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Abstract: The difference in the amount of stormwater and sewage in a combined sewer system is
significantly large in areas where heavy rainfall is concentrated. This leads to a low water level
and slow flow velocity inside the pipes, which causes sedimentation and odor on non-rainy days.
A complex cross-section module increases the flow velocity by creating a small waterway inside
the pipe for sewage to flow on non-rainy days. While considering Manning’s equation, we applied
the principle where the flow velocity is proportional to two-thirds of the power of the hydraulic
radius. The flow velocity of a circular pipe with a diameter of 450 mm and the corresponding complex
cross-section module was analyzed by applying Manning’s equation and numerical modeling to show
the effects of the complex cross-section module. The tractive force was compared based on a lab-scale
experiment. When all conditions were identical except for the cross-sectional shape, the average flow
velocity of the complex cross-section module was 14% higher while the size of the transported sand
grains was up to 0.5 mm larger. This increase in flow velocity can be even higher if the roughness
coefficient of aging pipes can be decreased.

Keywords: combined sewer system; tractive force; CFD modeling; sedimentation; odor

1. Introduction

A sewer system discharges, processes, and utilizes sewage and human waste as well as processing
and using sludge. As a result, sewer systems prevent flooding, they improve the living environment,
and they can control the water quality [1–3]. A sewer is buried underground for carrying the sewage
away from the living zone in which the system is classified into a separate sewer or a combined sewer
system depending on the discharge method. A sewer pipe and a stormwater pipe are distinguished in
a separate sewer system for allowing only sewage to be transported to treatment plants. This improves
the operation efficiency of treatment plants, and it helps with controlling the water quality since sewage
is not discharged into rivers during rainfall. However, the drawbacks of this system include: the highly
polluted initial stormwater is directly discharged into rivers, the burial depth of the sewer pipe is deep,
and the construction of two types of pipelines increases the complexity. On the other hand, both sewage
and stormwater are transported together in one pipe in a combined sewer system. This separation
method enables a certain amount of initial stormwater to be collected, the pipelines can be cleaned by
stormwater, and the complexity of a pipe network can be reduced. The separate and combined sewer
systems are used accordingly depending on the situation since the combined sewer system causes river
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pollution due to combined sewer overflow (CSO) and a decreased processing efficiency at treatment
plants due to a large amount of stormwater being collected [4]. The design manual for a sewer system
in the United States and Europe specifies different standards for the velocity for a combined sewer
system and a separate sewer system; thus, giving an option in the design process [5].

Sewage odor is a problem that has yet to be solved in separate and combined sewer systems,
which degrades the quality of life for all individuals [6–8]. However, there is also a problem unique to
the combined sewer system. That is, the sedimentation and odor are caused by the difference in the
flow rate on non-rainy days and rainy days [9].

In South Korea, the standard flow velocity of a combined sewer system is between 0.8 m/s and
3 m/s for the designed rainfall. The annual average precipitation is 1277 mm, where 50–60% of rainfall
occurs in the summer. Hence, the amount of sewage in most places around the country is less than
1% of the amount of stormwater. The flow rate condition of the design stormwater flow is satisfied
due to a large difference in the amount of stormwater and sewage. However, when the flow rate and
flow velocity decrease on non-rainy days, the remaining substances introduced in the event of heavy
rainfalls and particulates contained in sewage are deposited. This reduces the discharge capacity,
it causes an odor [8], and it worsens the concentration of CSO [10,11]. The problems mentioned above
are a common concern for regions where heavy rainfall occurs at a specific time.

In the mid-1800s and early 1900s, sewer pipes of various shapes were constructed in Europe using
bricks [12]. The lower sections of these sewers, where sewage flows, is smaller than the top section,
which is designed for stormwater flow and maintenance. With advances in construction techniques
and the widespread adoption of sewage systems, which improved public health worldwide [13],
construction speed became an important factor. Hence, circular and square sewer pipes were mass
produced in factories and transported on vehicles. However, in combined sewer systems, problems
arise over time because of the inefficiency of pipes with simple cross-sections in handling different
flow rates on non-rainy and rainy days.

Manufacturing sewer pipes with different sizes and shapes besides a circular or square shape at
mass production factories is economically and technically challenging. An egg-shaped sewer pipe can
appropriately handle the difference in the flow rate on non-rainy days by combining the sewer pipe
and stormwater pipe; however, it is rarely used in practice [14]. Therefore, a complex cross-section
module has been developed, which can be inserted into a regular circular sewer pipe to be assembled,
as shown in Figure 1. The complex cross-section module can generate a high flow velocity, even at
low flow rates on non-rainy days by making a sewer pipe at the bottom of a combined sewer system.
A faster flow velocity than the existing pipes can be exhibited at the same slope by increasing the
hydraulic radius. This module is placed on only a part of the bottom surface; thus, the entire pipe
can be used on rainy days to handle the design rainfall sufficiently. The module should be heavier
than buoyancy, solid to maintain shape, and corrosion resistant; this study used polyvinyl chloride
(PVC). The module can be inserted from manholes without the need for excavation, which does not
cause traffic interruptions during construction. After pre-cleaning and by-pass pumping complex
cross-section modules should be inserted, after the insertion the inverts of the manholes need to be
constructed. In this study, the hydraulic performance—particularly, flow velocity and tractive force—of
a complex cross-section module developed for circular pipes was verified using computational fluid
dynamics (CFD) modeling, Manning’s equation, and a lab-scale experiment.

Figure 1. Schematics of the installation of complex cross-section modules in a sewer pipe.
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2. Methodology

2.1. Complex Cross-Section Module Definition

The complex cross-section module is a device for creating a waterway for sewage on the bottom
of a combined sewer system on non-rainy days. The complex cross-section module consists of a
waterway, a side slope, and a bottom as shown in Figure 2. Since the complex cross-section module
is installed in existing sewer pipes, it must be manufactured to perfectly fit the bottom of the sewer
pipe. The bottom of the module comes in contact with the combined sewer system; thus, it has the
same diameter as that of the combined sewer pipe. The side slope forms slopes to prevent sewage or
particulates from settling, and it is sloped at 10% so it is extended from the invert of the manholes.
The waterway through which the sewage flows must be designed in a form to have the highest flow
velocity, flow rate, and size to accommodate the amount of sewage being generated by people within
the applicable range. Figure 2 illustrates the semicircular waterway, which has a diameter of 150 mm.
Its design was based on a D450 mm sewer pipe due to the following reasons.

Figure 2. A complex cross-section module for the D450 mm sewer pipe.

Manning’s equation, as shown in Equation (1) below, is commonly used for designing a sewer
system [15]. The flow velocity is proportional to two-thirds of the power of the hydraulic radius when
the material and the slope of the pipe are constant. Therefore, the shape with a greater hydraulic radius
must be identified.

v =
1
n

R2/3
h S1/2 (1)

where, v is the flow velocity (m/s), n is Manning’s roughness coefficient, Rh is the hydraulic radius (m),
and S is the slope.

In Table 1, the flow velocity and flow rate have been calculated for three shapes: a cup, a semicircle,
and a triangle. These three shapes all have the same cross-sectional area (1808 mm2), Manning’s
roughness coefficient (0.01), and slope (0.01). However, the triangle has the highest discharge capacity,
with a flow rate of 1.23 L/s, a flow velocity of 0.678 m/s, and a central angle of 63.4◦. As the waterway
protrudes from the structure, it experiences bending moment. The longer and thinner this protrusion,
the more vulnerable it is to this bending moment; hence, the waterway should not be too deep.
In addition, narrow waterways must be avoided to facilitate cleaning and form removal. In other
words, the waterway must be easy to clean in order to ensure adequate flow on non-rainy days.
Considering these requirements, the semicircle is the efficient shape, especially given its high discharge
rate with a flow rate of 1.2 L/s and a flow velocity of 0.661 m/s.
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Table 1. Size and discharge capacity of the cross-section shapes under a common condition.

Common Condition
Area = 1808 mm2

Manning’s roughness coefficient = 0.01
Slope = 0.01

Shape Cup Semicircle Triangle
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When descriptive statistics for all λ values are calculated regardless of the pipe diameter, the mean
λ is 0.0074 and the standard deviation is 0.0112. When λ is fitted to the normal distribution using these
values, it has the distribution of N (0.0074, 0.0112). According to the probability density function of a
normal distribution, the average λ can cover 50% of the entire distribution, while 0.041, which is 3σ
greater than the average λ, can cover 99.9% of the entire distribution [16]. The λ value is adjusted to
the common value of 0.04 based on these results. In addition, λ can be applied to these pipes with
a diameter between 450 and 1300 mm. Based on this analysis, the diameter of an auxiliary pipe is
127 mm in a sewer pipe with a diameter of 450 mm. However, since pipes are currently manufactured
with diameters of only 100, 125, 150, and 200 mm, the pipe was required to have a diameter of 150 mm
based on the manufacturing standard.

2.2. CFD Model

Average velocity and water level were calculated for the 450 mm circular pipe and the 150 mm
complex cross-section module by Manning’s equation. Manning’s equation is a function of the
roughness coefficient, hydraulic radius, and slope as demonstrated in Equation (1). The hydraulic
radius among these variables is affected by the waterway shape. The module can be analyzed as a
circular pipe having a diameter of 150 mm because sewage only flows through a small waterway on
non-rainy days.

Although Manning’s equation is applied to sewer design it is an empirical equation. The result by
Manning’s equation was checked by a numerical model solving Navier–Stokes equations describing
the motion of viscous fluid substances. Only the shape of the cross-sections were varied, while
keeping all of the conditions, including the slope and roughness coefficient, identical in order to
examine the difference in the performance based on the shape like the comparison method using
Manning’s equation.

This study used ANSYS CFX 19.1 software (ANSYS, Inc., Canonsburg, PA, USA), which is capable
of analyzing fluids in various shapes and used in sewer pipes [14], as a numerical model. This numerical
model solves the 3D Reynolds-averaged Navier–Stokes equations [17]. The volume of fraction (VOF)
and homogeneous turbulence models were applied among the different multiphase approaches in
which water and air inside the pipe are modeled together. The standard K-ε turbulence model and
hydrostatic pressure buoyancy model were applied. Boundary conditions of two domain were set
from discharge condition. The bulk mass flow rate for the inlet condition and opening pressure for
the outlet condition were applied so they can be analyzed as steady state. The no slip wall condition
and equivalent roughness of 0.244 mm were applied to the pipe wall in order to create a similar effect
as the Manning’s roughness coefficient of 0.01 by Strickler’s equation (ks = (n× 25)6) [14]. The pipe
is designed with an unstructured non-uniform mesh by 1.8 × 106 elements by using a 20 m length.
The modeling conditions and mesh quality are summarized in Table 2. The slope was adjusted to
0.005, 0.01, and 0.015, while fixing the flow rate at 0.001668 m3/s. In the same conditions as specified
above, the discharge capacity of the D450 circular pipe and a sewer pipe in which D450/D150 (complex
cross-section module) is installed was compared.
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Table 2. Domain and condition for numerical modeling.

Shape Circular Complex cross-section module
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Module D150 mm

Discretization Scheme Finite volume method

Mesh Size Height of the mesh elements:
Maximum 3 mm in the inside of pipe/1 mm close to the pipe wall

Mesh Quality Maximum skewness: 0.58/Minimum orthogonal quality: 0.44

2.3. Experimental Setup

The experimental device shown in Figure 4 was designed to compare the discharge capacity and
the tractive force of the complex cross-section module. During the lab-scale experiment, all conditions
were identical except for the cross-sectional shape to compare the difference in the performance
according to the pipe shape. Two waterways with a 20 m length were arranged in parallel, and the
slope control motor set in the front and back of the waterways adjusted the slope at 0.0075. A PVC pipe
having a diameter of 450 mm was cut in half and then placed on two waterways each, and the complex
cross-section module was installed on one of the pipes. A total of 40 complex cross-section modules,
which were manufactured with PVC over 0.5 m as shown in Figure 2, were installed on the waterways.
Manning’s coefficient for PVC is 0.01. Water was collected at the outlet chamber and then it was sent to
the water upstream through a pump after which the water parted into the circular pipe and the complex
cross-section module. A total of three flowmeters were installed in front of the pump and the valve for
each of the two waterways for measuring the total flow rate of the pump. The flow rate was measured
again before the water falls into the waterways so it can be summed and compared. In addition,
the flow velocity and water level were measured at the measurement point that is located 18 m from
the inlet. The flow velocity was measured with a contact-type propeller hydrometer. The water level
was measured with a ruler so it can be used in Manning’s equation to calculate the flow velocity and
flow rate, which compared the values that were measured by the flowmeter and were then averaged.
This method can minimize the error in the flowmeter and hydrometer. The slope of the waterway was
measured by using an infrared ray distance and a slope meter.
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Figure 4. Schematic drawing of the experimental sewer pipelines for particle transportation.

An increase in the flow velocity causes a decrease in the sedimentation amount; however,
the correlation between the flow velocity and sedimentation is not directly reflected when designing a
sewer system. However, the sedimentation capacity was examined in this study since sedimentation
in the sewer system is an important factor for determining the functionality after the construction of a
sewer system. According to a study by Haestad et al. [18], tractive force is generated when the shear
stress of water exceeds the critical shear stress of the particles (Equation (3)).

τc = 0.867d0.277 (3)

where, τc is the critical shear stress (N/m2) of the sand grains, and d is the diameter (mm) of the particles
with a specific gravity of 2.7. As demonstrated in Equation (3), the critical shear stress of the sand
grains is proportional to the particle size. This implies that the waterway has a greater tractive force as
the size of the particles being transported increases.

By comparing the tractive force that is based on the size of the particles which can be transported
through the circular pipe and the complex cross-sectional module, sand with a particle size distribution
of up to 4.75 mm diameter (Figure 5) was dropped at the inlet of the waterways. Then, the water falling
from the outlet chamber passes through a No. 50 sieve for 20 min to collect the sand flowing out of
the waterways. The intensity of the tractive force can be compared by examining the size of the sand
grains that are collected from each waterway.

Figure 5. Cumulative distribution of the particle size for the tractive force experiment.
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3. Results

3.1. Velocity Distributions

As presented in Table 2, the velocity distribution from the CFD modeling when the slope is 0.005 at
a flow rate of 0.001668 m3/s as illustrated in Figure 6. At the same flow rate, the complex cross-section
module has a higher water level as well as the area corresponding to the flow velocity, which is 0.7 m/s
or greater. The cross-sectional area of the flow is shallow in the circular pipe, resulting in a larger
area being contacted at the pipe surface and a larger effect of the pipe surface on the velocity field.
This principle is intuitively explained by a hydraulic radius. A smaller hydraulic radius in the circular
pipe signifies that the wetted perimeter is longer in comparison to the cross-sectional area of the flow.
Therefore, the velocity field decreases overall as the friction area against air or the pipe wall is relatively
larger than the cross-sectional area of the flow.

The average flow velocity of the CFD and Manning’s equation are listed in Table 3. As the slope
becomes steeper, the flow velocity becomes faster and the water level is reduced. The water level at the
same slope is always higher in the complex cross-section module than the circular pipe. The average
flow velocity is also higher in the complex cross-section module for both CFD modeling and Manning’s
equation. As the hydraulic radius increased due to the raised water level, the average flow velocity of
Manning’s equation increased, and the flow velocity increased at a rate of 13–14%.

Figure 6. Velocity distribution by numerical modeling of circular pipe (a) and complex cross-section
module (b) for Q: 0.001668 m3/s, S: 0.005.

Table 3. Average velocity and water level of the circular pipe and the complex cross-section module.

Analysis Method Shape
Average Velocity (m/s)/Water Level (mm)

Slope 0.005 Slope 0.01 Slope 0.015

CFD
Circle 0.493/24.5 0.638/20 0.739/19

Complex 0.569/33.5 0.742/28 0.868/26.5
Manning’s
equation

Circle 0.462/25.7 0.586/21.8 0.677/19.9
Complex 0.533/35 0.682/29.5 0.787/26.7

In general, the maximum flow velocity in open channels is approximately 5–25% of the water
depth [19]; the centerline velocity profile in Figure 7a also exhibits a similar tendency. With respect to
the circular pipe, the complex cross-section module has a similar but better flow velocity distribution
from the bottom to the depth of the maximum flow velocity. After the maximum flow velocity of
the circular pipe has been reached, the complex cross-section module has a greater water depth and
the difference in the flow velocity increases even more until the maximum flow velocity is reached.
This is demonstrated in Figure 7b. No difference was found around the bottom, but the difference
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is significant when the water depth is 0.01–0.04 m. This result leads to a significant difference in the
average flow velocity.

Figure 7. Centerline velocity profile (a) and their differences (b) (Ci: circular pipe, Mo: complex
cross-section module, the numbers beside Ci and Mo are slope, S: slope).

3.2. Tractive Force

Table 4 shows the parameters that are measured at the two waterways. At a flow rate of
approximately 0.4 L/s, the two waterways have a transitional flow. Manning’s equation is suitable for
a very rough flow; thus, it is not perfectly appropriate for the flow of this experiment, which has a
low Reynolds number [15]. The flow rate of the circular pipe was measured to be 2% higher, which is
negligible. The average flow velocity, hydraulic radius, Reynolds number, and the average shear stress
are all lower in the circular pipe than the complex cross-section module. Accordingly, the complex
cross-section module is more advantageous than the circular pipe when the hydraulic characteristics
are compared based on the changes in the cross-sectional shape.

Table 4. Experimental parameters for the circular pipe and the complex cross-section module (slope:
0.01, pipe material: PVC), the discharge Q (L/s), average velocity Uav (m/s), hydraulic radius Rh (m),
Reynolds number Re, and the average shear stress (N/m2).

Test Case Q (L/s) Uav (m/s) Rh (m) Re τ = γRS(N/m2)

Circular pipe 0.423 0.371 0.0089 3285 0.65
Complex cross-section module 0.412 0.436 0.0113 4902 0.829

Table 4 demonstrates that the shear stress of the complex cross-section module is greater, which
was verified through a sediment transport test. The sand was scattered on the waterways as shown
in Figure 4, which is also illustrated in Figure 8. The sand flowed at a fast speed due to the free
falling of the water at the upstream of the waterways, but sedimentation started to occur as the flow
became stable. Small sand grains flowed down while floating, but coarse sand grains rolled on the
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bottom. Floating sand grains flowed down quickly at the flow velocity of the water surface. In contrast,
the coarse sand grains traveled at a slow speed, which were easy to observe. The average flow velocity
of the complex cross-section module was faster; therefore, the apparent moving speed of the sand
grain was also faster.

The largest sand grains collected at the end of the waterways were selected and arranged as
shown in Figure 9. According to a study by Hwang et al. [20], the particle size of the sand grains
was analyzed by using digital images. The width and length of the largest particles collected from
each waterway are 2.49 mm and 2.2 mm for the circular pipe as shown in Figure 9a, and 3.07 mm
and 2.91 mm for the complex cross-section module as illustrated in Figure 9b. Equation (3) indicates
that the flow has a greater shear stress when larger particles are transported. The size of the sand
transported through the complex cross-section module is greater and so is the tractive force.

This experimental result can be verified by using the transportable maximum sand grain size (Ds)
of the Shields diagram [21]. Based on the parameters listed in Table 4 and the assumptions of kinetic
viscosity = 10−6 m2/s, specific gravity of soil = 2.65 g/cm3, and critical shear stress = average shear
stress, the Ds of the circular pipe is 1.1–1.2 mm and the Ds of the module is 1.4–1.5 mm by applying a
trial-and-error method to determine the boundary Reynolds number (Re∗) and dimensionless Shields
parameter (F∗) (Table 5). The Ds specified in Table 5 is different from that in the experiment result
because of assumptions including the difference in the shape and specific gravity of each sand grains,
the Shields diagram shows that the transport ability of the complex cross-section module is better than
the circular pipe.

Table 5. Transportable maximum sand grain size (Ds), boundary Reynolds number (Re∗),
and dimensionless shields parameter (F∗) in this experiment (discharge: 0.4 L/s, slope: 0.01, pipe
material: PVC).

Test Case Re* F* Ds

Circular pipe 28–31 0.034–0.038 1.1–1.2
Complex cross-section module 40–43 0.035–0.038 1.4–1.5

Figure 8. Transportation of the sediment on the experimental sewer pipe lines.
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Figure 9. Largest sand grains being transported from circular pipe (a) and complex cross-section
module (b).

There are various theories on the analysis of sedimentation in sewer pipes; however, no general
question exists since most theories are satisfied only under a certain condition. The CIRIA (Construction
Industry Research and Information Association) report evaluated the sediment mobility based on the
full pipe flow [22], which is not applicable to the flow in the combined sewer system on non-rainy
days. The DuBoys equation or the Meyer–Peter and Muller equations are related to bed load transport,
in which the hydraulic radius or shear rate are considered to be the main parameters [23,24]. However,
the hydraulic radius and shear rate are not simply proportional to the amount of transported bed
load; thus, they cannot be easily evaluated as they are related to other parameters in various forms.
In that respect, this experiment intuitively evaluated the tractive force of the two waterways in a
controlled environment.

Sedimentation occurs in all sewer pipe systems to a certain extent, in which the roughness and
cross-section alters the sediments that are influenced by the velocity field [5]. Therefore, an analysis on
the sedimentation must be taken into consideration to examine the efficiency of a complex cross-section
module from a long-term perspective. This aspect will be compared by constructing an actual test bed
and monitoring the results.

In the full pipe flow, the discharge capacity is reduced as the cross-sectional area of the flow is
decreased due to the complex cross-section module. The decrease is around 11% according to the
calculation based on Manning’s equation. Typically, the combined sewers are designed so that the
water level is 50% or below the pipe diameter for the design rainfall; thus, an 11% decrease is negligible
with respect to the entire cross-sectional area.

4. Conclusions

Since a high quality of life is crucial from a cultural perspective, more emphasis is being placed on
the problem of sewer odor. Among the various causes of sewer odor, sedimentation in the combined
sewer system on non-rainy days is one of major causes of odor. The complex cross-section module is a
device for increasing the flow velocity by enlarging the hydraulic radius by using a separate waterway
for sewage at the bottom of the sewer pipe. Considering how only circular or square type sewer
pipes are currently installed for the economic feasibility of construction, the complex cross-section
module can increase the flow velocity on non-rainy days while retaining the existing system. In this
study, we observed the effect of an increased hydraulic radius on the flow velocity by keeping the
roughness coefficient constant, and the average flow velocity was increased by approximately 14%.
However, an increase in the average flow velocity will be even greater if the difference between the
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roughness coefficient of the outdated concrete pipes is increased by deterioration and if PVC is applied.
Furthermore, the complex cross-section module has a stronger tractive force on the sand movement
when using an artificial waterway, which resembles an actual sewer pipe.

The applicability of the module varies with geographies. The results are site specific, the actual
flow conditions (stormwater and sewage discharge) determines the dimensions to be applied. To apply
this to other areas, this module should be re-designed using stormwater and sewage data of the area
because the module of this study is suitable only for Korea because the efficiency of the module is the
maximum when the water way size is equivalent to that of the sewage. The construction method for
the module is not yet established. In the future, to further improve convenience and the economy of
construction, we will optimize the construction method of applying a complex cross-section module to
the test bed.
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