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INVESTIGATING DISEASE MECHANISMS AND DRUG RESPONSE 

DIFFERENCES IN TRANSCRIPTOMICS SEQUENCING DATA 

In eukaryotes, genetic information is encoded by DNA, transcribed to precursor 

messenger RNA (pre-mRNA), processed into mature messenger RNA (mRNA), and 

translated into functional proteins. Splicing of pre-mRNA is an important epigenetic 

process that alters the function of proteins through modifying the exon structure of 

mature mRNA transcripts and is known to greatly contribute to diversity of the human 

proteome. The vast majority of human genes are expressed through multiple transcript 

isoforms. Expression of genes through splicing of pre-mRNA plays crucial roles in 

cellular development, identity, and processes. Both the identity of genes selected for 

transcription and the specific transcript isoforms that are expressed are essential for 

normal cellular function. Deviations in gene expression or isoform proportion can be an 

indication or the cause of disease. 

  

RNA sequencing (RNAseq) is a high-throughput next-generation sequencing technology 

that allows for the interrogation of gene expression on a massive scale. RNAseq 

generates short sequences that reflect pieces of mRNAs present in a sample. RNAseq can 

therefore be used to explore differences in gene expression, reveal transcript isoform 

identities and compare changes in isoform proportions. In this dissertation, I design and 

apply advanced analysis techniques to RNAseq, phenotypic and drug response data to 

investigate disease mechanisms and drug sensitivity. 
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Research Goals: The work described in this dissertation accomplishes 4 aims. Aim 1) 

Evaluate the gene expression signature of concussion in collegiate athletes and identify 

potential biomarkers for response and recovery. Aim 2) Implement a machine-learning 

algorithm to determine if splicing can predict drug response in cancer cell lines. Aim 3) 

Design a fast, scalable method to identify differentially spliced events related to cancer 

drug response. Aim 4) Construct a drug-splicing network and use a systems biology 

approach to search for similarities in underlying splicing events. 
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Chapter 1 Introduction 

1.1 Background 

High-throughput experimental approaches like shotgun transcriptome sequencing provide 

a wealth of comprehensive data that can be used to answer challenging and complex 

biological questions. Transcriptomic sequencing data gives researchers insight into the 

regulation and production of gene transcripts; coded genetic elements that carry 

important cellular information, control cellular fate, and coordinate a cells response to 

stimuli. Transcriptomic sequencing data can be analyzed in numerous ways and many 

analysis strategies offer powerful approaches to studying disease.  

 

Transcriptomic analysis is informative for understanding disease response and recovery.  

In physiological diseases, like concussion, the transcriptome can indicate the damage that 

has been sustained, the biological processes that are activated following injury, and give 

insight into the stages of healing. In hereditary or acquired genetic diseases, 

transcriptomic analysis can help researchers understand the origin of disease and plan the 

best course of treatment.  

 

Possibly the most common analysis approach for transcriptomic data is differential gene 

expression analysis. Differential gene expression analysis compares the quantity of 

messenger-ribonucleic acid (mRNA) gene products in two or more groups of samples and 

is used to identify differences in gene expression across multiple conditions or time. 
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Transcriptomic data can also be used to study splicing of precursor messenger ribo 

nucleic acid (pre-mRNA), an important step in the production of gene transcripts that 

determines the combination of sequence elements included in mature mRNA. Differential 

splicing contributes to protein diversity in eukaryotic cells by generating many unique 

transcript isoforms from a single gene sequence [1]. As much as 95% of human multi-

exon genes are impacted by differential splicing [2]. The splicing of specific transcript 

isoforms can determine cellular identity, alter cellular processes and contribute to disease. 

The splicing of transcript isoforms, regulation of splicing and the functional 

consequences from splicing are of major scientific interest.  

 

Cancer, an uncontrolled cellular proliferative disease of the genome, has long been the 

second leading cause of death in the United States [3]. Splicing has been linked to cancer 

in a number of ways. Splicing helps direct many key cellular processes that are altered in 

cancers, such as epithelial-mesenchymal transition, and splicing has been shown to 

impact every major cancer hallmark leading to development and maintenance of tumor 

transformation [4]. The splicing of certain transcript isoforms has also been shown to 

influence cancer drug metabolism [5,6]. It is likely splicing influences drug response in 

cancer in a number of ways, but so far very few studies have explored associations 

between drug response and cancer. A comprehensive study showing that splicing 

influences drug response would increase our understanding of cancer-related processes 

and spur researchers to investigate new therapeutic strategies for treating cancer. 
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While the association between certain differentially spliced transcripts and disease has 

been established, relatively little is known about the numerous transcripts differential 

splicing enables. Historically, analysis of transcript isoforms was a painfully slow process 

accomplished by systematically manipulating a single isoform at a time. Now, high-

throughput transcriptome sequencing can summarize isoforms present in a sample within 

one to two days. The cost of high-throughput techniques continues to decrease, and study 

sizes are increasing as a result [7]. However, existing isoform analysis strategies were 

designed with small sample sizes in mind and are often not compatible with high-volume 

data sets. No currently available analysis tool can analyze differential splicing across 

hundreds to thousands of samples, but it will be necessary to develop a method that can 

manage large datasets using low computational resources and perform analysis in 

minimal time to find new discoveries in large data sets.  

 

While cancer treatment strategies differ by cancer tissue type, cancer treatment strategies 

typically involve the use of combination therapy [8]. Combining multiple drugs can boost 

the effectiveness of treatment, reduce negative side-effects and decrease rate of relapse 

[8]. Treatment regimens must be tailored in a way such that drugs have a complementary 

and additive effect against the cancer rather than enhanced toxicity to the patient. When a 

cancer does relapse, tumors have typically acquired immunity to previously used drugs 

and alternative therapeutics targeting the cancer must be selected [9]. It is common for 

patients with late-stage terminal illness to be considered for clinical trials were new 

therapeutics, off-indication therapeutics or non-standard drug combinations are tested 

[10]. Identifying the tissue-specific differentially spliced exons mediating drug activity 
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and investigating the network of influential genes across tissue types would inform a 

more comprehensive treatment strategy and potentially uncover new effective drug 

combinations.  

 

In this dissertation my goals are to: 1. Evaluate the gene expression signature of 

concussion in collegiate athletes and identify potential biomarkers for response and 

recovery. 2. Implement a machine-learning algorithm to determine if splicing can predict 

drug response in cancer cell lines. 3. Design a fast, scalable method to identify 

differentially spliced events related to cancer drug response. 4. Construct a drug-splicing 

network and use a systems biology approach to search for similarities in response related 

splicing events. 
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1.2 Investigating Differences in Gene Expression Triggered by Concussion 

1.2.1 Significance 

Concussion is a common type of mild traumatic brain injury and while concussions in 

athletics gain a lot of attention, they also occur frequently in day-to-day life. Concussions 

occur in individuals of all ages from activities such as work, car accidents, recreation and 

household falls [11]. Concussion is diagnosed as a temporary impairment in normal brain 

function as a result of physical trauma and can go undiagnosed due to the inconsistency 

and range of symptoms [11]. Generally, individuals who have sustained a concussion 

recover within two weeks, but some experience symptoms lasting a month or longer [12]. 

To date, there is no explanation for the extended recovery period some individuals 

experience. 

 

Recognizing the symptoms and intervening in hazardous activity is currently the 

recommended treatment strategy for concussions [13]. Sustaining a second impact can 

greatly exacerbate the injury, leading to swelling, delayed brain degeneration and even 

death [14]. Because of the importance of rapid diagnosis, researchers have attempted to 

develop fast diagnostic tests. Methods based on brain imaging and blood-based protein or 

molecular biomarkers have so far failed to yield a robust target for concussion diagnosis. 

Identification of an effective and reliable concussion biomarker would enhance the 

objectivity and speed of diagnosis, thereby improving patient outcome and reducing the 

chances of sustaining compounding injuries. 
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1.2.2 Critical Need 

Despite years of research into concussions and mild traumatic brain injury, key biological 

factors related to response and recovery are poorly understood. Due to physiological and 

temporal limitations, biological details surrounding concussion are difficult to study. 

Primary research in concussion is typically limited to samples from animal models with 

induced mild traumatic brain injury. A few studies have been conducted with human 

samples, however studies have been small in size . Without a clearer understanding of the 

human biological response and factors underlying recovery, identification of concussion 

biomarkers and development of informed therapeutic approaches will not be possible. 

 

1.2.3 Innovation 

Whole blood ribonucleic acid (RNA) sequencing data from over five hundred collegiate 

athletes, spanning multiple time points before and after injury, was collected by the 

Concussion Assessment, Research and Education Consortium. Concussed athletes will be 

compared to control participants to identify differentially expressed genes related to 

concussion response and recovery. Analysis of this dataset will be the largest concussion 

study to date. Additionally, whole transcriptome analysis of RNA sequencing data has the 

potential to reveal new information that brain imaging and blood-based biomarkers have 

failed to detect. Finally, new techniques need to be developed to handle the complex 

analysis between multiple groups with paired pre-injury samples. These new methods 

will serve as an example for researchers to follow and aid in guiding analysis of large 

concussion datasets. 
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1.3 Predicting Drug Response with Differential Splicing Profiles 

1.3.1 Significance 

The primary goal of genomics-based cancer research is to identify genetic and molecular 

features that can improve clinical outcome. Drug response prediction models are valuable 

for identifying influential predictive features and exploring treatment options [15]. 

Because each individuals’ genome, and therefore cancer, is unique the ability to tailor a 

treatment regimen to an individual is expected to improve efficacy and reduce side 

effects [15]. Predictive modeling is a key component of precision medicine will allow the 

most effective therapy to be selected by using the patients’ own genetic information [15]. 

 

As discussed in the background, splicing has a major influence on the expression of gene 

products. Predictive models usually include gene expression as a primary feature type. 

Despite the frequent use of expression data models typically ignore the fact that genes are 

expressed through specific isoforms. Inclusion or exclusion of individual exons in gene 

transcripts can alter protein functionality. Studies evaluating predictive models have 

found that increasing the variety of data types used in predictive models is essential to 

increase performance [15–17]. Any predictive method that doesn’t incorporate isoform-

specific information is not representative of true gene complexity. Building and 

evaluating predictive models with splicing data will help researchers evaluate the 

relevance of splicing in drug response, identify new treatments expression-based models 

cannot and provide a method to build more complex predictive models that integrate 

multiple data types. 

 



8 

1.3.2 Critical Obstacles 

Currently there are numerous tools available for quantifying splicing of whole isoforms 

and individual exons, but no standard method for drug response prediction with splicing 

data exists. New methods specific to splicing data need to be developed that can properly 

transform the data to be compatible with machine learning techniques. As splicing 

expands the number of transcripts in the transcriptome it also expands the complexity of 

data used in predictive modeling. When building predictive models, it is important to 

consider the number of features used and any correlation among features to prevent 

overfitting [18]. The model construction process must be able to select only the most 

informative and unique features while removing features that introduce noise. These 

goals will require a fast, efficient modeling algorithm optimized for splicing data. 

 

Since the ultimate goal of drug response modeling is to identify biologically relevant 

targets, it is essential that any model designed to predict outcomes from biological data 

be interpretable. The identities of exons responsible for predictions must be traceable. 

Previous work has shown that not all differentially spliced exons change the structure or 

function of proteins, and while predictive models can be designed to report the major 

features responsible for predictions the selected exons may not be truly important for 

drug response [19]. Following extraction of relevant features, methods for annotation and 

evaluation must be applied.  
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1.3.3 Innovation 

One major difficulty in investigating the role of splicing in drug response is the lack of a 

dataset large enough to train accurate predictive models. Additionally, previous work 

investigating splicing in drug response was done in only a few specific cancer types. In 

this study, two large data sets from public databases were integrated to maximize the 

number of samples and cancer types explored. The Cancer Cell Line Encyclopedia 

(CCLE) is a public resource supported by the Broad Institute and the Novartis Institute 

for Biomedical Research that provides access to detailed genomic data from over 1,100 

cancer cell lines [20]. While CCLE hosts a large volume of genomic data, it only 

provides pharmacologic data for a small number of drugs. The Cancer Therapeutic 

Response Portal (CTRP) on the other hand, also a product of the Broad Institute, is a 

public resource that provides access to pharmacologic data spanning hundreds of 

compounds in close to 1,000 cell lines [21]. We overlapped data between the CCLE and 

CTRP, searching for cell lines common to both resources, to create a dataset with 

pharmacologic measurements in 501 compounds and pre-treatment RNAseq data for up 

to 850 cell lines per compound. To our knowledge, the dataset used in this study is the 

largest integration of splicing and drug response data to date. 

 

Because very few studies have explored predictive models using splicing data, and the 

data in this study is from a unique integrated dataset, it is necessary to produce a new 

model design and training/testing pipeline. It is also necessary to compare the splicing-

based model performance to a known standard so that the general impact of splicing and 

potential benefits from integrating splicing in existing models can be quantified. 



10 

Therefore, we construct three models using the same base algorithm: 1. A splicing-data 

only predictive model, 2. A gene expression only predictive model, and 3. A combined 

splicing- and expression-based model that integrates multi-omic data. To our knowledge, 

this will be the largest study of its design, spanning a considerable number of drugs, and 

the first major characterization of the influence of splicing in a variety of cancer types. 

 

1.4 Differential Splicing Analysis of Large-scale Data Sets 

1.4.1 Significance 

Although splicing of certain gene isoforms is known to influence drug response, little is 

known about the multitude of additional isoforms genes produce and their potential 

impact. It is likely that a number of differentially spliced exons change the way cells 

respond to drugs, and as such contribute to drug resistance. A comprehensive study 

investigating differentially spliced exons between pre-treatment transcriptomic profiles of 

cell lines categorized by drug sensitivity will help identify baseline splicing differences 

that change the effectiveness of drugs following treatment. Finding exons related to drug 

response will lead to research in new potential drug targets, enable investigation of 

upstream splicing regulation through proximal sequence information and expand the 

cancer therapeutic knowledgebase. 

 

As stated in the background, existing methods for differential splicing analysis are slow 

and designed for small sample sizes. The dataset in this study, like many datasets to be 

generated in the near future, is large and complex. A method capable of analyzing high-

volume data in short periods of time with few computational resources will be an 
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extremely valuable tool for splicing research and will be necessary to keep pace with the 

volume of high-throughput data generated by more economic and comprehensive studies.  

 

1.4.2 Critical Obstacles 

A significant challenge that complicates a next-generation sequencing study utilizing 

large numbers of samples is processing the vast quantity of associated raw sequencing 

data. Tens of millions of reads are generated for each sample, all of which must be 

aligned to a reference genome. After obtaining genomic coordinates for the reads, the 

aligned data must be searched and counted. Splicing of transcripts is a combinatorial 

problem. A single gene sequence could potentially produce an isoform for each unique 

combination of exons. A dictionary of known reference isoforms can be used to reduce 

the complexity of splicing quantification. Even when ignoring unannotated isoforms, 

reads must be counted for over 40,000 unique combinations of genomic positions in each 

sample. The dataset in this study has over 800 samples that will need to be individually 

processed before differential splicing analysis can be performed. To accomplish the 

processing of the study dataset a combination of custom scripts and publicly available 

tools, as well as the vast computations resources of the Indiana University (IU) 

supercomputing system, will be required. 

 

Since few large-scale studies have been done with splicing data, a new model considering 

the format and properties of splicing data is required for downstream analysis. As 

mentioned above, counting of supporting reads in exon-centric approaches involves 

searching tens of thousands of positions in each sample. After counting, existing methods 
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estimate the percentage of isoforms and confidence interval for each combination of 

upstream, target and downstream exon combination. Then, differential testing is 

performed with a separate statistical framework. The new differential comparison method 

needs to be more efficient. Generalized logistic modeling is capable of using read count 

data and modeling the data distribution directly, avoiding the intermediate estimation 

procedure. I will use generalized linear modeling with quasi-binomial distribution to 

dramatically reduce the time and computational resources needed for analysis while 

retaining the data-specific requirements for comparing splicing data.  

 

1.4.3 Innovation 

Existing differential splicing analysis techniques are relatively slow, resource hungry 

tools that are designed for studies with small sample sizes. The method proposed in this 

study is a fast, efficient and scalable method for differential splicing analysis built on 

generalized linear modeling. Introducing a powerful new technique for differential 

splicing analysis will enhance the speed and reduce the computational burden of splicing 

analysis, allowing for much larger datasets to be processed in future studies. 

Additionally, this study represents the first occasion differential splicing analysis will be 

done with a large number of samples in a variety of cancer types. New associations 

between exons and cancer drug response will be identified. I will also investigate the cis-

regulatory elements and functional consequences from differentially spliced exons, which 

previous whole-isoform studies could not do. The findings from this study can be used to 

identify potential new drug targets, improve the efficacy of cancer treatment regimens 

and improve our biological understanding of differential splicing. 
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1.5 Network Analysis of Drug Splicing Data 

1.5.1 Significance 

Drug treatment strategies are extremely important in cancer care and are often employed 

with surgical intervention or independently as the sole course of treatment [22]. Although 

cancer therapeutics can substantially prolong patient survival, cancer frequently becomes 

resistant to drugs after prolonged exposure [9]. Cancer drug resistance then leads to 

cancer relapse, aggressive disease and patient death [9]. Partially to combat drug 

resistance, drug treatment strategies in cancer usually involve multiple compounds [8]. 

Drug combinations can have additive effects, enhancing either the therapeutic efficacy or 

toxicity the patient experiences [8]. Drug combinations can also be neutral, providing no 

real benefit to the patient. Identifying effective new drug combinations could enhance the 

therapeutic outcome of cancer treatment regimens, reduce toxicity and prolong or prevent 

relapse.  

 

The therapeutic landscape of differentially spliced exons remains largely unexplored. It is 

likely that a trove of information related to the influence of differentially spliced exons on 

drug sensitivity is waiting to be discovered. A large-scale, comparative analysis solution 

dependent on splicing data will allow researchers to link the splicing-based resistance 

profiles of drugs. Identifying communities of drugs with similar resistance profiles, and 

revealing the hidden relationship between splicing and drug response, could improve 

existing treatment regimens and lead to new complementary drug combinations.  
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1.5.2 Critical Obstacles 

As mentioned in previous sections, the influence of splicing on cancer drug response has 

been rarely studied. An analysis approach specific to the challenges of splicing data will 

need to be developed. Hundreds of individual compounds and the differentially spliced 

exons associated with drug response will need to be evaluated for similarities.  

To overcome the combinatorial complexity of pairwise drug-drug comparisons, a 

network-based approach will be used. Analysis techniques specific to the network design 

and structure will need to be developed. 

 

1.5.3 Innovation 

To date, there has never been a study looking at the commonality between splicing 

signatures influencing drug response across multiple compounds, or the possible splicing 

interactions drugs may have when used in combination. The total number of differentially 

spliced exons related to drug sensitivity is not known. Whether or not spliced exons can 

influence response to multiple drugs is unclear. Additionally, the potential for drug 

interaction through intersecting differentially spliced exons has never been explored. 

 

The analytical strategies and knowledge generated by a comprehensive network analysis 

with splicing data could be extremely valuable for both the research and cancer treatment 

communities. This study will lay out a process for extracting disease-specific drug-

splicing information that can be used to plan complementary drug treatment regimens and 

will have an impact beyond cancer. It will also provide biological insight into 



15 

mechanisms behind drug resistance and the importance of pre-treatment splicing profiles 

in anti-cancer drug response. 

 

1.6 Objectives 

The primary objective of my dissertation is to investigate the applications of 

transcriptomic sequencing data to investigate disease. First, I use differential gene 

expression and deconvolution analysis to describe the biological response to concussion. 

Second, I develop a machine-learning model that demonstrates the relevance of 

differentially spliced exons in cancer drug response. Third, I describe the implementation 

of quasi-binomial generalized linear modeling to uncover differentially spliced exons 

related to drug response. Fourth, I develop a network modeling approach to identify key 

differentially spliced exons that influence drug response in multiple drugs. 

 

Chapter 2 reviews the current knowledge of gene expression, splicing, cancer treatment 

strategies and computational analysis methodology used in splicing analysis. Topics 

covered include the biology underlying splicing, the impact of splicing, and an overview 

of cancer biology and cancer treatment. Additionally, techniques commonly used to 

analyze changes in splicing are reviewed such as high-throughput genomic experiments, 

machine learning, differential splicing analysis methods and network analysis.    

 

Chapter 3 describes differential gene expression analysis in a cohort of collegiate 

athletes. I detail differentially expressed genes relevant to the pathophysiology of 

concussion, the activation of immune response pathways through gene expression and 
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changes in response-related pathways over the course of recovery. I also introduce a 

method for differential analysis of deconvolution data while considering a previously 

obtained baseline sample. I find that transcriptomic data mirrors the pathophysiological 

response in damaged tissue and that there are large differences in gene expression 

immediately after concussion, but the differences quickly dissipate following activation 

of the immune response. I also find trends in immune signaling pathways across 

timepoints and discover differences in immune cell type proportions between injured and 

control participants. 

 

Chapter 4 describes the construction of a predictive model trained to predict drug 

response using splicing data. I explain a common approach to quantify splicing in high-

throughput data, use exon-centric measures from MISO to explore trends in splicing 

related to drug response and apply machine learning techniques to build an elastic net 

logistic regression model. I find that splicing can be used to predict drug response in 

cancer cell lines for the vast majority of cancer compounds and repeated modeling shows 

strong predictive power similar to that of expression data. 

 

Chapter 5 describes a differential splicing analysis technique developed to process large 

volumes of data quickly using limited resources. I explain the design and advantages of 

quasi-binomial generalized linear modeling, identify differentially spliced exons that 

contribute to changes in drug response in cancer cell lines and perform RNA-binding 

protein enrichment analysis to uncover cis-acting sequence elements and trans-acting 

regulatory splicing factors modulating splicing. I also annotate exons with protein domain 
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and structural importance to connect differentially spliced exons to consequences in 

protein function. I show that quasi-binomial generalized linear modeling is capable of 

processing large volumes of data rapidly, and accurately identifies differentially spliced 

exons associated with drug-resistance strategies and functional protein domains. 

 

Chapter 6 describes a network-based analysis that intersects differentially spliced exons 

modulating drug sensitivity across multiple compounds. I design a strategy to build a 

drug-drug splicing network and describe an algorithm that can be used to find modules of 

drugs that share exons related to drug response and discuss the mechanistic implications 

of the exons. I find that communities of drugs cluster together based on differentially 

spliced exons related to drug response. I also discover that drug modules form in multiple 

tissue types and detail genes implicated in mediating drug response through differentially 

spliced isoforms. 

 

Chapter 7 summarizes the major findings from the dissertation and explains how the 

research done will have a substantial contribution to understanding response to 

concussion and differential splicing in cancer treatment. Potential improvements and 

future research directions are also discussed.  
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Chapter 2 Literature Review 

2.1 Gene Expression and Splicing in Eukaryotes 

The central principle of gene expression in biology dictates that DNA is transcribed to 

RNA and translated into protein [23]. In eukaryotes, DNA sequences of genes are 

comprised of three types of information: 1) untranslated sequence, the signaling and 

regulatory regions flanking the beginning and end of genes; 2) exons, the primary coding 

sequences that define the protein structure; and 3) introns, long stretches of non-coding 

sequence that are interspersed among exons and must be removed prior to protein 

translation [24]. During gene expression, DNA is first transcribed into pre-mRNA [24]. 

Then, introns are removed through a process known as splicing [24]. Finally, mature 

messenger RNA (mRNA) is relocated to the cytoplasm and translated by ribosomes to 

generate protein products.  

 

The RNA splicing process is extremely important and determines the final sequence of 

the protein an RNA transcript produces [1]. Multiple protein sequences can be produced 

from a single pre-mRNA by varying the exons included in the final mRNA [1]. This is 

known historically as alternative splicing, although differential splicing is also used and 

may be more appropriate as “alternative” implies only two options. The use of 

“alternative” stems from many genes employing a single predominant isoform however 

advancements in transcriptome analysis have shown that genes routinely produce many 

isoforms. Large-scale studies report that up to 95% of human multi-exon genes may be 

differentially spliced [2]. Splicing is one mechanism that contributes to genome 

complexity and allows eukaryotes with limited genome sizes to produce much larger 
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numbers of gene products when compared to other species [1]. It has been proposed that 

splicing is a tightly regulated process and many alternative isoforms are nonviable or 

degraded before translation, however the function and ultimate fate of the vast majority 

of gene transcripts has not yet been determined and until we achieve a better 

understanding of differentially spliced gene products the potential impact of all isoforms 

should be considered [25]. 

 

2.1.1 Impact of Splicing on Biological Functions 

Splicing is essential for control and regulation of many different cellular processes. 

Coordinated splicing networks essential for development have been identified in brain, 

heart and liver tissue [26]. For example, crosstalk between polypyrmidine tract-binding 

proteins (PTBP1 and PTBP2) and serine/arginine repetitive matrix protein 4 (SRRM4) 

directs neuronal cell differentiation through modulating the inclusion of PTBP2 exon 10 

[26]. Initially, PTBP1 works to suppress the inclusion of PTBP2 exon 10 in neuronal 

progenitor cells but as cells differentiate SRRM4 promotes PTBP2 exon 10 inclusion and 

in turn neuronal development and tissue maintenance [26]. Likewise in heart, CELF1 and 

MBNL1 compete to regulate splicing essential for heart development [26]. The tissue-

specific expression of many transcript isoforms and switch-like activity of some exons 

indicates a strong regulatory influence of splicing on human tissue complexity [27]. 

 

Mis-regulation of splicing is known to contribute to many different diseases. It has been 

estimated that 35% of single nucleotide variants (SNVs) that cause disease disrupt 

splicing [24,28,29]. Rare disease-causing variants altering splicing have been found 
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associated with spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), 

Duchenne muscular dystrophy (DMD), Hutchinson-Gilford progeria syndrome (HGPS), 

Retinitis pigmentosa (RP) and cancer among others [30]. Splicing is also thought to 

contribute to milder differences in humans. On average, around 30,000 SNV differences 

are found between individuals [24]. Many of these 30,000 SNVs are synonymous, 

meaning they do not change the protein sequence, or are located in non-coding regions 

and contribute to phenotypic changes by altering splicing efficiency of individual exons 

[24]. Such variants are referred to as splicing quantitative trait loci (sQTLs) [24]. 

  

2.1.2 Evolutionary Origin of Splicing 

The common accepted theory regarding the origin of eukaryotes is that there was a 

symbiotic endocytosis event between a large archaeal bacterial in the Asgard lineage and 

a smaller pre-mitochondrial bacterium in the alphaproteobacterial lineage [31,32]. During 

the evolutionary period following eukaryogenesis, a dramatic expansion in the diversity 

and complexity of the genome of the last eukaryotic common ancestor occurred [33]. It is 

likely during this time that the mobile genetic elements known as group II introns began 

inserting into existing genes, and later evolved into non-mobile introns processed by de-

coupled specialized splicing machinery now known as the spliceosome [33]. Direct 

support for this theory has been observed in plants where a group II intron found in the 

mitochondria transferred to the nucleus and evolved into a spliceosomal intron [33]. 

Additionally, the structure and splicing mechanism of group II introns is highly similar to 

the modern spliceosome, and researchers believe group II introns are the predecessor to 

core spliceosome machinery in eukaryotes [34,35]. 
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Yeast contains a small set of highly conserved splicing proteins that are likely the 

minimum core machinery required for splicing [36]. Eukaryotic organisms like 

drosophila and humans contain homologs for all yeast splicing proteins as well as 

additional proteins necessary for differential splicing [36]. Although other eukaryotes 

perform splicing, splicing in simpler organisms like yeast is mostly constitutive and the 

generation of multiple isoforms through alternative inclusion of exons is rare if present at 

all. The structure of the spliceosome in humans is more dynamic and unstable than yeast, 

making it harder to study but providing the flexibility required for interaction with a 

larger set of differential splicing-related proteins with selective and regulatory activity 

[37]. 

 

2.1.3 Splicing Components, Process and Outcomes 

The collection of structural RNAs that form the scaffold and the many proteins that 

catalyze the necessary reactions for splicing are referred to as the spliceosome [36]. The 

spliceosome is comprised of five primary structural small nuclear RNAs (snRNA): U1, 

U2, U4, U5 and U6 [36]. Unlike some other snRNA complexes, the snRNAs of the 

spliceosome do not self-assemble into an active state on pre-mRNA introns [36]. Instead, 

a large number of additional proteins facilitate the interactions between snRNAs and 

proteins as well as the recognition of target pre-mRNA binding sites [36]. Spliceosomal 

proteins help correctly form the structure of the spliceosome, position the active sites of 

the spliceosome and ensure splicing is happening at relevant locations on the pre-mRNA 

[36]. 
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The canonical splicing reaction occurs though eight conformational changes of the 

spliceosome, although the process can be broken down into 5 critical steps: 1) U1 is 

recruited to a short conserved sequence at the 5’ splice site of the intron and factor U2AF 

recognizes a short conserved sequence at the 3’ splice site, recruiting SF1 which is 

subsequently displaced by U2 allowing it to bind on the branch point forming complex A; 

2) the U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) complex is recruited 

forming pre-catalytic complex B; 3) U1 and U4 are destabilized and leave the complex, 

thereby producing the activated B complex; 4) a conformational change to B* is 

catalyzed by spliceosome member proteins and the first transesterification reaction 

occurs, where the 2’ OH group on the branch point adenosine residue performs a 

nucleophilic attack on the 5’ splice site; 5) the now available 3’ OH of the 5’ exon 

performs a nucleophilic attack on the 3’ splice site, ligating two exons together, releasing 

the spliceosome and intron in the form of a lariat loop [36]. In canonical splicing, which 

accounts for the vast majority of U2 dependent splicing, the 5’ end of the intron contains 

the sequence “GT” and the 3’ “AG” [38]. In non-canonical splicing the sequences of the 

5’ and 3’ intron ends differ.  

 

There are five primary types of differentially spliced events: 1) Alternative 5’ splice site 

(A5SS) where a small piece at the start of an exon may be removed; 2) Alternative 3’ 

splice site (A3SS) where a small piece at the end of an exon may be removed; 3) Skipped 

exon (SE) where an exon may be completely removed; 4) Mutually exclusive (ME) 

where two exons are alternatively included in a transcript and ever seen together; and 5) 

Retained intron (RI) where an intron that is normally spliced out is included in the final 
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transcript sequence [39]. Complex splicing of transcripts can also occur, such as multi-

exon events or trans-splicing where two different transcripts are spliced together although 

complex events are thought to be rare and many can be described as some combination of 

the five primary event types. Lastly, inclusion of alternative transcript start, stop and poly 

adenylation sites are typically analyzed separately and not considered categories of 

differential splicing. 

 

2.1.4 Splicing Regulation 

Splicing is regulated through trans-acting RNA-binding proteins (RBPs), which can be 

expressed in a tissue- or condition-specific manor, that modulate the efficiency of 

splicing across groups of exons [40]. These key RBPs, called splicing factors, help the 

splicing machinery recognize exon-intron boundaries though binding on cis-regulatory 

sequences nearby [40]. The successful binding of splicing factors is dependent on the 

strength of the cis-acting motif. Splicing factors in particular exhibit transient activity, 

weak or short-term binding site association, and splicing efficiency is determined by the 

relative strength of motifs around an exon-intron boundary [41]. Neighboring splicing 

factors compete, encouraging or discouraging splicing at specific sites. The identity of 

splicing factors in the regulatory environment is dictated by other cellular processes like 

expression of certain transcription factors and tissue-specific genes. 

 

There are two primary classes of splicing factors, Heterogeneous ribonucleoprotein 

particles (hnRNPs) and serine-arginine rich (SR) proteins [41]. Other types of RBPs have 

been implicated in splicing regulation as well, and growing focus on RBP research will 
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likely reveal many more splicing candidates in the near future. Splicing factors can act as 

“enhancers”, increasing the chance exons are included in a transcript, or “silencers” 

depending on their physical properties and the location they bind to [41]. For example, 

SR proteins are generally thought to enhance splicing; however, SR protein SRSF1 can 

act as an enhancer, when binding near the 5’ splice site but a silencer when binding near 

the 3’ splice site [42]. The activity of splicing factors may also change depending on their 

binding partners or other nearby splicing factors [42]. Taken together, what others have 

discovered indicates that regulation of splicing is very complex, that studying splicing 

regulation is essential to understanding splicing mechanisms in a disease context and that 

there is a lot to learn about how inclusion of specific exons in transcript isoforms is 

regulated. 

 

2.1.5 Splicing in Cancer 

Splicing has been shown to influence every major hallmark of cancer development and 

progression [4]. In some cases, like the splicing factor SRSF1 discussed above, alterations 

in splicing factors and other spliceosome components can have substantial and far-

reaching effects touching on many cancer-related processes [42]. Increased expression of 

the splicing factor SRSF1 has been found in tumors, and studies have shown 

overexpressing SRSF1 is sufficient to promote cancer transformation of mammary 

epithelial cells [42,43]. In other cases, like in epidermal growth factor (EGF) receptor 

ErbB4, the effects of splicing are more focused. The estrogen receptor gene ErbB4 

produces multiple isoforms characterized by two factors: whether they include a 16 

amino acid cytoplasmic domain with binding sites for phosphoinositide 3-kinase (PI3K), 
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“CYT-1” for domain included and “CYT-2” for not included; and if they are susceptible 

to proteolysis at extracellular juxtamembrane (JM) domains, “JM-a” is susceptible and 

“JM-b” is not [44]. Depending on which domains are included, isoforms of ErbB4 can 

have opposite functional effects. The ErbB4 JM-b CYT-2 isoform stimulates apoptosis 

inhibiting cancer, whereas the JM-a CYT-2 isoform promotes cellular proliferation, 

survival and anchorage-independent growth encouraging cancer [44]. Both isoforms are 

functionally activated by several EGF-like growth factors and inhibited by ErbB kinase 

inhibitors, indicating that isoform-specific treatment strategies for cancer may be 

extremely important [44]. 

 

Splicing influences cancer cell metastasis through epithelial-to-mesenchymal transition 

(EMT); the transformation of cells from an immobile state, having cohesive cell-cell 

junctions, to a motile and invasive state where cells dissociate from neighboring cells and 

become elongated allowing them to travel through tissues [45]. Splicing has a large 

influence on EMT and is responsible for orchestrating a series of necessary events 

leading to EMT [46,47]. The key steps in EMT are tight junction disassembly, loss of 

membrane-bound E-cadherin, loss of apical-basal polarity, re-localization of cytoskeletal 

components controlling front-rear polarity and expression of matrix metalloproteinases 

[46]. Splicing has been found to modulate the key steps in EMT through exons targeted 

by ESRP1 & 2 splicing factors; affected genes include FGFR2, p120, NUMB, SCRIB and 

ENAH [46,47]. Other splicing factors that modulate EMT are MNBL1, RBFOX2, SRSF1 

and SRSF3 [46]. Lastly, splicing could facilitate chemoresistance through activation of 
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EMT and either the EMT-associated cellular processes or the acquired stem-like features 

[46,48,49]. 

 

Splicing influences cancer cell survival through processes related to control of cell cycle. 

One strategy healthy cells use to prevent formation of cancer is locking abnormal cells in 

senescence, ending the cell cycle and stopping further replication [50]. Global changes in 

spliceosomal gene expression have been observed during senescence, knockdown of 

individual spliceosomal genes was shown to induce senescence, and splicing factors such 

as SRSF1, SRSF3, HNRNPA1, HNRNPA2 and SF2 are known to be pivotal in senescent 

transformation [51]. Splicing can prevent senescence through control of EMT by 

inducing EMT-associated transcription factors ZEB1/2 which repress cyclin kinase 

inhibitors and prevent EGFR-dependent senescence in esophageal squamous cell 

carcinoma [46]. Senescence can also be beneficial to long-term survival of cancer cells, 

preventing rapidly dividing cancer cells from succumbing to chemotherapeutics and 

allowing cancer cells to survive cancer treatment [50]. Cancer cells can later exit 

senescence and resume uncontrolled proliferation [50]. Surviving cancer cells can also 

acquire new resistance conferring mutations, making subsequent treatment less effective 

[50]. More research is needed to understand the role of splicing in senescence and 

whether splicing-based therapeutics could be used to prevent cancer cell growth or 

senescence-based survival strategies. 

 

Splicing also influences cancer cell survival through apoptosis, and immune system 

evasion. Apoptosis, another process healthy cells use to stop cancer propagation, is where 
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damaged or diseased cells receive signals that induce programmed cell death [52]. 

Splicing controls apoptosis through multiple pathways and proteins, such as the example 

of Erbb4 above [44]. Another well-known example is alternative splicing of Bcl-xL and 

Bcl-xS isoforms [52,53]. When Bcl-xL, the anti-apoptotic isoform, is targeted with an 

antisense oligonucleotide cancer cells produce more Bcl-xS, the pro-apoptotic isoform, 

inhibiting colony formation and eliciting apoptosis [53]. Additionally EMT, strongly 

regulated through splicing, confers resistance to apoptosis through the mitogen-activated 

protein kinase/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-

kinase/protein kinase B (PI3K/AKT) pathways [54]. Furthermore, the splicing factor 

SRSF1 promotes splicing of BIM and BIN1 isoforms without pro-apoptotic functions 

[43]. Lastly, splicing helps cancer cells evade the immune system through EMT, but also 

by defining isoforms of HLA-G cell surface markers that inhibit immunocompetent cells 

and through addition of exon 7 in MHC-I which reduces the potential for cytotoxic T 

lymphocyte stimulation [4,55]. 

 

2.2 Cancer and Treatment 

Cancer is a disease of the genome, where somatic mutations acquired during the course 

of an individual’s life alter the regulation or function of essential genes and lead to 

uncontrolled cellular growth and proliferation [56]. Cancer and cancer treatment 

strategies are complex because just as no two individuals are the same, no two cancers 

are the same. However, there are similarities between cancers stemming from the same 

tissue and cancers originating from the same type of environmental exposure. Similarities 

between cancers can be exploited during cancer treatment, as can the general properties 
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of cancer cells such as high rate of proliferation, by matching cancers to treatment 

strategies that have proven to be effective in cancers with similar genetic profiles.   

 

Cancers typically originate from the abnormal regulation or function of two major classes 

of genes, oncogenes and tumor suppressor genes [57]. Oncogenes drive the growth and 

proliferation of cells [57]. Tumor suppressor genes act to suppress the growth and 

proliferation of cells by reducing or silencing expression of oncogenes [57]. Mutations in 

both oncogenes and tumor suppressor genes are required for cancer transformation, and 

in many cases numerous causative “driver” and innocuous “passenger” mutations are 

observed in active cancer [56]. Differentiating between driver and passenger mutations is 

difficult and is one aspect of cancer that complicates treatment.  

 

 Cancer treatment strategies can differ based on many factors such as tissue of origin, 

severity or stage, if a cancer is newly diagnosed or a patient is in relapse, and the types of 

cancer treatments used to previously treat the patient [22]. The goals of cancer treatment 

can also vary and range from merely alleviating symptoms to attempting to cure an 

individual. Numerous challenges around cancer treatment exist as well. Because each 

individual and cancer are unique, selecting the best treatment for an individual is 

difficult. Patients respond differently to the same course of treatment, and it is important 

to apply a treatment that is effective at killing cancer cells while maintaining a level of 

toxicity that is tolerable for the patient. Once a cancer has been exposed to anti-cancer 

therapeutics the genetic profile of the tumors can change, conferring resistance to the 

tumors and altering the efficacy of future cancer treatment. Ongoing research into cancer 
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genetics with high-throughput genomics has improved understanding of cancer and 

helped to develop new targeted treatments that are highly effective and low in toxicity 

[58]. Cancer genomics has also opened the door to personalized medicine, and it is now 

common to consider a patients’ own genetic profile when recommending the best course 

of treatment [59,60]. Cancer treatment regimens continue to improve, and as we learn 

more about our own genetics our abilities to treat genomic diseases improve [58]. Recent 

breakthroughs in immunotherapy have dramatically improved cancer treatment outcomes 

[58]. However, cancer is genetically complex and even though it is possible to cure some 

cancers it is likely that even with the most advance scientific tools select cancers will 

remain chronic managed diseases rather than curable illnesses.  

 

2.2.1 Anticancer Therapeutics 

Anticancer therapeutics play a key role when treating the majority of cancers [22]. 

Anticancer drug molecules are classified by the type of action they take against cellular 

biology, and there are many classes of cancer drugs. The main drug classes of non-

targeted chemotherapeutics are alkylating agents, intercalating agents, radiomimetic 

agents, topoisomerase inhibitors, antimetabolites, antimitotic drugs, polyamine inhibitors 

and iron-mediating drugs [58]. Non-targeted chemotherapeutics have an indiscriminate 

cytotoxic effect on cells but are useful for treating cancer because they disproportionately 

impact highly-replicative cells or induce further genetic damage to already mutated 

cancer cells leading to apoptosis. Unfortunately chemotherapeutics are also toxic to 

normal healthy cells and special attention to dosing and spacing of drug administration 

must be paid.  
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The use, type and importance of specific cancer therapeutics depends primarily on the 

cancer and prognosis a patient receives. Chemotherapeutics can be applied as the sole 

course of treatment or in combination with other forms of cancer intervention. Referred 

to as neoadjuvant therapy, chemotherapeutic treatment before surgery is typically aimed 

at reducing the size of a tumor to increase the likelihood of success following surgery 

[61]. Adjuvant chemotherapy is the use of chemotherapeutics after surgery and is 

designed to eliminate any remaining hidden cancer cells [61]. As our understanding of 

cancer has improved, so too have the number and variety of chemotherapeutics as well as 

their structured treatment regimens. Nanoparticles and extracellular vehicles have 

improved the efficacy of chemotherapeutics while decreasing the toxicity [62]. 

Nanoparticle encapsulation of drug molecules can increase drug solubility, allow for 

environmental triggering of drug release or even provide for direct targeting of tumors 

through conjugation of antibodies that bind to specific cell surface proteins like HER2 

[62].  

 

2.2.2 Drug Treatment Combinations 

First generation chemotherapeutics, such as the topoisomerase inhibitor doxorubicin, are 

now typically used in combination with other chemotherapeutic drugs such as the 

alkylating agent cisplatin or the mitotic inhibitor paclitaxel [63]. This is because the 

subsequent generations of chemotherapeutics have been shown to have reduced toxicity 

and combination treatment strategies have been proven to be more effective at 

eliminating tumors with heterogeneous cell types common in cancer [63]. 

Chemotherapeutics are also increasingly being used in combination with targeted 
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therapeutics. In such cases tumor genetic profiling has identified a mutation, such as that 

resulting in growth factor dependence, which can be exploited using a highly-specific 

small molecule inhibitor [61]. Chemotherapy will be applied in conjunction with the 

small molecule inhibitor to destroy tumor cells that are resistant to the targeted 

therapeutic and ensure greater success. However, medical oncologists must be careful to 

use drugs with complementary effects. Two complementary cancer therapeutics can have 

powerful additive effects in cancer treatment, but adverse combinations can have neutral 

or severe negative effects like enhanced toxicity.   

 

Identifying beneficial drug combinations typically begins with computational 

bioinformatic analysis of known molecules having associated pharmacological and 

genomic data. First, gene targets of drugs are identified either through annotated 

mechanisms of action, through merging drug-response and genomic data to separate 

genomic features relevant to drug activity, or through computational modeling of drug-

protein interactions. Genomic features identified from analyzing drug-response and 

genomic data can be used to narrow the number of drug-protein interactions explored 

during computational modeling. Two strategies are commonly used to determine possible 

drug targets with computational modeling, molecular docking and ligand shape matching. 

In molecular docking, the chemical structure of the small drug molecule is inserted into 

hydrophobic pockets of computerized protein structures [64]. The affinity of the pocket 

for the molecule is calculated based on free energy and an affinity scoring function [64]. 

In ligand shape matching a database of known ligand structures is searched using the 

structure of the small molecule and probable matches are identified [65]. In addition to 



32 

chemical structure, molecular docking and ligand shape matching algorithms also 

consider key chemical properties like charge, electrostatic and van der Walls energies 

[64,65].  

 

Next, disease-specific gene targets are identified, again through annotation of known 

disease mechanisms or through the combination of disease severity and genomic data. 

One example of an analysis method that can be used to identify disease target gene 

relationships is genome-wide association studies (GWAS). Annotation of disease-related 

proteins is an ongoing process and frequently knowledge from new studies or databases 

can change the known disease targets.  

 

Finally, drug gene targets and disease gene targets are overlapped, and the relationships 

are characterized. There are six relationship possibilities: overlapping exposure, where 

both drugs have targets in common as well as targets within the disease target list; 

complementary exposure, where both drugs have targets within the disease target list and 

no targets in common; indirect exposure, where two drugs share common targets but only 

one drug has targets within the disease target list; single exposure, where two drugs do 

not share any common targets and one drug has targets within the disease target list; non-

exposure, where two drugs share targets and neither has targets within the disease target 

list; and independent action, where all drug and disease target lists are unique and no 

overlapping targets are found [66]. Only drug pairs that have a complementary exposure 

relationship with the disease have been shown to potentially improve treatment outcome 

[66]. After potential complementary drug pairs have been identified a long process of 
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testing and validation must follow to ensure the new treatment strategy is beneficial, safe 

and effective. 

 

2.2.3 Development of Cancer Treatment Regimens and New Therapeutics 

Development of new cancer treatment regimens, and especially new cancer therapeutics, 

is an extremely expensive and time-consuming process. The cost to develop a new cancer 

therapeutic is estimated to be between $1.3 and $2.7 billion [67]. Usually a minimum of 

12 years is required to develop a drug but often development runs longer, even 18 years 

or more [68]. Basing new therapeutics on previously approved structurally-similar 

molecules saves on development time and costs, and allows a drug company to bring a 

similar product to market to compete with rivals. Because of this many cancer drugs 

molecules are closely related to each other, both in structure and activity, and drug design 

innovation stagnates. However, some molecules with similar structures can have slightly 

different activities and side-effects. Similar molecules can therefore be potentially suited 

to treat a different type of disease, used in patients that do not respond well to another 

drug or be used in a new combination with another drug. Another way to save time and 

cost in developing new treatment strategies is drug repositioning, where a drug that has 

been previously approved to treat one disease is applied to another [69]. Drug 

repositioning, along with modifying the specifics of cancer treatment regimens like order 

and duration of treatments, is common in development of cancer treatment strategies. 

Even so, newly positioned drugs and treatment regimens must be supported by 

experimental evidence in animal models and go through phase I, II and III trials that can 

take 7 years or more to complete [63,68]. 
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2.3 High-throughput Genomics, Gene Expression and Splicing Quantification 

Before high-throughput genomics, studying the transcriptome was a tedious and time-

consuming process. A randomly primed complementary DNA (cDNA) library, prepared 

from mRNA using purified reverse transcriptase, was created for each sample and 

individual cDNA fragments would be cloned into vectors to facilitate sequencing [70]. 

From cDNA clones, expressed sequence tags (ESTs) which are sequences 

complementary to the original mRNA would be generated [70]. ESTs are therefore pieces 

of expressed genes, generally between 200-600bp in length, and could be mapped back to 

chromosomal locations with hybridization-based labeling technologies [70]. Because 

ESTs are incomplete sequences they can only be used to infer which genes are expressed 

and not the high-quality mRNA sequence, exon composition or mRNA quantity.  

 

Advancements in molecular biology and instrument technology now allow for 

sequencing the entire transcriptome of even single cells. However, due to cost, it is 

common to sequence the transcriptome of bulk samples with mixed cell types or to 

sequence a small fraction of the transcriptome of many single cells. The information 

gained from transcriptome experiments is highly dependent on the experimental design. 

For example, if the goal of the experiment is to quantify micro-ribonucleic acid (miRNA) 

then a library preparation procedure with a size selection step is required [71]. If the 

experimental goal is to study long non-coding RNA then a total RNA library preparation 

procedure is required as poly-a selection from hybridization-based preparation procedure 

would fail to capture many non-coding RNAs [72]. The downstream analysis strategy is 

also highly dependent on the experimental design. 
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2.3.1 High-throughput Transcriptome Sequencing Technologies 

Illumina sequencing technology is currently the market leader in high-throughput 

sequencing, primarily due to the massive output capabilities and low cost [73]. Illumina 

machines generate more sequence information in a single run (up to 6Tb on the NovaSeq 

6000®) than any other existing technology, support a wide range of experiment types, 

yield very high-quality data with error rates below 1% [73]. Illumina also provides more 

competitive pricing than smaller companies [73]. However, Illumina technology only 

produces reads up to 250bp long, and library preparation requires amplification of nucleic 

acids which can introduce errors and create sequence duplicates. Another limitation of 

short-read sequencing is that reads are much smaller than the mRNA molecules they are 

generated from, meaning that the complete mRNA sequence and therefore isoform 

structure remain unknown. 

 

Illumina library preparation for mRNA sequencing begins with clean, extracted mRNA. 

The template mRNA is usually either captured via polyA probe hybridization or enriched 

for by degrading ribosomal RNA [74]. Processed mRNA is then fragmented into smaller 

pieces, between 500-800bp long [74]. Fragmented mRNA is then randomly primed and 

cDNA is produced with reverse-transcriptase [74]. Second strand synthesis then replaces 

the original mRNA template creating double stranded cDNA [74]. Next, sample index 

sequences used to identify samples during multiplexing and Illumina adapter sequences 

are attached [74]. Prepared cDNA fragments are then hybridized to Illumina flowcells, 

the delivery mechanisms for sequencing reagents [74]. Clonal amplification of the bound 

fragments is then performed to boost the sequencing signal [73].  
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Sequencing is accomplished through sequencing by synthesis. Based on Sanger 

sequencing, fluorescently labeled terminator nucleotides are added to the flowcell and 

incorporated into the newly synthesized strand by DNA polymerase [73]. Each of the 

four DNA bases (A,C,G,T) is labeled with a unique fluorescent wavelength. A camera 

takes an image recording the color at each clonal DNA cluster [73]. The terminating 3’ 

blocker and dye are then chemically removed and another cycle begins [73]. In the case 

of paired-end sequencing, the free ends of the DNA fragments are hybridized again to the 

flowcell and the previously attached ends are released, flipping the fragments and 

allowing sequencing from the other side. Base calling is done by decoding the colors and 

quality measures are dependent on the clarity and intensity of spectra collected during the 

run. 

 

Another popular instrument is the ThermoFisher Ion Torrent® sequencing system [73]. 

This technology is similar to Illumina’s in that it uses sequencing by synthesis detect the 

sequencing signal [73]. However, sequencing with the ThermoFisher Ion Torrent® 

system requires fragmented templates be attached to beads rather than a flowcell [73]. 

The size of sequencing reads is similar to Illumina and is between 200-400bp. A template 

is clonally amplified around the bead in a microscopic oil droplet and all beads are then 

deposited into microwells where sequencing takes place [73]. The sequencing signal is 

detected by a semiconductor which records the change in pH that occurs when a 

hydrogen atom is released following nucleotide incorporation [73]. Due to the chemistry, 

the platform is susceptible to errors when sequencing homopolymer stretches greater than 
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6 bases as the extended signal from multiple identical bases can be difficult to classify 

[73].  

 

Both the Illumina and Thermofisher Ion Torrent® sequencing technologies are referred to 

as second generation (or next generation) sequencing technologies. Third generation 

sequencing technologies, which can produce a signal without amplification, are also 

currently used by laboratories on a limited basis while the sequencing chemistry is being 

perfected. Single-molecule real-time (SMRT®) sequencing provided by Pacific 

Biosciences (PacBio) is a popular third generation sequencing technology and is widely 

used primarily because of its read length [73]. The biggest advantages of PacBio’s 

SMRT® technology are long average read lengths around 14kb (but can be as long as 

60kb), real-time data collection and absence of clonal amplification [73]. Disadvantages 

are high cost, lower throughput and higher error rates (up to 11%) [73]. However, cDNA 

can be modified to allow sequencing the same fragment many times compensating for the 

high error rate and bringing the final accuracy above 99%. The extended read size allows 

for whole isoform sequencing, and complete mRNA isoform identification and 

quantification. 

 

The SMRT® sequencing protocol for RNA, known as Iso-Seq®, uses polyA selection to 

capture mRNA. cDNA is synthesized with the Moloney murine leukemia virus reverse 

transcriptase that adds multiple cytosine residues to the end of the elongated strand [75]. 

A primer is added which hybridizes to the polyC residues providing a template to 

incorporate an amplification primer. Second strand synthesis then replaces the original 
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mRNA template. Barcodes for multiplexing can be added to cDNA using sample-specific 

primers. Double stranded cDNA is then ligated to hairpin primer (SMRT-bell®) loops 

that create one circular DNA product [73]. Circularizing the DNA product is what allows 

the same fragment to be sequenced many times over, thereby increasing the accuracy to 

over 99% [73]. Transcripts can also be selected by size before sequencing using a follow-

up purification method. Sequencing is accomplished by hybridizing a sequencing primer 

and DNA polymerase to the DNA fragment, subsequently binding the DNA polymerase 

to the bottom of a well in a SMRT® cell and introducing phospholinked fluorescent 

nucleotides [73]. Rather than repeated cycling and chemical washing as in the Illumina 

process, SMRT® sequencing runs in continuous real-time [73]. A fluorescent signal 

specific to one of the four DNA bases is emitted as each nucleotide is incorporated. 

Instead of cycle-specific images as in the Illumina process, a video of the SMRT® cell is 

recorded and used for basecalling [73]. 

 

Another example of a third-generation technology is the Oxford Nanopore® technology 

[73]. The major advantages of the Oxford Nanopore® technology are long read lengths 

between 6kb and >60kb, single molecule sequencing with no amplification, minimal 

library preparation, fast sequence acquisition and low cost [73]. Some third generation 

machines, such as the MinION®, are highly portable and merely require a laptop and 

basic reagents to operate [73]. Additionally, nucleic acid modifications such as 

methylation can be detected during sequencing without any changes in workflow. Also, 

both DNA and RNA from a sample can be sequenced together in the same run. The 

sequencing trace from the run can differentiate between DNA and RNA so post-
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translational RNA modifications can be studied as well [76]. The major disadvantage of 

Oxford Nanopore® is high error rates with accuracy ranging from 83% to 95% [73,76]. 

 

Library preparation for Oxford Nanopore® is very fast and simple compared to second 

generation technologies. Nucleic acids, either DNA or RNA, only require fragmentation 

and adapter ligation before sequencing. cDNA can also be sequenced if desired [77]. For 

direct RNA sequencing, the 5’ methyl cap of the mRNA is removed and the sequencing 

adapter with bound motor protein is ligated to the 5’ end. PolyA selection based 

enrichment of RNA can also be done, and in that case a PolyT primer with motor protein 

is hybridized to the 3’ end of mRNA [77]. If greater accuracy is desired a 2D sequencing 

library can be prepared by ligating a hairpin primer to the end of the fragment and 

extending the complementary strand [73,78]. The hairpin primer connects the 

complementary strand to the template strand and allows the two to be sequenced together 

in one pass [73,78]. 

 

Nanopore® sequencing is accomplished by passing the prepared template through a 

voltage-sensitive synthetic membrane [73]. First, the primer-attached motor protein binds 

to a membrane-attached pore protein [73]. A current is applied to the membrane and the 

ionic differential pulls the template strand through. The pore registers changes in ionic 

current as the strand passes [73]. Disruptions in the current, such as those from various 

nucleotides and modifications, are measured and decoded in real-time [73]. The attached 

motor protein helps to reduce the speed of the template, thereby increasing the accuracy 

of base calling after the run [73].  
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2.3.2 Mapping of High-throughput Sequencing Data 

After sequencing of samples is complete, sequencing data must be quality assessed and 

reformatted in a way that allows researchers to understand and manipulate the data. 

Quality of the individual base calls is produced by the base calling algorithm, the 

mathematical model that converts raw sequence output such as image files to sequence 

information, for every sequencing method discussed above. Although the specifics of the 

base quality score calculation can vary, all methods of calculation are aimed at estimating 

how likely it is that a designated base was incorrectly assigned and all platforms produce 

what is called a PHRED score [79]. The equation for PHRED score is:  

 

������ = −10 × 
����(��) 

 

The PHRED score translates to a number between 0 and 93 where 0 is an incorrect base 

call and 93 is an extremely accurate base call [79]. Experiments that do not meet a 

minimum average PHRED quality level are considered failed runs and need to be 

troubleshooted. Raw sequences are stored in standardized plain-test sequence files known 

as FASTQ files that include the PHRED score for each base, unique read ID, and read 

sequence [79]. These files are usually compressed to save storage space. 

 

The majority of sequencing experiments for the purpose of gene expression and splicing 

quantification are done using tissue or samples from model organisms or humans (Homo 

sapiens). Genomes for Homo sapiens and model organisms such as mouse (Mus 

musculus) or rat (Rattus Norvegicus) have been well characterized though decades of 
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research, and standardized genome sequence references for these species are publicly 

available on the internet through reference sequence consortia such as the National 

Center for Biotechnology Information (NCBI), the European Bioinformatics Institute’s 

Ensemble and the University of California Santa Cruise (UCSC) Genomics Institute [80–

82]. Using a reference genome allows researchers to map the location of sequencing 

reads back to chromosomal positions, refer to an accurate annotation of genetic features 

so genetic elements such as genes can be quantified and produce comparable results 

across sequencing experiments.  

 

Mapping of sequenced reads to reference genomes is done using a wide array of 

algorithms that fall into two categories; ungapped aligners and splice-aware aligners. 

Ungapped aligners, such as Burrows-Wheeler Aligner Measure Memory (BWA-MEM), 

were designed to align reads to whole-genome DNA sequences and are useful for DNA-

based experiments or estimation of alignment rates to continuous known sequences [83]. 

Ungapped aligners are not suited for RNA sequencing analysis. Splice-aware aligners 

like Bowtie2, STAR and HISAT2 allow reads to be split during alignment [84–86]. 

Splitting reads during alignment is important because, as discussed above, during mRNA 

production transcripts are spliced to remove intronic sequence stretches that divide exons. 

Reads from RNAseq data frequently cross exon boundaries and a portion of the read will 

include sequence from another exon thousands of bases up- or down-stream. Unless a 

splice-aware aligner is used many junction reads will either fail to align or be discarded 

for poor alignment quality. 
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During alignment, minimum quality parameters are applied to ensure accurate mapping 

of sequencing reads to genomic coordinates. Quality parameters are usually influenced by 

the type of experiment a researcher is analyzing, the overall quality of the data being 

analyzed and the algorithm being used to map the reads. Limits can be set on parameters 

like the minimum number of matched bases, the maximum number of mismatches, the 

minimum number of bases mapped to another exon in a split read and the maximum 

genomic distance between paired reads originating from the same fragment. Aligned 

reads are usually filtered based on their mapping quality (MAPQ) score [87]. The MAPQ 

score is more complicated than the PHRED score but the premise is the same, to calculate 

the probability a read is aligned to an incorrect position. The score spans from 0 to 255 

where 0 is incorrectly mapped, increasing scores designating better mapping positions 

and with some tools (as is the case with STAR) 255 reserved to flag reads with unique 

positions in the genome. The basic form of the MAPQ score for an individual read is:  
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In MAPQ, MMS is the sum of the PHRED base scores for mismatched bases in an 

alignment, MMSi denotes the current alignment and the sum of the mismatch scores for 

alignments of the same read excluding i are in the denominator [87]. 

 

Alignment results are stored in a sequence alignment map (SAM) format file [88]. SAM 

files include the unique read id, raw sequence, CIGAR string detailing the alignment 

compared to the reference, MAPQ score, PHRED scores and other flags to designate 
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known read information [88]. SAM files are typically converted to binary format (BAM) 

to save on storage space. 

 

2.3.3 Quantification of Gene Expression 

Following read alignment, gene expression is quantified by counting the number of reads 

that align to each gene. Genomic positions for genes are obtained from annotation files 

matched to the genome reference sequence version used during alignment. These files are 

maintained by the various genome reference consortia and detail many different types of 

genomic features that researchers may be interested in. In some cases, features that are 

still under investigation will be present. To avoid later inflation of hypothesis testing 

during statistical analysis it is important to select an annotation that includes only well-

characterized reference genes when counting reads for gene expression purposes. 

 

There are two basic strategies for counting reads assigned to genes; exon union and exon 

intersection [89]. The exon union method counts reads mapped to all annotated exons 

belonging to a gene [89]. The exon intersection method counts only reads mapped to 

exons that are present in all isoforms (constitutive exons) [89]. Each strategy has an 

inherent weakness; the exon union method tends to underestimate gene expression and 

the exon intersection method can cause reduced power during differential expression 

analysis [89]. More advanced isoform-based methods, that rely on statistical inference, 

exist as well [89]. However, isoform-based methods assume the identities of isoforms 

based on annotation and observed reads, and some of the isoforms selected for 

quantification my not actually be in the sample. Additionally, the exon union method has 
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been previously shown to perform similarly to more advanced isoform-based methods 

and better than the exon intersection method, so the exon union method is more 

commonly used than others [89].  

 

If the ultimate goal of an experiment to compare the expression of a gene (or genes) 

across multiple samples, then as long as the same technique is used for all samples the 

specific quantification technique used is less important. However, if the goal is to 

compare expression of genes within the same sample, more attention should be paid 

toward selecting the best counting method. Lastly, it is important to note that raw read 

counts cannot be used directly for analysis or visualization of gene expression without 

normalization [89].  

 

2.3.4 Quantification of Splicing 

Quantification of splicing in high-throughput data falls into two categories; isoform-

centric and exon centric quantification. Isoform-centric quantification techniques are 

equivalent to the isoform-based methods of gene expression quantification. Exon-centric 

quantification techniques on the other hand aim to calculate the proportion of all 

transcripts that contain an individual exon.  

 

Isoform-centric techniques employ three basic steps: First, the identity of potential 

isoforms in the sample is inferred from a combination of the genome reference annotation 

and the alignment of observed reads in the dataset; Second, reads that can only originate 

from a single isoform and reads shared amongst fewer isoforms than the total are used to 
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compute a prior estimate of relative expression; Third, constitutive reads are assigned to 

isoforms using a statistical approach that maximizes the likelihood estimation and pseudo 

normalized expression values in the form of reads or fragments per kilobase per million 

(RPKM or FPKM) for each isoform are produced [90]. Depending on the tool, an 

isoform-centric algorithm may proceed ineratively until an approximate best possible 

solution is found and the algorithm converges. 

 

Exon-centric approaches are simpler than isoform-centric approaches and do not attempt 

to infer the identities of isoforms in a sample. Instead, the proportion of transcripts 

containing an individual exon is calculated, primarily based on junction read counts [91]. 

A percent spliced in (PSI) value (also known as inclusion level) for each combination of 

upstream, cassette and downstream exons is produced [91]. A single combination of 

upstream, cassette and downstream exons is frequently referred to as a splicing event. 

Inclusion junction reads, reads mapped to a flanking exon and a target exon that support 

the presence of the target exon in question, may be twice as abundant as exclusion 

junction reads since two junctions are present when an exon is included (the upstream-

target junction and target-downstream junction) but only one junction is present when an 

exon is skipped (the upstream-downstream junction) [91]. Therefore, the PSI value is 

approximately the ratio between the number of inclusion junction reads and the sum of 

the number of inclusion junction reads added to twice the number of skipping junction 

reads [91]. The effective length of the event (the total number of bases considering the 

upstream, target and downstream exons limited by read length) can be used to adjust the 

PSI value to increase the precision [92]. 
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Non-junction reads from the upstream, target and downstream exons may also be used 

with exon-centric quantification to estimate a confidence interval [91]. When confidence 

interval estimation is done, reads are randomly sampled to build a distribution of PSI 

values and the final mean PSI estimate is reported with the PSI distribution range [91]. 

Narrow confidence intervals can indicate strong confidence in the PSI estimate, but also 

might be from a lack of reads during sampling. To avoid false-positives and ensure 

events are real, splicing events should always be filtered by the total number of reads 

supporting the event.  

 

Isoform- and exon-centric approaches each have their own respective benefits and 

drawbacks. Isoform-centric approaches are good for accurately summarizing the 

expression of genes across multiple isoforms when fewer, well annotated isoforms in a 

gene exist. Isoform-centric approaches can also allow researchers to identify an 

imbalance in gene expression that can be missed through the common exon union 

quantification technique [89]. However, as mentioned in the gene expression 

quantification section, Isoform-centric techniques may infer the identity of isoforms that 

are not actually in the sample; this is especially true if the gene structure is complex. 

Exon-centric approaches are better when gene structure is complex, or when novel 

(unannotated) splice sites can be present. Annotation of events in exon-centric 

approaches relies on observed reads and gene annotation so no inference is required. 

Because exon-centric techniques target a smaller window of a gene they are well suited  

for downstream analysis, such as RNA-binding motif enrichment, around exons that 

might explain the regulation of the spliced event. Both isoform- and exon-centric 
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approaches can identify novel splice junctions and therefore never-before seen isoforms. 

However, in isoform-centric approaches a false-positive junction can propagate error by 

influencing the expression of other isoforms. Regardless of the method, care must be 

taken to ensure the novel splice junctions are reliable. 

 

2.4 Differential Gene Expression Analysis Methods 

Differential gene expression (DGE) analysis is the process of comparing gene expression 

between two groups of samples to identify alterations in gene expression due to a 

treatment or condition. DGE analysis is a long-researched field so the properties of the 

data have been well characterized and many analysis approaches have been developed. 

The process used for computational analysis of any data begins with characterizing the 

data and understanding its properties. The properties of the data then dictate the type of 

normalization required, the best approaches to processing the data and what the expected 

outcome may be. 

 

2.4.1 Normalization of Gene Expression Data for Visualization 

The purpose of data normalization is to remove the influence of technical effects that can 

systematically bias downstream analysis [93]. Several factors can bias RNAseq 

expression data such as the total number of reads sequenced for individual samples, the 

differing lengths of genes, mRNA expression dynamics, and changes in experimental 

factors or machine performance across multiple runs [93]. It is necessary to normalize 

RNAseq expression data so that values are comparable within and between samples. The 
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type of normalization used to correct for technical effects depends on how the data is 

being used. 

 

Normalization for the purposes of visualization is usually simpler than the process 

required for DGE analysis; this is because the goal during visualization is to create an 

obvious scale or separation between data to illustrate change, and the outcome is more 

qualitative. The primary technical concerns when visualizing data are total number of 

reads sequenced in each sample and the length of the genes. Normalizing for the total 

number of reads accounts for differences in the amount of library for each sample loaded 

during sequencing. Normalizing for gene length allows for the expression of longer genes 

to be compared to shorter genes. Commonly used data transformations include counts per 

million (CPM), reads or fragments per million (RPKM or FPKM) and transcripts per 

million (TPM) [94]. In the following equations, n is the number of counts for a gene, N is 

the total counts for a sample, l is the length of a gene in bases, and both i and j are genes 

[94]. The equation for CPM is: 
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Notice that CPM does not account for gene length. The equation for RPKM and FPKM 

does account for gene length and is: 
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The difference between RPKM and FPKM is related to the type of RNAseq data used to 

produce the counts. When single-end RNAseq data is processed individual read counts 

are used and the measure is RPKM [94]. When paired-end data is processed fragments 

are usually counted instead to produce FPKM [94]. However, FPKM cannot be 

calculated from RPKM in a paired-end experiment by multiplying FPKM by two because 

counting fragments requires both reads from the same fragment to map during alignment 

[94]. The equation for TPM is: 
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Also, notice that in TPM, the per-base counts for a single gene are divided by per-base 

counts for all genes effectively making it a fraction of one million reads. Therefore, TPM 

is particularly useful for comparing genes within the same sample [94]. CPM, RPKM and 

FPKM are all measures commonly used for plots such as smear plots and heatmaps. 

 

2.4.2 Normalization for Differential Gene Expression Analysis 

Normalization for DGE analysis is complicated and can vary based on the analysis 

approach being used. The goal of DGE analysis is quantitative and therefore more 

advanced technical concerns need to be addressed to ensure accuracy and reproducibility. 

To properly normalize the data for DGE analysis, both sample- and gene-specific effects 

must be controlled. Rather than transforming the data values, as is the case with 

normalization for visualization approaches, normalization and scaling factors are applied 
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during generalized linear modeling (GLM) through parameters. Three corrections must 

be applied when performing DGE analysis: scaling the library size to account for 

differences in total reads, correcting for the variation introduced from sampling a pool of 

mRNA from the total RNA in each sample, and accounting for the inherent biological 

variation between replicates [93]. One example of a popular method that simultaneously 

scales the sample library sizes and accounts for mRNA sampling is trimmed mean of M-

values (TMM) [93]. 

 

The TMM method assumes the majority of genes are not differentially expressed and 

attempts to estimate the ratio of total RNA production from the observed count data. The 

method calculates a scaling factor that is then used to adjust the library size for each 

sample, thereby shifting the model mean [93]. To approximate the relative difference in 

total RNA production using the TMM method, log2 fold changes for each gene with 

respect to the total counts are calculated between samples [93]. The method is ‘trimmed’ 

because a percentage of top and bottom genes, usually 30%, are ignored to avoid bias 

from highly and lowly expressed genes [93]. Then, the inverse of the asymptotic variance 

is used to weight the log2 fold changes, increasing the influence of genes with high read 

counts, and the mean (TMM) is taken [93]. The square root of the TMM value is 

multiplied against the non-reference sample library size, which produces a new 

‘effective’ library size that is passed to a DGE analysis model as an offset [93]. 

 

Inherent biological variability is a major source of gene expression variation and 

complicates DGE analysis [95]. It is important to use replicates within groups in a 
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RNAseq experiment so that biological variability can be corrected for. While differences 

in library size and composition are normalized outside DGE modeling, normalization for 

biological variability is done my tuning DGE model parameters. Typically, the negative 

binomial (NB) distribution is used to model gene count data in RNAseq experiments and 

differentially expressed genes are identified by using a GLM to quantify the difference in 

NB distribution parameters between groups of samples [96]. The NB distribution is 

similar to the Poisson distribution, which assumes the majority of gene counts are 

collected around a mean and some counts will be abnormally high. However, the NB 

distribution includes an additional dispersion parameter that can help account for 

common and gene-specific deviations that the Poisson model cannot [96,97]. Therefore, 

due to biological and technical variance, the NB distribution is better suited to RNAseq 

analysis as it can account for deviations from the Poisson distribution [97]. 

 

Biological variability is corrected for by passing a dispersion parameter to the NB GLM 

model for each gene being analyzed [98]. Three types of increasingly powerful dispersion 

parameters can be calculated; common, trended and tag-wise (or gene-wise) dispersion. 

The final dispersion method used in a model depends on the number of genes and the 

number of samples in a DGE experiment, which dictate the power of the dispersion 

calculations. Given the number of samples in modern high-throughput RNAseq 

experiments, power is less of an issue and tag-wise dispersion is most frequently used. 

However, Tag-wise dispersion calculations depend on common and trended dispersion 

values [99,100].  
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Common dispersion is a single value representing the biological variability across all 

genes and is calculated using the effective library sizes, gene counts and maximum 

likelihood estimation [99]. The same common dispersion value is used for all genes 

during NB GLM modeling and is useful for situations where there are very few (or no) 

sample replicates [99]. However, common dispersion is an oversimplified interpretation 

of biological variability as it is well documented that genes with lower expression have 

higher dispersion and higher-expressed genes have lower dispersion [100].  

 

Trended dispersion is where the common dispersion is fit to gene ‘neighborhoods’, gene 

groups comprising at least 25% of total genes with similar expression, based on the 

mean-dispersion trend of the observed data and a loess dispersion curve of degree 0 

summarizing the local dispersion likelihood [100]. If trended dispersion is used groups of 

genes will share the same dispersion value [100]. Trended dispersion is also 

oversimplified because each gene is expected to have it’s own dispersion, as each gene is 

subject to a unique genetic regulatory environment, but more reasonable than common 

dispersion [100].  

 

Lastly, tag-wise dispersion is a method that calculates a unique dispersion estimate for 

each gene, while balancing the dispersion information gained from other genes [100]. 

Tag-wise dispersion calculation uses an empirical Bayes framework to find the weighted 

average between the dispersion calculated from individual gene information only and the 

trended dispersion [100,101]. Using tag-wise dispersion shrinks the gene-specific 
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dispersion towards the trended dispersion allowing for more precise dispersion estimates 

to be used while mitigating overestimation from low sample observations [100]. 

 

2.4.3 Analysis Tools and Presenting Results 

As mentioned above, DGE analysis is primarily done using the negative binomial GLM 

framework. The vast majority of DGE analysis is done with one of two software 

packages; edgeR or DeSeq. The edgeR software package pioneered the simplification of 

DGE analysis in RNAseq by providing a series of functions and a standardized pipeline 

capable of translating complex analysis designs into basic code [97]. DeSeq followed by 

attempting to make improvements on the edgeR pipeline, adding more flexibility and bias 

control [102]. Both tools have undergone many improvements since the original release 

and have incorporated additional features that extended their functionality and made it 

possible to analyze almost any type of RNAseq experiment with either package. 

However, neither tool properly supports advanced modeling such as mixed-effect and 

longitudinal modeling since advanced modeling typically requires custom solutions. 

 

Regardless of the tool used, results for DGE analysis are typically visualized using the 

same types of plots. Multi-dimensional scaling (MDS) or principal component (PC) plots 

are used to check the objective clustering of samples and are based on groups of genes 

with the greatest orthologous variance. MDS and PC plots help confirm that samples 

assigned to each analysis group have similar gene expression trends and can assist in 

identifying outliers or mislabeled samples. Smear plots show the log2 fold change against 

the average expression (usually CPM normalized) for all genes between two groups of 
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samples. Smear plots are useful for checking that the data fits the assumptions of DGE 

analysis; specifically, that the majority of genes are low to medianly expressed, that 

expression of genes is not substantially biased by the treatment of one group, and that the 

model properly weighted identification of significant differentially expressed genes away 

from genes with extremely low or high read counts. Volcano plots, with significance on 

the y-axis and log2 fold change on the x-axis, separate genes by degree of significance 

and are good for highlighting the genes with the largest differences between two groups.  

 

Heatmaps show raw data for each gene across all samples in a dataset and illustrate 

contrasting expression values between sample groups. To emphasize differences 

heatmaps typically arrange data in obvious trends and can implement clustering 

algorithms to sort data by gene values, sample values or both. However, heatmaps can be 

biased through selection of specific genes, normalization of the data and the clustering 

process. Additionally, plotting a large number of genes usually results in an unreadable or 

superficial plot. Heatmaps are best reserved for displaying small sets of curated genes, or 

qualitative grouping of samples and any conclusions suggested by heatmaps should later 

be supported by additional quantitative analysis techniques. 

 

2.5 Differential Splicing Analysis Methods 

Special considerations for splicing analysis begin during mapping. Because splicing 

quantification methods often rely on mapped reads to identify unannotated transcript 

structure, and quantification of reads is heavily reliant on accurate mapping of reads 

across junctions, additional parameters need to be set to ensure the quality of mapped 
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data. Besides mapping quality, the minimum number of bases mapped to an exon and the 

maximum distance a read can span across an intron are set. A minimum of six bases 

inside an exon ensures a one in 4096 probability of a false-positive alignment and is a 

high bar when used in conjunction with a maximum intron size of 300,000. When 

mapping high-quality reads for gene expression, trimming adapters and low-quality bases 

is an optional step as the mapping algorithm will automatically soft-clip mismatched 

bases from the ends of an alignment. However, for splicing analysis it is common to trim 

reads beforehand and then force the aligner to map the entire read to maximize the 

number and quality of junction reads. The mapped insert size (distance between paired-

end reads) is also useful to ensure quality as it can be used to selectively count reads that 

map to the same transcript within a reasonable distance and eliminate unrealistic mapping 

results [91]. 

 

Differential splicing analysis methodology depends on the quantification technique used. 

isoform-centric approaches compare the expression of whole isoforms using approaches 

similar to differential gene expression techniques [103,104]. Methods for differential 

isoform-centric splicing analysis can include procedures for grouping isoforms and 

summarizing differences in expression at multiple levels [103]. For example, expression 

at the coding sequence, isoform- and gene-levels can be compared [103]. This 

dissertation is focused on exon-centric analysis approaches. Therefore, details related to 

analysis of isoform-centric data will not be reviewed. Exon-centric approaches use a 

specialized statistical framework to compare the distributions of PSI values and separate 

significant differentially spliced events [92]. 
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2.5.1 Normalization of Exon-centric Splicing Data 

Normalizing exon-centric splicing data for visualization is very similar to normalization 

of gene expression data. If the goal is to understand read coverage across an event, per-

base RPKM can be used. Because the PSI is a simple ratio, it negates the influence of 

read coverage bias. Therefore, when visualizing differences in splicing outcome, the PSI 

value (and optionally the confidence interval) can be used directly. Differential splicing 

analysis approaches usually begin with raw count data and normalize by converting the 

counts to PSI [91,92]. As with differential expression analysis, technical and biological 

variability are corrected for during modeling. 

 

2.5.2 Analysis Tools and Presenting Results 

The current gold standard tool for analysis of differential exon-centric splicing analysis is 

Replicate Multivariate Analysis of Transcript Splicing (rMATS) [92]. While other tools 

have been developed, rMATS is the only method that accounts for isoform uncertainty, 

biological variability and considers information about splicing patterns from junction 

reads [92]. First, rMATS models isoform uncertainty by classifying reads as either 

inclusion or exclusion reads (considering the structure of the five types of splicing events; 

A5SS, A3SS, SE, ME and RI) and fitting a binomial distribution for each sample PSI 

using the effective lengths of the inclusion and skipping event spaces [92]. Next, 

biological variability within groups is modeled through fitting a normal distribution with 

mean equal to the logit transformation of group mean PSI [92]. Finally, a likelihood ratio 

test is applied to determine the probability of group distributions differing more than a 

user-defined threshold [92]. Using a threshold for the likelihood ratio test restricts 
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significant events by biological relevance, but a threshold of zero can be used if the 

minimum effective change in PSI is not known. Filtering for biological relevance can 

also be done downstream of significance testing by removing events that to not meet a 

minimum difference in group mean inclusion levels. 

 

Visualization of splicing data is an important confirmatory step in splicing analysis and 

begins by loading aligned BAM files, a reference genome and annotation into a genome 

browser. Reads supporting individual events can be checked by mapping back the exon 

positions from the spliced event coordinates. Inspecting reads that map to exons and 

junction sites is essential for checking the accuracy of count data, identifying poorly 

mapped reads, observing the influence of parameters used during mapping and checking 

the annotation used to infer the transcript structure. Sashimi plots can be produced with 

BAM files and show the per-base RPKM and junction read counts across a spliced event 

[105]. In sashimi plots, the field of view is restricted to only include exons relative to a 

single splicing event. To summarize results across multiple events, a volcano plot with 

PSI on the x-axis and p-value or false discovery rate (FDR) on the y-axis is frequently 

used. Standard box and violin plots are useful for showing the distribution of PSI values 

within sample groups. 

 

2.6 Machine Learning and Predictive Modeling 

Machine learning is the process of training predictive models with experimental data to 

identify patterns that are not otherwise observable [18]. Machine learning is particularly 

useful for analyzing large and complex datasets; where more basic analysis methods, 
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such as plotting, correlation, and cluster analysis, are not powerful enough to reveal 

hidden trends in the data. Because modern biological experiments often involve high-

throughput techniques and can incorporate many different types of data, the importance 

and popularity of machine learning is growing [18]. 

 

Machine learning is used to meet one of three basic goals: 1) to produce a predictive 

model that can determine an outcome when given never-before seen data; 2) to divide, 

classify or cluster observations into groups; or 3) to identify underlying features that 

influence the outcome of a process, condition or event. Data used as input for modeling 

can be classified into two types: continuous data, such as a range of numbers like the 

temperature outside; or discreet data, like if an individual is wearing a black, yellow or 

red shirt [18]. In biological fields, machine learning models are typically used to identify 

underlying features that explain a disease, phenotype or trait; because of this, it is 

important that a machine learning model is robust, reproducible, and interpretable. The 

goal of the model, the data used to train it, and the desired properties influence the type of 

machine learning model used. 

 

2.6.1 Types of Machine Learning Models 

Machine learning models are divided into two primary groups; models that predict a 

continuous outcome and models that classify observations into a limited number of 

groups [18]. There are a wide variety of algorithms, each with their own unique 

mathematical basis, that accomplish modeling. Even within a single modeling strategy, 

there are many variations and parameters that can be applied to fine-tune the model 
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produced. Three popular modeling approaches are regression, random forest, and neural 

networks. 

 

Regression is a technique that attempts to calculate the parameters for a line equation 

where one or multiple covariates are weighted, and the total sum of the products between 

the weights and covariates is the prediction [18]. This technique is very powerful because 

the output of the linear equation can be controlled using a link function and one of many 

standard probability distributions. When defining the link and data distribution, 

regression is instead referred to as generalized linear modeling. The link function 

transforms the sometimes-non-linear output of an equation to be linear, with the 

distribution of the predicted values dependent on the mean of values from the linear 

equation. Linear regression is used to generate continuous predictions; however, logistic 

regression, where the output of the linear equation is converted to a probability between 

zero and one, can be used to classify observations [18]. Regularized regression is an 

advanced from of regression that applies additional weights to covariates during model 

fitting and can control the influence or restrict the number of covariates in the final model 

[18]. Ridge regression is one technique for controlling the maximum contribution a 

covariate can have and Lasso is a technique for controlling the number of covariates 

[106]. The method known as “Elastic net” uses Ridge and Lasso together, balancing the 

contribution of each approach through a ratio [106]. Elastic net is a popular technique in 

biological data modeling because it can integrate many types of biological data and select 

the most influential features from the covariates thereby reducing model complexity. 
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The random forest approach to machine learning is a non-linear classification technique 

that relies on a simple algorithmic building strategy [18]. Random forests are comprised 

of many individual decision trees, each of which votes on the predicted outcome from the 

ensemble [107]. Bootstrap aggregation, or bagging, is used to sample data observations 

that will be used to build a tree. Bagging randomly selects a subset of observations from 

the total dataset with replacement, meaning that the same observation may be selected 

more than once [107]. The “bagged” observation set is the same size as the original 

dataset, but with duplicates, and represents approximately 63.2% of unique data (due to 

the effect of replacement). Trees are constructed by randomly selecting a subset of 

predictive features, calculating the effectiveness (using information gain or entropy) of 

the features ability to divide the data, and splitting the data by the best predictive feature 

[107]. The process of selecting features and adding decision nodes proceeds down the 

tree until all observations are classified [107]. The construction of random forests is 

primarily controlled through two parameters: ntree, which limits the number of trees in 

the forest; and mtry, which limits the number of predictive features randomly selected for 

each tree [108]. The parameter mtry usually depends on the total number of predictive 

features in the dataset, with the square root of predictive feature count used for 

classification models and the predictive feature count divided by three for regression 

models. The final outcome of random forest is decided by comparing the number of trees 

that select each outcome. The outcome with the largest number of trees supporting it wins 

[107]. Accuracy of a random forest can be estimated internally by testing observations 

not used in building specific trees, called out-of-bag observations, with only the trees the 

observations were excluded from [107]. The relative contribution, and therefore 
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interpretability of the model, can be assessed through calculating predictive feature 

importance. Importance is calculated by permuting the value of a feature within a tree, 

using the out-of-bag samples to find the loss of accuracy, and then averaging the loss 

across all trees with the selected feature [107].  

 

Neural networks are named after their operational similarity to neurons in the brain and 

were originally designed to study brain function [18]. Like random forest, neural 

networks are composed of many individual learners. The basic decision unit of a neural 

network is a synthetic neuron, also called a perceptron [18]. Like real neurons, each 

synthetic neuron takes basic input values, sometimes aggregated from multiple upstream 

neurons, and applies a mathematical function converting the signal to output [18]. The 

mathematical equation within a synthetic neuron is comprised of a weight, which like 

regression is multiplied against the input, a bias term and an activation function [18]. The 

bias term is used as an offset to further adjust the weighted output and the activation 

function converts multiple inputs into a single output [18]. The sigmoid function, for 

example, is commonly used to represent the action potential of a real neuron and will 

return 1 if an input threshold is met or zero if not. There are many types of neural 

networks, each of which has many options for customizing the model input and training 

process [18]. While neural networks generally offer the best performance of all machine 

learning approaches they are not very reproducible, require an extremely large amount of 

data to train, and are typically not interpretable [18]. Because biologists are primarily 

interested in the underlying explanation behind predictions, neural networks are not 

frequently used [18]. 
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Finally, each machine learning algorithm is subject to inductive bias, the predisposition 

for a model to solve a task a certain way, that is dependent on the process used to fit the 

model [18]. For example, the inductive bias of the random forest modeling approach is 

that it summarizes data as a series of binary decisions. Inductive bias can be a limitation 

of the modeling approach or an advantage. Random forest will excel at identifying 

sequential relationships in data that determine the outcome. If the data features are 

sequentially related then random forest will likely produce an accurate and efficient 

model, even if the data are complex. If the data is not related sequentially then random 

forest may not perform as well as other modeling techniques.  

 

2.6.2 Feature Selection, Outliers and Missing Data 

Regardless of the machine learning approach used, feature selection (also known as 

dimensionality reduction) must be done. Feature selection is the process where non-

informative features are eliminated from the dataset before training to reduce the model 

complexity and prevent overfitting [109]. When selecting features it is important to use 

an objective approach to avoid biasing the model later. The most basic approach to 

feature selection is filtering based on simple data metrics like sparsity and variance. 

Features with many missing or zero values, and those with identical values across 

observations, will not contribute to the predictive power of the model and will only 

introduce noise. Advanced feature selection techniques can be used after basic filtering to 

remove even more features, thereby improving the speed of training and reducing the 

storage space required. 
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There are many advanced techniques for feature selection, and the method selected 

depends on the type of data, the model being trained, and the relationships within the data 

a researcher wants to retain [109,110]. Feature selection techniques can be supervised, 

where the outcome is considered during the calculations, or unsupervised. One of the 

more popular unsupervised techniques is principal component analysis (PCA) [111]. 

PCA uses eigenvectors to identify features responsible for the greatest orthologous 

variance, summarizing their feature sets into single numeric values [111]. Feature sets, or 

components, are sorted by the total variance across samples they account for and the 

features from top N components, N determined by a significant drop in variance for 

components ranked lower, are retained for modeling. Tests for feature independence or 

outcome correlation, such as the chi-squared test, Pearsons’s correlation coefficient, and 

linear discriminant analysis are also used to reduce the number of features [109]. 

 

Observations may also be removed before modeling if they have extreme values for the 

predictive features or outcome; this prevents the model from being influenced by outliers. 

Another way to handle outliers is to transform the data with an equation. For example, if 

the majority of feature values are about the same order of magnitude, but some 

observations have a 10-fold or greater difference then log transforming the data will 

restrict the contribution of those values in the modeling process. 

 

Some machine learning approaches, like random forest, require values for all 

observations in order for a feature to be used in modeling. In such cases, missing data 

must be supplemented with pseudo-values that are representative of the feature but do not 
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bias the learning process. One strategy for filling missing data is population-based 

statistics. For example, one can simply substitute using the mean or median of the feature 

values. Another approach is random or semi-random imputation [112]. In random 

imputation a value is drawn, usually with replacement, from a randomly selected feature 

and sample. In semi-random imputation, first the available values from filled samples of 

the missing feature are compared to the values in other features and the replacement 

value will be drawn from a subset of features with values that are similar to the missing 

value distribution. Finally, some models prefer that any features with missing values be 

removed from the dataset. While removing features due to missing data tends to remove 

an extensive amount of data from other samples, it also prevents training bias due to 

unfavorable imputation. 

 

2.6.3 Model Training 

Training of machine learning models begins by dividing the available data observations 

into training and testing datasets [18]. All operations associated with training models, 

including feature selection, happen within the training data set [18]. The testing dataset is 

reserved to assess the performance of a trained model on never-before-seen data [18]. 

Data can be divided in any ratio, but commonly 70% training and 30% testing or 90% 

training and 10% testing are used. Testing and training datasets are divided randomly. 

However, before any operations are conducted on the data it is recommended to set a 

random “seed”; a number that is used by a random number generator to initialize a 

randomized drawing routine. Setting a seed is important because many machine learning 

approaches require randomized sampling or parameter tuning and a seed allows someone 
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to reproduce the model building process later. If building a model for classifying data, it 

is important to balance the number of observations in each class [18]. Otherwise, the 

model may be biased to predicting one class over another. If the goal is to compare 

multiple machine learning approaches, identical training and testing data sets must be 

used for all models. A validation dataset may be used to compare the performance of a 

trained model on data from another source. If a validation set is used, it is frequently 

obtained from a separate experiment, external publication or public database.  

 

There are three basic types of machine learning techniques; unsupervised, semi-

supervised and supervised learning. In unsupervised learning, no labels or outcome are 

provided with the observations and the data is separated by inherent feature differences 

[18]. In semi-supervised learning, some of the data is labeled and learning is initialized or 

corrected using known information [18]. In supervised learning, the labels or outcome are 

known and the model learns how to optimize the predictions accordingly [18]. Every 

machine learning approach has parameters that can be adjusted to fine-tune the model 

building process. Basic parameters dictate the power or performance of the model and are 

usually subject to an optimization procedure to ensure the best outcome [18]. 

Hyperparameters control how quickly a model is trained and can have a smaller influence 

on the model outcome, but greatly influence the time required for training [18]. There are 

two popular methods of tuning model parameters during training: grid search, where a list 

of possible parameter values is supplied to the model and training proceeds through each 

one; and gradient descent, where a large approximate starting value is set to a parameter 

and then sequentially smaller values are tried in later training iterations, honing the 
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optimum solution. The improvement in model performance between repeat trainings is 

determined by a loss function [18]. 

 

In machine learning, the loss function calculates the difference between the ground truth 

and predictions of a trained model [18]. Popular choices for the loss function include R-

squared, adjusted R-squared, root-mean-squared error, mean absolute error, accuracy, 

kappa and entropy. Because there are two basic types of machine learning approaches, 

continuous prediction and classification, methods to calculate loss fall into the same two 

families. R-squared, adjusted R-squared, root-mean-squared error and mean absolute 

error are all metrics used for calculating loss in continuous prediction. R-squared and 

adjusted R-squared are focused on assessing the variance explained by a machine 

learning model through comparing the variance in the predicted values to the variance in 

the ground truth values. Root-mean-squared and mean absolute error are focused on 

quantifying the deviation between the predicted values and ground truth values. 

Accuracy, kappa and entropy are metrics used in classification. Accuracy is simply the 

fraction of correct classifications out of total observations. Accuracy can be deceiving 

though as there may be an imbalance between the number of observations in each class. 

Because of this, methods like kappa and entropy consider class membership to better 

assess model balance [113]. 

 

When training machine learning models it is common to repeatedly sample a portion of 

the training data, fit a model and asses its effectiveness against the unselected training 

data via the loss function. This process is referred to as cross validation and is useful for 
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adjusting hyperparameters, estimating performance on external data, and limiting the 

influence of random effects introduced during the modeling process by allowing 

researchers to select the best trained model [18]. Cross validation can be combined with 

grid search or gradient descent to achieve a thorough but time-intensive training 

procedure. 

 

2.6.4 Model Evaluation 

While the loss function is used to assess performance and adjust parameters during 

learning, the overall performance of the best fit model is estimated after training using the 

testing data set. The metrics for evaluating continuous models are the same as the loss 

functions during training. On the other hand, performance for classification models is 

usually reported in terms of accuracy along with qualifying metrics like sensitivity, 

specificity, precision, recall and F1 score. Qualifying metrics are calculated using the 

four ground truth classification counts: true positives (TP), correctly assigned positive 

observations; false positives (FP), incorrectly assigned negative observation; true 

negatives (TN), correctly assigned negative observation; and false negatives (FN), 

incorrectly assigned positive observation. The classification metric equations are: 
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It is also common to visualize the performance of classification models using a receiver 

operating characteristic (ROC) curve. A ROC curve plots the sensitivity (y-axis) against 

one minus the specificity (x-axis). The larger the area under the ROC curve, the better the 

overall performance of a classification model is.  

 

Comparing the performance metrics from training and testing data in machine learning 

models is an important check to understand the real-world value. Underfitting is when a 

model has poor performance on training data and indicates that training did not fully 

capture the relationship between the outcome and predictive features [18]. Overfitting is 

when the training performance is excellent, but the model fails to predict testing or 

validation data sets correctly [18]. Overfitting is especially undesirable in biological data 

as it can cause researchers to report incorrect associations that are later disproven or 

detrimental to future research. Revisiting the selected machine learning approach, 

training procedure, and underlying dataset are all steps that can be taken to improve 

performance of machine learning models.  
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2.7 Network Analysis Methods 

Network or systems biology is the study of biological interactions through computational 

modeling of synthetic networks[114]. Networks exceed at representing large volume, 

high complexity interaction data in a digestible format, and network mathematics is a 

well-developed field that offers a wide array of techniques for characterizing interactions. 

Analyzing data using a network-based approach allows for discovery of complex 

interactions that are otherwise invisible [114]. Network representations of biological data 

are extremely flexible and can support a wide array of data types. Network-based 

approaches are also well suited for integration of multiple data types [114]. High-

throughput genomics has enabled the development of network systems biology by 

generating large volumes of multi-omics data that requires integration [114]. High-

throughput genomic data also has extraordinary potential to inform researchers on the 

underlying rules of cellular biology.  

 

2.7.1 Network Components, Design and Structure 

The components of a network are very simple. Network entities are represented through 

nodes, sometimes called vertices, that can be any biological gene, protein, molecule or 

feature in general [114]. Nodes are connected to each other pairwise through links, 

sometimes called edges, that represent the relationship between the two entities [114]. 

Links can be binary or weighted, and directed or undirected [114]. Using a network 

framework, biological phenomena like protein-protein interactions, transcription factor 

regulation, enzymatic pathways and small-molecule signaling can be represented with 

ease. Networks are also defined by a mathematical structure, based on the number and 
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probability of connections between nodes [114]. The number of connections a node has is 

called the degree [115]. The two most common network structures in biology are random 

structure and scale-free structure.  

 

In a random network, each node has approximately the same probability of connecting to 

another, and the degree of each node follows a Poisson distribution [114]. Random 

networks show no connection preference to individual nodes on average, and if the 

network is disrupted by removal of a node approximately the same number of edges will 

be destroyed. The distribution of node degree in a scale-free network follows a power 

law, where the probability of new node connections is dependent on the number of 

existing connections [114]. 

 

Scale-free networks mimic the evolutionary nature of biological interactions in that 

certain genes have substantially more interacting partners than others [114]. One reason 

biological networks have evolved to be scale-free is gene duplication [114]. Gene 

duplication creates an identical copy of a gene and therefore its translated protein retains 

the interacting partners [114]. Additionally, if an interacting partner is duplicated it is 

more likely to have a connection to the previously duplicated gene pairs [114]. Evidence 

supporting gene duplications role in network structure has been found in that 

evolutionarily older genes tend to have more interacting partners [114]. Another reason 

biological networks have evolved to be scale-free is that a scale-free network provides 

greater systemic protection in the off chance a node is removed. For example, if a loss-of-

function mutation occurs randomly across all genes, then in a scale-free network it is 
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much more likely that a mutation will occur in a gene with few connections since most 

connections occur in a limited number of nodes [114]. 

 

2.7.2 Network Metrics 

Network metrics are useful for describing structure within a network and can also be 

essential in algorithms that search for network communities. One example of a node-level 

metric, node degree, has already been introduced. In a directed network a node can have 

both an in-degree, the number of connections directed to the node; and an out degree, the 

number of connections directed from the node [115]. In a weighted network, the node 

strength is the sum of all weighted edges connected to a node [115]. Strength can also be 

broken down to in- and out-strength in a directed network [115]. Betweenness centrality 

is the count of the shortest paths between neighboring nodes that flow through a target 

node and indicates the importance of a node in transferring information across the 

network [115]. Additional metrics have been developed that are more specific to the type 

of information a network represents.  

 

Network-level metrics are also useful for describing the overall shape and content of 

networks. Network-level metrics can also help researchers decide what analysis 

algorithms to use. Density is the total number of edges in a network divided by the 

number of all possible edges and indicates how saturated a network is [115]. Assortativity 

is the preference for nodes with similar characteristics to connect with each other and 

positive assortativity can indicate rapid spread of information [115]. Transitivity 
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measures the number of node trios with 3 edges compared to trios with only 2 edges and 

signifies the clustering potential of a network [115]. 

 

2.7.3 Network Module Discovery 

Network module discovery, also called community identification or clustering, is an 

extremely important field of research that is essential to understanding network structure. 

A network module can be loosely defined as a set of nodes with more connections 

between members that would be expected at random [116]. This definition also implies 

that nodes in a module are connected more frequently to each other than they are to other 

nodes in the network [116]. Many different module discovery approaches exist, all of 

which are tailored to the type of data within the network or the network structure and 

metrics. Although efforts have been made to compare module discovery algorithms, often 

there is no single best solution for biological data and it is common to combine multiple 

techniques or results from a number of algorithms to achieve a better outcome.  

 

There are two components of a module identification algorithm; the method the algorithm 

uses to find linked nodes in the network and the scoring function. One method for 

identifying linked nodes in a network is random-walk [117]. Random-walk based 

algorithms begin at a starting node and randomly select a connected node to add to the 

module. The edge between the starting node and new node will be considered in the 

module scoring function. The random-walk is then repeated from the new node and the 

process continues until a condition is met, such as a specific number of iterations or a 

marked decrease in the combined module score. One example of a measure that is used to 
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score modules is called modularity [116]. To calculate modularity, the squared 

probability of both intra-cluster and inter-cluster edges is subtracted from the probability 

of intra-cluster only edges [116]. The overall probability of a module occurring at random 

in a specific network can also be calculated [118]. The module probability can then be 

used to filter weaker modules and select the most significant communities for 

downstream analysis. 
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Chapter 3 Differential Gene Expression Analysis of Concussed Athletes Reveals 

Differences in Immune Signaling Pathways and Immune Cell Types 

3.1 Acknowledgement of Contributions 

The analysis performed in chapter 3 was made possible through collaboration with 

members of the Concussion Assessment, Research and Education (CARE) Consortium. 

Participant blood specimens were collected through a partnership between academic, 

medical and sport professionals at numerous collegiate institutions across the United 

States. Specimens were transported to the Clinical and Translational Sciences Institute 

Indiana Biobank for storage and were processed and sequenced by the Indiana University 

Center for Medical Genomics. I performed quality control, computational analysis and 

visualization of the sequencing data. 

 

3.2 Introduction 

Concussion is a type of mild traumatic brain injury resulting in brief loss of normal brain 

function due to a head injury [119]. Despite being a coded diagnosis in ICD10, 

concussion is a non-specific term and symptoms can range in type and severity [119]. 

Concussion poses a major public health threat. A 2017 study found 15.1% of high school 

students (2.5 million) playing a sport, received at least 1 concussion in the last 12 months 

[120]. TBI in service members has been more prevalent in recent conflicts like Iraq and 

Afghanistan [121]. Between 2000 and 2015 over 300,000 service members sustained a 

TBI and of those more than 80% were concussions [121]. Furthermore, concussions from 

automobile accidents and accidental falls are the most common mechanisms of 

concussion, and account for almost 75% of all traumatic brain injury hospitalizations 
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[122]. Quickly identifying the symptoms of concussions and intervening to prevent 

further brain injury is essential to recovery. Currently, athletic programs and other 

institutions are advised that immediate removal from activity when a concussion is 

suspected is the best course of action [13]. Unfortunately, concussion symptoms can be 

hard to detect. Studies show athletes underreport concussions not only because the 

symptoms can be subtle, but also because of their commitment to the activity [13,123]. 

Development of a rapid diagnostic test to assess concussions would greatly improve the 

diagnosis of and intervention after concussions.   

 

Although many individuals recover from concussions within two to three weeks, some 

individuals experience extended lag times in recovery [11]. Persistent symptoms of 

concussion, also known as post-concussion syndrome, can last months [11]. Research 

into concussion diagnostics has largely focused on blood-based biomarkers. Yet, no 

biomarkers or underlying genetic factors have been identified that help explain post-

concussion syndrome [11]. Little is known about the gene expression signature following 

concussion, or potential expression biomarkers that could aid in diagnosis and recovery 

prediction. Given that blood-based assays have identified potential biomarkers, we 

hypothesize that gene expression-based diagnostic or prognostic biomarkers may also 

exist [124]. We anticipate investigating post-injury gene expression signatures will reveal 

differentially expressed genes that are relevant to concussion response and recovery. We 

intend to identify processes coordinated through changes in gene expression and uncover 

trends in gene expression that are informative for long-term recovery prognosis.   
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This study describes the initial findings from whole transcriptome RNAseq analysis on 

concussed individuals, spanning preseason baseline and multiple post-injury timepoints. 

This study also introduces a comprehensive dataset that will be a valuable resource for 

researchers investigating the consequences of head impacts, traumatic brain injuries and 

gene expression biomarkers.  

 

3.3 Materials and Methods 

3.3.1 Study Participants and Sample Collection 

The Concussion Assessment, Research and Education (CARE) Consortium is a 

partnership between the Department of Defense and the National Collegiate Athletic 

Association that was formed to further the study of concussion neurobiology and 

consequences of exposure to repetitive head impacts [125]. To date, CARE has enrolled 

over 50,000 volunteer collegiate varsity athletes and military academy recruits 

participating in competitive sports [126]. For this study, whole blood was collected from 

a cohort of 552 varsity athletes and military cadets participating in various sports between 

2015 and 2019. Samples were drawn into PAXgene tubes (BD Biosciences, Cat. No. 

762165) at six timepoints: baseline (Base), before injury; post-injury (PostInj), taken 

within six hours of injury; 24-hour (24hr) taken between 24 to 48 hours after injury; 

asymptomatic (Asymp), when an athlete begins return-to-play progression; seven days 

post unrestricted (7PostUR), when an athlete has been cleared for return-to-play; and six 

months (6Mo) from the date of injury [125]. Athletes were divided into three groups 

based on injury status: non-contact controls (NCC), athletes who did not participate in 

contact sports; contact controls (CCT), athletes who participated in contact sports but did 
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not sustain a concussion; and injured athletes (INJ), athletes who sustained a concussion 

during an athletic event. [ansote] The full study protocol is available from (Broglio et al. 

2017) [125]. Regardless of group status, only participants with baseline samples were 

retained for analysis.  

 

3.3.2 Sequencing Library Preparation  

Total RNA was extracted from blood cells using the PAXgene Blood RNA kit (Qiagen) 

followed by DNase I treatment to remove contaminating genomic DNA. Dual-indexed 

strand-specific cDNA libraries were prepared from eluted total RNA using the Kapa 

mRNA HyperPrep kit (KapaBiosystems) along with QIAseq FastSelect Human Globin 

removal kit (Qiagen). Libraries were prepared in a 96-well plate using a Biomek FxP 

Laboratory Automation Workstation. Each plate was pooled using the QIAgility 

Automation System. Pooled libraries were loaded onto a flowcell that was sequenced 

with 2×150 bp paired-end configuration on a NovaSeq 6000 instrument (Illumina, Inc.). 

 

3.3.3 Gene Expression Quantification and Differential Expression Analysis 

Sequence reads from RNAseq experiments were aligned to the human genome (hg38) 

using STAR v2.5.2b [85]. Gene expression levels were quantified by counting the number 

of RNA fragments aligned to exonic regions of genes using the program featureCounts 

[127]. The data were analyzed as individual timepoints compared to baseline to avoid 

eliminating participants with missing time point data. Differential expression analysis 

was performed with edgeR using negative binomial generalized log-linear modeling 

(GLM) and likelihood ratio tests [97]. When calculating distribution parameters with the 
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estimateDisp function, the robust option was used to nullify extreme outliers. Genes with 

very low read counts were removed before differential expression analysis to reduce the 

number of individual statistical tests performed and to avoid inflated significance values. 

Genes were filtered if they had less than 1 count per million mapped fragments (CPM) in 

a minimum number of samples at each timepoint. Given the large number of samples in 

each group, we defined the minimum number of samples as 25% of the smallest group in 

the comparison (i.e., injured vs. contact controls). At each time point, the minimum 

sample thresholds (N) were: PostInj (48); 24h (58); Asymp (61); 7PostUR (57); and 6Mo 

(42). 

 

Differential expression analysis was performed at each timepoint compared to baseline 

and a contrast between the injured and contact control groups was calculated. 

Comparison of contact control and non-contact control participants at the PostInj 

timepoint was used to define the gene expression background levels for concussed 

athletes on rest following injury. In all comparisons, genes with Benjamini-Hochberg 

false discovery rate (FDR) ≤ 0.05 were considered significant [128].   

 

3.3.4 Gene Ontology Analysis 

Gene ontology (GO) analysis is a type of enrichment analysis where the top differentially 

expressed genes in an experiment, defined by a significance cutoff, are matched against 

reference gene lists that have been annotated to biological terms or functions. Enrichment 

tests determine if a term is significant by comparing the number of matched genes in a 

list to a random background. GO analysis was performed in R using the clusterProfiler 
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package [129]. Differentially expressed genes with FDR ≤ 0.05 were converted to Entrez 

gene IDs using Biomart [130,131]. Biological process, cellular component, molecular 

function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic reference 

lists were searched with clusterProfiler to determine enrichment for terms at the PostInj 

timepoint. Only terms with FDR ≤ 0.05 were considered significant. Terms with 

enrichment lists containing ≥ 50% common genes were merged.   

 

3.3.5 Gene Set Enrichment Analysis  

Gene set enrichment analysis (GSEA) is a type of enrichment analysis that does not 

depend on a significance cutoff, making it ideal for situations where few or no 

differentially expressed genes are identified. Instead, genes are ordered by significance 

and a running score is obtained as matching proceeds down the full list. GSEA was 

performed on differential expression results at all timepoints, with genes ranked by the 

sign of the fold change multiplied by the -log(p-value) from differential expression 

analysis, using the GSEA v4.1.0 app and MSigDB v7.3 [132,133]. 

 

3.3.6 Deconvolution Analysis  

Deconvolution analysis is the process where cell type proportions can be estimated from 

bulk RNAseq data based on marker gene expression. Deconvolution analysis was 

performed with CIBERSORTx using raw read counts and default software normalization 

[134]. A GLM was used to test the difference between estimated percentages of cell types 

output by CIBERSORTx. The cell type percentage of the Base sample and the group were 

used as covariates to predict the cell type percentage of the timepoint sample. All 
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timepoints were tested, but only a few cell types from the PostInj timepoint were 

significant at FDR ≤ 0.05. 

 

3.4 Results 

3.4.1 Participant Demographics and Dataset 

A total of 2,489 blood samples were collected from 552 athletes amongst all groups. 

Participants without baseline samples in the contact controls and injured groups were 

filtered, leaving 129 contact control, 230 injured, and 102 non-contact control individuals 

with a combined total of 2,125 blood samples. A breakdown of participant demographics 

is in Table 1. Because some sample collections were missed, unaccounted for, 

improperly recorded, or failed quality control, the number of samples at each timepoint 

differed between groups. During the study, nine contact control participants sustained a 

concussion and were subsequently reclassified as injured participants; as a result, samples 

from these athletes were present in both contact control and injured groups. Therefore, 

the baseline samples for these nine participants were duplicated for the reclassified 

sample sets, but the other blood draws for these participants (40 in contact controls and 

33 in injured) remained unique in the dataset. In addition, one contact control athlete 

served as a control in two different seasons, and while the same baseline sample was 

used, unique blood draws separated by season distinguished the sample sets. The first 

contact control sample set for this participant was composed of five unique blood draws 

and the second set was composed of two unique blood draws. 
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We constructed 130 contact control and 230 injured sample sets, each having a baseline 

blood draw and at least one sample from a later timepoint. A summary of sample group 

numbers at each timepoint is provided in Table 2. The distribution of participant sample 

sets is shown in Figure 1. Non-contact control samples were used to represent time-based 

gene expression variance. For each of the 102 non-contact control participants, the first 

sample drawn was considered the Base sample and each subsequent sample for that 

participant was individually paired with the Base sample as a separate sample set. As a 

result, there were 428 non-contact control sample sets.  
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Factor  NCC  CCT  INJ  

Total  102  130  230  

Sex        

      Male  82(80.4%)  99(76.2%)  182(79.1%)  

      Female  20(19.6%)  31(23.8%)  48(20.9%)  

Age (SD-)  19.3(1.2)  19(1.2)  18.9(1.2)  

Military Status        

      Military  0  37(28.5%)  126(54.8)  

      Non-military  102(100%)  93(71.5%)  104(45.2%)  

Race        

      African American  13(12.7%)  30(23.1%)  45(19.6%)  

      Asian  0  1(0.7%)  3(1.3%)  

      Hawaiian/Pac. Isl.+  1(1%)  1(0.8%)  4(1.7%)  

      Indian/Alaskan  3(2.9%)  0  0  

      MSU* 7(6.9%)  9(6.9%)  21(9.1%)  

      White  78(76.5%)  89(68.5)  157(68.3)  

Ethnicity        

      Hispanic  8(7.8%)  9(6.9%)  13(5.7%)  

      MSU*
 1(1%)  12(9.2%)  29(12.6%)  

      Non-Hispanic  93(91.2%)  109(83.8%)  188(81.7%)  

Injury Sustained        

      Competition      88(38.3%)  

      Practice/Training      132(57.4%)  

      Outside Sport      10(4.3%)  

Sport        

      Football   61 101 

      Ice Hockey   10 20 

      Soccer   29 47 

      Lacrosse  8 16 

      Rugby  9 27 

      Wrestling  2 7 

      Cross Country/Track 37 1 2 

      Intramurals  6 9 

      Softball 7  1 

      Baseball 37   

      Basketball 13   

      Field 8   

      Other  3  

      Unknown 

 
 1   

Table 1 Cohort demographics of CARE participants. “Other” includes skiing, boxing and 
handball. - = Standard Deviation; +Pac. Isl. = Pacific Islander; *MSU = Multiple, 
skipped, or unknown. 
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 CCT INJ 

PostInj 125 96 

24h 117 173 

Asymp 123 194 

7PostUR 115 171 

6Mo 85 138 

Table 2 CARE sample group balance. Sample group numbers at each timepoint for 
contact control and injured participants. 
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Figure 1 CARE sample set distribution. Upset plot showing set membership for contact 
control and injured blood samples. The main panel shows the total number of 
observations with multiple time points. The time point coverage is annotated below. A 
black dot indicates a blood sample was drawn at a given time point. The left barplot 
indicates the total number of samples at each timepoint. 
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3.4.2 Differential Gene Expression Analysis Reveals Many Altered Genes 

Immediately Following Concussion 

To investigate the timeframe whereby sports-related concussion altered gene expression 

patterns in peripheral blood, we performed differential gene expression analysis for each 

timepoint. We fit a model comparing a selected timepoint to the paired Base sample 

within contact controls and injured participants separately. Then, the injured and contact 

control models were contrasted to identify changes specific to injured participants. By 

first modeling within the contact control and injured groups, and then comparing between 

them, we controlled for gene expression changes resulting from contact sport 

participation and not associated with injury. We found that the highest number of 

significant differentially expressed genes occurred at the PostInj timepoint (N = 860) and 

that the number of differentially expressed genes was dramatically reduced by the 24h 

timepoint (N = 8). Volcano plots of differentially expressed genes at all follow-up 

timepoints are in Figure 2. 
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Figure 2 Volcano plots for CARE differential gene expression analysis. Genes with FDR ≤0.05 are in red. 
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3.4.3 Gene Expression Changes After Concussion Mirror Pathophysiology 

Dysregulation of calcium metabolism and calcium dependent signaling is a known 

consequence of brain injury [135]. After concussion, the disruption of membranes in 

neuronal cells triggers ionic flux [135]. Cells attempt to restore homeostasis by activating 

ion pumps, including calcium pumps, which in turn consume ATP and starve the brain of 

energy [135]. Multiple genes related to calcium metabolism were altered in expression at 

the PostInj timepoint, including CAMK2G, CAMKK2, and CAMKK1 which were all 

positively regulated in concussed participants. At least 15 components of solute 

transporters were altered in expression including four members of the SLC22 family 

(SLC22A15, SLC22A16, SLC22A1, and SLC22A4), each of which were increased in 

expression and can transport carnitine. Carnitine is synthesized from the amino acids 

lysine and methionine, and used in cells to transport long-chain fatty acids into 

mitochondria for energy production [136]. Together, the upregulated genes we observed 

related to calcium and energy metabolism suggested a compensatory effect following 

injury, and matched the pathophysiology reported for concussions. 

 

3.4.4 Changes in Blood-based Protein Biomarkers Are Not Observed in Gene 

Expression Data 

We also investigated known potential biomarkers for traumatic brain injury diagnosis 

[124,137]. Two FDA approved biomarkers used in the i-STAT TBI plasma test (Abbott), 

GFAP or UCH-L1, did not meet the minimum expression threshold for analysis at any 

timepoint. The gene encoding Tau, MAPT, also did not meet the minimum expression 

threshold for analysis at any timepoint. Neurofilament Light Chain, NEFL, was expressed 
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at all timepoints but no significant differences were observed between injured and control 

participants. 

 

3.4.5 Gene Ontology Enrichment Analysis Identifies Activation of Immune 

Signaling Processes 

To explore the biological function of differentially expressed genes after concussion, we 

performed GO term and KEGG pathway enrichment analysis on the differentially 

expressed genes at the PostInj timepoint. The resulting lists were ranked from smallest to 

largest FDR and the top two biological processes were neutrophil activation and 

neutrophil mediated immunity. Other significant biological processes were also related to 

immune response, such as “cytokine production involved in immune response”, “positive 

regulation of cytokine secretion”, “interleukin-1-mediated signaling pathway”, and 

“regulation of CD4-positive, alpha-beta T cell activation”. Inflammation following 

primary injury is thought to be one of the mechanisms of neuronal tissue damage in 

concussions [138,139]. Acute inflammatory response and upregulated cytokine 

production has also previously been observed in smaller studies [140,141]. In our study, 

we observed significant gene expression differences in multiple interleukin receptor 

genes at the PostInj timepoint, including IL1R1, IL1R2, IL1RAP, and IL2RB. Several 

other biological processes related to signal transduction pathways were found, such as 

regulation of small GTPase mediated signal transduction and protein 

autophosphorylation. Likewise, enriched KEGG pathways included natural killer cell 

mediated cytotoxicity, MAPK signaling pathway, and NOD-like receptor signaling 

activity (Figure 3). 
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Figure 3 Enriched GO and KEGG terms in differentially expressed genes. Significantly enriched GO (A) and KEGG (B) terms at the 
PostInjury timepoint. The diameter of the point indicates the number of differentially expressed genes (FDR ≤ 0.05) matched to a 
term. Color is scaled from blue to red by increasing significance. “Gene Ratio” refers to the number of genes matched to a term 
compared to the total number of differentially expressed genes at the PostInjury time point. 
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3.4.6 Gene Set Enrichment Analysis Confirms Activation of Immune Signaling and 

Suggests Reversal in Immune Signaling During Recovery 

Because the small number of differentially expressed genes at the later timepoints 

prohibited GO analysis, we used GSEA to compare enriched cellular processes and 

pathways at all timepoints. Select enrichment results using hallmark gene sets are in 

Figure 4A. Similar to the findings from GO analysis and KEGG pathways, GSEA also 

showed that the top-ranked pathways immediately following concussion were related to 

upregulation of immune-related signaling. For example, “TNFa signaling via NF-kB”, 

“inflammatory response”, and “IL6 JAK STAT3 signaling” were all significantly 

positively enriched (FDR ≤ 0.05); each of which has also been strongly associated with 

response to concussion in multiple studies [142–144]. We then returned to our 

differentially expressed genes at the PostInj timepoint and identified multiple genes 

downstream of Janus tyrosine kinase (JAK) that were altered in expression including 

members of PI3K/AKT, MAPK and STAT signaling pathways. These genes include 

JAKMIP1, JAKMIP2, PRR5L, MAPK13, STAT6, and BCL6. Additionally, two PP2 

regulatory subunits, PPP2RB2 and PPP2R5E, were differentially expressed; PP2 being 

protein phosphatase 2, a serine/threonine phosphatase that targets MEK and AKT 

signaling cascade pathways [145]. Notably, significant enrichment for “TNFa signaling 

via NF-kB”, “inflammatory response”, and “IL6 JAK STAT3 signaling” were also found 

at later timepoints, but with negative instead of positive enrichment scores.   

 

We then asked if reversed changes in enriched pathways at later timepoints could be due 

to injured athletes being removed from play for recovery. We therefore explored enriched 
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processes at the PostInj timepoint between contact control athletes and non-contact 

control participants (Figure 4B). Interestingly, we observed that the immune signaling 

processes “TNFa signaling via NF-kB”, inflammatory response, and “IL6 JAK STAT3 

signaling”, were positively enriched in contact controls. Therefore, it appears that 

compared to athletes participating in non-contact sports, athletes participating in contact 

sports exhibit higher activation of certain immune signaling processes. These immune 

signaling processes become further elevated immediately following concussion but are 

then downregulated below contact control levels during recovery. GSEA results also 

indicate that some altered immune signaling pathways appear to remain repressed, 

compared to the contact control group, up to 6 months following a concussion.  

 

We sought to confirm observations from the Hallmark gene lists and expand upon the 

results by performing GSEA with gene lists from two other reliable and popular 

databases, WikiPathways and Biocarta [146,147]. Pathways results using WikiPathways 

are in Figure 5A and Biocarta are in Figure 5B. In both WikiPathways and Biocarta, 

results previously observed in Hallmark gene sets were positively enriched (FDR ≤ 0.05) 

at the PostInj timepoint and negatively enriched at a later timepoint. Observed pathways 

included those associated with cytokine production and inflammatory response. 
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Figure 4 Hallmark GSEA of differentially expressed genes across timepoints. A. Normalized enrichment scores (NES) for Hallmark 
gene sets across all timepoints. B. NES for Hallmark gene sets using differential expression results from comparing the contact control 
group versus the non-contact control group at the PostInjury time point. Plotted terms in both figures were filtered from total results by 
selecting terms that were significant with FDR ≤ 0.05 at the PostInj timepoint and also significant with FDR ≤ 1e-5 at a later 
timepoint. 
 

  



 

 

9
3
 

 
Figure 5 GSEA with terms from signaling pathway databases. NES for WikiPathways (A) and Biocarta (B) gene sets from GSEA 
across all timepoints. Plotted terms in both figures were filtered from total results by selecting terms that were significant with FDR ≤ 
0.05 at the PostInj timepoint and related to pathways found in GO analysis, Hallmark GSEA or were otherwise immune-associated in 
literature searches. 
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3.4.7 Deconvolution Analysis Shows Increased Proportion of Neutrophils in 

Concussed Athletes 

To understand possible changes in circulating cell type populations in response to 

concussion we performed deconvolution analysis. RNAseq counts were analyzed with 

CIBERSORTx to identify immune cell proportions. A GLM was used to test differences 

between injured and contact control groups at the PostInj timepoint. Two cell types were 

determined to be differentially proportioned; Neutrophils (FDR 2.3e-2, Figure 6A) were 

more prevalent in the injured group and resting natural killer cells (FDR 2.49e-5, Figure 

6B) were less prevalent in the injured group. Our deconvolution results help support 

findings in another study where an increase in neutrophils at the site of injury was 

observed [148].  
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Figure 6 Cell type proportions at the PostInj timepoint. Boxplots of cell type proportions 
for neutrophils (A) and resting natural killer cells (B) estimated with CIBERSORTx. The 
box denotes the first-to-third quartile and the inner-line represents the mean. Whiskers 
extend to 1.5× the interquartile range and outliers are marked as points. The NCC group 
proportions are represented in green, CCT in blue and INJ in orange. 
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3.5 Discussion 

To our knowledge, this study is the largest concussion transcriptome study to date. Our 

findings confirm results from numerous smaller studies and expand on the existing 

knowledgebase by showing trends in concussion-related pathways during recovery. We 

observed that maximal gene expression changes in peripheral blood cells were found 

immediately following concussion, and that these gene expression changes were 

consistent with a major immune signaling response. We identified compensatory changes 

in genes associated with calcium and energy metabolism which matched the 

pathophysiology of concussion. We also identified enhanced expression in genes that 

mediate immune signal transduction. GO and GSEA confirmed activation of immune 

signaling after injury. Furthermore, we observed that immune signaling processes were 

later suppressed, compared to contact controls, during recovery. Lastly, deconvolution 

analysis revealed the proportion of neutrophils was higher in injured participants 

compared to contact control athletes.   

 

We did not observe changes in expression of genes coding for known blood biomarkers; 

Therefore, we speculate that protein and molecular biomarkers are present in blood not 

because related gene expression is enhanced, but due to changes in post-translational 

modifications or protein metabolism. Because of additional downstream factors, RNAseq 

of peripheral blood samples may not yield the same diagnostic targets as blood-based 

protein biomarker testing.   
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One difference between our studies and smaller studies is that others have noted 

differentially expressed genes sometimes days after injury, where in our study almost no 

differentially expressed genes were observed after 24 hours. We postulate that we did not 

observe highly significant differences in gene expression at later timepoints because of an 

increase in biological variability, due to our complex data set. While there may be low-

level differences in gene expression later, as other studies and our GSEA analysis 

suggest, we suspect that the typical response to a concussion is a short-term surge in gene 

expression aimed at triggering cytokine and immune signaling processes that help to 

coordinate the immune response. Immune response then transitions from innate 

activation to adaptive activation and long-term recovery begins. This view is mirrored by 

conclusions from at least one other study in human traumatic brain injury [149].    

 

One strength of our study is that using RNAseq technology, rather than microarray-based 

chips, allowed us to quantify significantly more genes than smaller studies previously 

done in concussion. One limitation of our study is that peripheral blood samples are not 

able to reflect the physiological environment of a concussion as well as brain tissue from 

the site of injury can. Despite this, blood is the most probable sample type for diagnostic 

testing in concussions and so reflects the diagnostic testing environment. Another 

limitation is that injury during a concussion is sustained by non-localized anatomy (other 

than merely the brain). We expect, however, that the variance introduced by the wide 

array of injuries in this study likely reduced the potential for identification of non-

concussion related gene expression changes. Additionally, we did not investigate the 

influence of sex on gene expression following a concussion. Sex is known to be an 
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influential factor in concussion recovery; however, our goal was to identify wide-spread 

and common gene expression changes. Because individuals were first compared to their 

own paired baseline, the changes we identified are independent to sex. Finally, our study 

could benefit from additional samples and more complete time courses. Although 

longitudinal analysis is a primary goal of the CARE initiative, we feel that additional 

samples may be necessary to fully explore the longitudinal effects of concussion on gene 

expression. Increasing the sample size also increases the statistical power, which is 

required to separate low-level differences in gene expression and could improve findings 

at individual timepoints as well. 
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Chapter 4 Differentially Spliced Exons Predict Cancer Drug Sensitivity 

4.1 Introduction 

Alternative splicing is also known to contribute to the development and progression of 

cancer, and has been linked to every major signature of cancer transformation [150]. 

Furthermore, splicing variants can help cells evade cancer therapies and investigators 

have already started to explore splicing-focused therapeutic options [151–156]. 

Additionally, certain gene isoforms have been found to alter cancer drug response 

through altered kinase signaling [157,158]. Therefore, it is likely that alternatively-

spliced isoforms play large roles in drug response, and that additional research in this 

area could have a major impact on development of targeted therapeutics and drug 

response modeling. 

 

Precision medicine, or tailoring treatment strategies to the patient, is dependent on 

clinical and molecular profiling [159]. Currently, precision medicine primarily relies on 

limited genetic screening of well-characterized high-impact genes, such as HER2 and 

KRAS [160]. However, complex predictive models built with machine-learning 

techniques are expected to revolutionize precision medicine in the years to come 

[161,162]. Nevertheless, the use of complex predictive algorithms has yet to be widely 

accepted in clinical settings [161]. While early models lacked sufficient study sizes or 

could not be validated, a major concern of current models is the failure to account for the 

complexity of tumor transcriptomes [163]. Many predictive models have been trained 

solely on gene expression data or a combination of expression data and limited sequence 

variant information, such as single nucleotide polymorphisms (SNPs), copy number 
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variants (CNV) and small nucleotide insertions or deletions (indels) [15]. Previous 

studies, however, have concluded that algorithms capable of integrating knowledge from 

various experimental techniques need to be developed in order for predictive modeling to 

progress [15,16]. As such, a variety of experimental data, including mRNA-splicing data, 

must be considered in order to build more realistic and comprehensive models. 

 

To date, few studies have incorporated splicing information into predictive modeling 

techniques. One such study produced the SURVIV pipeline, a system for discovering 

mRNA isoforms associated with patient survival [164]. These authors used exon-centric 

quantification and a binomial GLM with length normalization function on invasive ductal 

carcinoma data. They found that splicing information not only predicted patient survival, 

but it also consistently outperformed expression-based models [164]. Additionally, the 

authors found that combining clinical, expression, and splicing profiles produced the best 

performance [164]. In another study, isoform-centric biomarker expression and drug 

response in cancer cell lines was investigated using a linear model to select an isoform 

for each response-mediating gene that showed the strongest correlation with drug 

sensitivity [165]. A small number of these biomarkers were validated in breast cancer cell 

lines and found to be significantly associated with four anti-cancer therapeutics [165]. 

Together, these two studies established a connection between mRNA splicing and drug 

response; thus demonstrating the potential utility for splicing data in tumor biology. 

However, a drug-response classification model has not yet been established and the 

relationship between individual exons and cancer drug response is still largely 

unexplored. 
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4.2 Materials and Methods 

4.2.1 RNAseq and Drug Response Datasets 

975 RNA-seq files corresponding to pre-treatment cancer cell lines were downloaded 

from the Cancer Cell Line Encyclopedia (CCLE) database and matched to post-quality 

control area under the concentration-response curve (AUC) values for 860 cancer cell 

lines from the Cancer Therapeutic Response Portal (CTRP) v2 database using the cell 

line name [20,21]. While integrating data from two separate sources is not ideal, this 

approach was chosen because it provided the largest available overlap between RNA-seq 

and drug profiling data. Intersecting these data sets for cell lines profiled with 

doxorubicin yielded 755 cell lines with drug response and RNA-seq data. Cell lines were 

split into three groups using the tertiles of the AUC distribution. The low AUC group was 

labeled “sensitive” (N = 253), the high group was “resistant” (N = 258), and the middle 

group was omitted from analysis.   

 

4.2.2 MISO Splicing Analysis 

Splicing analysis for predictive modeling was done with the Mixture of Isoforms 

software (MISO) [91]. RNA-seq files belonging to sensitive and resistant groups were 

analyzed using exon-centric version 2 annotations for hg19 and the standard pipeline 

from the MISO documentation website, http://miso.readthedocs.io/en/fastmiso/. Data 

corresponding to 40,178 skipped-exon events were obtained. 
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4.2.3 Gene Expression Quantification and Differential Expression Analysis 

Read counts for predictive modeling with expression data and for differential expression 

analysis were calculated with featureCounts [127]. A genomic feature was defined as any 

record with a valid gene id and was counted at the meta-feature level. RNA-seq files were 

processed for 57,095 genomic features that were annotated in the reference GRCH37v87 

gene transfer format file (GTF) file downloaded from ftp.ensembl.org, using a minimum 

read length overlap of 2. Differential expression analysis was performed on count data 

from the training dataset using edgeR [97]. Only features with ≥ 10 reads in ≥ 35% of 

training cell lines were evaluated, leaving 22,201 features before differential expression 

and downstream filtering. Log10 of counts-per-million were used as feature values. The 

same annotation set of quantified genomic features as those used for predictive modeling 

(57,095) were again used for assessing differential expression of RBPs. In this case, 

filtering to include features with at least 10 reads in ≥ 20% of cell lines reduced the 

number to 28,110 before differential expression analysis. In edgeR, a negative binomial 

generalized log-linear model with quasi-likelihood F-test (glmQLFit) was used. 

Differentially expressed features with an FDR ≤ 0.05 and a log(fold-change) of ≥ 1.5 

were considered significant, producing a final number of 2,943 differentially expressed 

gene features. 

 

4.2.4 Predictive Modeling 

Elastic net logistic regression, using the glmnet and caret packages in the R programming 

language, was used to fit all predictive models [166,167]. Following splicing and 

expression analysis, feature selection was performed to restrict the parameters of the 
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models. A splicing feature was defined as a skipped-exon event identified by MISO and 

was required to have PSI values with confidence intervals (CI) between 0.01 and 0.2 for a 

minimum of 35% of cell lines. This requirement reduced the number of potential splicing 

features from 40,178 to 15,007. We also filtered events having a PSI standard deviation < 

0.14, based on the top 5% of the remaining skipped-exon events, which reduced the 

number of splicing features to 805. Any missing values were then imputed randomly 

from all samples with data for a particular event. Gene expression features were filtered 

by requiring a minimum of 10 reads in ≥ 35% cell lines. This lowered the number of 

potential features from 57,905 to 22,201. Cell lines were divided into 70% training and 

30% testing sets. This produced a total of 354 training cell lines (177 sensitive, 177 

resistant) and 157 testing cell lines (76 sensitive, 81 resistant). Individual and combined 

models were trained on the same training cell lines. Expression features were further 

restricted after training and testing set separation by conducting differential expression 

analysis on the training set and applying the cutoffs: FDR ≤ 0.05 and a log(fold change) 

of 1.74 (top 5%). Expression- and splicing-only models were then trained using their 

respective filtered feature sets, while the combined model was trained by merging the two 

filtered feature sets and allowing elastic net to choose freely between the whole. 

 

To train the models, a 10-fold cross validation approach with grid search (to scan for the 

highest performing alpha and lambda values) was used. The models were then assessed 

with the testing cell line data. Sensitivity, specificity, accuracy and precision were 

calculated. The area under the receiver operating characteristic curve (ROC AUC), F1 

score and p-value (corresponding to accuracy against the no-information rate) were also 
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produced. Lastly, when building models to assess the generalizability with the remaining 

500 drugs in CTRP, all event types including skipped-exon, mutually-exclusive exons, 

retained intron, alternative 5’ splice site and alternative 3’ splice site were used for 

modeling. 

 

4.3 Results 

4.3.1 Dataset and Drug Selection 

When we intersected cell lines from CCLE and CTRP, we observed the number of cell 

lines with both data types differed by drug. Per-drug area under the concentration-

response curve (AUC) values from the CTRP were plotted. A higher AUC value, which 

is a surrogate for cell growth under increasing concentrations of a designated drug, 

corresponds to superior drug resistance. We chose doxorubicin to further investigate 

because it is a widely active chemotherapeutic used to treat a variety of malignancies and 

it affects cells through multiple mechanisms, including DNA damage by intercalation and 

inhibition of topoisomerase II [168,169]. Additionally, we reasoned that doxorubicin 

would be a good drug for proof-of-principal testing because the alternatively-spliced 

exons we identified would likely be relevant to a variety of cancer types, whereas spliced 

exons associated with targeted therapeutics might be relevant only to cancers containing 

specific genomic alterations. Furthermore, doxorubicin has been used in many drug 

modeling studies and therefore, our results would be expected to have greater context and 

build upon an existing body of knowledge. 
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4.3.2 Classification of Cell Lines Prior To Training 

Following drug selection, we labeled cell lines according to their AUC values: cell lines 

at or below the 33rd percentile of the AUC distribution were considered doxorubicin 

sensitive and cell lines at or above the 66th percentile as resistant (Figure 7). This 

provided a total of 755 cell lines with intersected RNA-seq and doxorubicin response 

data; 253 were classified as sensitive and 258 as resistant.  
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Figure 7 CTRP cell line response to doxorubicin. Distribution of the AUC, area under 
the concentration-response curve, values for doxorubicin in the CTRP cell lines. Lower 
and upper tertiles were labeled as sensitive (orange) or resistant (blue), respectively. 
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4.3.3 Splicing and Expression Data Individually Predict Drug Sensitivity Class 

We postulated that alternative splicing profiles from untreated cancer cell lines would 

hold predictive power for doxorubicin drug-response. To test this hypothesis, we built a 

machine learning model with elastic net logistic regression and exon-centric splicing 

data. Skipped-exon event annotation, percent-spliced-in (PSI) calculation and uncertainty 

estimation were done with MISO [91]. For the splicing-based model, we required 

skipped-exon events (model features) to be present in a minimum of 35% of cell lines 

and to exhibit PSI values with CI between 0.2 and 0.01. We observed that PSI values 

with CI outside of this range tended to be either calculated on low read counts, or 

exhibited unrealistically precise distributions; these PSI values were filtered because 

small non-consequential changes in PSI would have been incorrectly considered highly 

significant. Skipped-exon events were then limited to only those with the highest (top 

5%) PSI standard deviation, thereby targeting events with higher variance and selecting 

for greater model impact. From a total of 40,178 pre-filter skipped-exon events, 805 

remained. Cell line data was then randomly split 70:30 into training (N = 354) and testing 

(N = 157) sets; each set consisted of approximately 50% sensitive and resistant cell lines. 

The predictive model was fit using elastic net logistic regression. The final splicing 

model contained a total of 42 non-zero weight events. Model performance was assessed 

on the testing data and performance metrics are provided in Table 3. 

 

To assess whether splicing information would provide additional predictive power 

compared to an expression-based approach, we constructed an expression-only model. 

We first used featureCounts to quantify reads mapped to gene expression features [127]. 
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To reduce the number of sparse genes, we filtered gene features with less than 10 reads in 

≥ 35% of RNA-seq data. Using the same training set samples as the splicing-based 

model, we conducted differential expression analysis with edgeR to further reduce the 

number of features [97]. We retained genes meeting a Benjamini-Hochberg false 

discovery rate (FDR) threshold of 0.05 and ≥ 1.74 (top 5%) log(fold change) value [128]. 

Read counts were then transformed to log10 counts per million. Out of 57,905 pre-filter 

gene expression features, only 1103 remained. After running elastic net, we obtained an 

expression-only model comprised of 67 non-zero weight features. The performance of the 

expression-based approach was also strong (Table 3). In comparison with the splicing 

model, the sensitivity was lower (0.68 vs. 0.75), but specificity (0.96 vs. 0.88) and ROC 

AUC (0.90 vs. 0.85) were both higher. These metrics indicated that while splicing 

predicted more doxorubicin-sensitive cell lines correctly, it also predicted more false 

positives; on the other hand, expression-only modeling was more specific. 
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Model Sens. Spec. Acc. Prec. AUC F1 P-value 

Splicing (S) 0.75 0.88 0.82 0.85 0.85 0.80 5.3E–15 

Expression (E) 0.68 0.96 0.83 0.95 0.90 0.79 2.8 E–16 

S + E 0.71 0.95 0.83 0.93 0.92 0.81 6.2 E–17 

Table 3 Elastic net performance metrics. The strongest value for each column is in bold; 
Sens., sensitivity; Spec., specificity; Acc., accuracy; Prec., precision; AUC, area under 
the receiver operating characteristic curve. 
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4.3.4 An Integrated Modeling Approach Outperforms Stand-alone Models 

Based on our findings that splicing- and expression-based models showed strengths in 

sensitivity and specificity, respectively, we asked whether integrating the information 

from both models would lead to increased model performance. An integrated model was 

fit by merging the 805 events obtained after applying the splicing filter with the 1103 

gene expression features remaining after applying the differential expression filter. From 

this combined feature set, elastic net selected 95 splicing and 216 gene expression 

features. ROC plots for all 3 models are in Figure 8. The integrated model showed the 

highest accuracy and ROC AUC (Table 3).  From this outcome we concluded that 

splicing information enhanced the expression-based model and that splicing and 

expression data contributed improvements to sensitivity and specificity, respectively, to 

build a more balanced model. Bootstrapping the model building process revealed that 

although the combined model consistently showed a slight increase in specificity, the 

overall performance of the combined and expression-based models was largely the same 

(Figure 9). 
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Figure 8 Comparison of model prediction of cell line response to doxorubicin. ROC, 
receiver operating characteristic, curve for prediction of cell line response to doxorubicin 
on the testing data set. Expression-only (dotted line), splicing-only (dashed line) and 
combined expression and splicing (solid line) models are shown. 
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Figure 9 Reproducibility of predictive modeling. Sensitivity (A), Specificity (B), and (C) ROC AUC, receiver operating characteristic 
area under the curve, for 100 bootstrapped splicing models on doxorubicin. 
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4.3.5 Splicing Contributes Unique Predictive Features to Modeling  

We next asked whether splicing contributed unique information to the final model, or if 

the skipped-exons selected by elastic net were also reflected by the gene expression 

features. We found that skipped-exon features in the splicing-only model were not 

located in genes in the expression-only model. Similarly, no overlapping expression and 

skipped-exon features were observed in the combined model. These findings indicate that 

the information contributed by splicing data to our models was unique. 

 

4.3.6 Splicing Features Have Predictive Value in Many Drugs 

We further applied our modeling approach to the other 500 drugs in CTRP and observed 

strong performance for the vast majority (Figure 10); This suggested that splicing could 

be important for predicting drug resistance across many compounds. To identify 

compounds where splicing was better at predicting response class, we then directly 

compared the ROC AUC from the splicing-only models to the expression-only models 

(Figure 11A). We found that splicing-only models for four compounds outperformed 

their paired expression-only model by >0.10; These compounds were BRD-K44224150, 

darinaparsin, tigecycline, and VAF-347. An ROC AUC advantage of ≥ 0.05 was 

observed in a total of 51 splicing-only models and 179 expression-only models, 

suggesting that generally expression-only models performed better than splicing-only 

models. This finding is also supported by a negative shift in the difference-distribution 

and mean-difference between splicing-only and expression-only ROC AUC values 

(Figure 11B). 
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Figure 10 Generalized CTRP model performance. ROC AUC, receiver operating 
characteristic area under the curve, for splicing models on all 501 drugs in CTRP.  
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Figure 11 Direct comparison of splicing and expression model performance for all drugs. 
A) ROC AUC for splicing-only and expression-only models in all 501 drugs plotted 
against each other. The red line has an intercept of zero and slope of 1, dividing drugs 
between those where the splicing model performed better (top) and those where the 
expression model performed better (bottom). Drugs in blue and orange exhibited a ≥ 0.05 
increase in AUC for the splicing or expression model, respectively. B) Histogram of the 
difference between splicing and expression ROC AUC for all 501 drugs. The distribution 
mean is indicated by the red line. 
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4.4 Discussion 

The major conclusions of chapter 4 are that skipped-exon splicing data independently 

predicts drug response and, when integrated with gene expression data, can increase the 

power of predictive drug response algorithms. These conclusions are supported by the 

following experimental evidence. First, we demonstrated strong performance of the 

splicing-only elastic net GLM model and determined that the most balanced model was 

obtained by combining splicing and expression data. Second, we showed that splicing 

and expression models had no genes in common, which indicates that each data type 

contributed unique information. Third, we found that splicing holds strong predictive 

power in a large number of anti-cancer compounds. 

 

After our analysis, we questioned whether our model could have selected predictive 

features based on differences in underlying cell-type proportions among sensitive and 

resistant groups. We considered this possibility because doxorubicin is known to be more 

effective against highly-proliferative cell types and it was possible that allocating cell 

lines to groups by response could have assorted proliferative cell lines unevenly [170]. 

We further investigate the assortment of cell types in chapter 5. 

 

We did not choose to investigate the details or mechanisms behind the predictive splicing 

features because, while machine learning techniques excel at identifying relevant 

predictive features, the final selection of features included in the model can be arbitrary. 

Elastic net, to simplify the final model and prevent overfitting, restricts orthologous 
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predictors; Therefore, features extracted from an elastic net model may not be the best 

biologically relevant targets. 

 

To accurately assess the contribution of differential splicing to predictive drug modeling, 

we sought to identify a comprehensive and well-characterized data set with drug response 

measurements and paired RNA-seq data. Although the widespread availability of high-

throughput data sets offered a number of options for computational modeling, the 

majority of large-scale studies were done before RNA-seq became the predominant 

expression quantification method and most of the pharmacological profiling experiments 

were paired with array-based expression data, making splicing analysis impossible. We 

searched for data sets with large numbers of samples to increase the power of our 

machine learning based approach and to avoid overfitting. We also targeted diverse data 

sets to allow for investigation of predictive features with broad applicability, 

corresponding to multiple drugs and cell types. These criteria led us to integrate two large 

independent data sets, rather than use a single resource with limited transcriptomic or 

pharmacological data.  

 

While some investigators have challenged the integration of drug response datasets, 

integration of these resources by others has shown reasonable consistency[171,172]. 

Additionally, other investigators have argued that isolated testing of individual cancer 

cell lines is an incomplete representation of tumors and that databases containing large 

collections of cells better represent the heterogeneity and tissue-level characteristics of 

cancer [173]. Because our goal was to specifically target global splicing patterns, we 
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sought to use large data sets to reduce the impact of individual differences across 

databases. Therefore, we feel that our approach accurately reflected the transcriptomic 

and drug response measures of various cancer types, that the number and composition of 

cell lines in it reduced the possible influence of lineage inconsistency, and that our 

dataset is a reliable source of information for investigating global trends in transcript 

splicing or expression. 

 

When performing machine learning, we elected to build a classification model rather than 

a continuous model as the CCLE and Genomics of Drug Sensitivity in Cancer consortia 

(GDSC) recommended dividing cell lines into sensitive and resistant groups when 

analyzing drug response data across datasets [174]. This recommendation was based on 

the observation that using all cell lines in a database tended to introduce noise due to the 

increased variance in drug response from cell lines that did not have influential genetic 

differences [174]. We analyzed performance consistency by bootstrapping the model 

building procedure and found combined and expression-based models were almost 

equivalent. While we did not find splicing-based modeling to outperform expression-

based modeling as previous researchers have [164,165], our approach differed from these 

earlier models as it was designed to determine the importance of alternative splicing in 

doxorubicin drug response using a minimalistic procedure rather than generating the best 

possible classifier. Nevertheless, while our work provides evidence that adding splicing 

information to expression-based models in a more controlled manner produces a better 

classifier, there remains room for improvement in the model building process. 
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Chapter 5 Quasi-binomial Generalized Linear Modeling: A Method for Differential 

Splicing Analysis 

5.1 Introduction 

Although long-read isoform sequencing technologies exist, they are often prohibitively 

expensive for large-scale studies. As a consequence, short-read data is commonly used to 

infer isoform-specific information; the drawback being that the true identities of mRNA 

isoforms remain unknown. This uncertainty must be accounted for in quantitative 

techniques [91]. Currently, there are two main approaches to quantify isoform outcomes 

in short-read RNA-sequencing data: isoform-centric and exon-centric quantification 

[175]. Isoform-centric techniques measure the expression of whole isoforms by 

integrating read data across multiple exons, whereas exon-centric techniques measure 

relative expression of individual exons. While both isoform- and exon-centric techniques 

are susceptible to the limitations of short-read sequencing, gene complexity and the 

heavy reliance on mathematical modeling to address combinatorial possibilities across 

exons often make isoform-centric approaches less attractive [176]. 

 

Following predictive modeling in chapter 4, we decided to comprehensively investigate 

alternatively spliced events related to doxorubicin sensitivity. To capture a more 

complete set of events, that were not subject to arbitrary selection by machine learning 

feature reduction techniques, we set out to conduct differential splicing analysis between 

sensitive and resistant cell line groups. As discussed previously (chapter 2 section 5), 

rMATS is the current gold standard for differential splicing analysis of short-read 

RNAseq data [92]. The statistical approach rMATS applies is excellent, however the 
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process is very slow, resource intensive and better suited to smaller sample sizes. In order 

to process the integrated CCLE and CTRP dataset we were required to develop a fast, 

scalable framework for differential splicing analysis. 

 

5.2 Materials and Methods 

5.2.1 Dataset and Cell Line Classification 

The integrated CCLE and CTRP dataset from chapter 4 was once again used for work in 

chapter 5 [20,21]. Alignment and cell line classification was performed as in chapter 4 

sections 4.2.1. The same procedure was followed for all drugs in the dataset. The total 

number of cell lines tested, and as such the number of sensitive and resistant cell lines, 

differed per compound. 

 

5.2.2 Processing and Quantification of Spliced Exons 

Identification of candidate skipped-exon events was performed with code from rMATS 

that had been modified for speed and to catalogue only events found in a reference GTF 

[92]. A total of 38,108 skipped-exon events were extracted from isoforms annotated in 

the GRCH37v87 GTF file downloaded from ftp.ensembl.org. Uniquely mapped and 

properly paired junction reads with a minimum exon overlap of 1 bp supporting the 

inclusion or exclusion of skipped exons were counted for each skipped-exon event. 

Events were filtered after counting, retaining only those with at least 1 inclusion and 1 

exclusion read in 35% of classified cell lines. A total of 18,409 events passed the filter.  

 

 



 

121 

5.2.3 Differential Splicing Analysis by QBGLM 

Splicing analysis by quasi-binomial generalized linear model (QBGLM) was done using 

raw read counts. A QBGLM was fit using the glm package in R [177]. The inclusion read 

percentage for a given event was modeled as the probability of success. Cell line label 

(sensitive or resistant) was set as the dependent variable. 

 

Results were filtered for significance by requiring a Benjamini-Hochberg FDR-adjusted 

p-value ≤ 0.01 on the group weight (Beta1) [128]. A total of 4,309 events passed the 

filter. Events were further separated for relevance using the difference (Δ) in mean 

inclusion-to-total read counts (inclusion / inclusion + exclusion) in each group. A 

minimum 0.1 difference in mean inclusion-to-total read counts between sensitive and 

resistant groups was required to maximize biological relevance; only 277 events met this 

threshold. 

 

5.2.4 GO Enrichment Analysis 

Significant skipped-exon events identified from QBGLM were annotated for gene 

symbol by genomic position of the skipped exon using the Bioconductor biomaRt 

package [130,131]. Gene symbols for the entire set of significant events were then 

analyzed with R and the clusterProfiler package [129]. Results from biological process 

enrichment were then exported and assessed for relevance. 
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5.2.5 Motif Enrichment 

Significant skipped-exon events were analyzed for enrichment of RNA binding protein 

motifs in three stages: motif matches were counted for significant events in a region of 

interest, the total count for the set of significant events was compared to a background of 

randomly drawn events and significantly enriched motifs found were then filtered and 

sorted based on their associated splicing outcome. Seven regions surrounding each exon 

of interest were extracted from hg19 (GRCh37). These regions were: 150 bp maximum or 

full length of the 5’ upstream exon, 300 bp of its 3’ flanking intron, 300 bp in the 5’ 

upstream intron flanking the skipped exon, the entire length of the skipped exon, 300 bp 

in the 3’ downstream flanking intron, 300 bp in the 5’ intron flanking the 3’ downstream 

exon and 150 bp maximum or full length of the 3’ downstream exon. Sequences for each 

region were scanned using the Find Individual Motif Occurrence (FIMO) tool and the 

CISBP-RNAv0.6 RNA binding motif database [178,179]. Using a p-value threshold for 

motif matches of 6.7e-4, as compared to the default 1e-4, was necessary to find small 

splicing factor motifs in short extracted sequence lengths. Counts across significant 

events for a given motif were then compared to the genomic background in context by 

bootstrapping the same number of skipped-exon events (without replacement) from all 

annotated events in the genome, repeating the procedure 10,000 times. P-values for 

significant event motif counts were then calculated using this random distribution and 

FDR-adjusted using the Benjamini-Hochberg procedure [128]. This was referred to as the 

enrichment p-value. Fisher’s exact test was then used on enriched motifs to identify those 

associated with preferential increased or decreased exon inclusion. P-values from 
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Fisher’s exact test were referred to as inclusion p-value. In both enrichment and 

preferential inclusion analysis a minimum p-value of 0.05 was required. 

 

5.3 Results 

5.3.1 QBGLM Identifies Differentially Spliced Events 

Genome-wide annotation for skipped-exons resulted in a total of 38,108 events that were 

then filtered to retain only those with reads supporting inclusion and exclusion for a 

minimum of 35% of cell lines in sensitive and resistant groups. This filter significantly 

decreased the event space and left 18,409 events for analysis. GLM with quasi-binomial 

family was then performed in R [177]. In the quasi-binomial distribution, the dispersion 

parameter provides for fitting of increased variance; this property is especially useful for 

biological data, where variability between samples is expected. Additionally, fitting 

variance by QBGLM helped account for the uncertainty introduced when using short-

read data in splicing analysis and situations where a low number of reads inaccurately 

represents the probability of inclusion in some samples. Our procedure was also unique 

for splicing-data normalization in that no consideration was made for exon or read 

lengths. As such, QBGLM modeled uncertainty without the assumption that there was an 

equal probability of reads aligning to every position in the event.  

 

Wald p-values, corresponding to the weight on the class of the cell line, were FDR-

adjusted using the Benjamini-Hochberg procedure and filtered for significance ≤ 0.01 

[128]. Events were again filtered after QBGLM by requiring a difference in mean 

inclusion-to-total read counts of 0.1 between sensitive and resistant groups. This filter 
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reduced false-positive identifications by selecting events that were more likely to exert 

meaningful biological consequences. In total, 277 significant alternatively-spliced events 

were identified; 180 with higher and 97 with lower exon frequency in resistant cells. A 

volcano plot of the results and examples of raw data for two significant events are 

presented in Figure 12. 
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Figure 12 Differentially spliced events analyzed by QBGLM. A. Volcano plot of events analyzed by QBGLM. The horizontal dotted 
line marks the 0.01 FDR cutoff for significance. Vertical dashed lines mark the minimum 0.1 mean inclusion ratio difference between 
sensitive and resistant groups. B. Boxplots for inclusion ratios show overall change between sensitive and resistant groups for two 
genes with significant spliced events. The box denotes the first-to-third quartile and the inner-line represents the mean. Whiskers 
extend to 1.5× the interquartile range and outliers are marked as points. 
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5.3.2 Enrichment Analysis Reveals Connection to Epithelial-Mesenchymal 

Transition 

Gene ontology (GO) term enrichment was performed on gene symbols from significant 

alternatively-spliced events to assess their relevance. Over-representation analysis with 

clusterProfiler revealed enrichment for several biological processes including cell 

junction organization (FDR 1.3e-04), cytoskeleton organization (FDR 1.7e-05), and 

positive regulation of GTPase activity (FDR 3.2e-05) (Figure 13) [129]. Alterations in 

these processes have been previously implicated in uncontrolled cellular proliferation, 

epithelial-mesenchymal transition (EMT), and drug resistance [180–184]. Noteworthy 

genes affected by splicing alterations included SCRIB, ADAM15, MACF1, NUMB, 

VEGFA, and FOXM1. While the majority of splicing consequences were in-frame 

alternatively included or excluded exons with no known significance, an exon identified 

in NUMB (exon 11, chr14:73745989-73746132) contained an alternative translational 

start site and another in SCRIB (exon 16, chr8:144889722-144889784) included a portion 

of a Protein Kinase C (PKC) phosphorylation site. NUMB is a key protein in cell fate 

determination and increased expression has been found to inhibit propagation of chronic 

myelogenous leukemia cells [185,186]. Additionally, NUMB mRNA processing is 

regulated by a variety of splicing factors, including RBM6, and alternative NUMB 

isoforms are consistently found in cancer [187,188]. SCRIB exon 16 has been reported to 

be associated with mis-regulation of EMT in specific cell types [45]. 
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Figure 13 Enrichment of biological processes identified in differentially spliced events. GO biological processes identified with 
overrepresentation analysis were sorted by gene count ratio from top to bottom, with the highest ratio (found to total significant) of 
genes for a specific process on top. Point diameters are scaled by total number of genes in that process and warmer colors indicate 
stronger significance. 
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5.3.3 RBP Motif Enrichment and Regulatory Splicing Factors 

To elucidate a regulatory mechanism for the splicing differences between response 

groups, we searched for RBP motifs corresponding to potential splicing factors. Motif 

analysis was conducted on seven sequence regions for each skipped-exon. These regions 

consisted of the entire skipped-exon sequence, 300-bp from the 5’- and 3’-ends of both 

flanking introns, and 150-bp in the upstream and downstream exons (Figure 14). 

Sequences from these regions were extracted from the hg19 reference genome and 

scanned for motifs using FIMO [178]. To determine enrichment for identified motifs, all 

annotated skipped-exons across the genome were scanned and null distributions of counts 

for each motif were made from bootstrapped events. RBP motifs identified were SNRPA, 

PPRC1, RBM6, PCBP3, RBFOX1, EIF2S1 and ELAVL1. Locations and enrichment p-

values of the identified RBP motifs are in Figure 14 and Table 4. Fisher’s exact test was 

used to determine association with higher or lower exon frequency. Splicing outcome, 

Fisher’s p-values and descriptions of the identified RBPs are in Table 4. 

  



 

129 

 
Figure 14 RNA-binding protein motifs identified in differentially spliced events. 
Significantly enriched RBP, RNA-binding protein, motifs by skipped-exon event region 
with respect to resistant cell lines. The above schematic shows two constitutive exons 
(black boxes), one skipped-exon (orange box) and two introns (connecting lines) as 
observed in skipped-exon splicing. Regions of interest are shown as horizontal lines 
numbered 1 to 7. These regions consisted of: (1) up to 150bp of the upstream exon; (2) 5′ 
300bp of the upstream intron; (3) 3′ 300bp of the upstream intron; (4) the entire length of 
the skipped exon; (5) 5′ 300bp of the downstream intron; (6) 3′ 300bp of the downstream 
intron; and (7) up to 150bp of the 3′ downstream exon. +Δ and -Δ PSI indicate a higher 
and lower exon frequency in resistant cells, respectively. 
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RBP Position 
Enrichment 

P-value 
Exon 

inclusion 
Inclusion 

P-value 
Description 

RBFOX1 Skipped 
exon 

8.7E–08 - 0.015 RNA-binding protein Fox-1 
homolog 1 (RBFOX1). This 
protein and its family 
members (RBFOX2 & 3) 
bind to (U)GCAUG stretches. 
They are generally found to 
enhance splicing when bound 
downstream and suppress 
splicing when bound 
upstream [27,189].  

EIF2S1 Skipped 
exon 

1.6 E–07 - 0.011 EIF2S1 (or EIF2alpha) is one 
of three key members of the 
Eukaryotic Translation 
Initiation Factor 2 complex 
and is responsible for 
delivering Met-tRNA for 
initiation of translation [189].  

RBM6 3' exon 1.2 E–04 + 0.021 RBM6 is an RNA binding 
protein first identified by 
cloning a tumor suppressor 
locus and has been linked to 
lung as well as other cancers 
[190]. 

PPRC1 3' exon 1.6 E–04 - 0.021 PPRC1 (or PGC-1) is a 
coactivational transcription 
factor commonly associated 
with metabolic stress and 
little is known about its 
potential role in splicing, 
however an important paralog 
of this gene (PGC- 1alpha) 
has been connected to altered 
splicing of VEGF [189,191].  

ELAVL1 5' intron 1.9 E–03 + 0.005 ELAVL-like RNA Binding 
Protein 1 (ELAVL1) family 
members traditionally bind 
AU-rich elements in 3' 
untranslated regions of 
mRNA [189,192].  

PCBP3 3' exon 0.015 - 0.002 PCBP3 is a member of the 
poly(rC)-binding protein 
family and is paralogous to 
PCBP1,2 & 4. Members of 
this family have strong motif 
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homology and share a wide 
variety of functions, however 
PCBP3 lacks the nuclear 
localization signals that other 
members have [189,193].  

SNRPA 3' exon 0.026 - 0.015 Small Nuclear 
Ribonucleoprotein 
Polypeptide A (SNRPA) is an 
essential component of the 
U1 splicing complex and is 
required for recognition of 
the pre-mRNA 5' end. The 
U1 complex binds to the 5' 
splice site of an exon-intron 
boundary [192]. 

Table 4 Enriched RBPs identified by motifs in significant events from QBGLM. The 
enrichment p-value is the FDR-adjusted p-value against randomly bootstrapped events 
from the genome. Exon inclusion is with respect to resistant cells; i.e., “+” is higher exon 
frequency in resistant cell lines. The inclusion p-value was calculated using Fisher’s 
exact test. 
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5.3.4 Enriched RBP Family Members Are Differentially Expressed 

Finally, we asked whether any of these enriched RBPs were differentially expressed 

between sensitive and resistant cell lines. Differential expression analysis was conducted 

using edgeR on featureCount data from the two groups [97,127]. Significantly different 

expression patterns were observed for RBFOX and ELAVL family proteins (Figure 15). 

This finding was particularly interesting as RBFOX and ELAVL family members have 

previously been linked to EMT and other cancer-related processes [45,194,195]. Notably, 

Blencowe et al. previously found that PPRC1 increased splicing of NUMB exon 5 in 

CGR8 mouse embryonic stem cells compared to differentiated N2A neuroblastoma cells 

[196]. In our work, NUMB exon 10 was differentially spliced. However, we did not see 

differential expression of PPRC1 as it was filtered before edgeR analysis due to low read 

count. In contrast, RBFOX, ELAVL and PPRC1 RBPs were not selected as predictive 

features in the expression-based predictive model. Based on these findings, we conclude 

that the additional biological information gained from splicing analysis could not be 

found using expression based analysis alone. 
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Figure 15 Differential expression of RBPs between sensitive and resistant cell lines. 
Mean expression of genes in sensitive and resistant groups using log10(read counts). 
Three differentially expressed RBPs belonging to the RBFOX or ELAVL families are 
numbered and shown in red. 
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5.4 Discussion 

In this chapter we show that a quasi-binomial generalized model can accurately identify 

differentially spliced events between two groups of samples. Additionally, we 

demonstrated that an exon-centric approach positively impacts downstream analysis by 

identifying cis-acting RBP regulatory motifs and allowing researchers to find associations 

between regulatory elements of differentially spliced exons with essential biological 

processes. When employing RBP-motif enrichment, we identified several candidate 

splicing factors, including RBFOX and ELAVL family members, which were 

differentially expressed between drug-response groups. Moreover, we identified 

signatures of EMT, which affect cellular plasticity and stemness in tumor sub-populations 

and are thought to contribute to mechanisms behind cancer drug resistance [46,197–200]. 

Furthermore, our results indicate that splicing information provides new biological 

insights. 

 

Following our analysis, we assessed the cell line origin of the classified data set to 

investigate if differences in the proportions of cell lineages could help explain the 

enriched biological processes we observed (Figure 16). The distribution of cell lineages, 

specifically the proportion of hematopoietic & lymphoid cells, differed greatly across 

sensitive and resistant groups: hematopoietic & lymphoid cells made up 44% of sensitive 

compared to only 1% of resistant cell lines. Hematopoietic cell types exhibit enhanced 

cytotoxicity to doxorubicin treatment, a consequence of treating highly proliferative cells 

with a topoisomerase-inhibitor [170]. These cells, being more stem-like in nature 

compared to solid tumor tissue, are also expected to display signatures of EMT as 
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stemness and EMT are related [201]. Our overrepresentation analysis of differentially 

spliced events resulted in a number of biological processes with relationships to EMT, 

proliferation, and drug resistance. Furthermore, we identified an exon in SCRIB 

previously described by Shapiro et al. to be alternatively spliced and associated with an 

EMT signature [45]. 

 

To determine the potential influence that cell type distribution might have had on the 

QBGLM results, we performed QBGLM in a tissue-specific manner on hematopoietic & 

lymphoid and lung cell types. We then overlapped the differentially spliced events from 

all tissues and the tissue-specific analyses (Figure 17), which showed that hematopoietic 

& lymphoid and lung cell types had many events in common. The vast majority of events 

found to overlap between the tissue-specific and all tissue-type analyses were present in 

both hematopoietic & lymphoid and lung cell types. Additionally, we did not observe an 

imbalance in the number of events from the overlaps between all tissue and tissue-

specific analyses. These findings support the conclusion that QBGLM also identified 

events from other tissue types besides hematopoietic & lymphoid, and that many events 

found in hematopoietic & lymphoid cells are recapitulated by other cell types. 

 

In conclusion, differential splicing analysis with QBGLM can be achieved in minutes. 

Even for groups containing hundreds of samples, analysis time is negligible if inclusion 

and exclusion reads are counted beforehand as part of a standard pipeline. While our 

analysis works well for large groups of samples, it struggles with smaller sets; however, 

we expect the model’s ability to handle large groups of samples to be a key strength as 
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the volume of sequencing data and the number of samples included in studies continues 

to rise. In the next chapter we discuss a strategy that implements quasi-binomial 

differential splicing analysis in a tissue-specific manor to find splicing trends across 

drugs based on cell line drug sensitivity. 
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Figure 16 Tumor cell lineage for cancer cell lines tested with doxorubicin. A. The overall 
chart represents cell lineage distribution for all cell lines in the paired (CCLE and CTRP) 
dataset. B. Distribution for cell lines sensitive to doxorubicin. C. Distribution for cell 
lines resistant to doxorubicin. 
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Figure 17 Overlapping events between all tissue and cell-type specific differentially 
spliced events. Venn diagram of common differentially spliced events in all, 
hematopoietic & lymphoid and lung tissue types. 
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Chapter 6 Tissue-specific Network Analysis of Splicing Data 

6.1 Introduction 

In chapters 4 and 5 we identified differentially spliced exons in pre-treatment 

transcriptional profiles from cancer cell lines, their relationship with drug response and 

the regulatory elements that play a role in their splicing. We found that alternatively 

spliced skipped-exons were highly predictive of doxorubicin drug response and extending 

the same modeling approach to other drugs yielded similar results. We then hypothesized 

that drugs from the same class or with similar activities would share predictive splicing 

features. 

 

As discussed in chapter 2 section 1, splicing has been linked to cancer drug resistance 

[151,152,202]. Certain spliced isoforms can manipulate kinase signaling and alter cellular 

drug response [151,152]. Despite this, few studies have explored connections between 

drug response and splicing. Additionally, it is well known that many drugs exploit similar 

targets or pathways as development of structurally homologous compounds is cheaper 

and faster than development of novel therapeutics. Yet to our knowledge, no one has 

investigated commonality between splicing signatures modulating cellular response to 

various compounds. 

 

Here, we expand our work to incorporate all classes of alternatively spliced events and 

construct tissue-specific drug networks utilizing predictive splicing features. We describe 

the drug network characteristics and explore exons connecting individual drug modules. 
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6.2 Materials and Methods 

6.2.1 Dataset and Splicing Quantification 

The integrated CCLE and CTRP dataset from chapter 4 was once again used for work in 

chapter 6 [20,21]. Alignment and cell line classification was performed as in chapter 4 

section 4.2.1. The same procedure was followed for all drugs in the dataset. The total 

number of cell lines tested, and as such the number of sensitive and resistant cell lines, 

differed per compound. Splicing quantification was performed as in chapter 5 section 

5.2.2. 

 

6.2.2 Filtering of Differentially Spliced Events 

Differentially spliced events across sensitive and resistant cell lines, divided by tissue, 

were identified for each drug using the quasi-binomial generalized linear modeling 

framework from chapter 5. A FDR cutoff ≤ 0.05 was applied to filter low-significance 

events. To select for accuracy and biological significance in each event, we required at 

least 35% of the cell lines that were tested for drug response have splice-junction reads 

and a minimum difference in the fraction of included reads between sensitive and 

resistant cell lines ≥ 0.05. 

 

6.2.3 Construction of Tissue-specific Drug Splicing Networks 

To ensure adequate data for analysis, tissue types were selected based on the number of 

cell lines that were available from the integrated data set. We required a minimum of 60 

cell lines per tissue (Figure 18). After filtering, networks were constructed for six tissue 

types; breast, central nervous system, hematopoietic & lymphoid, large intestine, lung, 
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and skin. Drug-drug networks for each tissue were constructed using drugs as nodes and 

a Jaccard index modified for splicing data to calculate pairwise edge weights: 

 

D&$ =  |> ∩ G| − H&$|> ∪ G|  

 

In the modified Jaccard index, i is all events from the first drug in a pair, j is all events 

from the second drug, Dij is divergent events, (i.e. the number of exons observed to have 

a higher inclusion level in sensitive cells of the first drug but lower inclusion level in 

sensitive cells of the second or vice versa), and wij is edge weight. A network adjacency 

matrix, where nodes are in rows and columns and edge weights the pairwise values, was 

used to represent each network. For bipartite network inspection, an incidence matrix was 

built with all significant events (from all drugs) in a network used as rows and drugs as 

columns. 
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Figure 18 Cell line counts in the integrated CCLE and CTRP data set. Cell types are 
sorted by total cell lines with paired data in descending order.  
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6.2.4 Drug Module Identification 

Module identification was accomplished using the network adjacency matrix in three 

steps. First, hierarchical clustering was performed on the network matrix in R using the 

hclust function with average distance [177]. Next, all clusters with between 3 and 15 

members were extracted and clusters were merged if one contained all members of 

another. Significance of each module was then determined using the cb-signi software 

package [118]. Briefly, significance of network modules in random networks is 

determined by the total number of nodes in a network, the total number of edges in a 

network, the number of nodes in a module, and the number of edges in a module [118]. 

The probability of a community occurring at random, calculated through the cumulative 

probability of the other nodes in the community combined with permuting the worst node 

(most likely to not be a community member), is referred to as “community score”, or c-

score [118]. A low c-score (under 0.05) indicates the module is significant [118]. The c-

score can be extended to consider multiple worst nodes and redefined as “border score”, 

or b-score [118]. Clusters in tissue-specific networks were filtered for those having b- 

and c-scores (significance) of ≤ 0.05.  

 

6.2.5 Drug Module and Event Annotation 

Modules were annotated with drug activity from CTRP [21]. Gene symbols for events 

were annotated using the same GTF file used to identify potential spliced events. All 

protein structure, domain and functional information was annotated manually with the 

Simple Modular Architecture Research Tool (SMART) and GeneCards databases [203–

205].  
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6.3 Results 

6.3.1 Drug-splicing Networks Show Cluster Structure 

Complex networks were built from adjacency matrices for six tissue types. Select 

network metrics are in (Table 5). Networks exhibited random network structure with a 

large number of edges, suggesting many spliced events are related to drug response in 

multiple compounds. Visualization of adjacency matrices after clustering showed obvious 

community structures throughout the networks (Figure 19). Blocks of higher edge 

weights about the zero-line of each heatmap indicated groups of drugs that were tightly 

connected (Figure 20), and similar patterns in connectivity to other nodes trailing to the 

axes indicated drugs in communities tend to have comparable edge weights with drugs 

outside of the community. The number of communities appeared directly related to the 

number of cell lines underlying each network. 

  



 

145 

Tissue 
Cell Line 

Count Nodes Edges 
Mean 

Degree 
Unattached 

Nodes 

Breast 60 500 21717 87 100 

CNS 69 498 20580 83 106 

H and L 181 501 241455 964 7 

Large 
Intestine 

62 494 22464 91 73 

Lung 187 501 242268 965 17 

Skin 62 501 36672 146 63 

Table 5 Tissue-specific drug splicing network metrics. Cell line count is the number of 
cell lines from the tissue of origin available in the overlapped CCLE and CTRP dataset. 
CNS, central nervous system; H and L, hematopoietic and lymphoid. 
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Figure 19 Heatmap of edge weights in the breast tissue drug network. Modified jaccard 
index for pairwise drug combinations scaled from white to red. Side dendrogram shows 
tree from clustering by average distance. Heatmap was imaged symmetrically by row and 
column to show patterns in edge weights. 
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Figure 20 Clusters of high edge weights in the breast tissue drug network. Close up of breast tissue heatmap. Black arrows point to 
block-like organization of tightly connected drug communities. 
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6.3.2 Tissue-specific Module Identification Depends on Cell Line Coverage 

To better understand community structure, we performed bipartite inspection on drugs 

and events comprising the edge weights. We discovered a small number of drugs with 

many differentially spliced events could drive wide-scale connectivity. These drugs 

created “hairballs” in the network by facilitating weak connections with other nodes and 

made module identification more difficult (Figure 21). Therefore, we applied a cluster- 

and significance-based module identification strategy that would take advantage of the 

global connectivity in the network to group community members, while considering the 

probability of community pairwise interactions to minimize the size of extracted 

modules. 

 

The total number of modules we identified in each network, pre- and post- filtering, are 

in Table 6. Total module counts for each network paralleled the number of edges in the 

networks and like community structures were directly dependent on the number of 

underlying cell lines used for construction. However, filtered module counts were similar 

across networks. All tissue networks returned a substantial number of modules; this 

suggested that certain spliced events have a broad influence on pre-treatment sensitivity 

in various compounds, and the effects of splicing can be observed in numerous tissues. 

Modules identified for each network, along with significance scores, are in Tables 7-12. 
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Figure 21 Bipartite plot of module 27 from the skin tissue drug network. This module is 
an example of three drugs with weak connections due to many differentially spliced 
events. Between three drugs a total of 10 out of 60 events were observed in at least two 
community members. Two events were present in 3 drugs. Despite these drugs clustering 
together, this module was eliminated during filtering because it was not significant by c- 
or b-score. 
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Tissue Modules 
Significant 
Modules 

Breast 26 24 

CNS 24 20 

H and L 54 24 

Large Intestine 24 22 

Lung 54 24 

Skin 29 26 

Table 6 Tissue-specific module counts. CNS, central nervous system; H and L, 
hematopoietic and lymphoid. 
 

  



 

151 

Cluster ID Nodes Average Edge Weight c-score b-score 

1 3 0.11 0 0 

2 4 0.16 0 0 

3 4 0.11 0 0 

4 4 0.17 0 0 

5 13 0.16 0 0 

6 3 0.14 0 2.99e-24 

7 15 0.2 0 0 

8 10 0.12 0 0 

9 8 0.16 0 0 

10 5 0.07 0.0198996 6.88e-05 

11 3 0.15 0 1.47e-31 

12 12 0.06 0.84707 0.389374 

13 15 0.12 7.04e-08 3.03e-10 

14 3 0.09 0.329597 0.247971 

15 5 0.1 4.80e-11 8.55e-15 

16 3 0.23 0 0 

17 3 0.15 0 0 

18 3 0.15 1.69e-12 1.30e-12 

19 3 0.17 1.06e-13 6.05e-14 

20 3 0.12 5.31e-10 4.28e-10 

21 5 0.09 2.00e-05 1.36e-05 

22 13 0.12 0.000219527 2.01e-11 

23 3 0.19 0 0 

24 3 0.26 0 0 

25 5 0.19 0.00601248 0.0058375 

26 4 0.44 0 0 

Table 7 Breast drug network module statistics. Each row represents a clustered module in 
the drug network. 
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Cluster ID Nodes Average Edge Weight c-score b-score 

1 3 0.02 1 1 

2 4 0.06 1 0.977287 

3 10 0.19 0 0 

4 7 0.09 0 0 

5 13 0.1 0 0 

6 7 0.18 0 0 

7 6 0.08 0 0 

8 3 0.17 0 0 

9 8 0.11 0.0033545 0.00264043 

10 10 0.11 6.88e-05 1.12e-08 

11 3 0.07 1 1 

12 11 0.4 0 0 

13 5 0.11 0 0 

14 7 0.15 0 0 

15 6 0.12 9.11e-07 1.45e-08 

16 3 0.11 1.55e-05 1.63e-05 

17 5 0.17 2.45e-09 0 

18 5 0.27 4.21e-12 4.14e-12 

19 3 0.17 0.342685 0.327845 

20 3 0.26 0 0 

21 3 0.25 0.00010813 0.00011405 

22 6 0.27 0 0 

23 5 0.15 0.00010667 4.93e-07 

24 3 0.33 0 0 

Table 8 Central nervous system drug network module statistics. Each row represents a 
clustered module in the drug network. 
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Cluster ID Nodes Average Edge Weight c-score b-score 

1 15 0 0.999343 1 

2 6 0.03 0.261985 0.0744 

3 11 0.03 8.93e-06 3.39e-12 

4 14 0.01 0.999638 1 

5 4 0.06 0 0 

6 8 0.02 0.184204 8.21e-07 

7 8 0.02 0.0389182 0.024968 

8 15 0.02 0.0153037 0.0110133 

9 7 0.06 2.23e-13 0 

10 8 0.02 1 1 

11 5 0.04 0.00057775 0.00066691 

12 10 0.08 0 0 

13 3 0.05 0.00014015 7.62e-05 

14 6 0.08 7.99e-14 0 

15 14 0.03 0.880236 0.272504 

16 9 0.02 0.752034 0.779035 

17 5 0.05 0.00047449 1.85e-06 

18 4 0.03 0.0280366 0.00828057 

19 8 0.04 0.946273 0.893683 

20 6 0.04 0.009987 0.00562952 

21 9 0.04 0.722979 0.691368 

22 9 0.05 0.99999 0.999994 

23 3 0.09 0.00272625 0.00290391 

24 4 0.05 0.999904 0.958036 

25 14 0.07 0.796684 0.389119 

26 9 0.07 1.12e-09 0 

27 13 0.07 0.111263 6.72e-05 

28 3 0.07 0.0054361 0.00254429 

29 4 0.05 0.796467 0.771549 

30 7 0.19 0 0 

31 6 0.12 0 0 

32 4 0.07 1 1 

33 11 0.1 1 1 

34 3 0.05 1 1 

35 7 0.13 1 1 

36 8 0.19 2.28e-13 0 

37 10 0.13 1 1 

38 8 0.17 0.998039 0.988809 
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39 9 0.14 1 1 

40 11 0.21 0.295204 8.12e-07 

41 7 0.14 0.999993 0.999321 

42 13 0.16 1 1 

43 5 0.1 0.364562 0.354799 

44 15 0.21 0.96689 0.806223 

45 12 0.21 0.248356 0.191767 

46 4 0.24 0.977163 0.979537 

47 12 0.29 0.00160677 0.00152128 

48 3 0.25 0.0225351 3.58e-06 

49 8 0.27 0.260138 0.029127 

50 4 0.29 4.07e-05 1.13e-05 

51 3 0.14 1 1 

52 10 0.29 1.21e-06 3.89e-11 

53 12 0.35 4.72e-11 2.67e-15 

54 4 0.36 0.0070488 0.00047966 

Table 9 Hematopoietic and lymphoid drug network module statistics. Each row 
represents a clustered module in the drug network. 
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Cluster ID Nodes Average Edge Weight c-score b-score 

1 14 0.07 0 0 

2 15 0.13 0 0 

3 6 0.09 0 0 

4 6 0.16 0 0 

5 15 0.08 5.32e-12 0 

6 4 0.1 0 0 

7 3 0.14 0 0 

8 6 0.12 0 0 

9 7 0.11 4.27e-08 8.58e-09 

10 3 0.08 1.64e-05 9.19e-06 

11 7 0.16 0 0 

12 3 0.11 5.13e-12 2.77e-12 

13 6 0.16 0 0 

14 6 0.16 0 0 

15 3 0.13 1.92e-07 2.10e-07 

16 3 0.08 0.00050301 0.00029115 

17 6 0.14 0 0 

18 3 0.1 0.133376 0.129384 

19 3 0.14 1 1 

20 7 0.18 3.81e-05 3.56e-05 

21 7 1 0 0 

22 3 1 0 0 

23 7 1 0 0 

24 3 1 0 0 

Table 10 Large intestine drug network module statistics. Each row represents a clustered 
module in the drug network. 
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Cluster ID Nodes Average Edge Weight c-score b-score 

1 10 0.02 0.186503 2.21e-07 

2 4 0.04 0 0 

3 5 0.03 9.57e-07 5.37e-09 

4 10 0.01 0.999625 1 

5 4 0.03 9.47e-05 8.17e-05 

6 4 0.03 0.989295 0.710205 

7 4 0.02 0.357353 0.135326 

8 3 0.04 0.00150324 0.00125364 

9 13 0.02 2.18e-08 2.90e-15 

10 11 0.02 0.00680177 0.00053472 

11 11 0.03 8.23e-11 1.14e-13 

12 7 0.04 2.69e-12 0 

13 4 0.02 0.998103 0.948496 

14 4 0.06 1.33e-08 1.10e-08 

15 14 0.03 0.0005284 0.00019257 

16 5 0.02 0.707335 0.681246 

17 5 0.02 0.99471 0.803602 

18 13 0.03 0.970937 0.925808 

19 5 0.04 0.266776 0.208291 

20 6 0.1 0 0 

21 3 0.05 0.017976 0.0136504 

22 13 0.05 0.159213 0.00879935 

23 7 0.04 0.982697 0.839345 

24 3 0.09 6.28e-06 3.86e-06 

25 7 0.06 0.030158 0.0299761 

26 12 0.06 0.141314 0.156973 

27 5 0.09 0.00866474 0.00748602 

28 7 0.06 0.659764 0.630083 

29 7 0.18 0 0 

30 3 0.06 0.999918 0.999938 

31 15 0.08 0.999537 0.972333 

32 3 0.19 0 0 

33 15 0.11 0.573053 0.605238 

34 12 0.12 0.999992 0.646473 

35 9 0.16 0.999939 0.99993 

36 7 0.12 1 1 

37 5 0.13 1 1 

38 12 0.16 1 1 
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39 13 0.17 0.915604 0.352232 

40 4 0.11 0.171863 0.181508 

41 10 0.18 1 1 

42 5 0.13 1 1 

43 9 0.22 0.00017154 1.20e-07 

44 15 0.26 0.0744473 3.07e-05 

45 11 0.26 0.034897 1.75e-06 

46 12 0.23 0.92408 0.900807 

47 3 0.18 1 1 

48 4 0.26 1.39e-05 4.35e-06 

49 3 0.27 0.656219 0.619115 

50 15 0.3 2.39e-08 0 

51 5 0.25 0.329217 0.325568 

52 4 0.38 9.73e-05 1.39e-05 

53 12 0.35 3.53e-09 9.16e-14 

54 3 0.33 0.0438672 0.0445675 

Table 11 Lung drug network module statistics. Each row represents a clustered module 
in the drug network. 
 
 

  



 

158 

Cluster ID Nodes Average Edge Weight c-score b-score 

1 3 0.05 7.84e-07 4.19e-07 

2 14 0.08 0 0 

3 13 0.06 6.49e-06 1.83e-13 

4 7 0.12 0 0 

5 12 0.09 0 0 

6 4 0.13 0 0 

7 4 0.27 0 0 

8 5 0.13 0 0 

9 8 0.13 0 0 

10 10 0.11 0 0 

11 14 0.07 2.63e-06 5.25e-10 

12 8 0.15 0 0 

13 3 0.07 0.00829008 0.00810006 

14 3 0.11 0.00268105 0.00319062 

15 7 0.18 0 0 

16 14 0.23 0 0 

17 8 0.07 0.00134095 3.53e-07 

18 6 0.22 0 0 

19 8 0.12 0 0 

20 12 0.09 0.999999 0.0325464 

21 5 0.09 3.17e-05 3.24e-05 

22 4 0.26 0 0 

23 5 0.13 0 0 

24 9 0.11 1.12e-10 7.17e-15 

25 5 0.16 0.810523 0.820397 

26 4 0.26 0.00042842 0.000104 

27 3 0.11 0.999992 0.999549 

28 5 0.17 8.33e-08 8.93e-08 

29 3 1 0 0 

Table 12 Skin drug network module statistics. Each row represents a clustered module in 
the drug network. 
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6.3.3 Compounds Within Modules Share Components and Activities 

Some of the stronger modules we identified, as defined by larger size and a high average 

edge weight, shared many of the same drug members in multiple tissue types. Two 

examples of modules with similar members in multiple tissues were the modules 

containing selumetinib compounds (Table 13), bromodomain inhibitors (Table 14).  

Other modules were more specific to the respective tissue and members did not cluster 

well in other tissues. Three such examples are the lung modules for drugs with activities 

based on inhibition of EGFR (lung module 20, Figure 22A), nicotinamide 

phosphoribosyltransferase (NAMPT) (lung module 32, Figure 22B) and BCL2/BCL-xL 

(lung module 34, Figure 22C).  
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Compound H and L Lung Breast Activity 

selumetinib.UNC0638..4.1.mol.mol. x x x 
inhibitor of MEK1 and MEK2;inhibitor of EHMT2 and 
GLP methyltransferase 

selumetinib.tretinoin..2.1.mol.mol. x x x 
inhibitor of MEK1 and MEK2;agonist of retinoid acid 
receptors 

selumetinib.BRD.A02303741..4.1.mol.mol. x x x 
inhibitor of MEK1 and MEK2;inhibitor of histone 
methyltransferases 

selumetinib.PLX.4032..8.1.mol.mol. x x   inhibitor of MEK1 and MEK2;inhibitor of BRAF 

PD318088 x x   inhibitor of MEK1 and MEK2 

selumetinib x x x inhibitor of MEK1 and MEK2 

selumetinib.MK.2206..8.1.mol.mol. x x x inhibitor of MEK1 and MEK2;inhibitor of AKT1 

selumetinib.decitabine..4.1.mol.mol.     x 
inhibitor of MEK1 and MEK2;inhibitor of DNA 
methyltransferase 

selumetinib.GDC.0941..4.1.mol.mol.     x 
inhibitor of MEK1 and MEK2;inhibitor of PI3K kinase 
activity 

selumetinib.piperlongumine..8.1.mol.mol.     x 
inhibitor of MEK1 and MEK2;natural product; 
modulator of ROS levels 

PD318088     x inhibitor of MEK1 and MEK2 

selumetinib.vorinostat..8.1.mol.mol.     x 
inhibitor of MEK1 and MEK2;inhibitor of HDAC1, 
HDAC2, HDAC3, HDAC6, and HDAC8 

serdemetan.SCH.529074..1.1.mol.mol.     x inhibitor of MDM2;activator of mutant p53 

erlotinib.PLX.4032..2.1.mol.mol.     x inhibitor of EGFR and HER2;inhibitor of BRAF 

SCH.529074     x activator of mutant p53 

Table 13 Selumetinib drug community in three tissue networks. Presence of drug members in tissue-specific identified communities is 
indicated by “x” for three tissue drug networks; hematopoietic and lymphoid, lung and breast.  
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Compound H and L Lung Breast Activity 

JQ.1.MK.0752..1.1.mol.mol. x x   
inhibitor of bromodomain (BRD) and extra-C terminal 
domain (BET) proteins;inhibitor of gamma-secretase 

JQ.1.navitoclax..2.1.mol.mol. x   x 

inhibitor of bromodomain (BRD) and extra-C terminal 
domain (BET) proteins;inhibitor of BCL2, BCL-xL, and 
BCL-W 

GSK525762A x x x 
inhibitor of bromodomain (BRD) and extra-C terminal 
domain (BET) proteins 

JQ.1.vorinostat..2.1.mol.mol. x     

inhibitor of bromodomain (BRD) and extra-C terminal 
domain (BET) proteins;inhibitor of HDAC1, HDAC2, 
HDAC3, HDAC6, and HDAC8 

I.BET151 x     
inhibitor of bromodomain (BRD) and extra-C terminal 
domain (BET) proteins 

JQ.1   x   
inhibitor of bromodomain (BRD) and extra-C terminal 
domain (BET) proteins 

I.BET151   x x 
inhibitor of bromodomain (BRD) and extra-C terminal 
domain (BET) proteins 

apicidin x     
inhibitor of HDAC1, HDAC2, HDAC3, HDAC6, and 
HDAC8 

ISOX x x   inhibitor of HDAC6 

BRD.K61166597   x   inhibitor of HDAC1 and HDAC2 

vorinostat   x   
inhibitor of HDAC1, HDAC2, HDAC3, HDAC6, and 
HDAC8 

vorinostat.carboplatin..1.1.mol.mol.   x   
inhibitor of HDAC1, HDAC2, HDAC3, HDAC6, and 
HDAC8;inducer of DNA damage 

LBH.589     x 
inhibitor of HDAC1, HDAC2, HDAC3, HDAC6, and 
HDAC8 

TG.101348 x x   inhibitor of Janus kinase 2 

NVP.BSK805 x     inhibitor of Janus kinase 2 

piperlongumine x     natural product; modulator of ROS levels 
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curcumin x     
natural product; modulator of ROS; modulator of NF-

kB signaling 

PL.DI   x   dimer of piperlongumine; inducer of ROS 

decitabine.navitoclax..2.1.mol.mol. x     
inhibitor of DNA methyltransferase;inhibitor of BCL2, 
BCL-xL, and BCL-W 

YK.4.279   x   
inhibitor of RNA helicase A (RHA) binding to EWS-

FLI1; inhibitor of ERG and ETV1 activity 

ML311   x   inhibitor of MCL1 

sunitinib     x 
inhibitor of VEGFRs, c-KIT, and PDGFR alpha and 
beta 

Table 14 Bromodomain drug community in three tissue networks. Presence of drug members in tissue-specific identified communities 
is indicated by “x” for three tissue drug networks; hematopoietic and lymphoid, lung and breast. 
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Figure 22 Network diagrams of three drug communities in the lung tissue drug network: 
A. Module 20; B. Module 32; C. Module 34. 
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6.3.4 Commonality Among Spliced Events 

To understand the relevance of individual spliced events across multiple tissues, we 

further compared overlapping events from the selumetinib kinase inhibitor and 

bromodomain inhibitor module groups in hematopoietic and lymphoid, lung and breast 

tissue; In the selumetinib activity group these were hematopoietic and lymphoid module 

30, lung module 29 and breast module 5. In the bromodomain group these were 

hematopoietic and lymphoid module 47, lung module 53 and breast module 25. We 

found the selumetinib group did not share any events across all three tissues. However, 

13 events were shared between hematopoietic and lymphoid and lung tissues, and two 

events were shared between hematopoietic and lymphoid and breast tissues. For the 

bromodomain activity group we found 346 events, originating from 268 genes, common 

between all three tissues. Despite the extreme number of shared events in the 

bromodomain activity group, generally we found that although some modules appeared 

to share similar drug activities across tissues both the members and events connecting 

them were largely unique. This indicates that while splicing may be important to drug 

response in multiple tissues, and in some cases events can translate across tissues, for the 

majority of drug activities the specific events and mechanisms influencing drug response 

may vary. 

 

6.3.5 Genes, Protein Domains and Mechanisms in Drug Modules 

Due to the huge volume of data produced during network analysis, and the time required 

to manually annotate spliced events, we chose to evaluate the three lung-specific modules 

that were discussed in section 6.3.3; modules with activities based on inhibition of EGFR 



 

165 

(lung module 20), NAMPT (lung module 32) and BCL2/BCL-xL (lung module 34). Top 

annotated genes for the modules are in Tables 15-17. Both the EGFR and BCL2/BCL-xL 

modules shared spliced events in genes related to cellular motility and adhesion. Key 

genes annotated to these two modules included CD44, CTNND1, GSN, ADAM15, 

TCF7L2 and GIT2.  

 

Next, we annotated module events with protein structure information and discovered 

multiple spliced exons were spanning regions coding for key protein domains. The 

transmembrane protein CD44 is found in leukocytes and regulates transmigration to 

inflammatory sites [206]. We found multiple events spanning the hyaluronan binding 

domain; a key region essential for CD44 functionality [206]. Additionally, we found 

exons spanning the SH3 binding domain of ADAM15, and the ALG2 binding domain of 

SEC31A. Taken together, these results indicate that differentially spliced exons associated 

with drug response can have important functional consequences, and that common events 

can have an influence on multiple groups of drugs with differing activities. 
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Gene Event Count Function 

CD44 27 Cell-surface glycoprotein, cell-cell interactions 

CTNND1 7 Cell adhesion and signal transduction 

GSN 7 Actin filament assembly and disassembly 

DDR1 5 Receptor tyrosine kinase activated by collagen 

MLPH 4 Binds to myosin 5A, an actin bound transport protein  

SEC31A 4 Member of coat protein complex II and is involved in vessicle budding from the endoplasmic reticulum 

TCF7L2 4 Transcription factor that has a key role in Wnt signaling 

CAST 3 Calapin inhibitor involved with membrane fusion events 

COL16A1 3 Alpha chain of type XVI collagen that maintains the extracellular matrix 

ENAH 3 Regulates assembly of actin filaments and cellular adhesion 

Table 15 Genes annotated to the EGFR module in the lung tissue drug network. Event counts are the number of differentially spliced 
events in the module annotated to each gene. Functions were annotated from GeneCards [205]. 
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Gene Event Count Function 

CLDND1 4 Claudin Domain Containing 1 

LTBP1 4 TGF-beta binding protein 

EEF1D 3 Subunit of elongation factor-1 complex 

BCAS1 2 Candidate oncogene amplified in tumors 

CD151 2 Cell surface glycoprotein mediating signal transduction and cell adhesion 

CD47 2 Membrane protein invoveld in membrane transport and signal transduction 

COL16A1 2 Alpha chain of type XVI collagen that maintains the extracellular matrix 

COL6A3 2 Alpha-3 chain of type VI collagen 

ENOSF1 2 Mitochondrial enzyme and antisense to thymidylate synthase 

FGD3 2 FYVE, RhoGEF and PH Domain Containing 3 

Table 16 Genes annotated to the NAMPT module in the lung tissue drug network. Event counts are the number of differentially 
spliced events in the module annotated to each gene. Functions were annotated from GeneCards [205] 
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Gene Event Count Function 

CD44 16 Cell-surface glycoprotein, cell-cell interactions 

ADAM15 10 Transmembrane glycoprotein involved in cell adhesion and processing of cytokines 

GIT2 8 GPCR interactor that traffics between cytoplasmic complexes and regulates cytoskeletal dynamics 

CTNND1 7 Cell adhesion and signal transduction 

TCF7L2 7 Transcription factor that has a key role in Wnt signaling 

ARFGAP2 6 ADP Ribosylation Factor GTPase Activating Protein 2 

CBWD6 5 COBW Domain Containing 6 

HMGN1 5 Binds nucleosomal DNA and transcriptionally active chromatin 

ABI1 4 Facilitates signal transduction and regulates actin polymerization and cytoskeletal remodeling 

BANP 4 Tumor suppressor gene that negatively regulates p53 transcription 

Table 17 Genes annotated to the BCL2 module in the lung tissue drug network. Event counts are the number of differentially spliced 
events in the module annotated to each gene. Functions were annotated from GeneCards [205] 
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6.4 Discussion 

In chapter six we show that pre-treatment splicing profiles generated from cell lines 

based on drug sensitivity can be used to link drugs in tissue-specific networks. Our 

findings indicate that specific spliced events may impact sensitivity to multiple 

compounds and that treatment of many cancers, arising across a wide array of tissues, 

could be influenced by differentially spliced transcripts. Additionally, we found that the 

specific events connecting drugs, and members of connected drug modules, differ by 

tissue. 

 

We found that the network structure, and expectedly the total number of modules 

identified, was directly dependent on the number of cell lines used to construct the 

networks. Despite this, we still identified a similar number of significant modules in each 

tissue that reflect the similarities in drug activities and the relevance of pre-treatment 

splicing profiles in drug response. We anticipate that if more cell lines were available for 

analysis the power of our network splicing approach would improve. Given the potential 

for additional network connectivity, it is possible that many relationships between drugs 

defined by differentially spliced events remain undetected. Additionally, having a data set 

that originated from a single source, as opposed to an integrated data set, might improve 

the consistency of the data and reduce technical noise that could be impeding our 

analysis. 
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Chapter 7 Conclusions and Future Directions 

7.1 Conclusions 

7.1.1 Conclusions on Differential Gene Expression Analysis of Concussed Athletes 

Given the prevalence of automobile accidents, household mishaps and participation in 

adolescent sports, concussion continues to be a major public health concern. Currently 

there is a lack of treatment options for concussed individuals which leaves medical 

professionals with little recourse. Implementation of advanced experimental techniques 

and integration of multi-omics data is desperately needed to improve our understanding 

of concussions. In our study, we characterized differentially expressed genes in the 

largest concussion cohort to date. We identified similarities in the gene expression 

profiles of injured participants that matched pathophysiology of concussion. We also 

identified alterations in key immune signaling pathways that specify the type of immune 

and wound healing responses following injury. Deconvolution analysis also indicated a 

difference in immune cell type proportions pointing to neutrophils as key players in 

concussion immune response. We determined that known blood-based biomarkers cannot 

be detected in gene expression data, however there is potential to use transcriptome 

analysis following injury to monitor the short-term immune response and possibly inform 

researchers on the best course of action once new treatment options become available. 

 

7.1.2 Conclusions on Predictive Modeling of Drug Response with Splicing Data  

Our study demonstrated that differentially spliced events can separate cell lines by drug 

sensitivity before treatment. We also demonstrated predictive power across hundreds of 

compounds which suggested that splicing does impact drug response at a broad level. We 
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did not heavily optimize our modeling pipeline or test more advanced machine learning 

techniques like neural networks. We anticipate there is significant room for improvement 

in predictive modeling with splicing data and integration with other data types. 

Additionally, our model was based solely on skipped-exon splicing data. However, even 

though we chose to use one type of spliced event, we still established a strong link 

between splicing and drug response. Finally, our goal was to separate cell lines by drug 

response with splicing data, although it is likely that our doxorubicin model separated cell 

lines by both drug response and cell type related features. We do not see this as a failure 

though since splicing does play a key role in defining cell types and the biological nature 

of some cells will make them more susceptible to certain drugs. 

 

7.1.3 Conclusions on Quasi-binomial GLM for Differential Splicing Analysis 

Quasi-binomial generalized linear modeling is a powerful tool for analysis of modern, 

large volume splicing datasets. In our study we processed splicing data from almost one 

thousand cell lines in mere minutes; that scale of analysis on older methods would have 

taken weeks, assuming the massive computational resources required could be made 

available. We also confirmed our method identified relevant spliced events, given the 

condition we were investigating, by annotating events to genes that were previously 

implicated in epithelial-mesenchymal transition. Additionally, an event we identified 

contained sequences that coded for an essential protein domain; this established a 

connection between individual exons and functional consequences that could impact drug 

response. Still, it may be possible to improve the performance of QBGLM on smaller 
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datasets by adding additional model parameters. Despite this, we expect our model will 

have wide applicability and accelerate analysis of large modern datasets. 

 

7.1.4 Conclusions on Analysis of Drug Splicing Networks 

Through network analysis of drug splicing data we determined that compounds sharing 

the same drug components or activities can be clustered by differentially spliced events. 

Additionally, our analysis shows that splicing influences many compounds across 

multiple tissues, that in some cases events mediating drug response can be relevant to 

multiple tissues, and that in other cases underlying spliced events can be tissue-specific. 

Finally, we annotated key genes and specific protein domains to differentially spliced 

exons that could help researchers investigate a mechanism explain differences in drug 

response among tissue sub-groups. Our work provides a vast dataset that hold 

tremendous potential for advancing the current understanding of drug response dynamics. 

More work is needed to thoroughly catalogue the relationships between drugs and exons 

hiding in the networks. 

 

7.2 Future Directions 

7.2.1 Future Directions of Research in Predictive Biomarkers for Concussed 

Athletes 

More research into concussion response and healing is needed to understand the potential 

medical interventions that can benefit concussion patients. To further investigate changes 

in the transcriptome, additional samples with full time courses are required to analyze 

changes in individuals over time. Additional samples would enable longitudinal analysis 
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and improve the power of differential gene expression detection methods. A much larger 

cohort, with whole-genome sequencing data, is necessary to investigate the potential 

association between genetics and delayed recovery. Overall, knowledge on concussion is 

improving; for example we have learned that alcohol use is a major factor influencing 

delayed recovery, sex based differences lead to longer recovery times in women and there 

is a substantial connection between repetitive low-impact events and neurodegeneration 

later in life. Based on this some future directions for analysis in our data set include 

integrating our results with those from studies in alcohol use disorder, investigating sex-

specific differences in our cohort and long-term follow-up of medical data in contact and 

non-contact controls to compare differences in neurodegeneration rates. Splicing of 

transcript isoforms following injury can also be investigated, although deeper sequencing 

would be required for solid transcriptome coverage. CARE continues to enroll new 

participants and has secured funding for expanding their research goals in the coming 

years. Part of the next phase of the CARE initiative will be single-cell RNAseq analysis, 

which will separate the biological signals we observed in bulk data and confirm changes 

in immune cell types following injury that we found in our deconvolution analysis. 

 

7.2.2 Future Directions of Research in Differentially Spliced Exons Mediating Drug 

Response Sensitivity 

Existing public data sets, that researches rely on to investigate drug response, were 

collected before RNAseq became the dominant transcriptome analysis technology. Larger 

drug response data sets accompanied by RNAseq and other multi-omic data are needed to 

improve consistency and predictive modeling capabilities. We expect that our drug 
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response modeling strategy could be improved in four ways: one, additional event types 

besides skipped-exon events could be included to increase the number of features 

investigated; two, integration with other omics data will provide a more comprehensive 

biological information; three, further optimization of the feature selection and training 

procedure will improve overall performance; and four, advanced machine learning 

methods such as neural networks could be applied to the data. In the coming years we 

anticipate many researchers will integrate isoform-specific information into drug 

response models. 

 

Until whole-isoform sequencing becomes affordable enough to perform en masse, 

QBGLM could be relevant to process new experimental data. We expect that QBGLM 

could be improved by adding variance controlling functionality that adjusts model 

parameters based on observed data metrics and sample counts; this would allow for 

accurate analysis of small sample sets and enhance performance in larger data sets as 

well. Additionally, incorporating a method to identify unannotated events would help 

account for incomplete annotation of reference genomes. Finally, repackaging QBGLM 

into an easily accessible tool, compatible with existing splicing annotation, would help 

researchers quickly implement the method in their research. 

 

Due to the size of the integrated data set we used for network analysis, there is still a 

substantial amount of work that can be done to investigate splicing relationships between 

communities of drugs. Additionally, our network analysis could be improved by testing 

additional edge weighting schemes and module identification algorithms. Our study 
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would also benefit from validation of underlying events using additional data sets or wet 

lab experiments. Finally, we could extend the utility of our networks by investigating 

other biological questions such as splicing mediated drug toxicity and developing a 

strategy to find complementary drug pairs. 

 

Lastly, a substantial issue that surfaced repeatedly during our research was that currently 

no resource exists which catalogues, annotates, and visualizes differentially spliced 

events in a centralized and user-friendly manor. We see this as a major detriment to 

studying splicing in transcript isoforms and we anticipate development of a centralized 

splicing-oriented resource would provide a valuable service to the research community. 
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