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Abstract
This article investigates the ability of data-driven models to estimate instantaneous fuel consump-
tion over 1 km road segments from different routes for different heavy-duty vehicles from the same 
fleet. Models are created using three different techniques: parametric, linear regression, and artificial 
neural networks. The proposed models use features derived from vehicle speed, mass, and road 
grade, which can be easily obtained from telematics devices, in addition to power take-off (PTO) 
active time, which is needed to capture the power requested by accessories in several heavy-duty 
vehicles. The robustness of these models with respect to the training data selection is improved by 
using k-fold cross-validation. Moreover, the inherent underestimation or overestimation bias of the 
model is calculated and used to offset the fuel consumption estimates for new routes. The study 
shows that the target application dictates the choice of model features. In fact, the results indicate 
that depending on the vocation the linear regression and neural network models, which use the 
same input features, are able to adequately differentiate between the fuel consumption of two 
vehicles from the same fleet as well as between the fuel consumption of a single vehicle over two 
different routes. However, the parametric model, which does not utilize PTO active time, is unable 
to differentiate between two vehicles from the same fleet. This latter model is more suitable for 
comparing fuel consumption across different fleets of vehicles. In summary, vocation-specific models 
should be used to optimize fuel consumption for a given fleet of vehicles, whereas general models 
can only provide insight into aggregated fuel consumption for entire fleets. Moreover, both the 
accuracy and the precision of the models as measured by their confidence interval should be taken 
into consideration when comparing fuel consumption estimates for two vehicles from the same fleet 
or the fuel consumption estimates of an individual vehicle for two different routes. This study shows 
that the artificial neural network models have narrow 95% confidence intervals and are therefore 
more precise than the equivalent linear regression models.

© 2021 Allison Transmission, Inc. and Indiana University-Purdue University Indianapolis. Published by SAE International. This Open 
Access article is published under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/4.0/), which permits distribution, and reproduction in any medium, provided that the original author(s) and the source are 
credited.
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Introduction

The ability to analyze the performance of a physical 
system has various applications and challenges. 
Different approaches have been proposed in the litera-

ture with a varying range of complexity and utility. These 
approaches fall under two major categories: (1) using data 
collected directly from the physical system and (2) developing 
a digital model that replicates the behavior of the physical 
system. The advantage of the first approach is its reliability. 
Indeed, since the analysis of the system is based on real data, 
it typically has a high level of confidence. The disadvantage 
of this approach is due to the required instrumentation of the 
physical system over an extended period, which can be cost 
prohibitive especially under varying operating conditions. To 
overcome these limitations, digital models have emerged as a 
cost-effective alternative. Digital models are intended to repli-
cate the behavior of the target physical system under different 
operating conditions. However, the extent to which they 
accomplish this goal is not well understood.

The aim of this article is to investigate the accuracy of 
digital models in estimating instantaneous fuel consumption 
for individual heavy-duty vehicles when operated on different 
routes. Specifically, the study evaluates the accuracy of three 
different models in estimating the instantaneous fuel consump-
tion of two types of heavy-duty vehicles. The first of the three 
models is a parametric (PAR) model, which was previously 
proposed by other researchers in [1]; the second is a linear 
regression (LR) model, and the third is an artificial neural 
network (ANN) model, which was introduced by the authors 
in [2]. These models are applied to two different vocations: 
delivery trucks and refuse trucks. These vocations were selected 
because they have different operating profiles in terms of 
average speed, number of stops, vehicle mass, and acceleration.

As in the general case of physical systems, approaches 
available for modeling fuel consumption in heavy-duty 
vehicles also fall under the two categories mentioned earlier, 
namely, using field data from an instrumented vehicle or a 
digital model. Data collected from an instrumented vehicle 
was used in [3] to analyze fuel consumption in vehicles with 
different lubrication oils and fuel types. Field data was also 
used in [4] to compare various lubrications for engine, axle, 
and transmission in three 5 ton MTVs. These two studies 
concluded that using field data makes it difficult to attribute 
differences in observed performance to either the physical 
system configuration, the environment, or the operating 
conditions. For instance, in [4] data was collected from 
vehicles operating on a flat paved track, making it difficult to 
extend the results to other routes. Despite these limitations, 
using field-collected data supports the analysis of the behavior 
of the vehicle with a high level of accuracy within the bound-
aries of the specific context and conditions under which the 
data was collected. Extending the scope of this analysis and 
the related conclusions to a more general context may entail 
extensive instrumentation.

Because of the above limitations, digital models were 
introduced to support fuel consumption analysis in 

heavy-duty-vehicles [5, 6, 7, 8, 9]. These models can be further 
classified into two subcategories: physics based and data 
driven. Physics-based models use the knowledge of the under-
lying dynamics of the system to express its behavior using 
well-defined mathematical equations. FASTSim [6] and 
Autonomie [10] are example frameworks that support the 
customization of modular physics-based models to different 
vehicles by modifying the equations, maps, and parameters 
that define each module. In the specific case of fuel consump-
tion, a physics-based model for a conventional gasoline sedan 
is described in [11]. Since physics-based models rely on a deep 
understanding of the laws of physics that govern the behavior 
of the system, these models can be highly accurate [5, 7]. 
However they often require significant adaptation. Moreover, 
their ability to differentiate between the behavior of two 
systems that have been exposed to different operating condi-
tions is often limited by our lack of understanding of how 
these conditions (e.g., aging, routine maintenance, extreme 
weather) may impact the response of each system.

The aim of the second subcategory of digital models (i.e., 
data-driven models) is to capture the abovementioned varia-
tions in the system’s response, which often results from 
exposure to different operating conditions. Data-driven 
models express the target output in terms of a linear or 
nonlinear combination of a selected set of input features while 
abstracting the system’s dynamics. The main advantage of 
these models is that they can be easily derived, adapted, and 
deployed for different vehicles and vocations even when 
knowledge of physics and engineering rules governing the 
system’s operation is not available. However, this subcategory 
of models faces some challenges such as limited human inter-
pretability [12, 13, 14], complexity, and often lower accuracy 
[9], compared to their physics-based counterpart.

This article addresses a third challenge related to the 
fidelity of data-driven models, where fidelity is defined as the 
ability of the model to accurately estimate the instantaneous 
fuel consumption of each vehicle rather than a group of 
vehicles. Despite being one of the main motivations behind 
the increasing popularity of data-driven models, this aspect 
has not been extensively investigated. The focus of previous 
studies has been primarily on demonstrating the accuracy of 
data-driven models for a single vehicle or a group of similar 
vehicles [7, 8, 15, 16]. As a result, there is limited understanding 
of the ability of data-driven models to, for instance, reliably 
estimate the difference in fuel consumption between two 
vehicles from the same fleet.

A survey of data-driven fuel consumption models 
proposed since 2000 is provided in [17]. The authors of the 
survey highlight the factors that can impact fuel consumption 
including driver behavior, vehicle, route, weather, and traffic. 
Moreover, these models vary based on the data being used to 
train the model, the sampling frequency of this data, and 
whether the model estimates the average fuel consumption of 
the vehicle over an entire trip or the instantaneous fuel 
consumption over a short road segment. In [18], the authors 
propose an instantaneous fuel consumption model that 
utilizes global positioning system (GPS) data. The model takes 
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into consideration the activity of the vehicle and distinguishes 
between fuel consumption when the vehicle is idle versus 
moving. Because of the difficulties in obtaining CAN 
(controller area network) bus data for all the vehicles consid-
ered in the study, the model was validated for a single vehicle 
and then applied to a large number of cabs within a metro-
politan area. The authors emphasize the difficulty associated 
with identifying vehicle driving modes (e.g., acceleration, 
deceleration, idling) when low-precision GPS data is used. 
They also show that ignoring driving modes can result in a 
significant overestimation of fuel consumption. The model 
proposed in [18] improves on previous models by taking into 
consideration the operating modes of the vehicle. It is able to 
provide accurate fuel consumption estimates for a fleet of 
vehicles. However, its ability to differentiate between two 
vehicles in the same fleet was not investigated.

The accuracy of several fuel consumption models is also 
evaluated in [19]. The aim of most of the reviewed models was 
to estimate average fuel consumption for a group of vehicles 
(e.g., based on year, make, and model) and most of the models 
achieve this aim with high accuracy. The authors then intro-
duce an instantaneous fuel consumption model using high-
frequency GPS data collected from smartphones. The archi-
tecture of the model was based on a recurrent neural network. 
Because this model relies on GPS data, it can cost-effectively 
scale up to a large number of vehicles. However, as in the case 
of the model proposed in [18], the ability of the proposed 
model to accurately differentiate between the fuel consump-
tion of two vehicles with potentially similar drive cycles was 
not evaluated.

In fact, regardless of the technique that is used, there is 
limited information about the ability of previously proposed 
models to distinguish between the fuel consumption of two 
vehicles from the same fleet. In the remainder of this section, 
we review a representative set of these models and their associ-
ated techniques. Several techniques can be used to derive 
data-driven models. We selected three popular techniques for 
the purpose of this study: PAR, LR, and ANN.

PAR models represent the target output by using a 
formula based on a set of input features that are usually 
selected by experts. PAR models are easy to compute. A fuel 
consumption PAR model based on weight and distances is 
proposed in [8, 15]. This model estimates average fuel 
consumption for a fleet of vehicles with similar operating 
conditions over extended distances. A second PAR model 
based on the probability distribution of the vehicle speed, the 
vehicle acceleration, and the accelerator pedal position is 
described in [16]. This model was developed by using two 
routes (control and test), six buses, and eleven drivers. The 
control route was used to calculate indices that correlate with 
fuel consumption, which are then validated against the test 
route. While this model is capable of distinguishing between 
routes, differences in fuel consumption among vehicles are 
not considered. Similarly, in [7], four duty cycles are used to 
evaluate the performance of a PAR model and three ANN 
models using input features derived from vehicle speed and 
acceleration. The models are trained using one of the duty 
cycles and tested against the remaining three. All of the 

abovementioned models [7, 8, 16] focus on estimating the 
average fuel consumption over extended distances for a group 
of vehicles in a fleet.

An instantaneous fuel consumption PAR model was 
applied to 16 vehicles over 1,000 miles with varying routes in 
[1]. The model was developed using individual vehicles or 
clusters of vehicles with the same make/model. The reported 
errors for individual vehicles were normally distributed 
between ±20% with a mean of 0.26%. An improved version of 
this model was subsequently introduced in [20]. This revised 
model relies on additional features such as left and right turns, 
which may not be readily available. For the purpose of compar-
ison and since PAR models are typically designed by domain 
experts, we compare our proposed model to the PAR model 
proposed in [1]. This model was selected because it aligns with 
the aim of this study. First, it estimates instantaneous fuel 
consumption, and second, it compares these estimates to the 
actual fuel consumption of individual vehicles in a fleet.

The other two data-driven techniques considered in this 
study are LR and ANN. It is worth noting that the coefficients 
of the PAR models described above can also be optimized 
using linear regression. However, the PAR technique is differ-
entiated from LR to emphasize the significance of using input 
features selected by subject matter experts. Examples of LR 
fuel consumption models for long-haul heavy-duty vehicles 
are described in [21]. Moreover, in a previous study [2] by the 
authors, an instantaneous fuel consumption model for heavy-
duty vehicles using ANN was proposed. This earlier study 
highlighted the importance of data summarization and 
feature engineering in the development of an accurate machine 
learning model for instantaneous fuel consumption.

In summary, with few exceptions [1, 20], most previous 
models focus on estimating fuel consumption for an entire 
fleet. In fact, some of the previous studies [22] report that fuel 
consumption has low variance across vehicles in the same fleet 
over extended routes. The contribution of this article is toward 
understanding the ability of digital models to differentiate 
between two vehicles within the same fleet. Indeed, the main 
questions that are considered in this article are

 • Can a digital model be used to accurately estimate the 
differences in instantaneous fuel consumption between 
two vehicles from the same fleet on a new route?

 • How does the accuracy of the three techniques being 
considered differ for different heavy-duty 
vehicle vocations?

The second question is important because results derived 
using an example vocation may not translate to other voca-
tions. In fact, it is expected that fuel consumption for a 
vocation that has a homogeneous operating profile exhibits 
fewer variations and is easier to model than a vocation that 
has a heterogeneous operating profile. The two vocations 
selected for this study are delivery trucks and refuse trucks. 
The remainder of the article presents the methods used to 
create each model, describes the datasets used for each 
vocation, and investigates the accuracy of the models for indi-
vidual vehicles when exposed to different routes.
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Data-Driven Models
Three different approaches to deriving instantaneous fuel 
consumption models are compared. In this study, instanta-
neous refers to the ability of the model to estimate fuel 
consumption aggregated over a short distance of 1 km. In an 
earlier study [2], aggregation over time and distance were 
compared, and the latter was found to be more adequate for 
modeling fuel consumption in heavy-duty vehicles.

The first of the three models being considered in this 
study is the PAR model, which was introduced by other 
researchers in [1]. The features of this model are derived using 
expert knowledge. Feature selection was guided by a force 
balance equation that estimates the force acting on a vehicle 
by the engine, friction, air resistance, and gravity. The authors 
expressed these forces using basic units of measure (e.g., mass 
and speed) in relation to fuel consumption. The resulting 
model defines fuel consumption in gallons per mile (gpm) 
as follows:
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where m is the vehicle mass, v is the speed of the vehicle, v  is 
the average speed, ST is the number of stops signs, TL is the 
number of traffic lights, ∆d is the distance traveled, α is the 
road grade, and a is the vehicle frontal area. The coefficients 
q1 through q5 are learned using data collected for each vehicle. 
Linear regression is used to derive the values of these coeffi-
cients for each vehicle. This model was modified to facilitate 
the comparison to the other two models under consideration 
in this article, as shown below:
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where ST is equated to the number of stops, TL is omitted 
because it is not available, a is omitted because it is a constant 
for a given vehicle, and the fuel consumption was converted 
from gallons per mile to liters per 100 km (lpk). The features 
of the PAR model in Equation 1 are summarized in Table 1.

The second model uses linear regression with input 
features that are calculated from mass, vehicle speed, road 
grade, and power take-off (PTO) active time. These features 
are listed in Table 2. The ability of these features to accurately 
estimate fuel consumption for heavy-duty vehicles was 
demonstrated in [2]. These features are able to capture the 
vehicle dynamics as well as the driver’s behavior, as shown in 
[2]. Moreover, since the features are derived from three basic 
measurements: vehicle speed, road grade, and mass; the 
resulting model is applicable to a wide range of vocations.

The features of the LR model (Table 2) include the number 
of stops, the idle time, and the average moving speed over a 
step distance of 1 km. The expressions for change in kinetic 
energy (x9) and change in potential energy (x10) are included 
in Equations 3 and 4, respectively.
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where m is the vehicle mass, vN − v1 represent the difference 
in speed over the 1 km distance, g is the gravitational constant, 
∆hi, i+1 is the difference in elevation between two consecutive 
samples, and N is the total number of samples in the 1 km 
space step. The difference in elevation is derived using the 
road grade between two consecutive samples in the 1 km space 
step [i.e., ∆hi, i+1 ≈  sin (αi)].

The aerodynamic speed (x11) and characteristic accelera-
tion (x12) are calculated according to the definitions intro-
duced in [25]. The importance of these features in generating 
accurate fuel consumption estimates is analyzed in [2, 26]. 
Aerodynamic speed and characteristic acceleration are 
defined as follows:
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TABLE 1 Features of the PAR model.
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TABLE 2 Features for the LR and ANN models.

Feature Description
x6 Number of stops

x7 Idle time

x8 Average moving speed

x9 Change in kinetic energy

x10 Change in potential energy
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The last feature in Table 2 is PTO (x13), which represents 
the additional power requested from the engine to operate 
accessories. Two vocations are considered in this study: 
delivery trucks and refuse trucks. Refuse trucks use PTO for 
trash compaction and bin pickup. These operations demand 
a high percentage of engine power. Delivery trucks do not 
have accessories requiring PTO. Therefore, this feature is 
included in the refuse truck models and omitted from the 
delivery truck models.

The third model under investigation in this study is a 
three-layer ANN model [2], which was trained using back-
propagation. The input layer consists of the features listed in 
Table 2, and the hidden layer includes five nodes. This network 
configuration was selected after analyzing different network 
architectures with varying numbers of hidden layers and 
nodes in each hidden layer. The results showed that no signifi-
cant improvements are achieved with additional hidden layers 
or nodes.

Data Collection and 
Processing
The above three models are trained to estimate instantaneous 
fuel consumption in liters per 100 km for each 1 km of distance 
traveled. The data used to train and validate the models is 
collected from two vocations: delivery trucks and refuse 
trucks. For the two vocations, data is collected at a rate of 1 Hz 
and then aggregated over a space step of 1 km. The character-
istics of the vehicles for each of these two vocations are shown 
in Table 3. The delivery truck data (DT) was collected from a 
single vehicle with twelve drivers over two routes with both 
city and highway segments. The truck load does not vary over 
the route, and therefore the mass of the vehicle is relatively 
constant. Drivers were instructed to exhibit either bad or good 
driving behavior through coasting and anticipating braking. 
Due to the limited sample size of the DT dataset, additional 
data was synthetically created. Trip data for each route was 
separated into segments defined by consecutive vehicle stops. 
These segments were then randomly sampled with replace-
ment to generate 15 km trips as described in [2].

The refuse truck data (RT) was collected from five vehicles 
over an extended distance. Therefore, synthetically augmenting 
the data was not necessary. Driver behavior was also not avail-
able for this vocation. The operating profile of the refuse trucks 
differs considerably from that of the delivery trucks. For 
instance, the mass of each refuse truck varies throughout the 
route due to trash pickup and unloading in the depot 
(Figure 1). However, there is no sensor on the vehicle that 
directly measures the mass of the vehicle. Therefore, the mass 
was estimated using the online estimator developed in [23, 
24]. While these are widely accepted methodologies for mass 
estimation, these estimates may include errors as exemplified 
by the peaks in Figure 1.

Refuse trucks also mainly operate over two ranges of 
speed: low speed during trash collection and high speed while 
traveling from/to the depot, as shown in Figure 2. In contrast, 
the duty cycle for the delivery trucks varies intermittently 
between low and high speeds, as shown by the sample duty 
cycle in Figure 3.

Moreover, as mentioned earlier, refuse trucks are 
equipped with PTO for bin pickup and trash compaction, 
which requires significant power. Bin pickup and trash 
compaction occur while the vehicles are operating in their 
residential service areas. As in the case of mass, there is no 
sensor that captures PTO active time (x13) for refuse trucks. 

TABLE 3 Heavy-duty vehicles’ characteristics.

DT RT
Description Delivery truck Refuse, front-end 

loader

Class 5 8

Gross vehicle  
weight

8,700 (kg) 28,000 (kg)

Engine type 2014 Hino J05E-TP 2015 ISL-G, 320 HP

Number of axles 2 3
© Allison Transmission, Inc. and Indiana University-Purdue 

University Indianapolis.

 FIGURE 1  Vehicle mass versus distance for a sample 
refuse truck.

© Allison Transmission, Inc. and Indiana University-Purdue 
University Indianapolis.

 FIGURE 2  A sample duty cycle for a refuse truck over a 
distance of 200 km.

© Allison Transmission, Inc. and Indiana University-Purdue 
University Indianapolis.
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This parameter was estimated as the total time the fuel rate 
is greater than 5 liters per hour while the vehicle is at low 
speed. This threshold was empirically derived from the avail-
able data. The data shows that when the vehicle is idle, the 
baseline fuel rate is less than 1.5 liter per hour. When PTO is 
active, the additional load requires more engine fueling, and 
therefore higher fuel rates are observed. This analysis was 
performed for all refuse vehicles on all segments, and the 
threshold of 5 liters per hour at low speed was established as 
an indicator of PTO active time.

Performance Evaluation
Three fuel consumption models (PAR, LR, and ANN) and 
two vocations (RT and DT) are studied in this article. A meth-
odology is needed to compare these models and to assess the 
accuracy of each model in estimating instantaneous fuel 
consumption for each individual vehicle. This methodology 
is described next.

Let ϕ(⋅) be  a function that represents the actual fuel 
consumption of a target vehicle, and let φ̂ ⋅( ) represent the fuel 
consumption estimate generated by a model for the same 
vehicle. An input data point to the model is a vector 

�
X  

consisting of the normalized values of the features in Table 1 
for PAR and Table 2 for LR and ANN. The training (R) and 
testing (S) datasets are a set of input vectors that are used to 
train and test the models, respectively. The R and S datasets 
follow a 70/30 split from a total of 4,650 km for each vehicle 
and route in both the DT and RT vocations, where each 1 km 
corresponds to a data point, that is, the R and S datasets 
include a total of 3,255 and 1,395 data points, respectively. 
These data points represent feature values that are aggregated 
over a 1 km space step. The aggregation follows the equations 
in Table 1 for the PAR model, where v  is the average speed 
over 1 km, ∆d = 1 km, and ST represents the number of stops 
in each 1 km segment. Similarly, the features in Table 3 for 
the LR and ANN models are aggregated over 1 km segments. 
The number of stops, idle time, average moving speed, and 
PTO active time are calculated over each 1 km space step. The 
change in kinetic energy, change in potential energy, 

aerodynamic speed squared, and characteristics acceleration 
are also calculated for each 1 km space step according to 
Equations 3, 4, 5, and 6, respectively.

To develop a model, a subset of the data is selected for 
training, and the remaining portion of the data is used to test 
the model. This selection is performed at random. Therefore, 
each selection can yield a different model. Moreover, a large 
variance can be observed from one model to the next [27, 28], 
depending on the selected training data. One approach to 
overcoming this potential instability is to perturb the training 
data, create multiple models, and use the average of the models 
[27]. This approach is commonly known as k-fold cross-vali-
dation, where k represents the number of models or conse-
quently the number of different sampling of the training data. 
In this study, a fivefold cross-validation was used. Each of the 
fivefold models is trained with 70% randomly selected data 
points from the training dataset (R). The overall fuel consump-
tion model is an ensemble of the five models. Moreover, the 
fuel consumption estimate is the average of the estimates 
generated by each of the five models. To simplify the notation, 
a model is used to refer to the above-described ensemble of 
five models for each technique in the remainder of the article.

The fuel consumption estimated by the model is subject 
to deviation from the actual fuel consumption. The relation-
ship between the actual and estimated fuel consumption is 
given by

 φ̂ φ
� � �
X X X( ) = ( ) + ( )ε  Eq. (7)

The error term (ϵ) in the above equation is generally used 
to evaluate the accuracy of the model in estimating fuel 
consumption for data points that were not observed during 
training. However, when applied to the training dataset (R), 
this error also provides an indication of any inherent bias in 
the model to overestimate or underestimate the actual fuel 
consumption of the vehicle. In fact, one of the objectives of 
k-fold cross-validation is to reduce this inherent bias [28]. 
However, previous analysis [29] has shown that this bias still 
exists even when an ensemble of models is used. The bias for 
each model is estimated as follows:

 β = ∈( )
=
∑1

1r
X

i

r

ι

� ��
 Eq. (8)

where X Rι

� ��
∈  and r is the number of data points in R. The bias 

β as defined by Equation 8 is an indication of whether the fuel 
consumption estimate generated by the model is expected to 
be lower or higher than the actual fuel consumption of the 
vehicle. The model is then exposed to the testing dataset (S), 
and the fuel consumption estimates generated by the model 
are adjusted by the bias value in Equation 8. This adjustment 
corrects for the model’s tendency to overestimate or under-
estimate fuel consumption [29]. The model average testing 
error (μ) is then computed over all the data points in S as 
shown below:

 µ β= ( ) −
=
∑1

1s
X

i

s

iε
� ��

 Eq. (9)

 FIGURE 3  A sample duty cycle for a delivery truck over a 
distance of 200 km.

© Allison Transmission, Inc. and Indiana University-Purdue 
University Indianapolis.
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where X Sι

� ��
∈  and s is the number of data points in S. Finally, 

the 95% confidence interval (CI) of the average testing error 
μ is evaluated by using empirical bootstrapping [29, 30] over 
5,000 samples, each with s data points, randomly selected with 
replacement from S, as shown below:

 µ δ µ δ− − 
∗ ∗
. .025 975,  Eq. (10)

where the sequence of differences δ∗ = μ∗ − μ is computed for 
each bootstrap sample and δ .025

∗  and δ .975
∗  are considered to 

represent estimates of δ.025 and δ.975, respectively. The boot-
strapping technique used to evaluate the confidence interval 
of the model error and the k-fold technique used in the 
training are both statistical sampling techniques [27] that help 
provide more accurate statistical estimates of the distribution 
of the target parameter. In the case of training, k-fold reduces 
the variability that may result from the choice of the training 
data. In the case of testing, bootstrapping is performed by 
sampling with replacement the test data 5,000 times and 
evaluating the distribution of the prediction error. For each 
model, the 95% confidence interval has a probability of 0.95 
of containing the mean error of the fuel consumption esti-
mates generated by the model.

Results
The first vocation under consideration in this study consists 
of a single delivery truck that was operated over two routes. 
Two models ϕA and ϕB are developed for this vehicle using the 
datasets RA and RB from routes A and B, respectively. Table 4 

shows the actual and estimated average fuel consumption of 
the two models for the testing datasets SA and SB. The fuel 
consumption and the errors are reported in terms of actual 
liters per 100 km. Since fuel consumption varies widely across 
the two vocations, using actual fuel consumptions and 
absolute errors instead of percent errors facilitates the compar-
ison between the two vocations and allows the error to 
be  considered with respect to the confidence interval of 
the model.

Several observations can be derived from Table 4. The 
actual average fuel consumption for route A is higher than 
that of route B, and this trend is estimated correctly by the LR 
and ANN models. The PAR model fails to capture this differ-
ence between the two routes. When the PAR model is trained 
using route A (ϕA), the fuel consumption estimates for routes 
A and B are nearly the same and when the PAR model is 
trained on route B (ϕB), the fuel consumption estimate for 
route A (15.24 liters per 100 km) is lower than the fuel 
consumption estimate for route B (18.60 liters per 100 km). 
The opposite is expected according to the actual recorded fuel 
consumption. The improved performance of the LR and ANN 
models compared to the PAR model is mainly due to the use 
of features that can better capture variations in fuel consump-
tion. Both the LR and ANN models use the same features.

The confidence intervals of the two models for this 
vocation are shown in Table 5. For both routes, the confidence 
intervals of the ANN models are smaller than the confidence 
interval of the LR and PAR models. A smaller confidence 
interval indicates that the corresponding model is more precise.

The DT was collected from a single vehicle under rela-
tively controlled conditions with respect to the routes, vehicle 
load, and driver behavior. Therefore the above results may not 
be applicable to other vocations under typical operating condi-
tions. The RT was collected from five different vehicles in the 
same fleet during their routine operation. Refuse trucks 
consume more fuel per unit distance than delivery trucks due 
to their frequent stop-and-go operation and their use of the 
PTO for bin pickup and trash compaction. In fact, as discussed 
in Section 3, their operating profile varies considerably from 
that of delivery trucks (Figures 1-3).

The actual and estimated fuel consumption for the five 
refuse trucks are shown in Table 6. The actual average fuel 
consumption for ϕA is higher than that of ϕE by more than 10 
liters per 100 km. This shows a significant variation in fuel 
consumption across the vehicles and their respective routes 
compared to the delivery truck. In contrast, the difference in 
fuel consumption across the two routes for the delivery truck 
is approximately 3.5 liters per 100 km (Table 4).

TABLE 4 Actual and estimated fuel consumption for the test 
dataset (S) from routes A and B for the delivery truck vocation. 
All values are in liters per 100 km.

Model Route

Actual average 
fuel 
consumption

Estimated 
average fuel 
consumption Error (μ)

PAR

ϕA A 22.41 21.86 0.55

ϕA B 22.00 −3.09

ϕB B 18.91 18.60 0.31

ϕB A 15.24 7.17

LR

ϕA A 22.41 22.43 −0.02

ϕA B 19.22 −0.31

ϕB B 18.91 19.37 −0.46

ϕB A 22.47 −0.06

ANN

ϕA A 22.41 22.40 0.01

ϕA B 18.41 0.50

ϕB B 18.91 18.88 0.03

ϕB A 21.54 0.87©
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TABLE 5 95% confidence intervals for the delivery truck fuel 
consumption estimates in liters per 100 km.

Model PAR LR ANN
ϕA [0.245, 0.890] [−0.183, 0.124] [−0.132, 0.115]

ϕB [0.063, 0.569] [−0.547, −0.375] [−0.055, 0.112]
© Allison Transmission, Inc. and Indiana University-Purdue 
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As in the case of the delivery truck, Table 6 also shows 
that the PAR models for the refuse trucks have higher error 
than the LR and ANN models in most cases. However, as 
opposed to the delivery truck, the PAR model fuel consump-
tion estimates for the refuse trucks follows the increasing 
trend of the actual fuel consumption across the vehicles. This 
indicates that the PAR model is able to better differentiate 
between the vehicles and routes for the refuse truck vocation 
than for the delivery truck vocation. The increasing fuel 
consumption estimates remain consistent for this vocation 
with the actual fuel consumption for the LR and ANN models.

The confidence intervals of the refuse truck models are 
included in Table 7. As in the case of the delivery truck 
vocation, the PAR models for the refuse truck vocation have 
the widest confidence intervals, and the confidence intervals 
for the ANN models are either smaller or comparable to those 

of the LR models. This observation confirms that the ANN 
models tend to be most precise and the PAR models tend to 
be the least precise.

An important question in fleet management application 
is how much fuel would vehicle A consume if it is operated 
on the route that is practiced by vehicle B. Tables 8, 9, and 10 
show the estimated fuel consumption when the model for a 
given vehicle is tested using the test duty cycles derived from 
the routes driven by the other refuse trucks for the PAR, LR, 
and ANN models, respectively. For example, model ϕA was 
created using training data from vehicle A collected on route 
A. This model is applied to the duty cycle of route B. The test 
input features for route B are derived using the mass, the road 
grade, the speed, and the PTO active time. However, since 
vehicle A is not actually operated on road B, the actual fuel 
consumption is not available for comparison. The fuel 
consumption values included in Tables 8, 9, and 10 are the 
estimates generated by the models. The last two rows and 
columns of these tables include the average and the standard 
deviation of the fuel consumption estimates for each vehicle 
across all the routes and for each route across all the 
vehicles, respectively.

Table 8 shows that the variation in the PAR fuel consump-
tion estimates for each vehicle across the routes is insignificant 
especially when taking into consideration the wide confidence 
interval of this model (Table 7). This is not true for the esti-
mates of the LR and ANN models (Tables 9 and 10). In fact, 
the difference in estimated fuel consumption by these two 
models for a vehicle can be as high as 13 liters per 100 km (i.e., 
ϕC on route B versus route E). Table 8 also shows that the PAR 
model for vehicle ϕE has significantly lower estimated average 
fuel consumption across all the routes than vehicle ϕB. 
However, the estimated average fuel consumption across all 
the routes for vehicles ϕB and ϕE by the LR and ANN models 
are comparable.

With respect to a given route, the estimated fuel consump-
tion across the vehicles varies significantly for all models 
(Tables 8, 9, and 10). However, the models have different trends 
for different routes. For example, the average estimated fuel 
consumption across all the vehicles by the LR and ANN 
models for route E is the lowest. This is not the case for the 
PAR model.

Several other trends can be identified from the above 
results. In general, the proposed methodology can be used 
to help assign a vehicle to a given route by a f leet manager. 
Nonetheless, the ability of each model to differentiate 
between routes and vehicles and the confidence interval 
of these models must be  taken into consideration. For 
example, the difference in fuel consumption estimates for 
vehicle A (ϕA) on routes B and C generated by the PAR 
model is about 1 liter per 100 km. This difference is not 
significant given the 95% confidence interval of [−3.079, 
1.962] of this model. However, the difference for the same 
example vehicle and routes in the case of the LR and ANN 
models is more than 6.5 liters per 100 km, where the 95% 
confidence interval for these models is [−0.360, 1.068] and 
[−0.061, 1.130], respectively.

TABLE 6 Actual and estimated fuel consumption for the test 
dataset (S) from routes A through E for the refuse truck 
vocation. All values are in liters per 100 km.

Model Route

Average actual 
fuel 
consumption

Estimated 
average fuel 
consumption Error (μ)

PAR

ϕA A 88.55 89.07 −0.52

ϕB B 85.63 86.65 −1.02

ϕC C 83.65 83.96 −0.31

ϕD D 78.37 80.08 −1.71

ϕE E 73.15 73.70 −0.55

LR

ϕA A 88.55 88.20 0.35

ϕB B 85.34 85.30 0.04

ϕC C 83.21 83.35 −0.14

ϕD D 77.77 77.76 0.01

ϕE E 73.15 73.65 −0.50

ANN

ϕA A 88.55 88.01 0.54

ϕB B 85.34 85.49 −0.15

ϕC C 83.21 83.20 0.01

ϕD D 77.77 77.82 −0.05

ϕE E 73.15 73.75 −0.60
© Allison Transmission, Inc. and Indiana University-Purdue 

University Indianapolis.

TABLE 7 95% confidence intervals for the refuse truck fuel 
consumption estimated in liters per 100 km.

Model PAR LR ANN
ϕA [−3.079, 1.962] [−0.360, 1.068] [−0.061, 1.130]

ϕB [−3.658, 1.567] [−0.566, 0.625] [−0.698, 0.370]

ϕC [−2.892, 2.071] [−0.783, 0.516] [−0.500, 0.509]

ϕD [−4.167, 0.765] [−0.593, 0.594] [−0.539, 0.411]

ϕE [−2.656, 1.461] [−1.145, 0.140] [−1.217, −0.008]
© Allison Transmission, Inc. and Indiana University-Purdue 
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Conclusions
Data-driven models for physical systems offer considerable 
advantages compared to physics-based models. These advan-
tages include the ability of these models to cost-effectively 
generalize to multiple contexts and operating conditions. 
However, this advantage may come at the cost of lack of 
accuracy especially when analyzing similar systems, such as 
two vehicles, from the same fleet.

In this article, different data-driven models are applied 
to two heavy-duty vehicle vocations. These models estimate 
instantaneous fuel consumption over a space step of 1 km. 
Moreover, to allow the models to estimate fuel consumption 

for each individual vehicle on a given route the following 
methodology was adopted:

 • Five different models are developed for each vehicle 
using k-fold cross-validation. An ensemble model is then 
constructed by averaging the fuel consumption estimates 
from each of the five models. The goal of this ensemble 
learning approach is to limit the variabilities in the 
estimates of the model, resulting from the use of 
different training data.

 • Once the model is trained, its bias with respect to any 
inherent tendencies of the model toward overestimating 
or underestimating fuel consumption is evaluated using 
the training data.

TABLE 8 PAR-estimated average fuel consumption when a given vehicle model uses test data from other routes. All values are in 
liters per 100 km.

ϕA ϕB ϕC ϕD ϕE Avg. Std.
Route A 89.07 88.35 85.15 79.05 72.64 82.85 6.95

B 86.63 86.65 83.78 77.55 69.71 80.87 7.26

C 87.66 87.66 83.96 77.61 70.72 81.52 7.30

D 89.71 87.48 86.04 80.08 73.70 83.40 6.49

E 89.59 87.59 85.80 79.70 73.70 83.27 6.50

Avg 88.53 87.55 84.94 78.80 72.09

Std 1.34 0.61 1.03 1.17 1.81
© Allison Transmission, Inc. and Indiana University-Purdue University Indianapolis.

TABLE 9 LR-estimated average fuel consumption when a given vehicle model uses test data from other routes. All values are in 
liters per 100 km.

ϕA ϕB ϕC ϕD ϕE Avg. Std.
Route A 88.20 78.71 81.86 77.52 77.65 80.79 4.50

B 96.45 85.30 90.47 84.01 84.26 88.10 5.35

C 89.80 79.86 83.35 78.81 78.79 82.12 4.68

D 86.95 77.83 80.96 77.76 77.44 80.19 4.04

E 83.60 74.55 77.22 73.80 73.65 76.56 4.19

Avg 89.00 79.25 82.77 78.38 78.36

Std 4.75 3.92 4.86 3.67 3.83
© Allison Transmission, Inc. and Indiana University-Purdue University Indianapolis. 

TABLE 10 ANN-estimated average fuel consumption when a given vehicle model uses test data from other routes. All values are 
in liters per 100 km.

ϕA ϕB ϕC ϕD ϕE Avg. Std.
Route A 88.01 79.07 82.27 77.33 78.38 81.01 4.32

B 96.37 85.49 89.87 83.31 85.34 88.08 5.22

C 89.50 80.47 83.20 78.18 79.22 82.11 4.54

D 87.89 78.97 82.08 77.82 78.63 81.08 4.14

E 83.34 75.05 77.42 73.29 73.75 76.57 4.11

Avg 89.02 79.81 82.97 77.99 79.06

Std 4.71 3.76 4.46 3.57 4.13
© Allison Transmission, Inc. and Indiana University-Purdue University Indianapolis.
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 • The ensemble model is then applied to the held-out 
testing data, and the estimated fuel consumption 
produced by the model is adjusted by the bias value 
established in the previous step. Besides, bootstrapping 
is used to determine the 95% confidence interval of 
each model.

 • The estimated fuel consumption for a given vehicle on a 
new route is then derived, and the results for two 
vehicles on the same route or the same vehicle on two 
routes are analyzed while taking into consideration the 
confidence interval of the model.

The methodology outlined above was first used on a 
single delivery truck that was operated on two routes. Each 
of the routes was used to develop an independent model of 
the vehicle. Because actual fuel consumption data was avail-
able for the vehicle over the two routes, this experiment was 
used to validate the proposed methodology. The results show 
that the PAR model is not able to estimate the fuel consump-
tion of the vehicle for a different route, whereas the LR and 
ANN models produce estimates with an error of less than 1 
liter per 100 km.

The same methodology was then applied to five refuse 
trucks over five routes. Compared to the delivery trucks, 
this vocation shows higher variability in fuel consumption. 
The LR and ANN models have lower error and smaller 95% 
confidence interval than the PAR model. Moreover, the 
PAR model was unable to differentiate among the routes 
for a given vehicle. Therefore, this model is more suitable 
for comparing aggregated fuel consumption among f leets 
of vehicles. In contrast, the LR and ANN models were able 
to distinguish between two vehicles and two routes. They 
can be used to assign a vehicle to a given route for the 
purpose of optimizing the overall fuel consumption in 
the f leet.

The advantage of the LR and ANN models results from 
the use of features that better capture the operating profile of 
the vehicle. Most of these features are derived from vehicle 
speed and road grade. These parameters are widely available. 
The exceptions are mass and PTO. Mass was estimated using 
a widely accepted estimator, and an empirical rule was devel-
oped to estimate the PTO active time. In addition to outlining 
a methodology for estimating the instantaneous fuel consump-
tion of a given vehicle on a specific route, this study shows the 
need for adapting each model to the target vocation. The meth-
odology was applied to two vocations with different operating 
profiles. While most of the features are similar for both voca-
tions, the omission of PTO from the PAR model resulted in 
refuse truck models with much lower precision than the 
delivery truck models.

There are several directions for future work. These 
include testing the proposed methodology for other voca-
tions, identifying techniques for improving the confidence 
intervals of the models, and developing a methodology that 
can determine the minimum number of data points needed 
to adequately train the model to achieve the desired 
target precision.
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