊗ σx + σy ⊗ σy + √

3I2 ⊗ σx, 2Sz =
σz ⊗ I2 + I2 ⊗ σz/2, and P = σx ⊗ σx, where σk (k = x, y, z)
are the standard Pauli matrices. Using this insight, we inves-
tigate the quantum information dynamics in the gain and loss
subsystems of the PT -symmetric qudit.

We encode the four modes of the qudit in the spatial
and polarization degrees of freedom of a single photon, and
label them as |1〉 = |UH〉, |2〉 = |UV 〉, |3〉 = |DH〉, |4〉 =
|DV 〉. Here, {|H〉, |V 〉} are the horizontal and vertical polar-
izations, and {|U 〉, |D〉} denote the upper and lower paths,
which undergo gain and loss, respectively [Fig. 1(a)]. As
illustrated in Fig. 1(b), pairs of single photons are generated
via type-I spontaneous parametric down-conversion (SPDC)
using a nonlinear β-barium-borate (BBO) crystal. One photon
serves as a trigger and the other signal photon is prepared in
an arbitrary qudit state using a polarizing beam splitter (PBS),
wave plates with certain setting angles, and a beam displacer
(BD).

By mapping the PT -symmetric Hamiltonian HPT into
a passive PT -symmetric one with mode-selective losses
HL = HPT − 3iγ I4/2, we implement the 4 × 4 lossy, time-
evolution operator

UL(t ) = exp(−iHLt ) (3)

via a lossy linear optical circuit, which is related to U (t )
through U (t ) = UL(t ) exp(3γ t/2) [31]. The evolution opera-
tor UL(t ) is realized by BDs, half-wave plates (HWPs), and
sandwich-type QWP-HWP-QWP setups, where QWP is an
abbreviation for quarter-wave plate.

We experimentally measure and then obtain scaled mode
occupations Pk (t ) by projecting the time-evolved state |ψ (t )〉
onto |k〉. The initial state is chosen to be |ψ (0)〉 = (|1〉 +
|2〉 + |3〉 + |4〉)/2. The projective measurement and the quan-
tum state tomography on the qudit state are realized by BDs,
wave plates, and a PBS followed by avalanche photodiodes
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FIG. 2. Scaled mode occupations of a PT -symmetric system. (a) In the Hermitian limit with γ = 0, mode occupation numbers are periodic
with period T = 2π/J , and perfect state transfer occurs from mode k to mode 5 − k at time T/2. (b) In the PT -unbroken phase with γ = 0.2J ,
the occupation dynamics have period T (γ ), and the total weights exceed unity indicating a non-trace-preserving time evolution. (c) At γ = J ,
the scaled mode occupation grows as t6 with time indicating that the exceptional point is of order four. (d) In the PT -broken phase with
γ = 1.2J , the scaled mode occupation grows exponentially with time. Time is measured in units of J . Symbols: data; lines: Theory. Error bars
are due to the statistical uncertainty and obtained based on assuming Poisson statistics. When not shown, error bars are smaller than the symbol
size.

(APDs). Only coincidences between the heralded and trigger
photons are registered. The perfect state transfer for γ = 0 is
confirmed by the transfer of occupation from the first mode
to the fourth mode [Fig. 2(a)]. In the PT -unbroken phase
with a finite γ = 0.2J , there is no perfect state transfer at
time T (γ )/2 due to the nonunitary dynamics [Fig. 2(b)]. The
measured occupations are, however, periodic in time with a
period T (γ ).

At the EP4 with γ = J , the scaled mode occupation Pk (t )
grows algebraically with time as t6 [Fig. 2(c)]. Such a scaling
is dictated by the order of the EP. At γ = J , the Hamiltonian
obeys H4

PT (γ = J ) = 0 and the power-series expansion of
U (t ) terminates at the third order, giving rise to t6 dependence
for the occupation numbers. By projecting the time-evolved
state onto |k〉, we can obtain the occupation at the EP4 and
its power-law behavior [Fig. 2(c)]. In the PT -broken phase,
the scaled mode occupation grows exponentially with time
as expected [Fig. 2(d)]. We note that while the simulation
time range is limited to two periods for γ < J , we restrict
to 0 � t � 4.5 due to the rapid growth of the scaled mode
occupation at the EP4 and in the broken PT region.

When the PT -symmetric Hamiltonian is perturbed from
the EP4 by a small detuning δ, the resulting complex eigen-
values in the vicinity of EPn are given by a Puiseux series
in δ1/n [41], indicating enhanced classical sensitivity pro-
portional to the order of the EP [15,43]. In addition to the
behavior of the mode occupations at the EP, this serves as a

complementary check of the order of the EP. To that end, we
experimentally measure the complex eigenvalues of the per-
turbed Hamiltonian Hδ = HPT (γ = J ) + iJδ|1〉〈1|. Figure 3
shows that the real and imaginary parts of the eigenvalues of
Hδ indeed scale as δ1/4, consistent with the EP4 that occurs at
γ = J .

III. OBSERVING INFORMATION DYNAMICS

A crucial aspect of dynamics of a high-dimensional PT -
symmetric system is the flow of information among its
different parts, and the information retrieval phenomena be-
tween the whole system and its environment. To that end, we
consider the qudit entropy

S(t ) = −Tr[ρ̃(t ) log2 ρ̃(t )], (4)

where ρ̃(t ) = ρ(t )/Tr[ρ(t )] is the instantaneously normalized
density matrix and ρ(t ) = U (t )ρ(0)U †(t ) is the time-evolved
density matrix of the system with a time-dependent trace.
The gain- and loss-sector entropies are SGain(t ) and SLoss(t ),
respectively. These are obtained from the gain- and loss-sector
reduced density matrices ρGain(t ) = Tr3,4[ρ(t )] and ρLoss(t ) =
Tr1,2[ρ(t )], respectively.

A full knowledge of the time-dependent density
matrix through the quantum-state tomography allows
us to experimentally explore the information flow. We
focus on the quantum dynamics with the fully symmetric
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FIG. 3. Eigenvalues of the perturbed Hamiltonian. (a) The real and (b) imaginary parts of the eigenvalues of the perturbed Hamiltonian
Hδ = HPT (γ = J ) + iJδ|1〉〈1|, measured in units of J , scale as δ1/4, showing the enhanced sensitivity near the EP4. The initial states are
eigenstates |ψδ〉 of Hδ . Experimental errors are calculated via Monte Carlo method; when not shown, error bars are smaller than the symbol
size.

initial state |ψ (0)〉 [Figs. 4(a)–4(c)] and a mixed initial
state ρ(0) = 0.925|1〉〈1| + 0.025(|2〉〈2| + |3〉〈3| + |4〉〈4|)
[Figs. 4(d)–4(f)] in the PT -symmetry unbroken region. Since
the qudit undergoes a coherent, nonunitary evolution for any
gain-loss strength γ , a pure state remains a pure state and the
entropy of the entire system S(t ) remains constant with time
[Fig. 4(a)]. For a mixed initial state, the entropy is constant
only in the Hermitian limit, γ = 0. In the PT -symmetry

unbroken region, the entropy S(t ) shows periodic oscillations.
This demonstrates an exchange of quantum information
between the PT -symmetric qudit and its environment, and
the oscillations observed here may be interpreted as evidence
of information backflow from the environment and a signature
of non-Markovianity in the PT -unbroken phase [34].

At the EP4 or in the PT -symmetry broken region, due
to the diverging occupation, the normalized density matrix
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FIG. 4. Quantum information dynamics of the PT -symmetric qudit. (a) Time-dependent entropy S(t ) for a qudit with a pure initial state
|ψ (0)〉 remains zero for any non-Hermiticity. (d) With a mixed initial state, S(t ) is constant when γ = 0, and oscillates in the PT -unbroken
phase (γ = 0.2J) with period T (γ ). At the EP4 (γ = J) and in the broken PT region, S(t ) reaches zero because the system approaches a
pure state that is determined by the sole eigenstate at the EP or the mode with maximum amplification. In contrast, the subsystem entropies
SGain(t ) and SLoss(t ) show qualitatively similar behavior for (b), (c) pure and (e), (f) mixed initial qudit states. In each case, the entropies show
oscillatory behavior for γ < J and steady-state behavior for γ � J . We restrict to 0 � t � 4.5 due to the rapid growth of the scaled mode
occupation at the EP4 and in the broken PT region. Experimental errors are due to Monte Carlo method; when not shown, error bars are
smaller than the symbol size.
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FIG. 5. Reduced, instantaneously normalized density matrices (a)–(d) ρ̃Gain(t ) and (e)–(h) ρ̃Loss(t ) trace different paths inside the Bloch
sphere. Experimental results are represented by colored symbols and their theoretical predictions are represented by dashed curves.

ρ̃(t ) approaches a pure state, and the total system entropy
therefore approaches zero [34,44,45]. In all cases, the ex-
perimental simulation results agree well with the theoretical
prediction. Importantly, this observed behavior of entropy
does not depend on the details of the system, which signifies
its universality. In this case, information flows unidirectionally
and the dynamics is asymptotically Markovian [44].

In a sharp contrast to the results for the entire system, the
behavior of subsystem entropies for pure and mixed initial
states is qualitatively similar. In either case, the gain-sector
entropy SGain(t ) and the loss-sector entropy SLoss(t ) oscillate
in the PT -symmetry unbroken region including the Hermi-
tian limit. On the other hand, they reach nonzero steady-state
values at EP4 and in the broken PT -symmetry region. It
is worthwhile to point out that although the gain and loss
entropies show qualitatively similar behavior, the trajectories
traced out by the instantaneously normalized, reduced density
matrices ρ̃Gain(t ) and ρ̃Loss(t ) in the Bloch ball are distinctly
different (Fig. 5). The trajectory of the gain-sector density ma-
trix is weighted towards the northern hemisphere, representing
the largest amplifying mode, whereas the loss-sector density
matrix trajectory is less heavily weighted. These differences
lead to the slightly different behaviors of SGain and SLoss.

In this Rapid Communication, we realize a four-level sys-
tem dynamics under a non-Hermitian Hamiltonian in either
PT -symmetric unbroken, broken, or at the exceptional point
with single photons and a cascaded interferometric setup.
We realize 4 × 4 nonunitary evolution operations with six
BDs and use another one for state preparation. Two differ-
ent measurements—projective measurement and the quantum
state tomography of a four-level system—are carried out at
the output. In contrast, the setup in Ref. [34] is much simpler;
a two-level system dynamics under a non-Hermitian Hamil-
tonian is realized with two BDs, and only a single-qubit state
tomography is carried out to reconstruct the final state. Our
experimental method to implement a nonunitary, loss time
evolution operator is scalable, and therefore can be used to

simulate higher-dimensional PT -symmetric systems in the
future.

IV. DISCUSSION

In this section we briefly present the analytical deriva-
tion for the entropy of the PT -symmetric system. If we
start with a pure state, it remains pure under the coherent,
nonunitary evolution that is generated by a PT -symmetric,
non-Hermitian Hamiltonian. Therefore, the entropy of such a
state continues to remain zero. If the initial state is mixed, i.e.,
ρ(0) = ∑

i αi|υi〉〈υi|, we can express the orthonormal vectors
|υi〉 = ∑

k βik|ζk〉 in terms of the nonorthogonal right eigen-
vectors |ζk〉 of HPT . The initial state thus can be rewritten as

ρ(0) =
∑
k, j,i

αiβikβ
∗
i j |ζk〉〈ζ j |.

The final state is then given by

ρ(t ) =
∑
k, i

αi|βik|2|ζk〉〈ζk| +
∑

k �= j, i

αiβikβ
∗
i je

−i(λk−λ j )t |ζk〉〈ζ j |.

We further express the right eigenvectors of HPT in terms
of the orthonormal eigenvectors of the instantaneous density
matrix ρ(t ) as |ζk〉 = ∑

l κkl |ϕl〉. It allows us to obtain the
time-dependent occupation eigenvalues pk (t ) = 〈ϕl |ρ(t )|ϕl〉
as

pl =
∑
k,i,l

αi|βik|2|κkl |2 +
∑

k �= j, i, l

αiβikβ
∗
i jκklκ

∗
jl e

−i(λk−λ j )t .

In the Hermitian limit, the eigenvectors of HPT are or-
thonormal, and the time evolution acts as the rotation of
coordinates. Therefore the eigenstates |ϕi〉 are unchanged
and the entropy remains a constant of motion. In the
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non-Hermitian case, {|ζk〉} are not orthonormal, and the time-
dependent entropy is then given by

S(t ) = −
∑

l

p̃l log2 p̃l ,

where the fractional occupations are given by p̃l (t ) =
pl (t )/

∑
k pk (t ). The entropy of the time-evolved state oscil-

lates periodically in the PT -symmetric unbroken region. At
the EP4, pl (t ) grow algebraically with time as t6. By writing
pl = λl t6 + μl where λl and μl are constant, it is straightfor-
ward to see that the entropy approaches a steady-state value
polynomially with time. In contrast, in the PT -broken region,
pl (t ) grow exponentially with time, leading to a steady-state
value for the entropy that is approaches in an exponential
manner.

V. SUMMARY

Higher-dimensional PT systems, which can be treated as
composites of two or more minimal, non-Hermitian, quantum
systems, provide a starting point for interacting quantum mod-
els with PT -symmetry and EP degeneracies. In this work, we

experimentally simulate and observe the quantum information
dynamics in a four-dimensional system with EP4. We show
that the subsystem-entropy behavior for gain or loss subsys-
tems can be either qualitatively different from or similar to
the dynamics for the total entropy of the four-dimensional
system. Our work is an experimental demonstration of criti-
cal phenomena in four-dimensional PT -symmetric quantum
dynamics, and shows the versatility of the single-photon
interferometric network platform for simulating interacting,
non-Hermitian, quantum systems.
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