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Abstract—Collaborative Filtering (CF) is a popular recommen-
dation system that makes recommendations based on similar
users’ preferences. Though it is widely used, CF is prone to
Shilling/Profile Injection attacks, where fake profiles are injected
into the CF system to alter its outcome. Most of the existing
shilling attacks do not work on online systems and cannot be effi-
ciently implemented in real-world applications. In this paper, we
introduce an efficient Multi-Armed-Bandit-based reinforcement
learning method to practically execute online shilling attacks. Our
method works by reducing the uncertainty associated with the
item selection process and finds the most optimal items to enhance
attack reach. Such practical online attacks open new avenues for
research in building more robust recommender systems. We treat
the recommender system as a black box, making our method
effective irrespective of the type of CF used. Finally, we also
experimentally test our approach against popular state-of-the-art
shilling attacks.

I. INTRODUCTION

Since the beginning of the information age, there has been
an exponential increase in data uploaded to the internet. This
growth has also led to a drastic rise in e-commerce and content
curation websites. Websites use Recommender Systems(RS)
to ensure customer satisfaction. RS is an information filtering
system that functions by using existing data to calculate and
predict possible future outcomes. It can be broadly classified
into two types: Content-based Filtering [1] and Collaborative
Filtering [2], based on the features used to make predictions.

Content-based filtering, as the name suggests, makes rec-
ommendations by comparing the contents of the item to the
users’ profile. But, over-specialization causes all the recom-
mendations to be similar to the items previously consumed by
the user.

The core idea behind Collaborative Filtering (CF) is that
similar users have similar preferences. Typically, the users and
items are represented in the form of a User-Item matrix, also
known as a Utility matrix. The utility matrix is a sparse matrix,
with entries only where the users have rated the items. The
remainder ratings of the sparse matrix are calculated based
on the top N users who are similar to the concerned user.
Recommendations are made from the calculated ratings. This

simplicity and effectiveness have led to CF being prone to
shilling attacks.

Shilling Attack/Profile Injection Attack introduced in [3] is
a particular type of attack, where a malicious user (attacker)
introduces a series of fake user profiles into the collaborative
filtering system to push a target item. The fake profiles also rate
other items with a motivation to be similar to many authentic
user profiles, causing the target to be pushed further. There are
various shilling attack methods like in [3]–[5] and detection
techniques like in [6]–[8] that have come into existence in the
past years.

The downside of most existing attacks is that their perfor-
mance varies drastically with the type of CF algorithm used.
Though these attacks work in offline evaluations, they cannot
be used to execute an effective real-world attack. Moreover,
these are single-time attacks; all the fake profiles and all their
ratings are injected at once. Most attack schemes do not get
feedback from the recommender system to assert the efficacy
of the attack.

To overcome these drawbacks, we propose an online shilling
attack scheme with high-efficiency under different CF al-
gorithms. For an attack to work under multiple algorithms,
the items selected by the attack should suit the particular
algorithm under consideration, and cannot be the same for all
systems. But, there is a high degree of uncertainty associated
with choosing the most optimal items without knowing the
algorithm. To tackle this problem, we develop a Multi-Armed-
Bandit-based item selection process that uses the recommender
system’s feedback. We inject observer profiles, exclusively to
understand and categorize the recommendations made by the
system. We use these recommendations to reduce uncertainty
categorically while simultaneously extending the attack reach.

This paper proposes an online attack method that aims to be
efficient with different types of collaborative filtering methods
used. The contributions of our work are the following:
• We design an online attack scheme that treats the
recommender system as a black-box, knowing what the
system is capable of doing but not the algorithm behind it.
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• We employ a multi-armed bandit-based approach for
selecting the most optimal items to enhance the attack
performance.
• We inject observer profiles to get the recommendations
made by the CF and use these recommendations to extend
attack reach.

II. BACKGROUND

A. Understanding Collaborative Filtering

The function of a recommender system is to suggest items
that may be of interest to a website’s users. This suggestion is
based on the other items that the users have rated or purchased
on the website. The recommender system intends to make
these recommendations to let the users explore items that
may have been otherwise missed. For instance, users may be
recommended with movies they have never heard of, based
on the other movies they have rated. At the same time, a
recommender system also suggests items that a user might
need, reducing the effort needed to find it. For example,
batteries are recommended to users with a flashlight in their
online shopping cart, making the user experience more pleasant
and easier.

Collaborative Filtering: It is the most commonly used sys-
tem in practice. It can be broadly classified as User-User-based
and Item-Item-based.

1) User-User-based CF [9]: This CF works by finding
users who have purchased/rated a similar set of items and
recommends the items purchased by one user to the other.
To illustrate, if users u1 and u2 purchased items i1, i2 and i3,
then these two users are considered to be similar to each other.
When user u1 purchases another item i4, then this item will
be recommended to user u2 based on user-user CF.

2) Item-Item-based CF [10]: This type of CF forms re-
lationships between items based on how often those items
are purchased together. Consider that the item sets {i1, i2, i3},
{i1, i2, i4}, and {i1, i2, i5} are purchased by users u1, u2, and
u3 respectively. When another user u4 purchases item i1, then
item i2 will be recommended to the user. If two items are
found together frequently in the purchase history of multiple
users, then those items will be strongly related in the item-item
based CF.

Collaborative filtering can be interpreted as a way to extract
relationships and similarities based on how users interact with
items in an online platform. Fig. 1 illustrates the difference in
the outcome of the two types of CF.

B. Developments in Collaborative Filtering

In recent years, with the need to improve the recommenders’
performance, online platforms have been including newer
features into the CF process [11]. These features are modified
according to the platform’s needs. Some of those features are:
• The similarity of items depends on the probabilistic asso-
ciation between items. In other words, the number of items
purchased by a customer is also taken into account while
calculating the similarity.
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Fig. 1: A toy example of user-user and item-item collaborative
filtering methods.

• The similarity between items also depends on the period
of the purchase/rating of the items. The items bought months
apart from each other will have far less similarity score than
items which are purchased on the same day.
• Sometimes, the recommender system recommends a variety
of moderately related items than a narrowly targeted list. For
instance, if a user only purchases books, sometimes non-books
are also recommended to the user.

Intuitively, not all online platforms need these added features
to be better, but there is no guarantee of whether such elements
are present in a CF system. But these changes do affect the
way items are recommended; each recommendation includes
a fraction of the CF’s hallmark.

C. Objective of a Shilling Attack

A shilling attack is a method of introducing many fake
profiles into a recommender system to alter the outcome
of the recommendation process. These fake profiles generate
unauthentic ratings to several items. They are causing the
recommender system to work in the attacker’s favor. Shilling
attacks are executed either to promote (push) a target item that
the attacker is favoring or to demote (nuke) a rival item.

Instinctively, we know that introducing many fake profiles
would be beneficial in expanding the reach of an attack. But,
it also increases the cost of the attack, as well as the risk of
being detected. Here, the cost would include resources like
time, computing power, and the money involved in executing
the attack. So, an attacker aims to achieve the maximum reach
possible for a given cost.

D. Factors Influencing the Effectiveness of a Shilling Attack

The attackers have two significant factors that can be mod-
ified: the number of profiles injected and items rated by these
profiles.
Attack Size: Attack size is the number of fake profiles injected
by the attacker. The larger the attack size, the better the reach



of the attack but the cost involved will also exponentially
increase.
Choice of Rated Items (Selected Items): Items to be rated by
the injected profiles are selected in such a way that-
• The attack profiles have maximum similarity with other

authentic users in a User-User based CF system.
• The target items have a high degree of co-occurrence with

many of the other items in an Item-Item based CF system.
The attacker does not know the type of CF used in most of

the cases. The existing attack schemes use offline strategies to
choose these selected items. Moreover, other factors, like the
developments we discussed earlier, also impact the attack but
are unknown to the attacker.

III. METHODOLOGY

In our method, we focus on creating an online attack, uti-
lizing the CF’s recommendation feedback while concurrently
attaining maximum efficiency for a given attack size. We show
that our method is system-agnostic by treating the CF as a
black box; the internal parameters and the CF algorithm used
are unknown to the attacker. The attacker can only rate/review
the items and view the recommendations made to him by the
system. To make the attack online, we deploy a continuous
attack strategy, where the selected items are added over a more
extended period.

Owing to the different CF algorithms and the newer devel-
opments in CF, it is evident that each recommendation made
by the system has imbibed the essence of the entire CF system.
The best way to subsume the recommendations into the attack
is by adding these recommended items to the fake profile’s
selected items list. To get the recommendations, we exclusively
create multiple fake profiles (observer profiles) and fill them
with some items appropriate for the target item.

Not all recommendations made by the system adds value
to the attack, but only the ones relevant to the target items.
This criterion leaves an uncertainty associated with choosing
the most optimal recommended items from all the profiles
created. Only a limited number of items can be added to the
selected items for a given cost. Such a limitation leads to
making two modifications to reduce this uncertainty.

A. First, instead of treating each profile individually, grouping
them into categories, makes it easier to reduce the uncertainty
as a group: Categorizing Injected Profiles.

In most of the existing works, only the attack profiles are
injected into the recommender system, but in our work, we
inject two types of profiles into the system.

1) Attacker Profile: The attacker profile is the major part of
the injected profiles used for promoting the target item to as
many authentic users as possible. The profile has three types
of rated items.

• Target Item: The item which needs to be promoted or
demoted.

• Selected Items: The set of items that are rated to increase
the reach of an attack.

• Filler Items: The items which are rated to camouflage the
presence of an attack profile among authentic profiles to
avoid detection.

2) Observer Profile: These profiles are injected to learn
from the recommender system. The observer profiles use the
recommendations made by the system to populate the attacker
profiles.

• Selected Items Subset: These are the items that are a
randomly chosen subset of the attacker profile’s initial
selected items.

• Random Items: These items are randomly chosen from
the entire website’s list of items.

• Recommended Items: These are the items that are recom-
mended to the observer profiles after the subset of selected
items and random items have been rated.
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Fig. 2: A toy example of possible observer profile combos.

The observer profiles are divided into multiple combina-
tions, with each combination having an equal number of
profiles. The combinations differ from each other based on
the ratio of selected subset, random, and recommended items.
Fig. 2 illustrates six of the possible observer profile combos.
This figure is only an example of the possible combinations.

B. Second, to ensure high efficiency, the uncertainty reduction
process needs to happen simultaneously with the item selection
proces: Multi-Armed-Bandit-based Uncertainty Reduction.

In MAB, a fixed number of resources need to be apportioned
among multiple opposing choices in a way such that the overall
gain is maximized [12]. The individual reward associated with
each of the options is not known at the beginning. This problem
models the exploration vs. exploitation dilemma. The name
comes from a gambler having to choose the right one-armed
bandit, or slot machine, to play from a row of bandits with
varying rewards. The gambler has to select the number of
plays in each bandit as well as the sequence of play. In
scientific research, MABs are used in pharmaceutical trials,
information retrieval, and even recommender systems. There
are many optimal solutions for the MAB problem, but we
are only using Thompson Sampling [13] approach in our
method. Epsilon Greedy bandit algorithm undertakes a random



exploration strategy which is not suitable for our work. Upper
Confidence Bound acts under the optimistic assumption that
the selection made has the highest possible reward and expends
on exploring other options to decrease uncertainty. Thompson
Sampling, on the other hand, is solely bayesian and is more
suitable for our work.

Thompson Sampling uses the concept of probability and
depends on the Beta distribution to make each selection.

β(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (1)

Here, α value is increased by 1 for a win, and β value is
increased by 1 for a loss after each iteration.

In the shilling attack process, MAB can be used to balance
the exploration vs. exploitation with uncertainty in the item
selection process. Each of the observer profile combos act as
individual arms in the MAB. With each trial of the MAB, the
uncertainty associated will the selected observer combo gets
reduced. The probability of success replaces this uncertainty
in each combo. If the recommended item is relevant to the
target item, it is considered a win. If the recommended item is
either irrelevant or is already part of the attacker profile, then
it is a loss. Through multiple iterations, the MAB eventually
starts exploiting the observer combo that makes the most useful
recommendations.

C. Rating Scheme

For each new item added to the attacker profile or the ob-
server profile, a rating needs to be included. For the simplicity
of discussion, we pick the two most common rating scales
as examples. If the system uses the 0 - 1 rating scale, then
the ratings given to all the items should be 1. If the 1 - 5
rating scale is used in the system, then the rating provided
by the attacker profile for an item should be equivalent to the
average rating of the item in that platform. The rating given
by the observer profile should be similar to the system mean
rating. These details are readily available in most of the online
platforms.

IV. MAB-BASED SHILLING ATTACK SCHEME

In this section, we explain the scheme in which the online
attack is executed. Our attack scheme is categorized into three
phases for ease of understanding.

A. Setup Phase

The selection of the items for the initial attacker profile
and observer profiles constitute the setup phase. The attacker
profile mostly consists of the essential selected items, which
are chosen as per the target item. The most popular items
which are similar to the target item are chosen to be the
selected items. For example, if the target item is a sci-fi novel,
then the selected items should be set of the most famous
novels.

We want the initial items in the attack profile to be 70%
filled with the selected items at the setup phase. The rest of
the items are filler items chosen at random from the entire item

Algorithm 1: Iterative and Termination Phase.
Input : Attacker and Observer profiles formed from

Setup Phase.
Assume α = 1 and β = 1 for all

combos(bandits)
Output: Efficient Attacker and Observer profiles

1 Iterative Phase:
2 MAB Selection Process:
3 •Use eqn.1 to get beta distribution.
4 •Randomly sample a value from the

probability density function beta
distribution of all the combos;

5 •Select the combo with maximum sampled
value;

6 Check recommendations for first observer profile in
selected observer combo;

7 if Recommended item is related to Target item then
8 MAB Combo Reward = 1;
9 α = α + 1

10 Add item to all Attacker Profiles;
11 else
12 MAB Combo Reward = 0;
13 β = β + 1
14 end
15 Add item to current observer profile;
16 Move current observer profile to the end of queue

in observer combo;
17 Termination Phase
18 if New Items Count <= Batch Threshold then
19 goto 1;
20 else
21 if Attacker Profile Length < Filler Size then
22 Terminate one batch of attack profiles;
23 Reset New Items Count;
24 Add Target item to terminated batch;
25 goto 1;
26 else
27 Attack Size Reached;
28 Terminate Attack;
29 end
30 end
31 return Fully-populated Attacker and Observer profiles

set. This mix of items ensures that the attacker profile is very
similar to the target item while also evading detection because
of filler items. The target item is not introduced during the
setup phase.

The observer profile has fewer items than the attacker
profile. The number of combinations that can be used in an
attack is dependent on the size of the attack. If many profiles
are injected, and the number of items that can be rated by
each profile is higher, then more observer combinations can
be explored.

Having multiple observer combos means getting a better
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understanding of how the recommender system treats the dif-
ferent types of users. The system treats the user who has only
purchased books different from the user who has consumed an
array of items. So, the recommendations made to these users
differ drastically. Having different observer combos helps in
mimicking various types of authentic users.

B. Iterative Phase

In the iterative phase, the recommendations made to the
observer profiles are added to the attacker profile. In this phase,
the multi-armed bandit algorithm is used to select the observer
combo. Each observer combo has a specific number of profiles
arranged in a queue; the recommendation is chosen from the
first profile in the line. The observer profiles are presented as
given in Fig. 3. If the recommended item is related to the
target item, then it is added to the attacker profile as well as
the observer profile. If not, then it is only added to the observer
profile. Adding the recommended item to the observer profile
ensures that the item is not recommended again. After each
iteration, the profile which made the recommendation is moved
to the back of the queue.

Alg.1 explains the algorithm involved in the iterative and
termination phases. Initially, all the observer combos are
likely to be selected equally. But, as the number of iterations
increases, the observer combos, which have a higher chance
of giving a reward, are selected with a higher probability by
the MAB.

C. Termination Phase

As the name suggests, the termination phase terminates the
addition of new items to the attacker profile in batches and
the termination of the attack process. Two main activities take
place in the termination phase. These two actions help in
tackling some of the newer developments in the CF.

First, after a threshold number of new items are added to all
the attacker profiles, one batch of the attacker profile is retired
after adding the target item as the final item to the batch. The
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Fig. 4: Attacker profiles at the end of the attack.

size of the batch depends on the number of iteration cycles we
want to continue and the attack size. Such batched termination
creates attack profiles of different lengths.

As mentioned earlier, some of the more recent CF models
take into consideration the number of items rated by an
account for similarity calculation. By creating attacker profiles
of different lengths, we are ensuring that there is some attack
profile batch to match each kind of authentic users: from
people who have rated only a few items to people who have
rated many items.

At the termination of each batch, adding the target item
creates a higher similarity between the newly added selected
items and the target item. If the period in which the items
were rated is taken into consideration in the CF, then the target
would still have a high similarity with all the selected items.

Once the final batch reaches the predetermined maximum
number of items allowed per attack profile, the attack process
gets terminated. This termination keeps the estimated cost of
the attack in check. After the final batch termination, the target
item is added to all the observer profiles.

The attacker profiles at the end of the attack are illustrated
in fig. 4. Initially, all the attacker profiles are of the same
length. After the attack, the orange portion shows the items
that were part of the batch during the previous iterative cycle.
The blue-colored portion shows the newly added items after
the termination of the previous batch. The green-colored part
is the target item, the last item added before batch termination.
The dotted region is a representation of the items which will
have high similarity with the target if the time-period of rating
is taken into consideration by the CF algorithm. By adding the
target item as the last item of a batch, we are ensuring that
all the newly added items get closely related to the target. It
is important to note here that the different profile length or
adding the target as the last item does not affect the attack
even if the system doesn’t use any additional features.

D. Toy Example of MAB Shilling Attack

To better understand the attack scheme, let us consider the
toy example in fig. 5. In the example, we are injecting 200
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profiles into the system, out of which 140 are attacker profiles,
and 60 are observer profiles. The attacker profiles are divided
into ten batches, and the observer profiles into six observer
combos, with ten profiles each. The initial number of rated
items in the attacker profile is 30, and that of the observer
profile is 15. For this example, we are going to consider a
filler size of 80 items. This size implies that no injected profile
should have more than 80 rated items. Given that the filler size,
initial rated items, and the number of batches in the attacker
profile, we can estimate that one batch should be terminated
after every 5 new items added. This way, the first terminated
batch will have 35 rated items, and the last terminated batch
will have 80 rated items. The batch threshold value for this
attack is 5.

In the iterative phase, the MAB algorithm is used to select
one of the observer combos. The recommendation made to the
first profile of the chosen observer combo is examined. If the
recommended item is related to the target item, then it is a
win for the MAB, and the item is added to both the chosen
observer and all the attacker profiles. If the recommended item
is not related, then it is a loss, and the item is only added to
the chosen observer. After each new item added, the control is
passed to the termination phase. This process is repeated until
the attacker profile length is the same as the filler size.

The first step in the termination phase is to check if the
new items added after the previous batch termination are less
than the batch threshold, which is 5 in the example. If so,
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Fig. 6: Probability density of the beta distribution for four
observer combos at different steps.

then the control is passed back to the iterative phase. If not,
the length of the current attacker profiles is inspected. If the
profile length is the same or greater than filler size, then the
attack is terminated. If the profile length is less than filler size,
then one batch of attacker profile is terminated after adding the
target item as the last new item to the batch. The control is then
passed back to the iterative phase, and the process continues
until the last batch has a length of 80.

V. EXPERIMENTS

In this section, we discuss the experimental evaluation of
our method.

A. Dataset

We used the MovieLens 1M dataset for the evaluation of our
method. This dataset was collected as part of the GroupLens
Research Project for their work in [14]. It consists of 1,000,209
ratings from 6040 users on 3,900 items (including movies,
series, and documentaries), with the genre included. Each user
has rated a minimum of 20 items. The users rate the items
on a scale of 1 to 5, with 1 being the least and 5 being the
maximum possible rating.

B. Our Approach

We incorporate our MAB-based attack scheme by utilizing
the genre of the items. 70% of the injected profiles are attacker
profiles, and the remaining 30% are observer profiles. We
choose the selected items related to the target by comparing
their genre. We use four different observer combos for this
attack, with 0%, 33%, 66%, and 100% selected items each,
and the rest are filler items. We do not use recommended items
in the observer combo formations, owing to the small number
of total items. While using the MAB for item selection, if the
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Fig. 7: Percentage of users with target item in their top-20 recommendation list when filler size is 3%.

genre of the item matches the target, then it is a win; otherwise,
it is a loss.

Fig. 6 shows the probability density function of the beta dis-
tribution for the four observer combos at different steps while
using kNN basic algorithm at 3% filler size, and 5% attack size.
As the number of trials increases, the uncertainty associated
with each combo decreases. Here, the color blue represents
the 66% observer combo, which is the most explored arm and
gives the most wins. One possible reason for this combo to
be selected more often than the 100% combo could be that
the 100% combo only recommends the items which are very
similar to the target item. Most of the profiles in the 100%
combo might have the same list of recommendations. Once
an item is selected, the same item cannot be selected again,
causing the trial to fail. On the other hand, the 66% combo
would have a more diverse list of recommended items, leading
to a higher win rate. It is important to note that the number of
trials shown in the MAB, 1000, is depicted to show how the
attack works. Generally, the attack terminates once the filler
size is reached.

C. Baseline Attack Algorithms

We discuss the baseline algorithms against which we com-
pare our method.

1) Random Attack [3]: It is the primary form of shilling
attack, where the items rated by the attack profile are chosen
at random. The system overall mean is used for rating each of
these items, with a standard deviation of 1.1. The target item
is given the maximum rating.

2) Average Attack [3]: This attack is a slightly more
sophisticated form of the random attack. Here too, the rated
items are chosen at random, but the rating is the average rating
of the item. The target item is given the maximum rating.

3) Bandwagon Attack [4]: The Bandwagon attack operates
by choosing all the rated items for the attack profiles from the
most popular items in the dataset and give them high ratings.
These items have a high rating from a large number of users.

4) Average Over Popular Attack [15]: The AoP attack is
a variation of the average attack, used to obfuscate the attack
signature. In AoP, the rating scheme is similar to the average
attack, but the items are not chosen at random. The most
popular items in the dataset are selected to be the filler items
for this attack.

D. Baseline CF Algorithms
Different websites use different algorithms to fulfill their

recommendation system needs. The attacker does not know of
the algorithm used, making it necessary for the attack to be
successful under different algorithms.

1) kNN Basic [16]: k-Nearest Neighbor algorithm works
by finding the closest neighbors of a user and estimating the
ratings for this user from the rating behavior of the neighboring
users. The similarity measure between two users needs to be
positive for them to be considered a neighbor. This algorithm
is the vanilla implementation of the kNN approach.

2) kNN with Means [16]: This algorithm additionally takes
into account the mean ratings of users in the similarity calcu-
lation process of the kNN algorithm. By including the mean
rating values, the overly positive and overly negative users will
not be part of an average user’s neighborhood.

3) CoClustering Algorithm [17]: CoClustering algorithm
simultaneously clusters users and items. This algorithm is
designed to be a practical real-time CF approach owing to
its low computational requirement. It works by generating
user and item co-clusters and obtaining the average rating
predictions based on these co-clusters.

4) Non-negative Matrix Factorization (NMF) [18]: NMF-
based CF model is a single-element-based approach, such that
none of the matrices involved in the factorization have negative
elements. This algorithm works by examining the non-negative
update process depending on each involved feature rather than
on the entire feature matrices.

E. Evaluation Metrics
We conduct experiments to test the ability of the attack to

push a target product. Initially, we select a target product that
is not a part of the top-N recommended items of any of the
6,040 authentic users under various CF algorithms. Then we
inject the same number of profiles into the system for each of
the attacks. At the end of the attack, we evaluate the success
of the attack by checking the percentage of authentic users
with the target item as part of their top-N recommended items
list. We repeat the evaluations by varying the attack size, filler
size, and CF algorithms for all the attacks.

F. Result Analysis
We will discuss how the different attacks perform in the

various algorithms and the impact of filler size. Fig. 7 and



03% 05% 08% 10%
0

5

10

15

20

25

30

35

40

Attack Size (%)

Us
er

s r
ec

om
m

en
de

d 
wi

th
 T

ar
ge

t (
%

)
KNN Basic

Random Attack Average Attack Bandwagon Attack AoP Attack MAB Attack

03% 05% 08% 10%
0

5

10

15

20

25

30

35

40

Attack Size (%)

Us
er

s r
ec

om
m

en
de

d 
wi

th
 T

ar
ge

t (
%

)

KNN With Means

03% 05% 08% 10%
0

5

10

15

20

25

30

35

40

Attack Size (%)

Us
er

s r
ec

om
m

en
de

d 
wi

th
 T

ar
ge

t (
%

)

CoClustering

03% 05% 08% 10%
0

5

10

15

20

25

30

35

40

Attack Size (%)

Us
er

s r
ec

om
m

en
de

d 
wi

th
 T

ar
ge

t (
%

)

NMF

Fig. 8: Percentage of users with target item in their top-20 recommendation list when filler size is 5%.

fig. 8 show the extent of attack in the different algorithms.
The x-axis shows the attack size, and the y-axis shows the
percentage of authentic users who have the target item in their
top-20 recommendations after the attack.

1) Changes with CF Algorithms: One of the key advantages
of using our MAB-based approach is the ability to adapt to the
CF system used. By using the recommendations made by the
system, MAB manages to choose the optimal items to attack
the system. The MAB performance with different CFs alters
with how the CF handles the recommendation process and user
information.

kNN Basic: In both the 3% and 5% filler sizes, the MAB
based attack seems to be outperforming the other attacks.
We can notice that the average and random attacks, being
the simplest, seem to be performing significantly lower than
others.

kNN with Means: By including the mean rating of a user,
the CF alters the outcome of the attack. In the kNN basic
method, the bandwagon attack performed better than the
average attack. But, giving high ratings to most of its items
reduces the similarity between bandwagon’s attack profiles and
the authentic users in kNN with means. This aspect affects its
performance.

CoClustering: When it comes to the CoClusteing approach,
both average and AoP attacks have low efficiency. This out-
come could be because of the rating schemes used in these
approaches. Using the system mean for rating the observer
items and varying filler length of attack profiles, gives MAB
method an edge over the other attacks.

NMF: By observing the attack reach in this method, we can
notice that there is not a significant difference between the
baseline attacks. The NMF algorithm does not seem to take the
attacks’ rating scheme into account during the recommendation
process. The item selection method used by MAB appears to
be giving it an edge over the other methods.

2) Changes with filler size: Fig. 7 shows the impact of the
different attacks in different algorithms when the filler size
is 3%. Similarly, fig. 8 shows filler size of 5%. Increasing
the filler size does not hugely enhance the attack efficiency
in either of the algorithms. In some instances, the similarity
between attack and authentic profiles is lost because of the
attack profile length. Moreover, profiles with too many rated
items can easily be detected using simple detection techniques.

By using attack profiles of different lengths, our approach has
better reach and lesser detectible features.

VI. RELATED WORK

A. Shilling Attacks

Shilling attack techniques came into existence from the early
2000s. The initial attack models focused more on disrupting
the RS’s performance rather than pushing or nuking a target
product. In [3], Random attack and Average attack models
were used to check the effectiveness of the attacks on User-
User and Item-Item based CF. A more sophisticated model
with better results in promoting the product was used in
[4]. This attack, known as the bandwagon attack, chose the
popular items to be the selected items. Reverse-bandwagon
and love/hate attacks were two effective nuke attacks in [5].
Attacking only a segment of the RS instead of the entire items
list was executed in [19]. Some recommenders gave possible
ratings for its items, which was used in probe attack, [20].
As soon as shilling attacks were discovered to be possible,
simultaneously, there were many research works to detect such
attacks. A series of obfuscated attack strategies were created
to avoid detection. In [21], user shifting and target shifting
techniques were used to hide some of the attack profiles and
target items. Bhaumik et al. in [22] used a combination of the
random, average, bandwagon, and segmented attacks to avoid
detection. Both [15] and [23] designed the attack profiles to
be similar to the most popular users and most popular items,
respectively. Compared to other methods, our method works
online and considers other possible features present in the RS.

B. Multi-Armed Bandits

Multi-Armed bandits have recently been used in many
applications. We discuss some of those applications here. In
the healthcare segment, [24] employs an adaptive model and
allocate more samples to provide better treatment options.
In the finance segment, [25] use MAB for making online
portfolio choices. In [26], the authors make an algorithm to
choose between earning an immediate profit and learning for
future profit when the demand information is incomplete. In
RS, [27] apply MAB on large-scale RS even when no prior
information about the user is available. In [28], the authors use
MAB to maximize the influence of a product by selecting the
optimal seed profiles for promotion. The authors of [29] utilize



MAB for selecting the proper response for dialogue in online
learning systems. In [30], MAB is used for anomaly detection
by interacting with human subjects to learn ground truth. In
the telecommunication segment, [31] use MAB for the best
wireless network selection by multiRadio Access Technology.
In our work, we use MAB to reduce the uncertainty related to
optimal item selection.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have explored the possibility of applying
an online shilling attack, which utilizes the feedback from the
recommendation system to increase the reach of the attack. The
framework treats the Collaborative Filtering RS as a BlackBox
and functions well with both user-user-based and item-item-
based methods. We use a Multi-Armed Bandit based approach
to reduce the uncertainty associated with the item selection
process. Our results are encouraging and show that our online
shilling attack approach has a better reach than the existing
baseline methods. More research on shilling attacks is imper-
ative as more and more businesses are using Collaborative
Filtering systems. We are currently working on obfuscating
our attack without affecting efficiency. In the future, we are
planning to extend our approach to work on a Graph-based
Recommender System as well.
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[9] M. Balabanović and Y. Shoham, “Fab: content-based, collaborative
recommendation,” Communications of the ACM, vol. 40, no. 3, pp. 66–
72, 1997.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
international conference on World Wide Web, 2001, pp. 285–295.

[11] B. Smith and G. Linden, “Two decades of recommender systems at
amazon. com,” Ieee internet computing, vol. 21, no. 3, pp. 12–18, 2017.

[12] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the American Mathematical Society, vol. 58, no. 5, pp. 527–
535, 1952.

[13] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3/4, pp. 285–294, 1933.

[14] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” Acm transactions on interactive intelligent systems (tiis), vol. 5,
no. 4, pp. 1–19, 2015.

[15] N. Hurley, Z. Cheng, and M. Zhang, “Statistical attack detection,” in
Proceedings of the third ACM conference on Recommender systems,
2009, pp. 149–156.

[16] N. S. Altman, “An introduction to kernel and nearest-neighbor nonpara-
metric regression,” The American Statistician, vol. 46, no. 3, pp. 175–
185, 1992.

[17] T. George and S. Merugu, “A scalable collaborative filtering framework
based on co-clustering,” in Fifth IEEE International Conference on Data
Mining (ICDM’05). IEEE, 2005, pp. 4–pp.

[18] X. Luo, M. Zhou, Y. Xia, and Q. Zhu, “An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender
systems,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2,
pp. 1273–1284, 2014.

[19] R. Burke, B. Mobasher, and R. Bhaumik, “Limited knowledge shilling
attacks in collaborative filtering systems,” in Proceedings of 3rd Inter-
national Workshop on Intelligent Techniques for Web Personalization
(ITWP 2005), 19th International Joint Conference on Artificial Intelli-
gence (IJCAI 2005), 2005, pp. 17–24.

[20] R. Burke, B. Mobasher, R. Zabicki, and R. Bhaumik, “Identifying attack
models for secure recommendation,” Beyond Personalization, vol. 2005,
2005.

[21] C. Williams, B. Mobasher, R. Burke, J. Sandvig, and R. Bhaumik,
“Detection of obfuscated attacks in collaborative recommender systems,”
in Proceedings of the ECAI’06 Workshop on Recommender Systems,
vol. 94, 2006.

[22] R. Bhaumik, B. Mobasher, and R. Burke, “A clustering approach to
unsupervised attack detection in collaborative recommender systems,” in
Proceedings of the International Conference on Data Mining (DMIN).
Citeseer, 2011, p. 1.

[23] P. Adamopoulos and A. Tuzhilin, “On unexpectedness in recommender
systems: Or how to better expect the unexpected,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 5, no. 4, pp. 1–32,
2014.

[24] A. Durand, C. Achilleos, D. Iacovides, K. Strati, G. D. Mitsis, and
J. Pineau, “Contextual bandits for adapting treatment in a mouse model
of de novo carcinogenesis,” in Machine Learning for Healthcare Con-
ference, 2018, pp. 67–82.

[25] W. Shen, J. Wang, Y.-G. Jiang, and H. Zha, “Portfolio choices with
orthogonal bandit learning,” in Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, 2015.

[26] K. Misra, E. M. Schwartz, and J. Abernethy, “Dynamic online pricing
with incomplete information using multiarmed bandit experiments,”
Marketing Science, vol. 38, no. 2, pp. 226–252, 2019.

[27] Q. Zhou, X. Zhang, J. Xu, and B. Liang, “Large-scale bandit approaches
for recommender systems,” in International Conference on Neural In-
formation Processing. Springer, 2017, pp. 811–821.

[28] S. Vaswani, B. Kveton, Z. Wen, M. Ghavamzadeh, L. V. Lakshmanan,
and M. Schmidt, “Model-independent online learning for influence
maximization,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 3530–3539.

[29] B. Liu, T. Yu, I. Lane, and O. J. Mengshoel, “Customized nonlinear
bandits for online response selection in neural conversation models,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[30] K. Ding, J. Li, and H. Liu, “Interactive anomaly detection on attributed
networks,” in Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, 2019, pp. 357–365.

[31] S. Boldrini, L. De Nardis, G. Caso, M. T. Le, J. Fiorina, and M.-
G. Di Benedetto, “mumab: A multi-armed bandit model for wireless
network selection,” Algorithms, vol. 11, no. 2, p. 13, 2018.


