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Abstract: Water clarity (generally quantified as the Secchi disk depth: SDD) is a key 

variable for assessing environmental changes in lakes. Using remote sensing we 

calculated and elucidated the SDD dynamics in lakes in the Inner Mongolia-Xinjiang 

Lake Zone (IMXL) from 1986 to 2018 in response to variations in temperature, rainfall, 

lake area, normalized difference vegetation index (NDVI) and Palmer’s drought severity 

index (PDSI). The results showed that the lakes with high SDD values are primarily 

located in the Xinjiang region at longitudes of 75°-93° E. In contrast, the lakes in Inner 

Mongolia at longitudes of 93°-118° E generally have low SDD values. In total, 205 lakes 

show significant increasing SDD trends (P<0.05), with a mean rate of 0.15 m per decade. 

In contrast, 75 lakes, most of which are located in Inner Mongolia, exhibited significant 

decreasing trends with a mean rate of 0.08 m per decade (P<0.05). Pooled together, an 

overall increase is found with a mean rate of 0.14 m per decade. Multiple linear 

regression reveals that among the five variables selected to explain the variations in SDD, 

lake area accounts for the highest proportion of variance (25%), while temperature and 

rainfall account for 12% and 10%, respectively. In addition, rainfall accounts for 52% of 

the variation in humidity, 8% of the variation in lake area and 7% of the variation in 

NDVI. Temperature accounts for 27% of the variation in NDVI, 39% of the variation in 

lake area and 22% of the variation in PDSI. Warming and wetting conditions in IMXL 

thus promote the growth of vegetation and cause melting of glaciers and expansion of 

lake area, which eventually leads to improved water quality in the lakes in terms of 

higher SDD. In contrast, lakes facing more severe drought conditions, became more 

turbid. 
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1. Introduction 

Lakes are of vital importance because they provide multiple socioeconomic and 

ecosystem services, including water for drinking and irrigation and places generating 

tourism, to the fast growing human populations of the world (Zhang et al. 2017). The 

water clarity of lakes is generally quantified as the Secchi disk depth (SDD, in meter), 

which is the depth at which a black-white Secchi disk can no longer be seen when 

deployed in water. Due to the simplicity and low cost of SDD measurements and their 

important function in assessing the underwater light climate in lakes and the consequent 

productivity of planktonic and benthic algae and aquatic macrophytes (Lee et al. 2015), 

numerous studies conducted over the past five decades have focused on monitoring the 

changes in SDD of ocean and lake ecosystems (Binding et al. 2007; Liu et al. 2020; 

Olmanson et al. 2008; Shen et al. 2020). The water quality of Lake Hongze, Lake Taihu, 

and Lake Liangzi has been reported to have deteriorated dramatically over the past half-

century, with decrease rates of 0.9, 0.5, and 5.0 cm/year (Li et al. 2019; Shi et al. 2018; 

Xu et al. 2018), respectively. The lakes of northeastern North America and Europe 

(Williamson et al. 2015), Chesapeake Bay (Lefcheck et al. 2017) and the southern and 

central North Sea (Capuzzo et al. 2015) have shown similar patterns. Conversely, many 

studies have reported increasing SDD over time. For example, Feng et al. (2019) reported 

that many Yangtze lakes in China, showed increasing SDD during 2003−2016. Liu et al. 

(2020) and Shen et al. (2020) reported that the water SDD of Chinese lakes has increased 

over the past two decades. In addition, the average SDD of three of America’s great 

lakes, Ontario, Huron, and Michigan increased by 58%, 49% and 62% from 1978 to 2014 
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(Binding et al. 2015). The SDD time series in the Río Tercero Reservoir of Argentina 

exhibited an increasing trend from 2003 to 2010 (Bonansea et al. 2015). Similarly in the 

global ocean, the mean SDD increased at a rate of 0.04 m/year
 
(p=0.05) from 2000-2010 

(He et al. 2017). Moreover, most lakes exhibit a gradual rise or fall or no distinct trend 

(Guan et al. 2011). 

The variability in water clarity is in part related to climate conditions (Olmanson et 

al. 2008; Pekel et al. 2016). As the global mean annual air temperature has increased in 

recent decades, many large lakes have exhibited symptoms of eutrophication and water 

quality deterioration (Qin et al. 2019). It remains unclear whether rainfall deteriorates or 

improves water quality. The inflow caused by rainfall may deliver suspended materials, 

dissolved solids and nutrients from watersheds to lakes, thereby increasing lake water 

turbidity (Bonansea et al. 2015). Conversely, the increase in rainfall may greatly promote 

the dilution of suspended matter, thereby increasing lake clarity (Hou et al. 2017). In 

addition to air temperature and rainfall, wind may also affect SDD through resuspension 

of lake sediment and is of importance in shallow lakes (Cao et al. 2017; Hou et al. 2017; 

Shi et al. 2018). 

Human activities have also affected the water quality of the world’s lakes. Among 

the eastern lakes of China, water clarity has been particularly susceptible to changes in 

chemical fertilizer use and wastewater discharge (Feng et al. 2019). However, other 

drivers can also be important, such as severe sand dredging and gold-mining activities 

(Cao et al. 2017; Lobo et al. 2015) as well as shifts in the hydrological regime resulting 

from dam construction in associated lakes such as Lake Poyang and Lake Dongting (Feng 

et al. 2013). Research shows that the type of land cover surrounding a lake is closely 
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related to the lake and nearshore water quality and that the surrounding vegetation plays a 

notable role in reducing soil erosion and purifying inflow water (Olmanson et al. 2014). 

Urban surroundings produce more stormwater runoff and therefore much higher levels of 

nitrogen and phosphorus than other land surfaces (Tong and Chen 2002).  

Most long-term studies of SDD and the drivers behind changes over time have been 

restricted to a relatively small number of lakes or special regions. The SDD responses to 

climate and human activities, however, vary among lakes and climate regions, and there 

is a need to investigate the long-term trend of lake SDD in arid-semiarid climate regions 

and to clarify the driving mechanisms of SDD variations. 

The lakes in the Inner Mongolia-Xinjiang Lake Zone (IMXL) are internal drainage 

systems in an arid or semiarid climate and they are sensitive and vulnerable to climate 

change (Tao et al. 2015). Studies by Tao et al. (2015) and Zhang et al. (2019) provided a 

comprehensive satellite-based evaluation of lake surface changes across the IMXL 

between the late 1980s and 2010. However, an effective assessment of water resources 

should focus not only on water quantity but also on water quality. Long-term trends in the 

water quality of lakes are often early warning indicators of significant local, regional or 

global changes (O'Reilly et al. 2015). Understanding water quality patterns, trends and 

drivers is necessary for designing effective management and remediation strategies. 

Unfortunately, research into the water clarity in this region has not yet been undertaken. 

Recently, the cloud-based parallel-computing platform of Google Earth Engine (GEE) 

has made it possible for researchers to leverage high-resolution, freely accessible satellite 

imagery over large areas (Pekel et al. 2016), thereby enabling research on deforestation, 

drought, disaster, disease, food security, water management, climate monitoring and 
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environmental protection at a global scale (Gorelick et al. 2017). Thus, in this study, we 

used the GEE platform to conduct a case study of the IMXL to thoroughly examine the 

annual lake (> 0.1 km
2
) SDD dynamics from 1986 to 2018 in the area. In addition, we 

quantified the relative contributions of climate warming and wetting to SDD variations in 

the IMXL (Fig. S1, Process 3). 

 

2. Materials and Methods 

2.1 Study area 

The Inner Mongolia-Xinjiang Plateau is located at the middle latitudes in the 

hinterland of Eurasia. It covers an area of approximately 3.75 million km
2
 and has an 

average elevation of 1,546 m and a population of approximately 144 million (National 

Bureau of Statistics of China 2017). In the region, covering more than 4,000 km from 

east to west, the environmental and vegetation conditions are highly diverse (Li et al. 

2012). For example, the annual precipitation ranges from 25 mm to 400 mm and the 

moisture conditions vary from semihumid to semiarid to arid. The vegetation types also 

shift accordingly – from meadow to typical and desert steppes, to the Gobi Desert and 

typical deserts (Li et al. 2012). There are nearly 750 IMXL lakes (> 0.1 km
2
) distributed 

across the area with a cumulative water surface area of approximately 16,800 km
2
 (Zhang 

et al. 2019). Most of the lakes on the Inner Mongolia-Xinjiang Plateau are surrounded by 

vast grasslands, which have nourished the Mongolian people and created a unique 

Mongolian nomadic civilization. Many of the lakes on the plateau are internationally 

important wetlands for threatened animal species and migratory waterfowl (Tao et al. 
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2015). In recent decades, increasing rainfall and air temperature have created a warming 

and wetting environment on part of the plateau (Fig. 1), which offers favor conditions for 

vegetation (Piao et al. 2006).  

 

 

Fig. 1. Digital elevation model (DEM) of the continent, distribution of the IMXL lakes 

and meteorological stations and long-term climate (rainfall and air temperature) trends in 

the IMXL region. The IMXL region can be administratively divided into Xinjiang and 

Inner-Mongolia. 

 

2.2 Lake boundary and area definitions 
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The global water occupancy frequency dataset (Pekel et al. 2016) was used to 

identify lake surfaces. This dataset was generated using more than 3,865,000 scenes from 

the Landsat TM, ETM+ and OLI with information on water occurrence frequency from 

1984 to 2015. We retained the original frequency values and assumed occurrence 

frequencies of ≥25%, ≥50%, ≥75% and ≥100% to identify permanent water surfaces. 

Water surfaces were then trimmed from enlarged IMXL lake boundaries with a 2 km 

buffer to obtain permanent IMXL lake surfaces (Fig. S1, Process 1). Friedl and Sulla-

Menashe (2019) and Sophie et al. (2010) mapped global water surfaces at spatial 

resolutions of 500 and 300 m, respectively. By comparing the performance of the 

estimated lake surface area results at these four thresholds and from previous studies, we 

selected the most suitable approach to define the permanent water bodies of the IMXL. 

The yearly water surface areas of IMXL lakes were therefore derived from the selected 

approach (Supplementary Text 1). 

 

2.3 Satellite data and SDD estimation model 

Lake water SDD was calculated from 49150 images (15.6 trillion bytes) of Landsat 

TM, ETM+ and OLI data for the study area from June to October between 1986 and 2018 

(Fig. S2), obtained from the United States Geological Survey. The Landsat Collection 1 

Tier 1 images were subjected to geometric and atmospheric corrections as well as cross-

calibration among the different sensors (Wulder et al. 2016). For each image, clouds, 

cloud shadows and snow pixels were removed by using the data quality layer from the 

cloud masking method called “CFmask”, which is effective and suitable for preparing 

Landsat data for change detection (Zhu and Woodcock 2014). Terrain shadows were 
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identified and removed by using the solar azimuth and zenith angles from Landsat images 

and the digital elevation model (DEM) from the Shuttle Radar Topography Mission (Zhu 

and Woodcock 2014). All the remaining pixels were considered good-quality 

observations that could be used for open surface water SDD mapping. Finally, annual 

cloud- and snow-free image collections comprising all Landsat TM, ETM+ and OLI 

images in the study area were generated based on the GEE cloud-based parallel-

computing platform. 

In a previous study, Zhang et al. (2021) calibrated and validated an empirical SDD 

algorithm based on hundreds of in situ SDD measurements and concurrent Landsat 

images for lakes in China (Fig. S1, Process 2 and Fig. S3). The algorithm provides a 

reliable estimate of the SDD with a mean relative error and a normalized root mean 

square error of 34.2% and 55.4%, respectively. The algorithm was therefore used to 

estimate the SDD of the IMXL in this study, and spatial-temporal SDD characteristics of 

lakes with water areas ≥0.1 km
2 

were produced from qualified cloud-free Landsat series 

images in the nonfreezing period from June to October between 1986 and 2018.  

 

2.4 Meteorological, normalized difference vegetation index (NDVI) and Palmer’s 

drought severity index (PDSI) datasets 

Data on the monthly rainfall and temperature from June to October between 1986 

and 2018 were downloaded from China Meteorological Administration stations 

(http://data.cma.cn). A total of 146 observation stations are distributed across the IMXL 

(Fig. 1). Precipitation scours the drainage area (Bonansea et al. 2015), and temperature 
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influences the growth of the surrounding vegetation (Liu et al. 2016); therefore, these two 

natural factors were included to examine their impacts on the interannual changes in 

water SDD. 

NDVI is a measure of vegetation growth in the drainage basin of a lake through the 

impact of soil erosion conditions. NDVI is widely used for long-term monitoring of 

vegetation biomass (Gamon et al. 2013). The annual NDVI dataset used in this research 

(https://www.ncdc.noaa.gov/) covers the period 1986-2018, with a spatial resolution of 

0.05° (Vermote et al. 2014). The annual NDVI data were used to examine the influence 

of the drainage erosion status on the interannual SDD variations. 

For an index of the balance between evaporation and precipitation, we used average 

monthly estimates of PDSI provided by Abatzoglou et al. (2018) from the National 

Climate Data Center (https://www.ncdc.noaa.gov/) to calculate their contribution to water 

SDD variations. PDSI values lower than -0.5 indicate drought conditions, values between 

-0.5 and 0.5 indicate near-normal conditions, and values larger than 0.5 indicate humid 

conditions (Yan et al. 2016). PDSI has previously been proven to be an effective 

indicator of long-term climate effects on lake water clarity (Leach et al. 2019). We used 

the annual PDSI dataset with a period of 1986-2018 and a spatial resolution of 0.01° to 

examine the impact of PDSI on the interannual changes in the water SDD. 

 

2.5 Trend and correlation analysis 

The annual mean SDD and driving factors from 1986 to 2018 were calculated for 

the entire IMXL and for each lake. We assumed that the rate of change in SDD in the 
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short term was linear with a constant coefficient. Thus, SDD in a year without images 

could be obtained by interpolating the data before and after this particular year. Linear 

regression was performed among the 38 annual values to obtain the rate of change in 

water SDD and the driving factors during the study period. The mean SDD values of 

seven subperiods (1986-1990, 1991-1995, 1996-2000, 2001-2005, 2006-2010, 2011-2015 

and 2016-2018) and the entire study period were calculated.  

The in situ rain and air temperature data were first interpolated with the inverse 

distance weighting method and then extracted within each lake region. Raster PDSI and 

NDVI data were extracted within a 20 km ring buffer outside the lake boundary. We 

performed a correlation analysis to identify the direction (negative or positive) and 

strength of the relationship between lake SDD and the mean value of each extracted 

variable. The P-values associated with the correlation analysis for each variable were also 

obtained, and a P-value of <0.05 indicates that the contribution of the variable is 

statistically significant. We defined the importance as the proportionate contribution of 

each explanatory variable makes to the determination coefficient by using a multiple 

linear analysis method (Asoka et al. 2018) in RStudio software with R version 3.5.0. The 

increase in the determination coefficient when including the new variable was ascribed to 

the absolute contribution of the explanatory variable to the SDD, lake area, NDVI and 

PDSI variations.  

 

3. Results 

3.1 Long-term trends of five explanatory variables  
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The rainfall in the entire study region showed an increasing trend, with a mean 

increasing rate of 0.76±0.23 mm/year (Fig. 1). However, major regional differences 

occurred. The rainfall in Xinjiang and the western region of Inner Mongolia showed a 

significant increasing trend, while a significant decreasing trend was found in the eastern 

region of Inner Mongolia (Fig. 2a). The temperature of the entire IMXL area (except for 

the black-colored region in Fig. 2b) showed a significant increasing trend, although, with 

a mean rate of increase of 0.04±0.14 ℃/year (Fig. 2b). By contrast, the PDSI of the entire 

study region showed a decreasing trend with mean rate of -0.04±0.07/year. However, in 

most regions of the IMXL the trends were statistically insignificant (Fig. 2c). The NDVI 

of the entire study region showed an increasing trend, with a mean rate of 

0.04±0.11%/year, while the trends in most regions of IMXL were not significant (Fig. 2d). 

The lake area of the entire study region showed an increasing trend, with a total rate of 

12.17 km
2
/year and a mean rate of 0.074±1.88 km

2
/year; 92% of lakes in the regions of 

Xinjiang exhibited a significant increasing trend, and the lakes with a decreasing trend in 

the study area were almost all located in Inner-Mongolia (Fig. 2e).  
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Fig. 2. Long-term trends of rainfall (a), temperature (b), PDSI (c), NDVI (d) and lake 

area (e) from 1986 to 2018; the critical values at which the relationships are statistically 
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significant for the positive or negative correlation coefficients (p<0.05) are filled in with 

diagonal stripes in (a)-(d). 

 

3.2 Lake surface extraction 

Effective definition of lake boundaries is a critical step for the long-term derivation 

and comparison of lake SDD. For this purpose, the performance of lake surface extraction 

at thresholds of ≥25%, ≥50%, ≥75% and ≥100% as well as findings from previous studies 

by Friedl and Sulla-Menashe (2019) and Sophie et al. (2010) were compared, as shown in 

Fig. S4 and Fig. S5. The histograms of the lake surface area were more evenly distributed 

at thresholds of ≥25%, ≥50% and 75% and from Sophie et al. (2010) compared with 

those at a threshold of ≥100% and from Friedl and Sulla-Menashe (2019). The lake 

surface results at thresholds of ≥25% and ≥50% included seasonal and transient water 

bodies, while the results at a threshold of ≥100% and from Friedl and Sulla-Menashe 

(2019) eliminated most year-long water pixels, resulting in a false conclusion whereby no 

large lakes were detected (Fig. S4). Lake surface determination using the global land 

cover dataset (300×300 m) from Sophie et al. (2010) achieved a better performance in 

detecting large lakes, and this result also included seasonal and transient water bodies, 

which should be eliminated from year-long water body detection (Fig. S4f). In contrast, 

the result at thresholds of ≥75% not only retained the complete information of all lakes 

but also removed the influence of seasonal water body changes. We also compared the 

longitudinal distributions in lake areas from the six methods. The result at a threshold of 

≥25% and from Sophie et al. (2010) overestimated the total lake area in the IXML, while 

the result at a threshold of ≥100% and from Friedl and Sulla-Menashe (2019) 
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underestimated the lake area (Fig. S5). Therefore, we used a threshold of ≥75% to define 

the year-long water bodies of the IMXL lakes.   

 

3.3 Spatial distribution of the IMXL lakes SDD 

Quality-controlled Landsat 5 TM, 7 ETM+ and 8 OLI Rrs data between 1986 and 

2018 were used to generate annual SDD maps within the lake boundaries and mean 

values between 1986 and 2018 for the entire IMXL were estimated, as shown in Fig. 3. 

The SDD value of all IMXL lakes was estimated to be 0.92±0.87 m. The lakes with high 

SDD values are primarily located in the Xinjiang region with longitudes of 75°-93° E, 

and few high-SDD lakes are located in Inner Mongolia with longitudes of 118°-122° E. 

In contrast, the lakes in Inner Mongolia with longitudes of 93°-118° E generally have low 

SDD values (Fig. 3). The clearest lake is the typical deep saltwater lake of Sayram 

(44.60° N, 81.17° E) with a mean estimated SDD value of 3.15 m, which is very close to 

the value documented by Huo et al. (2015). 
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Fig. 3. Spatial distributions of the IMXL SDD (a) and SDD variation versus latitude (b) 

and longitude (c) at a spatial resolution of 0.01° × 0.01°. Each SDD pixel was averaged 

from 1986 to 2018. 

 

3.4 Temporal distributions of the IMXL lakes SDD 

The number of lakes distributed per SDD level (<0.5, 0.5-1, 1-1.5, 1.5-2 and ≥2 m) 

among the seven periods (1986-1990, 1991-1995, 1996-2000, 2001-2005, 2006-2010, 

2011-2015, and 2016-2018) and a transition map between each period and the next are 

presented in Fig. 4 to display the change patterns of the different SDD levels. Of the 594 

lakes, >64% had SDD values lower than 0.5 m in the seven periods. For lakes with lower 

SDD levels (<0.5 and 0.5-1), a total of 262 lakes underwent a transition to a clearer SDD 

level, and 133 lakes changed to more turbid conditions. In contrast, for lakes with higher 

SDD levels (1.5-2 and ≥2 m), a total of 11 lakes experienced a transition to a clearer SDD 
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level, and 39 lakes displayed more turbid conditions. Generally, a total of 307 lakes had 

transitions to clearer SDD levels and 236 lakes to more turbid conditions in the six 

transitions, suggesting that the SDD of lakes in the IMXL generally increased over the 

past 33 years.  

 

Fig. 4. Number of lakes with different SDD levels (<0.5, 0.5-1, 1-1.5, 1.5-2 and ≥2 m) 

that showed a transition to other SDD levels from each period to the next. The widths of 

the arrow indicate the number of changed lakes.  

 

The yearly trends in the IMXL from 1986-2018 revealed both increasing and 

decreasing trends. Statistically, 355 lakes exhibited increasing trends, while 205 lakes 

exhibited decreasing trends. Of all the lakes, 205, mostly located in Xinjiang and the 

western part of Inner Mongolia, showed significant increasing trends. There were 75 
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lakes, mainly located in the eastern part of Inner Mongolia, that exhibited significant 

decreasing trends (Fig. 5a). The normalized SDD of 205 lakes displayed a significant 

increasing trend of 0.26 (equivalent to a rate of increase of 0.15 m) per decade (Fig. 5b), 

while the normalized SDD of 75 lakes with a significant decreasing trend had an average 

rate of 0.22 (0.08 m per decade) (Fig. 5c). The average SDD of the 594 IMXL lakes 

showed significant increasing trends from 1986-2018, with a rate of change of 0.14 m per 

decade (Fig. 5d). 
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Fig. 5. Spatial distribution of IMXL lakes with significant changes in water SDD from 

1986 to 2018 (a). A total of 205 lakes showed significant increasing trends (b), and 75 

lakes exhibited significant decreasing trends (c). The average SDD of 594 lakes displayed 
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a significant increasing trend (d). The red points were averaged from all lakes 

demonstrating a significant increase or decrease. 

 

4. Discussion  

4.1 Correspondence among the long-term trends 

To better understand the influence of various factors on the water SDD for IMXL 

lakes, we examined the correlations between the annual SDD and the potential driving 

factors for all and each of the 594 lakes. For all five factors analyzed (rainfall, 

temperature, PDSI, NDVI and lake area), both positive and negative correlations were 

observed (Figs. 6, S6). At the regional level, a significant positive correlation was 

observed between the long-term mean SDD and rainfall (r=0.54; P<0.05) (Fig. S6a). 

Specifically, the annual SDD demonstrated significant positive correlations with rainfall 

for 87 lakes, suggesting that lake SDD increased with increasing rainfall and that rain 

diluted the turbid water in this area. However, there was an inconsistency for 5 lakes 

showing significant negative correlations between SDD and rainfall (Fig. 6g). These 

correlations could be possibly attributed to rainfall leaching, which played a role in 

regulating lake SDD in these lakes by delivering suspended materials, dissolved solids 

and nutrients from watersheds to lakes (Bonansea et al. 2015; Pi et al. 2020). Land cover 

changes in the IMXL region may indirectly affect SDD by impacting nutrient and 

particulate matter loading. At the regional level, a significant positive correlation was 

observed between the long-term mean SDD and NDVI (r=0.52; P<0.05) (Fig. S6d). 

Specifically, the annual mean SDD showed significant positive correlations with NDVI 
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for 76 lakes and with PDSI for 108 lakes, suggesting that the humid environment boosts 

vegetation growth and nutrient uptake, leading to an increasing SDD. Although the 

increasing rainfall in the basins of IMXL lakes might trigger sediment inflow from 

upstream areas, it appears that filtration through the surrounding vegetation counteracts 

these effects for these lakes. This is consistent with the findings of Wang et al. (2016), 

showing that increasing vegetation in the Yellow River Basin rapidly reduced soil 

erosion. At the regional level, significant positive correlations were observed between the 

long-term mean SDD and lake area (r=0.56; P< 0.05) (Fig. S6e) and between the long-

term mean SDD and temperature (r=0.65; P<0.05) (Fig. S6b). Specifically, the annual 

SDD was significantly positively correlated with lake area for 241 lakes and with 

temperature for 94 lakes, indicating that both lake expansion and warming contributed to 

the increasing SDD in these regions. However, there was an inconsistency for 43 lakes, 

showing significant negative correlations between SDD and temperature (Fig. 6g). These 

correlations could be possibly attributed to the increasing chlorophyll-a induced by 

climate warming (Liu et al. 2019), which overwhelmed the effects of lake expansion for 

most lakes and resulted in a negative correlation between the SDD and lake area (Fig. 6j).  

Spatially, the IMXL lakes could be divided into four groups (I, II, III and IV), as 

shown in Fig. 6a. In Groups I and III, the annual mean SDD of most lakes showed 

significant positive correlations with rainfall and NDVI, suggesting that greening 

vegetation and dilution resulting from increasing rainfall were the primary triggers of the 

increasing SDD. For most of the lakes in Group II, rainfall, lake SDD and lake area all 

showed significant decreasing trends. The strong relationship of lake SDD with rainfall 

and lake area indicated that lake shrinkage was the main cause of water deterioration. A 
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few lakes became clearer as a result of lake expansion and increasing NDVI. The 

increasing lake clarity and strong linear relationships between lake SDD and lake area as 

well as temperature in the lakes in Group IV (Fig. 6 and Fig. S7) indicated that lake 

expansion was the reason for the improved clarity of the lakes in Group IV, possibly 

reflecting melting of glaciers due to the rising temperature in the region. 

Multiple linear analysis (Fig. 7) revealed that the five variables (NDVI, PDSI, 

rainfall, temperature and lake area) explained 68% of the SDD variation, with lake area 

contributing the most (0-83%, mean 25%) to the variations, while the mean contributions 

of PDSI, rainfall and NDVI were 10% and that of temperature was 12% (Fig. 7a). 

Rainfall and temperature explained 47% of the lake area variation, with temperature 

contributing the most (mean 39%) and rainfall the least (mean 8%) (Fig. 7b). Together, 

PDSI, rainfall and temperature explained 42% of the NDVI variation, and temperature 

contributed the most (mean 27%), followed by PDSI (mean 8%) and rainfall (mean 7%) 

(Fig. 7c). Rainfall and temperature explained 73% of the PDSI variation; the mean 

contribution of rainfall was 52%, and that of temperature was 22% (Fig. 7d). On the basis 

of our observations, we drew a mechanism diagram of the long-term variations in SDD 

and related environmental factors (Fig. 7e-f). In general, the warming and wetting 

conditions in the IMXL promote vegetation growth, enhance glacier melting and expand 

the lake area, finally inducing improved lake water quality. In contrast, lakes facing more 

severe drought conditions (mostly situated in the eastern part of Inner Mongolia) became 

more turbid. 
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Fig. 6. Correlation coefficients between long-term SDD and the four explanatory 

variables for each IMXL lake from 1986 to 2018. (a) Correlation coefficient between 
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long-term SDD and rainfall, (b) correlation coefficient between long-term SDD and 

temperature, (c) correlation coefficient between long-term SDD and PDSI, (d) correlation 

coefficient between long-term SDD and NDVI, and (e) correlation coefficient between 

the long-term SDD and lake area. The IMXL lakes were divided into four groups (I, II, 

III and IV). In Groups I and III, SDD increased in most lakes due to greening vegetation 

and lake expansion from increasing rainfall. Most deteriorating lakes belonged to Group 

II, and the decreasing trend reflected lake shrinkage due to long-term drought. A few 

lakes became clearer as a result of increasing NDVI. In Group IV, the SDD increased in 

response to lake expansion resulting from melting glaciers as a consequence of the rising 

temperature. Histograms are shown of the correlation coefficients between yearly SDD 

and rainfall (f), air temperature (g), PDSI (h), NDVI (i) and lake area (j) for each lake. 

Red indicates the critical values at which the relationships are statistically significant for 

the positive or negative correlation coefficients (e.g., P< 0.05). 
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Fig. 7. The contributions of the explanatory variables to SDD, NDVI, lake area and PDSI 

variations for each affected IMXL lake. Violin and box plots of the absolute contributions 

of the five variables (lake area, NDVI, PDSI, rainfall and temperature) to the SDD 

variation; the five variables explain 68% of the SDD variation (a). Violin and box plots of 

the absolute contributions of the two variables rainfall and temperature to the lake area 

variation; the two variables explain 47% of the lake area variation (b). Violin and box 

plots of the absolute contributions of the three variables PDSI, rainfall and temperature to 
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the NDVI variation; the three variables explain 42% of the NDVI variation (c). Violin 

and box plots of the absolute contributions of the two variables rainfall and temperature 

to the PDSI variation; the two variables explain 73% of the PDSI variation (d). Scenarios 

from the past (e) and the present (f) and absolute contributions of all explanatory 

variables to the SDD, NDVI and lake area variations. 

 

4.2 Implications and management of water quality for lakes in the IXML 

Due to the remote distance, low temperature and extreme environment of the IMXL, 

the traditional ship-based observation method is insufficient at certain temporal and 

spatial scales. By using long-term satellite observations, a systematic investigation and 

exploration of the spatiotemporal variations and long-term trend of SDD in response to 

variations in temperature, rainfall, lake area, NDVI and PDSI was conducted in the 

IMXL, which served as a solid basis for use in future water monitoring and management 

in this arid-semiarid climate region.  

Our study suggests that the SDD variations were associated with lake expansion, 

temperature, precipitation and vegetation, which were closely linked to climate change. 

The warming conditions in the IMXL over the past few decades have been proven to 

enhance glacier melting and expand the lake area. The simulated warming trend of the 

future climate (Barnes et al. 2019) showed that the aquatic environment of the IMXL is 

expected to experience a substantial change for a certain period. In addition, improved 

vegetation coverage in catchments has been reported to have positive effects on 

increasing lake SDD (Liu et al. 2020; Wang et al. 2016). Therefore, more attention must 
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be paid to climate change and vegetation recovery to design applicable water 

management plans in the future. 

The enhanced SDD may be either detrimental to or beneficial for the aquatic 

environment. For example, enhanced water clarity has beneficial effects by improving 

underwater light conditions and promoting submerged vegetation growth and the 

associated ecology (Zhang et al. 2017). In contrast, enhanced water clarity allows more 

ultraviolet radiation (UVR) to reach deeper waters, which may substantially inhibit the 

growth or survival of phytoplankton, zooplankton and fish (Williamson et al. 2001), not 

least in high-elevation areas. Recent modeling and prediction efforts indicate that ozone 

depletion will continue well into the new century, and ozone depletion and increased 

emissions of greenhouse gases (carbon dioxide, methane and nitrous oxide) due to human 

activities will accelerate global warming (Barnes et al. 2019). In the aquatic habitats of 

the high-elevation IMXL lakes, increasing water clarity and UVR enhance the possibility 

that the aquatic environment will be exposed to high levels of UVR, which is potentially 

damaging to the organisms occupying underwater habitats (Williamson et al. 2001). 

Within inland lakes, chromophoric dissolved organic matter (CDOM) absorbs a large 

proportion of light in the ultraviolet spectrum , thereby protecting organisms in the upper 

euphotic zone from harmful UVR (Aulló-Maestro et al. 2017). Previous studies reported 

that the concentration of CDOM in IMXL lakes is relatively low in a global context due 

to limited nutrient inputs from fluvial and other allochthonous land sources (Song et al. 

2019; Zhou et al. 2017), which may result in strong photobleaching in an intensive UVR 

environment and may have negative effects on zooplankton and fish (Williamson et al. 

2001).  
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In summary, the spatiotemporal variations and long-term trends of SDD as well as 

their responses to climate change revealed in this research have significant implications 

for water quality monitoring and management for lakes in the IMXL. A comprehensive 

understanding of climatic impacts on the aquatic ecosystem of the Inner Mongolia-

Xinjiang Plateau will require further studies blending long-term reconstructions of 

observationally constrained water quality with multisource remote sensing data, along 

with interpretation of climatic factors such as temperature, precipitation, as well as wind, 

radiation and UVR. 

 

5. Conclusions  

The IMXL exhibited both increasing and decreasing trends in water clarity. The 

lakes, located in the western part of Inner Mongolia, showed significant increasing trends, 

suggesting that greening vegetation and dilution resulting from increasing rainfall were 

the primary triggers of the increasing SDD. Some lakes near the border between Xinjiang 

and Tibet showed significant increasing trends as a result of melting glaciers due to the 

rising temperature. The lakes in eastern part of Inner Mongolia exhibited significant 

decreasing trends as a result of lake shrinkage due to severe drought conditions. In 

general, the warming and wetting conditions in the IMXL promoted the growth of 

vegetation, caused melting of glaciers and expansion of lake area, and finally improved 

the water quality of lakes. This study highlights the importance of satellite observations 

in obtaining large-scale water quality information, and the SDD results from this study 

provide critical baseline datasets for use in future water quality monitoring efforts. 
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Highlights 

The water clarity of 594 year-long lakes in IMXL was documented for the first time; 

An overall increasing rate of 0.14 m per decade in water clarity was found in IXML; 

Lakes facing more severe drought conditions became more turbid; 

Warming and wetting conditions in IMXL improved water quality of the lakes.  




