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ABSTRACT
Low rank representation of binary matrix is powerful in disen-

tangling sparse individual-attribute associations, and has received

wide applications. Existing binary matrix factorization (BMF) or

co-clustering (CC) methods often assume i.i.d background noise.

However, this assumption could be easily violated in real data,

where heterogeneous row- or column-wise probability of binary

entries results in disparate element-wise background distribution,

and paralyzes the rationality of existing methods. We propose a bi-

nary data denoising framework, namely BIND, which optimizes the

detection of true patterns by estimating the row- or column-wise

mixture distribution of patterns and disparate background, and

eliminating the binary attributes that are more likely from the back-

ground. BIND is supported by thoroughly derived mathematical

property of the row- and column-wise mixture distributions. Our

experiment on synthetic and real-world data demonstrated BIND

effectively removes background noise and drastically increases the

fairness and accuracy of state-of-the arts BMF and CC methods.
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1 MOTIVATION
Binary matrix has been commonly utilized in multiple fields. Low

rank pattern in a binary matrix is defined as rank-1 sub matrices

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3412156

Popular items

Su
pe

r u
se

r

Purchase pattern

Super user/ Popular items

Other purchase

Binary transcation records Latent pattern visulization

Figure 1: Individual bias in binary transaction records data

formed by the product of two binary bases. Comparing to continu-

ous data, recent studies demonstrated the rank-1 sub-matrices in

binarized data is more robust for mechanism interpretation or sub-

space representation [3, 4], because binary data in general bears

reduced noise than continuous data. However, variations of the

probability of 1s of rows or columns may lead to varied element-

wise probability, causing a fairness issue in low rank representation

of binary data [6].

An intuitive example is binary transaction records data (figure

1), in which 1s represent the purchase of items (each column) by

users (each row). Different items or users are with varied activities

in conducting purchasing. For example, super-users make more

purchase, which can be independent to items, and popular items are

more likely to be purchased. The transactions made between super

users and popular items unnecessarily imply good recommenda-

tions since it can be simply caused by the high purchase chance. On

the other hand, the group of items having a strong purchase prefer-

ence within a certain group of users comparing to their background

purchase rate is more valuable for recommendation. However, the

fairness issue in the low rank representation of binary data due to

varied element-wise background probability was rarely considered

in existing formulations [5].

Here, we propose BIND, a binary data denoising method via con-

sidering the data is generated from the mixture of to-be-identified

rank-1 patterns and an unknown background of element-wise prob-

ability, plus i.i.d. errors. BIND estimates the mixture distribution of

the probabilities of 1s from rank-1 patterns and background in each

row and column, by which the rows or columns that are more likely

with true rank-1 patterns are distinguished by the over-represented

1s comparing to the background.

Key contributions of this work include: (1) BIND is the first of this

kind of binary data denoising method via considering non-identical

background distribution, (2) BIND can be easily implemented with

state-of-the-arts BMF or CC methods for a fairer rank-1 pattern

detection, and (3) rigorous mathematical derivations are provided

to characterize the property of disparate background distribution.
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2 BACKGROUND
2.1 Notations
We denote matrix, vector and scalar by uppercase, bold lowercase

and lowercase character X ,x,x . Superscript with × indicates di-

mensions, while subscript implies index, such as Xm×n
i j and xm×1i .

Pi j ≜ P(Xi j = 1) denotes the element-wise probability of 1 at the

element Xi j . |x| and |X | represent the l1 norm of vector and matrix,

and ◦ represents Hadamard product.

2.2 Related work
Existing methods of binary matrix low rank representation fall into

two major categories, namely binary matrix decomposition (BMF)

and co-clustering (CC). BMF aims to decompose a binary matrix

as the product of two low rank binary matrix by maximizing its

overall fitting to the original matrix. The formulation of BMF is

thus generalized as

Xm×n = Um×kV k×n + Em×n

, where U and V are the low rank pattern matrices, and E is the

flipping error with p(1→ 0) = p(0→ 1) = p0. BMF problem is NP-

hard, for which multiple heuristic algorithms have been developed.

One representative method is ASSO, which retrieves candidate

patterns by using row-/column-wise correlation [2]. More recently,

Bayesian probability measure and geometrical identification largely

improved the efficiency and accuracy of BMF [3, 4].

In contrast, the co-clustering (CC) method, also named as bi-

clustering in statistics and computational biology, maximizes the en-

richment of 1s in the detected patterns based on certain thresholds[1].

For givenXm×n
, most CCmethods aim to identify the cardinality of

index set Il × Jl , l = 1, ...,k , where Il ∈ {1, ...,m} and Jl ∈ {1, ...,n},

s .t . Pi j =

{
pl , i f i, j ∈ Il × Jl
p0, i f i, j < Il × Jl

∀l = 1, ...,k

Noted, both BMF and CCmethods assume the binary data is formed

by the sum of to-be-identified rank-1 submatrices and an i.i.d error,

where individuals bias has not been investigated.

2.3 Problem formulation
We consider the observed binary data with disparate element-wise

background probability that is generated by:

X = Um×kV k×n + X 0 + E ′ + E (⋆)

Compared with the formulation of BMF, X 0
is the background

matrix. E ′ is the pattern wise observation error that each element

from pattern l has a probability of 1 − pl to be zero, while the

elements outside patterns will not be impacted, i.e., PE
′

i j (1→ 0) =
1 − pl , if i, j ∈ Il × Jl , P

E′
i j (1→ 0) = 0, if i, j < Il × Jl , ∀l = 1, ...,k .

Under this definition, by considering X 0
are 0, current BMF and

CC described in 2.2 are special case of (⋆), and were designed to

handle the pattern observation error E ′ and elment-wise flipping

error E. Thus, the bottleneck of a fair binary submatrix detection

lies in differentiating true patterns from the background X 0
. We

consider the assumption of P(X 0

i j = 1) ∝ p0,ri · p
0,c
j that can cover

most of the binary data with disparate background, when X 0

i j are

conditionally independent with fixed row or column index, like the
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Figure 2: quantile shift denoising

purchase transaction data in figure 1 with items of different popular-

ity and users of different activity. We denote the row/column-wise

background probability as pm×1, 0,row and pn×1, 0,column
, shorted

as p0,r and p0,c , where p0,ri ∝ p̂0,ri =
|X 0

i : |
n and p0,cj ∝ p̂0,cj =

|X 0

:j |
m ,

and P(X 0

i j = 1) can be unbiasedly estimated as

|X 0

i : | · |X 0

:j |
|X 0 | .

3 BIND FRAMEWORK
Here we propose the BIND

1
framework to identify the rank-1

patterns (U ,V ) from binary data X with disparate background

X 0
. Denoting P(X 0

i j = 1) as P0i j , the element-wise probability

Pi j ≜ P(Xi j = 1) can be derived as:

Pi j =

{
P0i j ∝ p0,ri · p

0,c
j , ij < any Il × Jl

1 − (1 − P0i j )(1 − pl ) = p
0

i j + (1 − p
0

i j )pl , ij ∈ Il × Jl
(∗)

Specifically, the row and column probability pri and pcj can be esti-

mated by p̂ri =
|Xi : |
n and p̂cj =

|X :j |
m . Noted, pr and pc are formed

by the mixture distribution of p0,r ,p0,c and pl . Analogous to BMF

and CC problem, direct inference of p0,r ,p0,c and pl from pr and
pc is NP-hard. As shown in Figure 2A-D, instead of computing

p0,r ,p0,c and pl , BIND identifies the rows and columns that are

most likely conceiving patterns comparing to others. The elements

of the intersection of the identified rows and columns more likely

represent true rank-1 patterns (figure 2F-J). For this task, we in-

troduce the quantile_shift algorithm with thorough mathematical

proof.

Quantile_shi f t algorithm is designed to distinguish rows or

columns that are more likely conceiving rank-1 patterns. First, we

introduce the concept of empirical distribution of row-/column-

wise probability, denoted as Fr and Fc (figure 2A,B), which are

sampled from p̂r and p̂c with probability P(Fr = p̂ri ) ∝ p̂ri and

P(Fc = p̂cj ) ∝ p̂cj . The observed probability of hits Fh of any row

i0 or column j0 is defined by Fh,r,i0 = {p̂cj |j with Xi0 j = 1} and
Fh,c, j0 = {p̂ri |i with Xi j0 = 1}. Here Fr and Fc characterize the

distribution of p̂r and p̂c of the 1s randomly drawn from p̂r and
p̂c . Intuitively, if a row or column conceives a distinct pattern, the

quantile function Qh
of Fh will shift drastically from the quantile

function Qc
of Fc or Qr

of Fr (figure 2C). On the other hand, Qh

will be similar to Qc
or Qr

if the row or column does not contain

1
Code and material can be access at https://github.com/clwan/BIND
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any pattern (figure 2D). Hence the shift between Qh
and Qr

or Qc

can serve as a weight s to differentiate the rows or columns more

likely conceiving a pattern (figure 2E). Noted, here Fr and Fc serve

as proxy of F0,r and F0,c , which are the empirical distribution of

the true background probability of p0,r and p0,c . In the following

content, we prove s approximates the pattern size within each row

or column, i.e., s ≈ |(UV +E ′)i : | or |(UV +E ′):j | with certain bounds.
The input ofQuantile_shi f t algorithm include a row or column

index i0/j0, and p̂c or p̂r , by which the empirical distribution Fc

or Fr will be sampled, and the probability of hit of the row or

column Fh will be computed. The output is weight s of the row or

column.Without loss of generality, we illustrate theQuantile_shi f t
algorithm for computing the weight of row i0 below, and detailed

mathematical proofs as follows:

Algorithm 1: Quantile_shift
Inputs: Row index i0, Estimated column-wise probability p̂c

Outputs: Estimated weight of significance of row i0, s
r
i0

Quantile_shi f t(i0, p̂c ):
Fc ← sampled f rom p̂c with probability p̂c

Fh ← {p̂cj |j with Xi0 j = 1}
F(h) ← sort(Fh ), a ← lenдth(Fh )
Qc (p) = sup(b) s .t . |Fc<b |

lenдth(Fc ) ≤ p and |Fc>b |+1
lenдth(Fc ) > p

for j=1...a do
if F(h)j > Qc ( ja ) then

tj ← the column index s .t . F(h)j = p̂ctj & Xi0tj = 1

s ← s +
F(h)j −Qc ( ja )

1−p̂ctj
end

Lemma 1. If p̂r and p̂c are unbiased estimation of p0,r and p0,c .
The weight computed by quantile_shift is an unbiased estimation of
the sum of E(Um×kV k×n + E ′) with respect to that column or row.

Proof. If p̂r and p̂c are unbiased estimation of p0,r and p0,c ,
Fr or Fc generated from p̂r and p̂c form unbiased empirical distri-

bution of row-/column-wise probability of 1s of X 0
, i.e. P(F0,r =

p0,ri ) ∝ p0,ri and P(F0,c = p0,cj ) ∝ p0,cj . Without loss of generality,

we prove the lemma for the computation of the weight of the i0th
row. Denote t = {j |Xi0 j = 1} and a = lenдth(t), by Algorithm 1
and (∗), ∀ j ∈ {1, ...,a} :
If i0tj < any Il × Jl ,

E(F(h)j −Q(
j

a
)) = E(p̂ctj − sup(b |

|Fc < b |
lenдth(Fc ) ≤

j

a
)) = 0

Else, i0tj ∈ Il × Jl f or certain l ,

E(F(h)j −Q(
j

a
)) = E(p̂ctj + (1 − p̂

c
tj )pl − sup(b |

|Fc < b |
lenдth(Fc ) ≤

j

a
))

= (1 − p̂ctj )pl
Such that

E(
a∑
j=1

F(h)j −Q(
j
a )

1 − p̂ctj
) =

∑
l

a∑
j=1

pl I = |E(Um×kV k×n + E ′)i0: |

□

Lemma 2. For X in (⋆), and P0i j ≜ P(X 0

i j ) ∝ p0,ri · p0,cj , the

probability estimated by p̂ri =
|Xi : |
n and p̂cj =

|X :j |
m are bounded by

|p̂ri − p
0,r
i | ≤

∑k
l=1 1(i ∈Il )pl | Jl |

n , and |p̂cj − p
0,c
j | ≤

∑k
l=1 1(j ∈Jl )pl |Il |

m .

Lemma 2 can be derictly derived from (⋆) and (∗).

Lemma 3. The weight of the i0th row (or similarly j0th column) is
with a bias led by the biasedly estimated p̂c and p̂r , which is bounded

by E(s − |(UV + E ′)i0: |) ≤
max (Fc )+max ( |E(UV+E′):j |

m )( |Fc |+1)
min(1−ph ) |Fc | .

We still use the compututaion of the i0th row to illustrate the

proof. The case for columns can be similarly derived.

Proof. By Lemma 2, p̂c is a biased estimation of p0,c , where

p̂cj =
|X :j |
m ≥ p0,cj =

|X 0

:j |
m , j = 1, ...,m. Hence F(h) ≥ F0,(h),

suggesting 1 − F0,(h) ≥ 1 − F(h) and Qc ( ja ) ≥ Q0,c ( ja ), by which������F
0,(h)
j −Q0,c ( ja )

1 − p̂0,ctj

−
F(h)j −Q

c ( ja )
1 − p̂ctj

������ ≤ 2

�������
max

z∈(0,1)
{Qc (z) −Q0,c (z)}

1 − p̂ctj

�������
By lemma 2, the bias of |p̂cj − p̂

c,0
j | is bounded by

|E(UV+E′):j |
m .

So the max shift caused in the quantile function max

z∈(0,1)
{Qc (z) −

Q0,c (z)} is bounded by max (p̂c )+max ( |E(UV+E′)
:j |

m )
|p̂c | +max( |E(UV+E′):j |

m ).
Hence the cumulative bias is bounded by

E(s−|E(UV+E ′)i0: |) ≤
a(max(p̂c ) +max( |E(UV+E′):j |

m )(|p̂c | + 1)))
min(1 − p̂c )|p̂c |

□

Lemma 1 suggests |Qh
-Q0

| is an unbiased estimation of the ex-

pected number of 1s in the rank-1 patterns and Lemma 2-3 provide

the bound of the bias of |Qh
-Q | whenQ0

is biasedly estimated asQ .

Theorem 1 (Quantile_shift). For a relative sparse binary ma-
trix, the weight calculated by Quantile_shift sufficiently characterizes
the indices of the patterns with largest Pl |Il | and Pl |Jl |.

Proof. For i0th row (or similarly for the j0th column),

E(s − |(UV +E ′)i0: |) ≤
a(max(p̂c ) +max( |E(UV+E′):j |

m )(|p̂c | + 1)))
min(1 − p̂c )|p̂c |

≈ a

min(1 − p̂c )max{max(p̂c )
|p̂c | ,max(

|E(UV + E ′):j |
m

)}

, suggests that when the input matrix and rank-1 patterns are rel-

atively sparse, the weight s approximates (UV + E)i0:, i.e. largest
values in sr and sc correspond to the rows and columns of the

patterns with largest Pl |Il | and Pl |Jl |. □

BIND framework is developed to implement Quantile_shi f t al-
gorithm with a BMF or CC method, denoted as F , for a fairer

rank-1 pattern identification under the formulation of (⋆). As illus-

trated in figure 2F-J, Quantile_shi f t denoises the majority of the

background signal and enables a BMF or CC method better detects

Um×k
and V k×n

. A cutoff τ is needed to differentiated the weight
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of the rows or columns with true patterns (figure 2E). Empirically,

τ could be set from 0.05 to 0.1 in BIND algorithm.

BIND is capable for one direction denoising. TheQuantile_shi f t
algorithm is O(n) or O(m) for row or column weight computation

and the BIND algorithm is O(mn), which is smaller than most of

current BMF and CC methods. The BIND algorithm is detailed

below:

Algorithm 2: BIND
Inputs: Input data Xm×n

, Threshold τ , BMF/CC method F
Outputs: Pattern matricesUm×k

and V k×n

BIND(X ,τ ,F ):
Xuse ← 0 · X , sr ← 0m×1, sc ← 0n×1

p̂ri =
|Xi : |
n ∀i = 1, ...,m and p̂cj =

|X :j |
m ∀j = 1, ...,n

for i=1...m do
sri = Quantile_shi f t(i, p̂

c )
end
for j=1...n do

scj = Quantile_shi f t(j, p̂
r )

end
I r ← I (sr > τ ), Ic ← I (sc > τ ), Xuse ← X ◦ (I r · IcT )
U ,V ← F(Xuse , ...)

4 EXPERIMENT
In this section, we evaluate the performance of BIND on synthetic

and real-world data sets across different data scenarios. We demon-

strate the implementation of BIND with different BIND BMF and

CC methods can significantly improve their fairness in detecting

rank-1 pattern from binary matrix with disparate background prob-

ability. We also highlight the application of BIND framework for

better result interpretation on real-world Movielens data.

We simulate synthetic data sets X 100×100
with fixed size by

following (⋆): X = Um×kV k×n + E ′ + X 0 + E, with different

pattern size ∈ {10, 15, 20}, pattern number k ∈ {1, 2}, observa-
tion error pk ∈ {0.8, 0.9, 1.0}, background probability p0,r ,p0,c ,
and element-wise flipping error p0 ∈ {0, 0.05}. Specifically, back-
ground probabilities were generated from uniform distribution

p0,r ,p0,c ∼ U [0.1,p], where p ∈ {0.5, 0.6, 0.7} corresponds to

different background probabilities. Altogether, we deem 108 data

scenarios from the above parameter settings and simulated 30

replicates for each scenario to form a test-bed. Jaccard index D =
|X∩UV |
|X∪UV | (X = oriдinal or denoised data) is used as the evaluation

metric. For each data scenario, denoising performance is evaluated

by the averaged Jaccard index on the 30 replicates. We first compare

the performance with respect to different significance threshold

τ = {0, 0.05−1}, where τ = 0 represents the data without denoising.

As shown in figure 3A, the denoising process on average increased

the Jaccard index by 2.6 fold and denoising efficiency is slightly

increased with τ . Table 1 lists the denoising performance with re-

spect to different number of patterns k , background probabilityp
and observation probability pk , where pattern size is set as 15 and

τ = 0.1.

We benchmark BIND by implementing with recently developed

BMF method LOM and CC method Biclust, which showed top
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Figure 3: Performance on simulated and Movielens data

p
pk single pattern Multiple pattern

0.8 0.9 1.0 0.8 0.9 1.0

0.5 0.17/0.67 0.18/0.79 0.20/0.88 0.28/0.59 0.31/0.73 0.34/0.84

0.6 0.13/0.48 0.14/0.61 0.16/0.73 0.23/0.47 0.26/0.59 0.28/0.69

0.7 0.11/0.29 0.11/0.37 0.13/0.47 0.19/0.34 0.21/0.40 0.22/0.52

Table 1: Jaccard index before/after denoising

performance among similar state-of-the-arts methods [1, 3]. The

implementation of BIND largely increased the accuracy in detect-

ing true patterns, which results in an averaged 7.5 (LOM) and 2.6

(Biclust) fold increase of the Jaccard index (figure 3B,C) .

We also demostrate that BIND increases the interpretation and

denoising in real-world Movielens data, in whichXi j = 1 represents

the interest of user i (row) in rating/watching movie j (column).

Category label of each movie is provided. Intuitively, disparate

background probablities naturally exist in this data due to different

popularity of movies and activity of users. Data is divided into

four regions by the I r and Ic computed in Algorithm 2 (figure

3D,E), where 1○ is the region most likely with patterns, and 2○,

3○ and 4○ are denoised regions. Users in region 1○ watched more

movies but less categories comparing to other regions (figure 3F),

suggesting potential recommendation. In addition, region 1○ has

smallest dispersion of the number of rated movies with respect to

different categories, suggesting more stable rating preference of

users towards their preferred movie types in this region (figure 3G).

5 ACKNOWLEDGMENTS
This work was supported by R01 award #1R01GM131399- 01, NSF

IIS (N0.1850360), Showalter Young Investigator Award from Indiana

CTSI and Indiana University Grand Challenge Precision Health

Initiative.

REFERENCES
[1] Sebastian Kaiser and Friedrich Leisch. 2008. A toolbox for bicluster analysis in R.

(2008).

[2] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki

Mannila. 2008. The discrete basis problem. IEEE transactions on knowledge and
data engineering 20, 10 (2008), 1348–1362.

[3] Tammo Rukat, Chris C Holmes, Michalis K Titsias, and Christopher Yau. 2017.

Bayesian boolean matrix factorisation. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2969–2978.

[4] Changlin Wan, Wennan Chang, Tong Zhao, Mengya Li, Sha Cao, and Chi Zhang.

2019. Fast and efficient Boolean matrix factorization by geometric segmentation.



Denoising individual bias for a fairer binary submatrix detection CIKM ’20, October 19–23, 2020, Virtual Event, Ireland

arXiv:1909.03991 (2019).
[5] Sirui Yao and Bert Huang. 2017. Beyond parity: Fairness objectives for collaborative

filtering. In Advances in Neural Information Processing Systems. 2921–2930.

[6] Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-aware tensor-based rec-

ommendation. In Proceedings of the 27th ACM CIKM. 1153–1162.


	Abstract
	1 motivation
	2 Background
	2.1 Notations
	2.2 Related work
	2.3 Problem formulation

	3 BIND framework
	4 Experiment
	5 acknowledgments
	References

