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Abstract Watershed planning over a geographic area is a 
difficult task primarily due to the presence of large number of 
stakeholders and decision makers whose intrinsic conflicting 
and/or subjective preferences often lead to uncertainty in 
perceived fitness of planning decisions. Deciding which watershed 
strategy should be implemented at what location requires a 
participatory approach to design and decision making, if adoption 
of landscape decisions is critical to success. Analytical 
participatory design (APD) approaches aim to enable farmers, 
environmentalists, government agencies, and other stakeholders 
to visualize the landscape, explore and design competitive 
scenarios of implementing certain management practices on the 
landscape. Since these approaches improve decision makers’ 
awareness of opportunities and constraints in the co existing 
physical and human systems, it is hypothesized that they can be 
used to generate acceptable decisions that are robust to 
uncertainties in stakeholder preferences. 

An APD method based on Interactive Optimization is 
described in this paper and tested for design of wetlands in a study 
watershed site (Eagle Creek Watershed) in the state of Indiana. 
The method is then used to test research hypothesis by involving 
multiple virtual stakeholders as surrogates to diverse human users 
and their preferences. The results indicate that, while, as expected, 
the interactive optimization approach results in lower values of the 
financial and environmental objective criteria (which are being 
traded off against users’ diverse subjective personal criteria), it 
also results in a relatively high degree of user consensus, indicating 
high likelihood of adoption of the generated solutions by the 
stakeholders. 
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I. INTRODUCTION

Water is an importance resource and necessity for the 
sustenance of human civilization. So much so that many 
scholars predict that water will be to the 21st century what oil 
was to the 20th [1]. Water management, therefore, poses one of 
the biggest scientific challenges facing humanity today. Too 
much water can lead to flood, too little can lead to drought, and 
poor water quality can lead to disastrous public health and 
ecological health consequences. Management of watershed 
systems and water resources requires a rigorous understanding 
of not only the physical and biological laws that govern how 
water is stored, regulated, and routed in the natural and built 
environment, but also processes related to watershed 
stakeholders (i.e. landowners, consultants, managers, and 

agency personnel, etc.) that affect how decisions for water 
management are created and adopted. And while significant 
research has been conducted over multiple decades to 
understand how the uncertainty in data, simulation models, and 
modelers influence the way we predict the behavior of water in 
our physical environments, research on the estimation of 
uncertainty in human (stakeholder) related processes and human 
dimensions data has been relatively scarce.  

It is generally agreed that in any type of natural resources 
management problem (e.g., water management, landscape 
management, etc.) better decisions will be implemented with 
less conflict if the decision making is driven by the social 
network of multiple stakeholders who are affected by these 
decisions [2]. As a result, research on analytical participatory 
modeling and design methods, which directly engage with 
humans to better characterize data on stakeholders’ diverse 
opinions, preferences, and biases when decision alternatives are 
being generated, have become considerably popular in the recent 
past [3]. The answer to the question “How does one measure and 
characterize uncertainty in preferences of stakeholders in 
participatory modeling and participatory design methods?” has, 
hence, become critical in advancing the science of participatory, 
natural resource management. The overarching goal of this 
research paper is to develop and test a novel, mathematical and 
computational approach based on user consensus for 
characterizing and coping with uncertainty in diverse 
stakeholders’ willingness to adopt proposed watershed 
conservation decisions. Specifically, the following are the 
specific objectives of this paper: 

Objective 1: Investigate how users’ preferences for 
watershed conservation decisions (specifically, wetland 
decisions in this paper) can be represented via preference 
models, and then, based on the uncertainty in their willingness 
to participate in conservation planning, can be combined into a 
community consensus metric for evaluating acceptability of 
proposed design alternatives.  

Objective 2: Evaluate the effectiveness of using community 
consensus metric in driving the search process of an Interactive 
Multi-objective Optimization algorithm in order to generate 
design alternatives that are robust to different degrees of 
stakeholder participation in a test watershed  the Eagle Creek 
Watershed  in the state of Indiana, USA. 
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II. CURRENT STATE OF KNOWLEDGE

Interactive Optimization: In a 1985 seminal paper, Fisher [4] 
motivated a discussion on optimization/search algorithms that 
were interactive and allowed humans to be a part of the search 
process, especially for problems where human thought 
processes would provide advantage to the “algorithmic 
thinking” employed by a computer  for example, processes 
related to visual perception, strategic thinking, and the ability 
to learn. According to his discussions, incorporating human 
interaction within the optimization algorithms could  (a) 
facilitate model specification and revisions, (b) help cope with 
problem aspects that are difficult to quantify, and (c) assist in 
the learning and problem-solving process. Also known as 
human-guided search [5], such human-in-the-loop type of 
interactive search/optimization techniques have demonstrated 
promising results in applications such as space shuttle 
scheduling [6], vehicle routing [7], face image generation [8], 
constraint-based graph drawing [9], and more recently by the 
authors and others for environmental problems [10] [14]. 
Human-centered interactive optimization approaches are 
different from, and far more superior than, the interactive 
optimization approaches previously proposed by multiple 
researchers, such as [15], where the decision makers were asked 
to provide feedback on alternatives only on the basis of the 
quantitative objective functions. In human-centered interactive 
optimization algorithms, the decision makers are also asked to 
consider the quality of decision variable values and provide 
feedback on the qualitative and unquantifiable aspects of the 
alternatives that are extremely critical to success of an 
optimization effort. 

Interactive Watershed Optimization: Two of the authors, 
Babbar-Sebens and Mukhopadhyay, have developed an 
innovative, participatory optimization-based design approach 
and cyberinfrastructure for watersheds, called WRESTORE 
(Watershed REstoration using Spatio-Temporal Optimization 
of REsources) (project website: http://wrestore.iupui.edu/). 
The human-centered interactive optimization approach in web-
based WRESTORE software is based on the Interactive Genetic 
Algorithm with Mixed Initiative Interaction (IGAMII) 
algorithm proposed originally by [12]. In summary, the 
interaction with human users/stakeholders occurs in an iterative 
manner via the graphical user interfaces (GUI). In every 
iteration, which is called an interaction session, both the 
decision space of the alternatives (via maps) and the objective 
space of the alternatives (via graphs) are displayed to the user. 
The user evaluates multiple alternatives based on not only the 
quantitative objectives (i.e. mathematical dynamic functions of 
cost-benefit goals) but also based on the user’s local subjective 
criteria or qualitative knowledge not represented in the problem 
formulation. Once the user has evaluated the alternatives, 
she/he can provide their feedback on the quality of the 
alternative to the IGAMII algorithm via a user rating or human 
rank determined on a Likert scale.  The IGAMII algorithm 
collects different types of explicit (i.e., user ratings) and 
implicit (i.e., mouse clicks on the interface) feedback data, and 
uses the feedback to identify new alternatives that are similar to 

or better than the alternatives liked by the user. The underlying 
optimization algorithm is critical to enabling search of new 
alternatives, and though the IGAMII uses a multi-objective 
Genetic Algorithm, WRESTORE is not restricted by the type 
of multi-objective optimization technique and allows the user 
to also select from a variety of other search approaches. Over 
the past few years, the authors, Babbar-Sebens and 
Mukhopadhyay, have been investigating the effects of (a) 
dynamic (non stationary) user-learning [16], (b) dynamically 
fitted user mental models (or, surrogate mental models) [17], 
and (c) variability and trends in user-feedbacks, on the 
interactive optimization algorithm’s search space [14]. But 
since participatory design generally involve large communities, 
research is needed on formal methods that combine the 
uncertainty arising from varied learning and perceptions in 
multiple users with the uncertainty that arises from imperfect 
knowledge and models of the physical watershed systems. 
Improved understanding and methods for managing these 
different types of uncertainty during participatory design are 
vital to the success of human-centered optimization approaches. 

Human-Centered Interactive Optimization Methods Using 
Multiple User Models: The use of multiple user models 
essentially leads to a multi-criteria decision-making problem, 
where each model can be viewed as contributing a separate 
criterion function. This implication of multiple models for 
decision-making is a new research thrust in natural resources 
management, where the research on using multiple models (or 
ensemble of models) has almost entirely focused on prediction 
problems aiming only to improve the prediction accuracy, 
rather than improved decision-making. Broadly speaking, there 
are three approaches to decision-making, when there are 
multiple criteria present [18]: 
(i) Combining the multiple criteria in a linear or nonlinear 

way into a single criteria
(ii) Determining a Pareto-optimal solution for all the

criteria
(iii) Determining a “satisfying goal” for each criterion and

deriving a solution for the same
In this paper, we will focus on approach (ii), where criteria are 
user-determined and not necessarily explicit. 

Determining Pareto Optimal Solutions: Pareto Optimal:  Given 
a set of criteria �����, � � 	
 � 
 �
 and � � �, a point �� � � 
is Pareto optimal if and only if there does not exist another point � � �
 such that ����� � ������  for each � � 	
 � 
 �
  and ����� � ������for at least one criterion ���� �. We have used 
multi-criteria genetic algorithms extensively to compute such 
Pareto-optimal solutions in our WRESTORE web-based, 
interactive, watershed design tool. Genetic Algorithms (GAs) 
have gained popularity among many practitioners who deal 
with discrete, non-convex, and discontinuous optimization 
problems. These are heuristic search algorithms that were first 
proposed by John Holland [19] and work with a population of 
possible designs. The designs are evolved using a process 
analogous to that of the theory of evolution. Decision variables 
can be encoded in any numeral base system, though binary 



coding is most popular. All possible alphabets for a particular 
coding are also called “alleles”. These coded variables or alleles 
are grouped together into representative strings called 
“chromosomes,” each of which represents a candidate design 
and represents the quality of the design through its “fitness”. 
All positions in the chromosome that the alleles occupy are 
known as a “locus”. Based on the idea of “natural selection,” 
better designs are created by using various “genetic” GA 
operators (i.e. selection, crossover and mutation) on the 
chromosomes. The genetic operators identify, select and mix 
high performance building blocks to create robust designs from 
available chromosomes. 

III. METHODOLOGY

In this section, we first describe the watershed study area 
where this research was focused on, including the watershed 
models used to assess impacts of wetland decisions on flooding 
impacts, in Section 3.1. In Section 3.2, we describe the models 
used to simulate community preferences of multiple 
stakeholders in a watershed, who may have different and many 
times conflicting priorities and biases towards wetlands as 
conservation decisions. Finally, in Section 3.3 we describe the 
metric for assessing community consensus and IGA approach 
and optimization problem formulation that was used to test the 
influence of stakeholder preferences and consensus on design of 
watershed plans involving conservation practices. 

3.1 Study Area 

Eagle Creek watershed (ECW) is located northwest of 
Indianapolis, and features agricultural, urban, and undeveloped 
land uses.  This watershed has a drainage area of approximately 
419 km2 and is part of the larger Upper White River Watershed. 
Eagle Creek drains to Eagle Creek reservoir, which is a major 
source of drinking water and recreation for Indianapolis and the 
surrounding areas.  Over 60% of the watershed is agricultural, 
with the dominant crop being corn.  Babbar-Sebens et al. [20] in 
their previous work identified 2953 possible sites for wetlands 
in this watershed on agricultural land, using a spatial analysis 
technique based on land topography, soils, and land use datasets. 
In recent years, upstream agricultural areas have released 
pesticides, sediments, and fertilizers into nearby streams, 
resulting in the Eagle Creek reservoir becoming impaired. 
Generally, the climate in Indiana is considered continental, with 
typical cumulative annual precipitation between 965 and 1,016 
mm and average annual temperature of approximately 11°C. 

The surrogate users utilized in this research represent typical 
agrarian stakeholders, similar to those found in ECW, who bear 
two main concerns: environmental and financial.  Reimer et al 
[21] identified these two concerns as primary motivators that
farmers consider when implementing management practices,
such as wetlands.  In addition to these two primary motivators,
their study also found that farmers consider on-farm and off-
farm benefits when making their conservation decision.
Typically, individuals who self-identify as stewards of the land
will concern themselves with both on and off farm benefits,
while individuals driven by financial constraints will focus more 
on direct benefits to their own property.  In the absence of
stakeholders available for participation in this study, we created
models of agrarian stakeholders based on Reimer et al [21]

study. The simulated stakeholders represented varying interests 
of stakeholders in environmental and financial benefits attained 
within their assigned sub-catchment (i.e., on-farm benefit) 
versus the larger watershed community (i.e., off-farm benefits). 

3.2 Simulated Stakeholders 

3.2.1 Proposed Scoring Equation for Simulating Diverse 
Stakeholder Preferences for Conservation Decisions 

To model stakeholders with two cost-benefit motivators 
(wetland area that represents financial costs, and peak flow 
reduction that represents flooding benefits), this study utilized a 
simple deterministic scoring equation (Equation 1).  

������� � � �� � !��
"#�$%� !� & �' ( �� "#�$%)��$�)��$�� * & �' (

�� +� � !�,
"#�$%� !, & �' ( �� "#�$%)��$,)��$�, - ………………(1)

Scoreij is calculated for every stakeholder j for all i design 
alternatives, where each jth stakeholder is assumed to be 
associated with sub-catchment (or, sub-basin) j.  The calculated 
score is a number between 0 and 1 and represents a stakeholder’s 
relative preference for ith design alternative, with a higher score 
indicating a higher preference for ith design.The stakeholder 
score is determined as a weighted average of peak flow 
reduction (PFR) and wetland area (Area) objective function 
values for a multi-objective wetland design optimization 
problem involving  goals that maximize PFR and minimize Area 
(see [20]) for details on how objective function values of Area 
and PFR are calculated).  A subscript j is for assessing PFR or 
Area objective function value within the specific sub-basin j that 
the stakeholder j resides in, while a subscript of t is for PFR or 
Area value for the entire watershed.  In ECW there are a total of 
108 sub-basins where wetlands can be implemented. The word 
“Ideal” preceding PFR or Area defines the ideal objective 
function values corresponding to the best-case scenario with 
respect to that variable.  For PFR, the “Ideal” fitness function 
value corresponds to the scenario that yields the greatest 
reduction in peak flows, which is the scenario when all possible 
2953 new wetlands are constructed in the 108 sub-basins of 
watershed.  For Area, the “Ideal” fitness function value is the 
lowest initial capital cost initiative, which corresponds to 
“business as usual” scenario of no new wetlands.  A 
stakeholder’s preferences are defined by values of .  and / , 
which define their preference for local over watershed benefits 
and environmental benefit over financial gain, respectively. 
Each preference variable can take any value between 0 and 1, 
and is assigned randomly for each stakeholder from a uniform 
distribution.  The study by Reimer et al [21] indicated that there 
may be some correlation between the values of w and /, but as 
the nature of this interdependence is not specified in their study, 
this research will assume that w and / are independent.  As and 
when better quantitative data on actual stakeholder conservation 
behavior becomes available, the relationship between w and / 
could be determined in a fuzzy or deterministic fashion, as 
appropriate.  

WRESTORE uses a Likert scale of 1 to 3 to quantify user 
preference [14].  In order to convert the score calculated by 
Equation 7 to a Likert scale rating, the following relations were 
defined: 



• Scoreij < 1/3 corresponds to a Likert scale user rating of 1
(i.e., “I don’t like the wetland plan”) 

• Scoreij > 2/3 corresponds to a Likert scale user rating of 3
(i.e., “I like the wetland plan”) 

• Any other value of Scoreij corresponds to a Likert scale user
rating of 2 (i.e., “I think the wetland plan is average”)

This research aims to identify design alternatives that are
robust to uncertainties in different degrees of stakeholder 
cooperation, specifically in their adoption of sub-basin scale 
wetland decisions in the proposed wetland plans.  In one 
scenario of cooperation, all stakeholders could participate in 
adopting and allowing wetlands to be built on their property 
based on their Likert scale rating.  Alternatively, all stakeholders 
could oppose the management plan, and refuse to construct 
wetlands on their land.  Varying intermediate degrees of 
stakeholder participation are possible, and the distribution of 
participants and opponents within the watershed can also vary 
across the 108 sub-basins in ECW. To simulate the uncertainty 
in stakeholder participation in a Monte Carlo fashion, each 
simulated stakeholder in the watershed’s sub-basin j is randomly 
designated as a participant or opponent of the plan.  If they are 
designated an opponent of the plan, the simulated stakeholder 
will automatically award any design alternative that requires 
them to build a wetland on their property a Scoreij of 1, in spite 
of their original preference score.  Nine different extents of user 
participation rate were modelled, in which each rate indicates 
the percent of 108 sub-basins in ECW where stakeholders would 
be supporters of the wetland plan.  The nine scenarios included: 

1. Participation rate = 0%.  Complete opposition from the
stakeholders.

2. Participation rate = 12.5%.  Almost complete opposition
from stakeholders.

3. Participation rate = 25%.  Opposition from stakeholders.
4. Participation rate = 37.5%.  Weak opposition from

stakeholders.
5. Participation rate = 50%.  Equal opposition and support

from stakeholders.
6. Participation rate = 62.5%.  Weak support from

stakeholders.
7. Participation rate = 75%.  Support from stakeholders.
8. Participation rate = 87.5%.  Almost complete support

from stakeholders.
9. Participation rate = 100%.  Complete support from

stakeholders.
To address the many different possible spatial distributions 

of location of supporters and opponents in a watershed, 100 
different realizations of distribution of supporters and opponents 
were created for scenarios #2 to #8.  Thus, for each single design 
alternative i generated by the optimization algorithm, 702 
realizations of Scoreij were calculated for each stakeholder j 
based on whether they were designated as participant or 
opponent in a realization. 

3.3 Proposed Approach for Combining Individual 
Stakeholder Scores to Determine Community Consensus  

Work by Babbar-Sebens et al. [13] included a democratic 
voting procedure for determining the overall ranking of a design 
alternative that had been ranked by several stakeholders.  In their 
work, the most often rating became the overall rating for the 
design alternative.  This system successfully integrated the 

opinions of several users into a single rating, but it also failed to 
fully represent the varied opinions of individuals who did not 
agree with the majority rating.  Consider two hypothetical 
design alternatives being evaluated by 9 people.  The first 
alternative is rated as a 3 by four people, and as a 1 by five 
people, while the second receives five 3 ratings and four 1 
ratings.  According to the democratic user, the first design 
receives an overall rating of 1, and the second receives an overall 
rating of 3, indicating that the first design is liked by the group, 
while the second design is disliked.  The truth, however, is that 
each alternative is highly controversial, with nearly equal 
opposition and preference, which the democratic user does not 
represent. 

To remedy this issue, this study instead uses the number of 
user rating 3 awarded to each design alternative to represent the 
consensus opinion.  This involves first calculating the number 
of user rating 3 received for ith design alternative across 702 
realizations of participation scenarios and across 108 sub-basins 
(where the 108 stakeholders reside). This number is recorded as 
CountThrees = {C31, C32…C3n} for a set of n design 
alternatives, where C3i is the number of user rating 3 that an 
alternative i received.  Then a set 0 � 123
 24 �256 for a set of 
n design alternatives is assessed, where Vi is the ranking 
corresponding to the ith alternative’s C3i value in CountThrees.  
The design alternative that receives the most Likert scale rating 
3 across all users and participation realizations is designated as 
the most preferred alternative, while the design that receives the 
least number of rating 3 is designated the least preferred 
alternatives. All remaining designs are ranked intermediately 
according to the number of user rating 3 they received. This 
approach offers two advantages over the method employed by 
Babbar-Sebens et al. [13].  First, this measure more accurately 
represents the extent of user agreement by quantifying the extent 
of user preference for a specific design.  Second, the measure 
offers a higher-resolution picture of user preferences.  

The CountThrees method, however, does not account for the 
extent of disagreement among users.  Herrera-Viedma et al. 
[22], in their research on multiperson decision making problems 
(MPDM), developed a consensus model based upon two 
criteria: consensus and proximity.  In their research, consensus 
measures the extent of agreement on the rating of a specific 
alternative, and proximity measures the distance of an individual 
user’s rating to the consensus rating.  This research adapts their 
measure of consensus. We begin by first defining m sets of 0� �723�
 24� � 
 2��
 �25�8 for each jth stakeholder (where j = 1 to m
and m = 108 in this study) containing ranking of each alternative 
i (where i = 1 to n) assigned by the jth stakeholder.  This set Pj is 
similar to the set P but involves user ratings of only jth 
stakeholder.  The proximity of each stakeholder’s ranking to the 
community ranking, for every alternative i, is calculated using 
Equation 2. 

9���� � :;<�� <�;
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Then, community consensus for the design alternative i is 
calculated using Equation 3. 
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Finally, C3i and D��� are treated as maximization objective 
function values of ith design alternative generated every iteration 
of the Interactive Optimization, and used to find the front of 
solutions with high community rating (estimated within 
CountThrees) and high community consensus (estimated by 
C(i)).  These were used in addition to the watershed-scale peak 
flow reduction (PFRit) and wetland area (Areait) objective 
functions in the interactive, multi-objective optimization 
algorithm. 

IV. EXPERIMENTAL RESULTS: COMPARISON OF 
STAKEHOLDER CONSENSUS OF INTERACTIVELY VERSUS NON-

INTERACTIVELY OPTIMIZED SOLUTIONS 
Previous discussion [13] concerning incorporating 

stakeholders into the WRESTORE process have focused on the 
idea of a “tradeoff”: solutions generated using stakeholder-
guided optimization would have reduced performance (sub-
optimal fitness function values) compared to the purely 
algorithmically optimized solutions because of the tradeoff that 
arises from intangible and unquantifiable fitness criteria used by 
the stakeholders.  This research study’s results are consistent 
with these previous findings, though with an interesting 
distinction.  Figure 1 plots the Pareto front of the two different 
sets of optimized solutions and shows an interesting 
phenomenon.  The interactive solutions occur in two bands, one 
of which strictly dominates the other.  The two bands correspond 
to two different ranges of percent value of the C3i objective 
functions value: red solutions are those whose percent value of 
C3i/(C31 + … + C3n) was found to be 26% or less, and black 
solutions are those whose percent values of C3i/(C31 + … + C3n) 
was found to be over 26%. This result suggests that solutions 
that are more universally popular (have a higher percentage of 
number of user ratings 3) perform better than those that have a 
lower popularity (a lower percentage of number of user ratings 
3).  However, the non-interactive solutions (i.e., Baseline 
solutions in the graph) that were generated using only the 

watershed-scale peak flow reduction and wetland area objective 

functions strictly dominate both fronts of interactive solutions. 
This dimorphic behavior may indicate that the process of 
convergence was not yet complete for the interactive 
optimization run, or that there are two distinct types of solutions 
that users preferred roughly interchangeably.  If this is the case, 
then it is entirely possible that a fully convergent set of 
interactively optimized solutions may strictly dominate the non-
interactive set of solutions, suggesting that the users guide the 
optimization process into a portion of the decision space not 
usually explored by purely algorithmic optimization. 

Figure 2 is a Pareto plot with user consensus and percent of 
three ratings, which is a more appropriate plot for examining the 
community perceptions of solutions.  There is only a single front 
of solutions from the interactive optimizations, which 
encompass a broad range of percent of C3i values and 
community consensus C(i) values than those of the non-
interactive (Baseline) solutions.  Interestingly, even though the 
Baseline solutions outperform interactive solutions in peak flow 
reduction and wetland area space (Figure 1), the community 
consensus of interactive solutions is better (i.e., higher) than 
baseline solutions when they have the same community rating 
(Figure 2). Further, the interactive optimization is also able to 
identify solutions with higher community consensus (where 
values of C(i) are higher than 0.7) even if the overall community 
rating is low (i.e., percent of C3i is lower than 26%). This 
indicates the effectiveness of interactive optimization in 
identifying even those solutions where there is high agreement 
on a low preference for the solution. 

Figure 2: Community Consensus versus Community 
Rating for Interactive and Non-Interactive Optimization. 

V. COMMENTS AND CONCLUSIONS

The complicated nature of watershed management plan 
optimization requires the continual development of novel 
methods to incorporate stakeholders into the design process. 
Stakeholder investment in the process and the resulting 
management plan is essential, and is strongly tied to how 
included in the process these stakeholders are and feel.  Work 
completed by previous researchers associated with the 
WRESTORE project and other similar efforts have explored 
ways to incorporate decision makers and stakeholders into the 

Figure 1:  Pareto Fronts for Wetland Area (hectares) 
versus Peak Flow Reductions (m3/s) Objective Functions 
for Interactive (red + black solutions) and Non-
Interactive Optimization (blue solutions) 



optimization process for designing watershed management 
plans, and this research continues their work.  This research has 
added two new mathematical frameworks for expressing 
stakeholder preferences - community consensus and community 
rating - in presence of stakeholder uncertainty associated with 
their willingness to participate in a conservation plan.  While this 
research did not explicitly include actual stakeholder input, the 
method to simulate stakeholders was based upon basic 
information available concerning typical agricultural 
stakeholder opinions and preferences. When compared to the 
non-interactive optimization solutions that did not incorporate 
user opinions into the optimization process, the method 
proposed by this article produced solutions that did not perform 
as well as the non-interactive solutions with respect to 
minimizing wetland area and maximizing peak flow reduction. 
This is expected since the non-interactive solutions, unlike their 
interactive counterparts, do not trade off these quantitative 
criteria against consensus among multiple stakeholders. It is 
recommended that similar experiments are repeated for other 
watershed communities as well as other sources of uncertainties 
in stakeholder behaviors beyond the stochastic participation rate 
explore in this work. Finally, this research, in the future, may 
sought to assess how stakeholder-preferred wetland solutions 
designed considering only current climate conditions would fare 
when exposed to the extreme conditions of the projected future 
climate stresses. 
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