
Forensic Science International: Genetics 50 (2021) 102395

Available online 24 September 2020
1872-4973/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research paper 

The impact of correlations between pigmentation phenotypes and 
underlying genotypes on genetic prediction of pigmentation traits 

Yan Chen a,b,c, Wojciech Branicki d, Susan Walsh e, Michael Nothnagel f,g, Manfred Kayser a,1, 
Fan Liu a,b,c,*,1, on behalf of the VISAGE Consortium 
a Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands 
b Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China 
c University of Chinese Academy of Sciences, Beijing, China 
d Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland 
e Department of Biology, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA 
f Cologne Center for Genomics, University of Cologne, Cologne, Germany 
g University Hospital Cologne, Cologne, Germany   

A R T I C L E  I N F O   

Keywords: 
Phenotype genotype correlation 
Appearance 
Human pigmentation 
Genetic prediction 
DNA phenotyping 
Forensic DNA phenotyping 

A B S T R A C T   

Predicting appearance phenotypes from genotypes is relevant for various areas of human genetic research and 
applications such as genetic epidemiology, human history, anthropology, and particularly in forensics. Many 
appearance phenotypes, and thus their underlying genotypes, are highly correlated, with pigmentation traits 
serving as primary examples. However, all available genetic prediction models, including those for pigmentation 
traits currently used in forensic DNA phenotyping, ignore phenotype correlations. Here, we investigated the 
impact of appearance phenotype correlations on genetic appearance prediction in the exemplary case of three 
pigmentation traits. We used data for categorical eye, hair and skin colour as well as 41 DNA markers utilized in 
the recently established HIrisPlex-S system from 762 individuals with complete phenotype and genotype in
formation. Based on these data, we performed genetic prediction modelling of eye, hair and skin colour via three 
different strategies, namely the established approach of predicting phenotypes solely based on genotypes while 
not considering phenotype correlations, and two novel approaches that considered phenotype correlations, either 
incorporating truly observed correlated phenotypes or DNA-predicted correlated phenotypes in addition to the 
DNA predictors. We found that using truly observed correlated pigmentation phenotypes as additional predictors 
increased the DNA-based prediction accuracies for almost all eye, hair and skin colour categories, with the largest 
increase for intermediate eye colour, brown hair colour, dark to black skin colour, and particularly for dark skin 
colour. Outcomes of dedicated computer simulations suggest that this prediction accuracy increase is due to the 
additional genetic information that is implicitly provided by the truly observed correlated pigmentation pheno
types used, yet not covered by the DNA predictors applied. In contrast, considering DNA-predicted correlated 
pigmentation phenotypes as additional predictors did not improve the performance of the genetic prediction of 
eye, hair and skin colour, which was in line with the results from our computer simulations. Hence, in practical 
applications of DNA-based appearance prediction where no phenotype knowledge is available, such as in forensic 
DNA phenotyping, it is not advised to use DNA-predicted correlated phenotypes as predictors in addition to the 
DNA predictors. In the very least, this is not recommended for the pigmentation traits and the established 
pigmentation DNA predictors tested here.   

1. Introduction 

All human appearance traits are highly heritable phenotypes, with 

examples of body height with up to 80 % [1], facial shapes with up to 90 
% [2], hair shape with up to 95 % [3]; hair and eye colour with up to 99 
% [4] estimated heritability values. Various genome-wide association 

* Corresponding author. 
E-mail address: f.liu@erasmusmc.nl (F. Liu).   

1 these authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Forensic Science International: Genetics 

journal homepage: www.elsevier.com/locate/fsigen 

https://doi.org/10.1016/j.fsigen.2020.102395 
Received 5 June 2020; Received in revised form 25 August 2020; Accepted 15 September 2020   

mailto:f.liu@erasmusmc.nl
www.sciencedirect.com/science/journal/18724973
https://www.elsevier.com/locate/fsigen
https://doi.org/10.1016/j.fsigen.2020.102395
https://doi.org/10.1016/j.fsigen.2020.102395
https://doi.org/10.1016/j.fsigen.2020.102395
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsigen.2020.102395&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Forensic Science International: Genetics 50 (2021) 102395

2

studies (GWASs), the more recent ones with large sample size, have 
revealed numerous underlying genes per each of several human 
appearance traits such as eye colour [5–7], hair colour [5,8,9]; eyebrow 
colour [10], skin colour [5,8,11], hair structure [12,13], hair loss in men 
[14], facial shape [2], body height [15–17], explaining varying portions 
of their heritability and highlighting their complex genetic nature. Some 
appearance phenotypes are highly correlated with each other in human 
populations, such as certain facial shapes [2], and especially the 
different human pigmentation traits [10]. It is common knowledge that, 
for instance, blue eye colour shows a tendency to co-occur with blond 
hair and light skin colour in Europeans, red hair colour typically 
co-occurs with pale skin colour and often with freckles in Europeans, 
and dark skin colour usually co-occurs with black hair and brown eye 
colour in Africans, certain Asian populations, New Guineans and 
Australian Aborigines. Moreover, GWAS outcomes have revealed that 
the different human pigmentation traits share a large (but not complete) 
proportion of underlying genetic components that explains their 
phenotypic correlations [5,8,10]. 

Previously, predictive DNA markers were identified and statistical 
prediction models were developed for all pigmentation-related traits, 
namely eye colour [18–20], head hair colour [9,21–23], skin colour 
[24–26], eyebrow colour [10], and freckles [27,28]. The recently 
established HIrisPlex-S system [26] currently represents the most com
plete DNA-based pigmentation prediction tool, allowing simultaneous 
prediction of eye, head hair, and skin colour from DNA, including low 
quality and low quantity forensic DNA, based on 41 carefully selected 
DNA markers and three separate prediction models. HIrisPlex-S reflects 
an extension of the previously developed IrisPlex system for eye colour 
[19] and the previous HIrisPlex system for eye and hair colour predic
tion [22]. Genotyping assays of the HIrisPlex-S system are available 
based on SNaPshot single base extension technology and capillary 
electrophoresis (CE) [26], in addition to two widely used massively 
parallel sequencing (MPS) technologies: Ion Torrent and Illumina [29]. 
Moreover, the VISAGE Consortium recently incorporated the HIrisPlex-S 
DNA markers together with continental ancestry informative DNA 
markers to function as all-in-one tools for both MPS platforms separately 
(Xavier et al. under review; Palencia-Madrid et al. under review). All 
available genotyping assays of the IrisPlex, the HIrisPlex, and the 
HIrisPlex-S systems have been forensically validated [26,29–31]. The 
three statistical prediction models, i.e., the IrisPlex model for eye colour 
[19], the HIrisPlex model for hair colour [22], and the HIrisPlex-S model 
for skin colour prediction [26] are all publically available in their most 
updated versions [26] via the website https://hirisplex.erasmusmc.nl/. 

These laboratory and/or statistical tools are already of practical 
relevance for DNA-based pigmentation trait prediction in several 
different applications such as forensic investigation [32,33], human 
history inference [34], and anthropological research [35], with more 
applications being expected in the future. Within the concept of Forensic 
DNA Phenotyping, predicting pigmentation traits of an unknown crime 
scene sample donor directly from crime scene DNA can provide useful 
investigative leads to find unknown perpetrators of the crime, in cases 
without a DNA profile match with a known suspect [32,33]. In human 
history investigations, DNA-based pigmentation prediction allows us to 
reveal the pigment of historical individuals from analysing their remains 
[34]. In anthropological and human evolutionary research, genetic 
pigmentation prediction captures how humans and human populations 
may have looked in the past, including the distant past [35], and allows 
a deeper understanding of the evolutionary history of human pigmen
tation traits [36]. 

However, all currently available genetic prediction models for 
pigmentation traits ignore the well-known correlations between the 
different pigmentation phenotypes and their underlying genotypes. It 
could be expected, however, that considering phenotype correlations in 
the genetic prediction modelling may increase the accuracy of DNA- 
based prediction for eye, hair and skin colour, which to the best of our 
knowledge has not been reported as of yet. Here, we empirically tested 

for the impact of correlations between appearance phenotypes and their 
underlying genotypes on DNA-based appearance prediction using 
pigmentation traits as classical example. We applied categorical eye, 
hair and skin colour phenotype data and genotype data for the 41 
HIrisPlex-S DNA markers from 762 individuals for whom complete 
phenotype and genotype information was available. Based on these 
data, we empirically estimated pigmentation phenotype correlations 
and their proportions that were attributable to the 41 HIrisPlex-S DNA 
markers. Next, we performed genetic prediction modelling of eye, hair 
and skin colour via three different strategies, namely the established 
approach of predicting phenotypes solely based on genotypes while not 
considering phenotype correlations, and two novel approaches consid
ering phenotype correlations, either incorporating truly observed corre
lated phenotypes or DNA-predicted correlated phenotypes as additional 
predictors, and compared the prediction accuracies of these different 
models by empirical observation. Finally, we conducted computer sim
ulations, emulating the three different prediction strategies, to better 
understand the impact of phenotype and genotype correlations on DNA- 
based phenotype prediction in an effort to interpret the outcomes of the 
empirical pigmentation prediction modelling we obtained. 

2. Materials and methods 

2.1. Phenotype and genotype data 

The data used here were all from the previous IrisPlex, HIrisPlex and 
HIrisPlex-S projects (https://hirisplex.erasmusmc.nl/) as described 
elsewhere [19,22,26] and represent a subset of 762 individual datasets 
of different populations from Europe and the US for which a complete 
pigmentation phenotype profile (i.e., categorical eye, hair, and skin 
colour) and a complete genotype profile (i.e., all 41 HIrisPlex-S DNA 
markers) were jointly available (Table 1). Samples had been collected 
for the purpose of appearance genetic research under written informed 
consent, and sample collections where approved by the Ethics Com
mittee of the Jagiellonian University (KBET/17/B/2005), the Commis
sion on Bioethics of the Regional Board of Medical Doctors in Krakow 
(48 KBL/OIL/2008), and by the Indiana University Ethical Institutional 
Review Board (#1409306349). As previously described in detail [19,22, 
26], eye colour was classified into three categories: blue, intermediate, 
and brown; hair colour into four categories: red, blond, brown, and 
black; and skin colour into five categories: very pale, pale, intermediate, 
dark, and dark to black. The 41 HIrisPlex-S DNA markers were described 
elsewhere [22,26]. 

2.2. Statistical analyses 

Since we considered here, for subsequent genetic prediction model

Table 1 
Characteristics of the study population representing a subset of the HIrisPlex-S 
dataset with complete data on eye, hair, and skin colour phenotypes and 41 
HIrisPlex-S SNP genotypes.    

N Proportion of trait 
categories (%) 

Males/ 
Females   

762  328/434 

Eye 
colour 

Blue 328 43.04 158/170 
Intermediate 97 12.73 37/60 
Brown 337 44.23 133/204 

Hair 
colour 

Red 17 2.23 7/10 
Blond 330 43.31 145/185 
Brown 328 43.04 124/204 
Blond 87 11.42 52/35 

Skin 
colour 

Very Pale 28 3.67 13/15 
Pale 355 46.59 142/213 
Intermediate 315 41.34 145/170 
Dark 36 4.72 19/17 
Dark to Black 28 3.67 9/19  
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ling, a subset of the original data sets previously applied for the initial 
IrisPlex eye colour, HIrisPlex hair colour and HIrisPlex-S skin colour 
models, we first evaluated this reduced data subset with respect to 
sufficient statistical power and concordant SNP effects. To this end, 
ordinal phenotypes were considered as continuous variables by assign
ing ascending integer values, i.e. 1, 2 and so forth (from the lightest to 
the darkest levels), to the ordered trait categories and Z-transformed 
(Z =

y− y
sd(y), y is the trait, y is the mean value of y, sd(y) is the standard 

deviation of y). Then we tested each SNP for a phenotypic association 
using a linear regression model adjusted for sex, thereby taking advan
tage of the robustness of the linear regression approach in the absence of 
a normally distributed dependent variable. In addition, multivariate 
analysis of variance (MANOVA) was conducted to test the association 
between a given SNP and the three pigmentation phenotypes simulta
neously. For association testing, two missense MC1R DNA variants 
rs1805007_T (R151C) and rs1805008_T (R160W), which are known to 
be involved in human red hair and related pigmentation phenotypes in a 
compound heterozygote manner [37] were collapsed into three possible 
genotypes wt/wt/, wt/R, and R/R, where R is the risk haplotype con
sisting of at least one minor allele from any of two MC1R variants and wt 
is the wild-type haplotype consisting of only major alleles. Then, this 
MC1R compound marker was treated as a discrete bi-allelic marker in 
the association analysis, while the remaining MC1R SNPs were used as 
discrete markers. 

The 41 HIrisPlex-S DNA markers are located at 11 different genetic 
loci. For each locus, the associated SNP with the smallest P-value (i.e. 
the strongest association effect) in a MANOVA was selected and its 
allelic effects across different phenotypes were investigated. In this 
analysis, ordinal phenotypes were considered as continuous variables 
and Z-transformed as introduced before. The effect alleles were selected 
to have a colour darkening effect and the allelic effect was estimated as 
E= 2f(1 − f)β2, where f is the frequency of the effect allele and β is the 
regression coefficient from linear models. The E ranges from 0 for no 
effect to 1 for fully explaining the phenotype variance and can be 
interpreted as the genetically explained proportion of the phenotype 
variance. Ordinal phenotypes (from the lightest to the darkest levels) 
were considered as continuous variables and Pearson’s correlation co
efficient (r) was calculated for each pair of phenotypes. 

To quantify the extent to which the correlation between two phe
notypes can be explained by their shared explanatory factors under 
investigation, we derived a statistic 

C =
cor(y1, ŷ1)cor(ŷ1, ŷ2)cor(ŷ2, y2)

cor(y1, y2)

where y1 and y2 represent any two of the three correlated pigmentation 
phenotypes, and ŷ1 and ŷ2 represent the predicted values from respec
tive linear models. C typically ranges between 0 and 1, although values 
outside this interval are possible under extreme scenarios. A value of 
0 indicates that the considered explanatory factors cannot explain any of 
the observed phenotypic correlation while 1 represents the case that the 
observed correlation can be perfectly explained by the considered fac
tors. For example, with values of 0.5 for C and 0.8 for the observed 
phenotypic correlation, 50 % of this correlation can be explained by the 
considered set of predictors, whereas the remaining 50 % are due to 
other shared genetic factors, such as other SNPs or other forms of genetic 
variation, and non-genetic factors, such as age, sex or environmental 
factors. We then applied this approach to the 41 HIrisPlex-S SNPs 
constituting the set of considered predictors to assess the proportion of 
phenotypic correlation that can be explained by these genetic markers. 

Moreover, we empirically assessed the statistical properties of C by 
computer simulations in order to ensure that C yields an unbiased pre
diction of the explained correlation. To this end, we decomposed the set 
of all contributing factors into three mutually exclusive sets (i.e. a 
variance decomposition by orthogonal factors), namely genetic factors 
that are shared between phenotypes and known, accessible and therefore 

included in the model, s1, genetic and environmental factors that are 
shared between phenotypes but are unknown, s2, and genetic and envi
ronmental factors that are unique to a particular phenotype, u. We 
therefore assume that accessible shared environment has a negligible 
effect in our model. More specific, we generated two correlated traits, y1 
and y2, for 1000 individuals by simulating their shared and unique 
explanatory components with identical effect sizes. 

y1 = u1 + αs1 + s2  

y2 = u2 + αs1 + s2  

u1, u2 independent and identically distributed (i.i.d.) ∼ N
(

0,
1 + α2

9

)

;

s1, s2 i.i.d. ∼ N(0, 1);

α = 0.00, 0.33, 0.50, 0.65, 0.82, 1.00, 1.22, 1.53, 2.00, 3.00  

where u1 and u2 represent explanatory factors having effects unique to 
y1 and y2, respectively, while s1 represents accessible genetic factors and 
s2 unknown factors, whereas α is used to regulate the shared component 
variance proportion explained by s1. For pigmentation traits, u1 and u2 
may represent genetic and environmental factors having an effect on one 
pigmentation trait but not on another and vice versa, s1 may combine all 
41 SNPs and s2 may represent yet to be discovered genetic factors 
influencing both traits. The expectation of C is α2

1+α2 (see detailed deri
vation in Supplementary Materials). Then the estimated C was 
investigated under a range of expectation of C, E(C) = 0%, 10%, 20%,

30%, 40%, 50%, 60%, 70%, 80%, 90% (corresponding α = 0.00,
0.33, 0.50, 0.65, 0.82, 1.00, 1.22, 1.53, 2.00, 3.00 ). The simulation 
was conducted with 1000 replicates for each E(C). 

To evaluate the impact of incorporating additional correlated phe
notypes as predictors in the model on prediction accuracy for the tar
geted phenotype, we compared three strategies by including different 
sets of predictors. In strategy I, we accessed the base-line prediction 
accuracies when solely using the 41 HIrisPlex-S DNA markers as the 
predictors. In strategy II, in addition to the 41 HIrisPlex-S DNA markers, 
the fitted values of the correlated phenotypes that were predicted from 
the 41 DNA markers were used as additional predictors. In strategy III, in 
addition to the 41 HIrisPlex-S DNA markers, the truly observed correlated 
phenotypes were used as additional predictors. In particular for strategy 
II and III, for predicting eye colour, DNA-predicted (II) or truly observed 
(III) hair colour and skin colour phenotypes were included as additional 
predictors; for predicting hair colour, DNA-predicted (II) or truly observed 
(III) eye and skin colour phenotypes were included as additional pre
dictors; and when predicting skin colour, DNA-predicted (II) or truly 
observed (III) eye and hair colour phenotypes were included as addi
tional predictors in the genetic prediction modelling. 

All predictions were made via multinomial logistic regression 
models, while using standard leave-one-out (LOO) cross-validation 
(CV). However, in contrast to previous IrisPlex, HIrisPlex, and 
HIrisPlex-S studies that used 6, 22, and 36 of the 41 HIrisPlex-S SNPs, 
respectively, for eye, hair and skin colour prediction, respectively, we 
considered all 41 HIrisPlex-S SNPs for the prediction of all three 
pigmentation traits in the current study in order to test for the complete 
effect of correlated phenotypes and genotypes. Therefore, the prediction 
outcomes obtained here for the standard approach not considering 
correlated phenotypes (strategy I) are not directly comparable with 
previously reported eye, hair, and skin colour prediction outcomes 
based on 6 IrisPlex, 22 HIrisPlex, and 36 HIrisPlex-S, respectively. The 
prediction accuracies were derived using the Area Under the receiver 
operating characteristic Curves (AUC) as well as other commonly used 
prediction statistics including sensitivity, specificity, negative predictive 
value (NPV), and positive predictive value (PPV). All statistical analyses 
and result visualization were conducted in R version 3.5.3 [https:// 
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www.R-project.org/] using following packages: stats of version 3.5.3, 
nnet of version 7.3-12, pROC of version 1.15.0. 

2.3. Computer simulations 

To better understand and interpret the results from the empirical 
prediction modelling described above, we conducted computer simula
tions as specified in the following. We generated two correlated traits y1 
and y2 for 1000 individuals by simulating their shared and unique 
explanatory components with the identical effect sizes, 

y1 = u11 + u12 + s1 + αs2  

y2 = u21 + u22 + s1 + αs2  

u11, u12, u21, u22, s1, s2 i.i.d. ∼ N(0, 1)

where the u11, u12 represents explanatory factors having effects unique 
for y1, and the u21 and u22 are explanatory factors unique for y2, while 
only u11 and u21 are accessible but u12 and u22 are inaccessible by in
vestigators. Similarly, s1 and s2 are shared explanatory factors having 
effects on both y1 and y2 while only s1 is accessible by investigators but 
s2 is not. αis used to regulate the phenotype variance proportion (V =

α2

3+α2) explained by the inaccessible factor of s2. The variance explained 
(R [2]) was derived from linear models fitted using 3 different sets of 
predictors as specified below, 

Model I : y1 ∼ u11 + s1  

Model II : y1 ∼ u11 + s1 + ŷ2  

Model III : y1 ∼ u11 + s1 + y2  

where ŷ2 is the fitted y2 using u21 and s1. Thus, Model I mimics a typical 
genotype-phenotype prediction analysis without considering phenotype 
and genotype correlations, analogue to strategy I in our empirical pre
diction analysis. Model II mimics the scenario when additional corre
lated phenotypes are not available, but were predicted from the same set 
of pre-selected SNPs and used as additional predictors, analogue to 
strategy II in our empirical prediction analysis. Model III mimics the 
scenario when truly observed correlated phenotypes are available for 
prediction and used as additional predictors, analogue to strategy III in 
our empirical prediction analysis. All simulations were conducted under 
V = 0%, 10%, 30%, 50%, 70% (α = 0.00, 0.58, 1.13 1.73, 2.65). In 
addition, we repeated the simulation process by dichotomizing y using 
the mean value and estimated the AUC values using logistic models, 
which mimics scenarios of binary trait analysis. All simulations were 
conducted for 1000 replicates under each investigated model/scenario. 

3. Results 

3.1. Data suitability check via genetic association testing 

Due to the need for complete eye, hair, and skin data and 41 
HIrisPlex-SNP data in this study, we used data from 762 HIrisPlex-S 
subjects for whom such complete phenotype and genotype data was 
jointly available (Table 1). This dataset represents a subset of the data 
previously applied to develop the IrisPlex eye colour, HIrisPlex hair 
colour and HIrisPlex-S skin colour prediction models. Therefore, we first 
assessed the suitability of this data subset for genetic prediction 
modelling by testing if the previously reported genetic associations and 
SNP effects can be replicated in this particular dataset. To this end, we 
conducted genetic association testing using MANOVA and linear 
regression for all 41 HIrisPlex-S SNPs regarding eye, hair and skin 
colour. While with MANOVA all three pigmentation traits were 
considered in a combined way, with linear regression analysis each 
pigmentation trait was tested separately. As may be expected, there was 

a high correlation between the genetic association outcomes from both 
approaches (Table 2). 

With MANOVA and by combining the three pigmentation traits, 32 
(78 %) of the 41 HIrisPlex-S DNA markers from all the 11 different ge
netic loci showed nominally significant association (p < 0.05), 22 (54 %) 
DNA markers from 9 loci showed significant association after Bonferroni 
correction for multiple testing (p < 0.0012), and 11 (27 %) SNPs from 5 
loci even showed significant association on the genome-wide level (p<5 
× 10− 8) representing an over-conservative significance threshold in a 
candidate SNP approach as applied here (Table 2). On chr16, the MC1R 
compound marker showed stronger association (p = 1.77e-12) than both 
markers separately i.e., rs1805007 (p = 4.77e-6) and rs1805008 (p =
5.59e-5). For eye colour and hair colour, the most significant genetic 
association was seen for HERC2 rs12913832 (eye colour p = 6.24 ×
10− 144, and hair colour p = 1.11 × 10− 47), while for skin colour the most 
significant association was observed for SLC45A2 rs16891982 (p = 5.5 
× 10− 81). 

With linear regression analysis and by treating the three pigmenta
tion phenotypes separately, we found 19 (46 %) DNA markers from 9 
loci significantly associated with eye, hair and skin colour on the nom
inal significance level, 12 (29 %) DNA markers from 5 loci significantly 
associated on the Bonferroni significance level, and 9 (22 %) from 3 loci 
significantly associated on the over-conservative genome-wide signifi
cance level. In addition, 34 (83 %) DNA markers from all 11 loci showed 
nominal significant association for at least one of the three pigmentation 
phenotypes, 23 (56 %) from 10 loci based on the Bonferroni level, and 
11 (27 %) from 5 loci on the over-conservative genome-wide level. Only 
7 (17 %) of the 41 HIrisPlex-S DNA markers showed no association with 
any of the three pigmentation traits in this sample set. These 7 non- 
significant DNA markers were from two of the 11 genetic loci, MC1R 
(6 markers) and ASIP/RALY (one marker). However, both of these ge
netic loci showed significant associations with other SNPs in the 
HIrisPlex-S marker set. 

Next, for each of the 11 genetic loci covered by the 41 HIrisPlex-S 
DNA markers, the top-associated SNP from MANOVA was investigated 
with respect to the contribution of its alleles in explaining the observed 
variance of the three different pigmentation traits (Fig. 1 and Supple
mentary Table 1). HERC2 s12913832_T explained an extraordinarily 
large proportion (48 %) of eye colour variance. Except HERC2 
rs12913832, the majority of the SNPs tested showed their largest effect 
on skin colour (1.4 %–25.6 % explained variance). The compound 
marker in MC1R explained 4 %–6 % of the phenotypic variance of hair 
and skin colour but had little effect on eye colour. The relatively small 
effect (4% explained variance) of the MC1R compound marker on hair 
colour may be caused by the low frequency of red hair (2.2 %) in our 
dataset and that the remaining causal variants of MC1R were not 
considered in this compound marker. All of the allelic effects were on the 
same direction of darkening, except for IRF4 with a non-significant ef
fect on lightening of hair colour, indicating the homogeneous effect of 
genetic variants on pigmentation phenotypes. 

Given that statistically significant associations and genetic effects we 
observed with this dataset are in broad agreement with findings from 
previous studies based on larger sample size [7–9,11,38,39], we deemed 
this dataset useful for phenotype-genotype correlation analyses and for 
genetic prediction modelling. 

3.2. Phenotype correlations and genetic contributions 

A high correlation between eye, hair and skin colour is generally 
expected in human populations. In our dataset, all three pigmentation 
traits showed mid-range but highly statistically significant phenotype 
correlations with each other, namely Pearson correlation coefficients of 
0.47 (p = 5.19 × 10− 43) for eye versus hair colour, 0.41 (p = 1.64 ×
10− 32) for hair versus skin colour, and 0.36 (p = 9.42 × 10− 25) for eye 
versus skin colour (Table 3). That we did not obtain higher phenotype 
correlations may be explained by sampling errors due to the medium 
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sample size and due to phenotype categorization from underlying 
quantitative variables in combination with imperfect phenotype quality 
based on the phenotyping methods applied. 

Moreover, given the shared genetic components between the three 
pigmentation phenotypes seen for several of the 41 HIrisPlex DNA 
markers in earlier studies [5,8], as well as in the present study (Fig. 1), a 
large contribution of these genetic markers on the phenotype correla
tions would be expected. To investigate this empirically, we derived a 
statistical estimate C (see method section for details) to assess the 
contribution of the 41 HIrisPlex-S DNA markers on the observed 
pigmentation phenotype correlations. With this analysis, we estimated 
the proportion of the shared genetic components explained by the 41 
HIrisPlex-S DNA markers over all underlying shared genetic and 
non-genetic components, i.e., i) from unused shared DNA markers in LD 
with the used markers from the same genetic loci, ii) from unused shared 
DNA markers from other genetic loci not used here, and iii) from un
derlying shared non-genetic components such as environmental effects, 
which may all contribute to the observed phenotype correlations. The 
statistical property of C was examined via computer simulations, where 
the estimated C was in the expected range between 0 and 1. It strikingly 
corresponded to the proportion of the phenotype variance explained by 
the shared and accessible genetic components over the variance 

explained by all shared genetic and non-genetic components (Supple
mentary Figure S1). Based on our empirical data, the 41 HIrisPlex-S 
SNPs explained 96 % of the phenotype correlation between eye and 
skin colour, 87 % of the phenotype correlation between hair and skin 
colour, and 76 % of the phenotype correlation between eye and hair 
colour (Table 3). This finding demonstrates that a large proportion of the 
pairwise pigmentation phenotype correlations is explained by the 
HIrisPlex-S DNA markers used, but there also is a remaining proportion 
that remains unexplained by these genetic markers that differs between 
the pairwise phenotype comparisons. 

3.3. Empirical impact of phenotype correlations on genetic phenotype 
prediction 

To investigate the impact of the correlations between the pigmen
tation phenotypes and the underlying genotypes on DNA-based predic
tion of eye, hair, and skin colour, we performed genetic prediction 
modelling for the three pigmentation traits based on three different 
strategies (for details see methods). As evident from Fig. 2 (Supple
mentary Table 2), the standard genetic prediction model that does not 
consider pigmentation phenotype correlations (strategy 1), and the 
novel model incorporating DNA-predicted correlated pigmentation 

Table 2 
Association between the 41 HIrisPlex-S DNA markers and eye, hair, and skin colour in the study dataset (N = 762).          

MANOVA Linear Regression         

Eye/hair/skin colour Eye Colour Hair Colour Skin Colour 
Nr. SNP EA OA Freq MBp Locus Gene P-value P-value P-value P-value 

1 rs16891982 C G 0.12 33.95 5p13.2 SLC45A2 1.44E-87 5.89E-23 5.03E-32 5.50E-81 
2 rs28777 C A 0.1 33.96 5p13.2 SLC45A2 5.90E-69 1.31E-19 2.02E-25 5.03E-65 
3 rs12203592 T C 0.1 0.4 6p25.3 IRF4 8.48E-08 7.55E-02 1.23E-01 1.32E-05 
4 rs4959270 A C 0.44 0.46 6p25.3 EXOC2 1.16E-02 2.89E-02 1.09E-01 1.93E-03 
5 rs683 G T 0.39 12.71 9p23 TYRP1 1.53E-13 2.04E-04 2.50E-08 2.15E-13 
6 rs10756819 G A 0.4 16.86 9p22.2 BNC2 1.08E-02 8.80E-01 2.64E-01 1.51E-03 
7 rs1042602 T G 0.33 88.91 11q14.3 TYR 6.27E-06 2.48E-03 7.57E-04 1.12E-06 
8 rs1393350 T C 0.21 89.01 11q14.3 TYR 3.57E-02 2.01E-01 3.31E-02 5.66E-03 
9 rs1126809 A G 0.19 89.02 11q14.3 TYR 9.20E-03 1.39E-01 1.59E-03 1.18E-02 
10 rs12821256 G A 0.08 89.33 12q21.33 KITLG 1.54E-03 3.82E-04 4.99E-03 7.44E-03 
11 rs12896399 T G 0.41 92.77 14q32.12 SLC24A4 6.42E-04 7.26E-03 3.63E-02 9.52E-05 
12 rs2402130 G A 0.19 92.8 14q32.12 SLC24A4 5.90E-03 8.20E-03 7.82E-03 3.52E-03 
13 rs17128291 C T 0.19 92.88 14q32.12 SLC24A4 5.06E-02 3.06E-01 8.70E-02 6.99E-03 
14 rs1545397 T A 0.11 28.19 15q13.1 OCA2 3.81E-04 2.98E-04 3.60E-04 6.73E-03 
15 rs1800414 C T 0.01 28.2 15q13.1 OCA2 6.73E-06 3.99E-04 2.82E-06 3.74E-04 
16 rs1800407 A G 0.07 28.23 15q13.1 OCA2 3.65E-04 9.06E-03 4.05E-01 2.36E-02 
17 rs12441727 A G 0.17 28.27 15q13.1 OCA2 1.85E-03 4.60E-04 2.61E-02 5.75E-03 
18 rs1470608 A C 0.19 28.29 15q13.1 OCA2 2.28E-23 1.09E-11 1.48E-08 2.92E-22 
19 rs1129038 G A 0.29 28.36 15q13.1 HERC2 7.02E-46 9.06E-32 8.29E-19 3.36E-31 
20 rs12913832 T C 0.29 28.37 15q13.1 HERC2 1.81E-166 6.24E-144 1.11E-47 1.57E-47 
21 rs2238289 C T 0.17 28.45 15q13.1 HERC2 6.75E-24 3.38E-14 7.92E-12 3.17E-20 
22 rs6497292 C T 0.09 28.5 15q13.1 HERC2 1.81E-20 6.56E-10 1.18E-09 1.62E-19 
23 rs1667394 C T 0.23 28.53 15q13.1 HERC2 5.19E-35 9.11E-19 4.03E-14 3.84E-30 
24 rs1426654 G A 0.07 48.43 15q21.1 SLC24A5 1.82E-73 2.73E-17 2.01E-24 1.69E-71 
25 rs3114908 T C 0.32 89.38 16q24.3 ANKRD11 1.36E-01 5.00E-01 1.07E-01 7.25E-01 
26 rs3212355 A G 0 89.98 16q24.3 MC1R 5.42E-01 2.38E-01 7.44E-01 3.73E-01 
27 rs312262906 A — 0 89.99 16q24.3 MC1R 4.27E-02 1.61E-01 2.25E-01 4.41E-01 
28 rs1805005 T G 0.09 89.99 16q24.3 MC1R 1.44E-01 7.12E-01 5.55E-01 2.20E-02 
29 rs1805006 A C 0 89.99 16q24.3 MC1R 6.62E-01 6.48E-01 7.94E-01 3.88E-01 
30 rs2228479 A G 0.1 89.99 16q24.3 MC1R 2.29E-02 4.92E-01 3.09E-01 2.16E-03 
31 rs11547464 A G 0.01 89.99 16q24.3 MC1R 3.61E-01 1.86E-01 1.33E-01 8.87E-01 
32 rs1805007 T C 0.06 89.99 16q24.3 MC1R 4.77E-06 3.74E-01 2.02E-04 1.89E-05 
33 rs201326893 A C 0 89.99 16q24.3 MC1R 5.47E-03 2.37E-02 2.08E-01 5.62E-01 
34 rs1110400 C T 0.01 89.99 16q24.3 MC1R 1.45E-01 3.32E-02 1.94E-01 1.08E-01 
35 rs1805008 T C 0.06 89.99 16q24.3 MC1R 5.59E-05 4.23E-01 1.35E-03 5.07E-05  

Compound — — 0.13 — 16q24.3 MC1R 1.77E-12 2.00E-01 1.35E-07 2.03E-10 
36 rs885479 T C 0.05 89.99 16q24.3 MC1R 5.10E-05 6.96E-03 1.03E-05 1.33E-03 
37 rs1805009 C G 0.01 89.99 16q24.3 MC1R 7.76E-06 8.28E-01 3.11E-04 5.48E-04 
38 rs8051733 C T 0.31 90.02 16q24.3 DEF8 1.82E-01 2.51E-01 8.15E-02 6.78E-02 
39 rs6059655 T C 0.05 32.67 20q11.22 RALY 3.01E-04 8.15E-01 3.95E-03 3.38E-04 
40 rs6119471 C G 0.02 32.79 20q11.22 ASIP 8.59E-31 1.26E-06 4.58E-05 8.20E-33 
41 rs2378249 C T 0.16 33.22 20q11.22 ASIP/PIGU 3.52E-01 2.96E-01 5.78E-01 4.48E-01 

Statistical significance threshold: nominally significant p < 0.05 in italic, significant after Bonferroni correction of multiple testing p < 0.0012 in bold, and genome- 
wide significant p<5 × 10− 8 in bold and italic. 
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phenotypes as additional predictors (strategy 2), performed almost 
identical or very similar across all eye and hair colour categories as well 
as for most skin colour categories. For skin colour (almost) the same AUC 
values were achieved with both prediction strategies for pale, interme
diate and dark, while for very pale the strategy 2 model achieved a 
slightly lower (0.04) and for dark to black a slightly higher (0.02) AUC. 
Similar findings were obtained for other prediction accuracy estimates 
(Supplementary Table 2). Hence, using correlated pigmentation phe
notypes that were predicted from a relatively small set of selected DNA 
markers as additional predictors had no or almost no impact on DNA- 
based prediction accuracy of eye, hair, and skin colour. 

This was markedly different for the strategy 3 model incorporating 
truly observed correlated pigmentation phenotypes in addition to the 
HIrisPlex-S SNPs in the genetic prediction modelling. Compared to the 
strategy 1 model that only used HIrisPlex-S SNPs, with the strategy 3 
model we observed a slight increase in AUC for blue eye colour (0.016), 
blond hair colour (0.014) and black hair colour (0.016), while a slight 
decrease in AUC for very pale skin colour (0.02), and a noticeable in
crease in AUC for intermediate eye colour (0.037) and brown hair colour 
(0.030). However, a larger increase was seen for dark to black skin 
colour (0.056), and the AUC increase was largest for dark skin colour 
(0.176). For the remaining eye, hair and skin colour categories almost 
the same AUCs were obtained with both prediction strategies. Similar 
findings were obtained for other prediction accuracy estimates 

(Supplementary Table 2). The largest effects for dark and dark to black 
skin colour cannot necessarily be explained by low samples size, since 
very pale skin colour and red hair colour had similarly low sample size 
but showed much smaller effects (Table 1). 

3.4. Simulated impact of phenotype correlations on genetic phenotype 
prediction 

Next, we performed dedicated computer simulations to better un
derstand and interpret these empirical findings using three models and 
considering both continuous and categorical phenotype information (for 
model details see method). These simulations showed for both contin
uous and categorical phenotypes, that model I without considering 
phenotype correlations (comparable with the empirical strategy 1 
model) and model II with considering DNA-predicted correlated pheno
types (comparable with the empirical strategy 2 model) performed 
identical (Fig. 3), which agrees with our empirical findings. In contrast, 
model III with considering truly observed correlated phenotypes (com
parable with the empirical strategy 3 model), achieved higher prediction 
accuracies compared to model I/II, which is in line with our empirical 
results. This finding suggests that additional information of unobserved 
shared component (s2) was included in model III using truly observed 
correlated phenotypes, but not in model II using DNA-predicted corre
lated phenotypes. Moreover, as the variance explained by s2 increases, 
more additional information was included and therefore increased 
improvement in prediction accuracy is seen with model III that uses 
truly observed correlated phenotypes, which was not seen with model II 
that uses DNA-predicted correlated phenotypes (Fig. 3). 

4. Discussion 

In the present study, we explored, quantified, and now understand 
via computer simulations, the extent of which correlated appearance 
phenotypes and underlying genotypes impact on DNA-based appearance 
prediction using pigmentation traits as example. 

We empirically demonstrated mid-range and highly statistically 
significant correlations between all three pigmentation phenotypes, and 

Fig. 1. Effects of the 11 top-associated HIr
isPlex-S SNPs from the 11 genetic loci covered 
by the 41 HIrisPlex-S DNA markers on eye, hair, 
and skin colour (N = 762). Compound repre
sents a collapsed compound heterozygosity 
marker based on a haplotype analysis of two 
pre-selected MC1R coding DNA variants 
rs1805007_T (R151C) and rs1805008_T 
(R160W). Note that this compound MC1R 
marker has a colour lightening effect on 
pigmentation phenotypes, but this effect was 
reversely depicted in the figure for convenience 
reasons. For underlying data see Supplemen
tary Table 1 (For interpretation of the refer
ences to colour in this figure legend, the reader 
is referred to the web version of this article).   

Table 3 
Quantification of pigmentation phenotype correlations and their proportions 
contributed by the 41 HIrisPlex-S DNA markers.   

Eye colour Hair colour Skin colour 

Eye Colour * 0.76 0.96 
Hair Colour 0.47 (5.19 × 10E-43) * 0.87 
Skin Colour 0.36 (9.42E-25) 0.41 (1.64E-32) * 

Below the diagonal line: phenotype correlations estimated by Pearson correla
tion coefficient and their statistical significance. Above the diagonal line: 
contribution of the 41 HIrisPlex-S SNPs on the observed pigmentation pheno
type correlations (C statistics). 
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quantified a large contribution on these phenotype correlations pro
vided by the 41 HIrisPlex DNA markers. That the 41 HIrisPlex-S SNPs 
could not explain 100 % of the observed phenotypic correlations is likely 
explained by phenotyping classifications and additional genetic factors 
besides the 41 SNPs used here, e.g., SNPs in LD within the same regions 
and/or other unknown but shared genetic factors, and perhaps by 
additional non-genetic i.e., environmental factors not considered here. 
For instance, that considerably lower genetically explained correlations 
were achieved for the two phenotype comparisons that involve hair 
colour, compared to the one not involving hair colour, might be influ
enced by age-dependent hair colour change, which is not covered by the 
DNA markers used as previously reported for the 22 HIrisPlex hair 
colour SNPs [22], and thus not expected to be covered by the total of 41 
HIrisPlex-S markers used here including these 22. Although not tested 
here, we expect that these estimates may decrease when applied to 
homogeneous population samples (e.g. Europeans only) due to their 
reduced phenotypic variance. 

In our empirical genetic prediction modelling based on the full set of 
41 HIrisPlex-S DNA markers, we found no effect on prediction accuracy 
of DNA-predicted correlated pigmentation phenotypes used as additional 
predictors. In contrast a noticeable effect, mostly in increasing predic
tion accuracy, was seen when using truly observed correlated pigmen
tation phenotypes as additional predictors. The results from our 
computer simulations suggest that the prediction accuracy improvement 
achieved by considering truly observed correlated pigmentation pheno
types is explained by the extra genetic (and non-genetic) information 
that is provided by these correlated phenotypes. Such extra information 
is not provided when correlated pigmentation phenotypes were pre
dicted from a limited number of DNA markers such as the 41 HIrisPlex-S 
markers used here. This explains why the prediction accuracies were 
almost identical or very similar, when comparing the genetic prediction 
models without considering phenotype correlations, and those that used 
DNA-predicted correlated phenotypes as additional predictors. Thus, it is 
not the prediction error of the DNA-predicted phenotypes that does not 
allow the prediction accuracy to improve, as one may naively assume. 
Instead, as our computer simulations suggest, it is the incomplete ge
netic information covered by the DNA markers used to predict the 
respective correlated pigmentation phenotype that does not provide a 
prediction improvement. This missing genetic information (together 

with unknown non-genetic information) is covered by the truly observed 
correlated phenotypes used as additional predictor, which in turn pro
vides the prediction accuracy increase. 

Our results are relevant for a variety of fields where genetic 
appearance prediction models are used in practise, such as forensic 
casework, human history studies, and anthropological investigations, all 
of which typically lack any phenotype information, including pheno
types that are correlated with the phenotype of interest. In particular, 
our findings imply that it is not advisable in such practical applications 
to use DNA-predicted correlated phenotypes as extra factors in the pre
diction modelling, at least not when it comes to pigmentation prediction 
from a relatively small set of DNA markers such as the HIrisPlex-S DNA 
markers used here. Moreover, the conclusion from our simulation 
analysis provide valuable information for future research and develop
ment of better prediction models as it demonstrates that using more 
independently contributing genetic predictors, in addition to the 
currently used ones, will increase prediction accuracy overall. However, 
our findings do not provide any information on how many additional 
DNA predictors would be needed to achieve the prediction improvement 
seen when using truly-observed correlated phenotypes, which in turn 
would depend on the independently contributing effect size of the 
additional DNA predictors. 

Theoretical expectations and empirical demonstration of GWASs 
based on common DNA variants, such as for human pigmentation traits 
[9] or body height [16], have demonstrated that newly identified 
significantly associated DNA variants obtained from GWASs with larger 
sample size have similarly small effects or even smaller effects than 
those identified in previous GWASs based on smaller sample size. 
Therefore, it is expected that many more (common) DNA predictors will 
be needed to further improve the prediction accuracy of already estab
lished appearance prediction models compared to the number of DNA 
markers included in the established models. The first empirical evidence 
for this notion for human pigmentation traits comes from a recently 
published large GWAS on hair colour that additionally reports on the use 
of the many newly discovered DNA-markers for hair colour prediction 
[9]. Based on a large European discovery set of 290.891 individuals, this 
study found 124 genetic loci significantly associated with hair colour, of 
which 111 were novel and not identified in previous GWASs. Moreover, 
the study demonstrated that a new hair colour prediction model based 

Fig. 2. Accuracies of pigmentation phenotype 
prediction achieved by considering the 41 
HIrisplex-S SNPs (N = 762) based on three 
strategies Strategy I (depicted in red) included 
the 41 HIrisplex-S SNPs as sole predictors; 
strategy II (depicted in yellow) included the 41 
HIrisPlex-S SNPs as predictors and as additional 
predictors the two respective other correlated 
pigmentation phenotypes predicted from the 41 
DNA markers; strategy III (depicted in blue) 
included the 41 HIrisplex-S SNPs as predictors 
and as additional predictors the two respective 
other correlated truly observed pigmentation 
phenotypes. For underlying data see Supple
mentary Table 2 (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article).   
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on 258 independently associated SNPs, most of them were newly 
discovered, improved the prediction accuracy for all hair colour cate
gories, except red, compared to the previous HIrisPlex model. However, 
given the more than 10-times larger number of DNA predictors in the 
new model compared to the HIrisPlex model, the prediction accuracy 
increase this new model provided relative to HIrisPlex, i.e., AUC in
crease of 0.67 to 0.79 for blond, 0.66 to 0.76 for brown, and 0.82 to 0.91 

for black, was not overwhelming. Nevertheless, in the era of targeted 
massively parallel sequencing (MPS), hundreds of SNPs can now be 
utilized for practical applications including forensic DNA analysis [40], 
and MPS tool development for forensic DNA phenotyping using hun
dreds of SNPs is currently underway by the VISAGE Consortium. 

Although, in our present study, we used correlated pigmentation 
traits and pigmentation-predictive DNA markers as example, similar 
findings may be expected for other correlated appearance traits. Such 
expectation only holds as long as the phenotype correlations are simi
larly high and the applied predictive DNA markers explain similarly 
large proportions of the phenotype correlations as seen here for eye, hair 
and skin colour and the HIrisPelx-S DNA markers. However, the success 
of DNA-based pigmentation prediction is driven by the presence of 
major gene effects (e.g. HERC2, SLC45A2 and MC1R) together with 
minor gene effects, whereas correlated non-pigmentation appearance 
traits such as facial shape phenotypes are characterized by the absence 
of major gene effects as far as currently known [2]. Therefore, we expect 
that the estimates we obtained here for correlated pigmentation traits 
may be higher than those obtained in future studies for other correlated 
appearance traits independent of pigmentation. 
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