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Abstract

Hawkes processes are used in statistical modeling for event clustering and causal
inference, while they also can be viewed as stochastic versions of popular com-
partmental models used in epidemiology. Here we show how to develop accurate
models of COVID-19 transmission using Hawkes processes with spatial-temporal
covariates. We model the conditional intensity of new COVID-19 cases and
deaths in the U.S. at the county level, estimating the dynamic reproduction
number of the virus within an EM algorithm through a regression on Google
mobility indices and demographic covariates in the maximization step. We vali-
date the approach on both short-term and long-term forecasting tasks, showing
that the Hawkes process outperforms several models currently used to track the
pandemic, including an ensemble approach and an SEIR-variant. We also in-
vestigate which covariates and mobility indices are most important for building
forecasts of COVID-19 in the U.S.

Keywords: COVID-19 forecasting, Hawkes processes, Mobility indices, Spatial
covariate

1. Introduction

Mathematical modeling and forecasting are playing a pivotal role in the on-
going SARS-CoV-2 (COVID-19) pandemic. In mid-March 2020, a report out
of Imperial College London [1] forecasted severe consequences in the U.S. and
U.K. in the absence of significant public health interventions. In both nations,5

governments responded by closing schools, non-essential businesses and releas-
ing general stay-at-home (shelter-in-place) orders. In the U.S., state and local
policymakers are using mathematical models and projections to inform deci-
sions about when and how to relax public health measures that have been put
in place. By and large, compartmental models that explicitly incorporate trans-10

mission characteristics of infectious diseases have been favored over other statis-
tical modeling approaches. High profile Susceptible-Exposed-Infected-Removed
(SEIR) models include those out of the Institute for Health Metrics and Eval-
uation (IHME) [2], Columbia University [3], MIT [4], The Johns Hopkins Uni-
versity [5], and UCLA [6] (in the case of the UCLA model, an SEIR-variant15
___________________________________
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Figure 1: The framework of the Hawkes process model for COVID-19 transmission. Demo-
graphic features at the county level impact the reproduction number of the Hawkes process.
Lagged changes in mobility impact future secondary infections through a convolution with
the inter-infection distribution w(t). The output of the model includes: (1) forecasts of fu-
ture cases and mortality through simulation of the Hawkes process intensity, (2) an estimate
of the dynamic reproduction number of the virus, and (3) regression results that allow for
interpretation of the covariates that influence transmission differences across counties.

with an unreported compartment is fit using least-squares to reported infec-
tion and recovery data). Other strategies apart from SEIR models are CMU-
TimeSeries 1 and GT-DeepCOVID 2. CMU-TimeSeries uses an auto-regressive
time series model fit to case counts and deaths. GT-DeepCOVID is a purely
data-driven approach using end-to-end deep learning models to predict mortal-20

ity on a weekly basis. Our goal in this paper is to show that Hawkes processes,
widely used in the statistical learning community to model contagion patterns
in event data, are well suited for modeling and forecasting COVID-19 case and
mortality data. They have several advantages that we will highlight, including
being highly flexible in accommodating auxiliary spatio-temporal features such25

as county-level demographics and temporal mobility patterns, yet mathemat-

1https://delphi.cmu.edu/
2https://deepcovid.github.io/
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ically they are connected to compartmental models [7] and allow for explicit
incorporation of transmission dynamics (which we briefly review in the follow-
ing section). Furthermore, extensive research has been conducted in the past
several years on incorporating machine learning techniques into the point pro-30

cess framework. Non-parametric Hawkes processes can be constructed where
the triggering kernel is learned [8] and, more recently, fully neural network
based point processes have been developed [9, 10]. Sparse linear combinations
of Hawkes processes were a winning solution in the 2017 NIJ Crime Forecasting
Challenge [11]. In certain cases a mixture of Hawkes processes may be needed35

to model more complex event contagion with high dimensional marks through
Dirichlet processes [12, 13]. Hawkes processes can also be used for causal in-
ference on networks [14] and recent efforts have also focused on training point
processes through reinforcement learning [15, 16]. Hawkes processes also can
take as input auxiliary covariates [17, 18, 19], including spatio-temporal fea-40

tures to model earthquake occurrences [20, 21, 22, 23] and environmental and
demographic variables to model crime [18, 19]. We believe all of these methods
have potential applications to modeling infectious diseases that are highly com-
plex due to heterogeneity in the population, environment, and disparate public
policies across regional and local jurisdictions. Despite these advantages, to our45

knowledge, the only U.S. state where a Hawkes process is being used to inform
COVID-19 policy is in New Jersey (a collaboration with Facebook AI Research)
3.

The outline of the paper is as follows. In Section 2, we introduce our Hawkes
process model whose productivity (reproduction number) is dynamic and de-50

pends on spatio-temporal covariates. Unlike recently introduced models that
incorporate covariates into the background rate of a Hawkes process [18, 19],
our Hawkes process model may be viewed as a convolution of lagged mobility
with an inter-infection time distribution to estimate the intensity of secondary
infections in the future. This is important as phased reopening in the U.S. leads55

to mobility changes, the effects of which are not realized in the case and mortality
data until days or weeks later. Hence the model can be used to forecast changes
in transmission and new cases in real-time as mobility changes (see Figure 1).
We estimate the intensity along with the dynamic reproduction number of the
virus within an EM algorithm through a regression on Google mobility indices60

and demographic covariates in the maximization step. In Section 3, we validate
the approach on both short-term and long-term forecasting tasks, showing that
the Hawkes process outperforms several models from “The COVID-19 Forecast
Hub Network 4.” These models include SEIR models from Columbia University
[3], Johns Hopkins University Applied Physics Lab [5], and an ensemble model65

from Berkeley that uses combined linear and exponential predictors with spatial
covariates [24]. We also investigate which covariates and mobility indices are

3https://ai.facebook.com/blog/using-ai-to-help-health-experts-address-the-covid-19-
pandemic

4https://covid19forecasthub.org/community/
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most important for building forecasts of COVID-19 in the U.S. In Section 4,
we discuss directions for future research and how the machine learning commu-
nity may be able to help improve Hawkes process models of COVID-19 as the70

pandemic continues to unfold.

2. Hawkes process model of COVID-19 transmission

In this section, we introduce a Hawkes process with spatio-temporal covari-
ates for modeling COVID-19 case and death data. We then discuss the connec-
tion of the model to compartment models used in epidemiology and develop an75

expectation-maximization algorithm for inference.

2.1. Incorporating covariates into the Hawkes process

We propose a novel Hawkes process model that simultaneously estimates the
intensity of events and tracks the dynamic reproduction number of the virus.
Given the timestamps (or dates), T = {t1, t2, · · · tn}, of daily reported positive
test cases or deaths, we model the rate of new cases (or deaths) in each country
c as follows:

λc(t) = µc +
∑

t>tj
tj∈T

R(xtj−∆
c , θ)w(t− tj),where xtj−∆

c =

[
dc

m
tj−∆
c

]
,

(1)

where µc is the background rate modeling imported infections, w(t) is the inter-
infection time distribution, mt

c = [mt
1,m

t
2, · · · ]ᵀ are mobility indices on day t,

and dc = [d1, d2, · · · ]ᵀ are static demographic features. The time-varying repro-80

duction number R(x
tj−∆
c , θ) is a function of mobility indices and demographic

features. It can be interpreted as the average number of secondary infections
caused by a primary infection. Because we are modeling reported infections
rather than time of exposure, we introduce the parameter ∆ to capture a po-
tential lag between a mobility change and the time tj of a reported primary85

infection. Here, we combine the spatial and temporal covariates, and we model
the dynamic reproduction number through a Poisson regression (Equation 2)
where the coefficients θ are shared across the counties:

R(xtj−∆
c , θ) = exp(θᵀ xtj−∆

c ). (2)

Our approach is related to those in recent preprints that incorporate mobility
into compartment models [25, 5], however those approaches typically involve90

large-scale Monte Carlo simulations when performing inference. As we will
show, the Hawkes process likelihood can be maximized without simulation via
an efficient expectation-maximization algorithm.
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2.2. Mathematical connection between Hawkes processes and compartmental mod-
els95

Here we briefly review several variations of the Hawkes process in Equation
1 that can be connected to SEIR-type compartment models. The first variant
is the SIR-Hawkes process. This model captures the long-term evolution of a
pandemic by incorporating a pre-factor that accounts for the dynamic decrease
in the number of susceptible individuals [7]:

λSIR(t) = (1− Ic(t)

N
)
(
µ+

∑

ti<t

R0w(t− ti)
)
. (3)

Here Ic(t) is the cumulative number of infections that have occurred up to time
t and N is the total population size. The point process governed by Equation 3
is a continuous time analog of a discrete stochastic SIR model when w(t) is spec-
ified to be exponential [7]. When w(t) is chosen to be gamma distributed, the
Hawkes process also can approximate staged compartment models, like SEIR,100

if the average waiting time in each compartment is equal [26]. More complex
parametric (or non-parametric) inter-infection time distributions w(t) may be
employed within the Hawkes process framework in situations where disease dy-
namics cannot be captured by a SIR or SEIR model. In the early exponential
growth stage of an epidemic, before finite population effects play a role, the105

Hawkes process in Equation 1 without the prefactor can be used to model new

infections arising from SIR and SEIR models, as Ic(t)
N will be small.

While a pre-factor in the Hawkes process involving the cumulative number of
infections is necessary to model long-term disease dynamics, in the early stages
of transmission a linear Hawkes process can be used (as the prefactor will be
close to 1),

λ(t) ≈ µ+
∑

ti<t

R0w(t− ti). (4)

To illustrate this, we simulate a SEIR differential equation,

dS

dt
= −βSI

N
,

dR

dt
= γI

dE

dt
= β

SI

N
− µE, β = γR0

dI

dt
= µE − γI,

(5)

where the parameters are chosen similar to those of COVID-19 estimates re-
ported in [27, 28]. In particular we let γ = .1, R0 = 2, µ = 1, and N = 5 · 108

and note that these parameters are not from any specific locations. We then fit110

the linear Hawkes process model in Equation 4 to new infections, µE, generated
by the SEIR model. We use a non-parametric histogram estimator for w(t) and
find a close fit between the Hawkes process and the SEIR model in Figure 2.
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Figure 2: (Main figure) The red plot shows new infections (µE) from the SEIR differential
equation dS

dt
= −β SI

N
, dE
dt

= β SI
N
− µE, dI

dt
= µE − γI, dR

dt
= γI, where β = γR0, γ =

.1, R0 = 2, µ = 1, and N = 5 · 108. The blue squares show the linear Hawkes process
λt = µ +

∑
t>ti

R0w(t − ti) fit to the SEIR curve of new infections. Inset: Non-parametric

histogram estimate for w(t).

In [7], the rate of events λ(t)SIR in a SIR-Hawkes process is established to be
equal in expectation to new infections µE in the SEIR model after marginalizing115

out recovery events that are unobserved in a Hawkes process. In Figure 2, we
show that in the early stage of spreading, the rate λ(t) in a linear Hawkes process
can also be used to approximate new infections µE.

2.3. EM algorithm for parameter inference
We use an expectation–maximization (EM) algorithm to estimate the model

in Equation 1, which has been widely used for Hawkes Process estimation [29,
30, 31]. First, we introduce latent random variables, pc(i, j), that represent the
event that secondary infection i is caused by primary infection j in county c.
We let pc(i, i) represent the event that case i is imported. The complete data
log-likelihood is then given by,

L =

|C|∑

c=1

{
n∑

i=1

pc(i, i)log(µc)−
∫ T

0
µc dt+

n∑

j=1

{ n∑

i=j+1

pc(i, j) log
[
R(x

tj−∆
c , θ)w(ti − tj |α, β)

]
−
∫ T

tj

R(x
tj−∆
c , θ)w(t− tj |α, β) dt

}}
.

(6)

Here we use a Weibull distribution [32, 33, 34] with shape α and scale β to120

model inter-infection times, which we find accurately models the present data.
As the branching structure of the process is unobservable, we optimize the

complete data log-likelihood in Equation 6 by iteratively alternating between
an expectation step where the branching probabilities pc are estimated and a
maximization step where model parameters are updated by maximizing Equa-125

tion 6. The EM-algorithm is equivalent to a projected gradient ascent on the
likelihood of the Hawkes process [35].
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2.3.1. Expectation step

During the expectation step, we estimate the latent variables pc(i, j) for each
county. Given the parameters θ, α, β, and µc estimated from the last iteration,130

the probabilities that case i was caused by case j (Equation 7a) or was imported
(Equation 7b) are given by:

pc(i, j) =
R(x

tj−∆
c , θ)w(ti − tj |α, β)

λc(ti)
, (7a)

pc(i, i) =
µc

λc(ti)
. (7b)

Note that the rate λc(ti) in Equation 1 is considered to be an aggregation of
triggering kernels from all previous historical events (i.e., all t < ti) and the
background rate µc. Therefore, we can consider the probability of case i caused135

by case j, pc(i, j), as the contribution of primary infection j in the event rate at
time ti, i.e., λc(ti), and pc(i, i) can be seen as the contribution of the background
rate.

2.3.2. Maximization step

We then maximize the complete data log-likelihood with respect to the140

model parameters, conditioned on the estimated branching structure pc(i, j).
During estimation we do not include event pairs (i, j) when j is within Ψ =
14 days of the last day of the dataset, as the offspring events i have not
yet been realized and the inclusion of these incomplete data biases parame-
ter estimates. We choose Ψ = 14 as the incubation period for COVID-19145

is thought to extend to 14 days given by the Clinical Care Guidance from
the CDC: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-
management-patients.html. For simplicity, the summation over n in the likeli-
hood function, Equation 5, is replaced with n̂ in the description for the maxi-
mization step. Here, n̂ represents the number of events that are within T − Ψ150

(n̂ = | ti|ti < T −Ψ |).
Given the latent variable pc(i, j), the maximization of Equation 6 can be

decoupled into three independent optimization problems. Starting with the
coefficient θ from Poisson regression, the maximization of likelihood function
can be rewritten as the following:

θ̂ := argmax
θ
Lθ =

|C|∑

c=1

{
n̂∑

j=1

{
Pc(j) log

[
R(xtj−∆

c , θ)w(ti − tj |α, β)
]
−

∫ T

tj

R(xtj−∆
c , θ)w(t− tj |α, β) dt

}}
,where Pc(j) =

n̂∑

i=j+1

pc(i, j).

(8)

Because the last Ψ days are removed from the dataset and we assume that all
possible offspring pairs (i, j) have been observed, we can therefore approximate
the integrals for the inter-infection time w(t) in Equation 6 as is done in [36]
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by noting that
∫ T
tj
w(t − tj |α, β) ≈ 1. The optimization problem is therefore

a Poisson regression, where we regress the observations Pc(j) =
n̂∑

i=j+1

pc(i, j)

against the covariates x
tj
c :

θ̂ := argmax
θ
Lθ= argmax

θ

|C|∑

c=1

{
n̂∑

j=1

Pc(j)θ
ᵀxtj−∆

c − exp(θᵀxtj−∆
c )

}
. (9)

The same optimization strategy can be applied on the shape and scale pa-
rameters, α and β. The optimization problem can then be solved as a weighted
maximum likelihood estimation for the Weibull shape and scale parameters:

α̂, β̂ := argmax
α,β

Lα,β = argmax
α,β

|C|∑

c=1

{
n̂∑

j=1

{ n̂∑

i=j+1

pc(i, j) log
[
w(ti − tj |α, β)

]}
}
.

(10)

where pc(i, j) is the weight of each inter-infection time observation ti − tj .
Third, the background rate µc is determined analytically:

µ̂c := argmax
µc

Lµc = argmax
µc

n̂∑

i=1

pc(i, i)log(µc)−
∫ T

0

µc dt, µ̂c =

n̂∑

i=1

pc(i, i)

T
. (11)

Pseudo code for the EM algorithm is presented in the Algorithm 1.
We note that the EM algorithm of the Hawkes process is also connected to

the dynamic reproduction number estimator of Wallinga and Teunis [37], as the155

latter can be viewed as a 1-iteration EM algorithm where a histogram estimator
is used for Rtc with initial guess Rtc ≡ 1. More details are discussed in the
following section.

2.4. Connection of EM algorithm for Hawkes Process and dynamic R estimator
of Wallinga and Teunis160

Here we make the connection between the EM algorithm for the Hawkes
process and the popular dynamic reproduction number estimator of Wallinga
and Teunis [38, 37, 32]. The dynamic R estimator of Wallinga and Teunis is
constructed as follows. The probability that individual i at time ti was infected
by individual j at time tj is defined to be,

pij =
w(ti − tj)∑

ti>tk
w(ti − tk)

, (12)

where the distribution of inter-infection times w(ti− tj) is typically modeled as
Weibull, Gamma, or log-normal [32]. The expected total number of individuals
that j infects is then given by:

Rj =
∑

i>j

pij . (13)

8



Algorithm 1 EM algorithm optimization

1: procedure HkPR+
m (T , x, ∆)

2: T ← max T , α← 2, β ← 2. . Initialization
3: µc ← 0.5, Rtc(t)← 1, ∀c ∈ C and 0 < t < T .
4: while ‖∆θ‖,|∆α|,|∆β|,‖∆µ‖ >tol do
5: Expectation step:
6: for ∀i ≥ j and 0 < i, j < T and ∀c ∈ C do
7: if i > j then

8: pc(i, j)← R
tj
c (x

tj−∆
c ,θ)w(ti−tj |α,β)

λc(ti)
.

9: else if i = j then
10: pc(i, i)← µc

λc(ti)
.

11: end if
12: end for
13:

14: Maximization step:

15: θ ← argmax
θ

|C|∑
c=1

{
n∑
j=1

Pc(j)θ
ᵀxtj−∆

c − exp(θᵀxtj−∆
c )

}
.

16: α, β ← argmax
α,β

∑|C|
c=1

{
n∑
j=1

{
n∑

i=j+1

pc(i, j) log
[
w(ti − tj |α, β)

]}
}

.

17: for ∀c ∈ C do

18: µc ←
n∑
i=1

pc(i,i)
T .

19: end for
20: end while
21: end procedure

Wallinga and Teunis then obtain an estimate of the dynamic reproduction num-
ber R(t) by averaging Rj over all observed cases j where the time of infection
tj occurred on day t:

R(t) =
1

Nt

∑

t≤tj<t+1

Rj , (14)

(here Nt is the number of observed infections on day t).
On the other hand, for the Hawkes process the intensity (rate) of infections

is modeled as
λ(t) = µ+

∑

t>ti

R(ti)w(t− ti), (15)

where w(t) and R(t) are the inter-infection time distribution and dynamic re-
production number respectively. Rather than modeling R(t) as dependent on
mobility, we can instead model R(t) as a piece-wise constant function:

R(t) =
B∑

k=1

rk1{t ∈ Ik}. (16)

9



Here the Ik are intervals discretizing time, B is the number of such intervals,
and rk is the estimated reproduction rate in interval k.

Given initial guesses for the model parameters and rk, the EM algorithm for
the Hawkes process iteratively updates the parameters and branching probabil-165

ities by alternating between the
E-step update:

pij = R(tj)w(ti − tj)/λ(ti) (17)

pii = µ/λ(ti) (18)

and M-step update:

w(t) ∼MLE({ti − tj ; pij}) (19)

µ =
∑

i

pii/T (20)

rk =
∑

ti>tj

pij1{tj ∈ Ik}/Nk (21)

where T is the total length of the observation period, Nk is the total number
of events in interval k, and the w(t) is estimated via weighted MLE (for either
a Gamma, Weibull or log-normal) using the inter-event times as observations
and branching probabilities as weights. We also drop event pairs (i, j) when j170

is within Φ = 14 days of the last day of the datasets in consideration of the
incubation period.

Finally, we can compare Equation 17 to Equation 12. The dynamic R(t)
estimator in Equation 12 is what you obtain with 1 step of the EM algorithm
in Equation 17 with initial guess R(t) ≡ 1, µ = 0 and 1 day chosen as the bin175

width for the histogram estimator.

2.5. Hawkes process forecasting

We forecast future events using the branching process representation of the
Hawkes process. We first simulate immigrant events through the Poisson pro-
cess based on the background rate. For each event in the history of the process,180

we then simulate a Poisson random variable with mean R(x
tj−∆
c , θ) represent-

ing the number of secondary infections caused by event j. For each of these
infections we simulate the time of infection by drawing inter-event times from
the estimated Weibull distribution. For example, for an event on day 4, it
may cause a secondary infection on day 22 if we draw a sample as 18 from the185

Weibull distribution. Events falling in the future (past the forecasting date) are
then used to update the forecasted intensity through Equation 1. We simulate
multiple realizations of this process (100 times in our application) to estimate
a mean intensity forecast along with confidence intervals.

10



3. Experiments and Results190

In this section we first provide details on the datasets and baseline models
used in our experiments. We then discuss the experimental results of several
COVID-19 retrospective forecasting tasks at the U.S. county level. The source
code and dataset are included in the supplemental material and are available
online in a anonymous repository5.195

3.1. Datasets

3.1.1. Covid-19 daily cases and deaths reported by The New York Times

The New York Times (NYT) [39] 6 releases a daily report of the cumula-
tive numbers of COVID-19 cases in the United States at the county level and
over time. While NYT data closely tracks data aggregated by a project at200

Johns Hopkins University [40], NYT county level reporting started earlier and
is therefore used in this study. In total, there are 3, 217 counties with cases
and/or deaths in the dataset. The time series data are compiled from state
and local government health departments. In order to have sufficient data for
statistical inference, we select the counties with confirmed cases greater than205

and equal to 10 (denoted by Dconf) and the counties with at least 1 death (de-
noted by Ddeath) by 11/10/2020 when the dataset is curated. In total, there
are 2, 824 and 2, 545 counties in these two datasets. Parameter sharing may
improve models in counties with less data through variance reduction, but can
potentially bias estimates in more populated counties with more cases.210

We therefore assess model performance over different subsets of counties
grouped by case volume. We first rank counties by the number of confirmed cases
and deaths by the cut-off date, 11/30/2020, and we then evaluate forecasting
accuracy on the top-10% of counties (denoted by Qtop

10%), the top-25% counties

(denoted by Qtop
25%), and counties between the top-25% and top-50% quantiles215

(denoted by Q25%
50%).
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Figure 3: Distribution of cumulative cases reported at 11/30/2020 at different quantiles.

5https://anonymous.4open.science/r/d425dcf9-3cfb-4f82-a08c-ee583ab36291/
6https://github.com/nytimes/covid-19-data
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Figure 4: Example of the daily # of confirmed cases/deaths.

In Figure 3a and 3b, we present the distribution of the cumulative confirmed
cases and deaths at three different quantiles up to the cute-off date 11/30/2020.
As the counties at the top-50% have more than 1,000 confirmed cases and 10
deaths, some urban counties, mostly at the top-10%, had already surpassed220

10,000 confirmed cases and accumulated more than 300 deaths. In Figure 4a
and 4b, we show the daily reported confirmed cases and deaths of top-3 counties
in Qtop

10% and Q25%
50% from Dconf and Ddeath, respectively. Given different demo-

graphics and different COVID-19 regulations, each state went through different
phases. For example, while Cook, IL seemed to contain the first spike after225

May, the confirmed cases in Los Angeles, CA seem steadily increase and only
slow down after July. The daily death toll of Maricopa, AZ only hit its record
high only after August unlike Los Angeles, CA, which had already had their
first wave in terms of deaths in April. Overall, the deaths are increasing as the
U.S. heads into the winter months. Such differences in infection rates suggest230

that different public health and social measures may need to be tailored county
by county. Therefore, the proposed county-level forecasting model may aid lo-
cal government policymakers in understanding the demographic and mobility
factors that play a role in local reproduction of the virus.

3.1.2. Google mobility index reports235

We use Google daily mobility index reports at the county level [41] to es-
timate a dynamic reproduction number that tracks changes in movement pat-
terns due to stay at home orders (and their staged removal). In total, there are
6 mobility types, including grocery & pharmacy, parks, transit stations, retail
& recreation, residential and workplaces. Mobility indices for each category240

and county are calculated with respect to a baseline value for that day of the
week The baseline day of the week is the median value from the 5-week period
from 01/03/2020 to 02/06/2020. That is, the values are the relative number of
visitors for counties in each category. Note that during the model training, we
introduce the parameter ∆ to capture a potential lag between a mobility change245

and the time tj of a reported primary infection. As we make forecasts, we use
the mobility in training data from the previous ∆ days to infer the reproduction
number. If the forecast target is more than ∆, we would use the most recent
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Figure 5: Heat map of mobility indices across counties in Dconf and over time.

value from the day of the week in the training data.
We drop “workplace” mobility from our analysis due to high collinearity250

with “residential” mobility. Some mobility data are missing when data is sparse
for a given date. To deal with missing values, we adopt multivariate feature
imputation 7, which estimates each missing mobility entry as a function of other
mobility types on the same day in the same county. We show some heatmaps
of mobility patterns across counties and time in the Figure 5, where a major255

change can be observed coinciding with stay at home orders (the first state-
wide stay-at-home order was issued at 03/21/2020). Also, the reopening phase
in most of the counties can be seen after May. For counties hit by COVID-19 the
most ( i.e., those in the top-10 %), we can also observe some strict regulations
in the “Retail and recreation” areas and better compliance with stay-at-home260

orders based on high mobility in “Residential” area.

3.1.3. County-level demographic covariates

We incorporate spatial demographic features that may be predictive of symp-
tomatic cases of COVID-19 (which are more likely to result in testing and mor-
tality). The dataset is available in a curated form [24] and is derived from265

CDC and census datasets. The data is at the county level and includes popu-
lation, median age, number of hospitals and ICU beds, percentage of smokers
and diabetes, and heart disease mortality.

In Figure 6, we present two examples of spatial demographic features at the
county-level used to model variations in the reproduction number. In Figure270

6a we observe that both the east and west coasts of the United States are
more densely populated compared to midwestern and western regions. Diabetes
percentage (shown in Figure 6b), on the other hand, is mostly higher in southern
regions of the U.S.

7https://scikit-learn.org/stable/modules/impute.html#multivariate-feature-imputation
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(a) Population density estimated at 2019 (b) Diabetes percentage (%)

Figure 6: Examples of spatial demographic and health features at the county-level.

3.2. Baseline models and experimental setup for retrospective forecasting com-275

parison

We compare the Hawkes process model in Equation 1 with several mod-
els including an SEIR model used in a pandemic tracking dashboard 8 out of
Columbia University [3] (denoted by PROJ), an geospatial SEIR Model from
the Johns Hopkins University Applied Physics Lab [5] (denoted by BUCKY),280

and an ensemble model with linear and exponential predictors from University
of California, Berkeley [24] (denoted by CLEP). Note that all three competing
models are tested directly from the released source code and we follow the same
experimental protocol as for our proposed model. A simplified Hawkes process,
denoted by Hawkes, where the reproduction number is held constant is used285

for comparison to demonstrate the effectiveness of tracking the reproduction
number dynamically. We also compare our full Hawkes process model, denoted
by HkPR+

m, to a Hawkes process, HkPRm, with only mobility features to
determine the marginal improvement of adding demographics.

We backtest the six competing models on the Dconf and Ddeath datasets us-290

ing the “walk-forward” validation approach. In particular, for 7-day forecasts
we first train the models based on cases and deaths before the first cut-off date,
04/15/2020, and then forecast through 04/21/2020. We then slide the forecast-
ing window, training on data before 4/22/2020 and forecasting from 04/22/2020
to 04/28/2020. We repeat this process until the final date of 05/19/2020 (a sim-295

ilar approach is used for 14 and 28 day forecasts). The multivariate imputation
models are also trained in the same walk forward fashion to avoid possible data
leakage. The hyper-parameter of the lag parameter ∆ ranges from 7, 14, 21,
and 28 days in our experiments. For each of the forecasts, we simulate them
100 times and the point estimate is made through the average.300

We evaluate the models according to mean absolute error, MAE, averaged
across counties and forecasting windows of the same length, along with per-
centage error, PE. Mean absolute error (MAE) and the percentage error (PE) are

8https://covid19forecasthub.org/community/
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calculated as follows:

MAE =

∑|C|
c=1 |nc − n̂c|
|C| , PE =

|∑|C|c=1 nc −
∑|C|
c=1 n̂c|∑|C|

c=1 n̂c
, (22)

where n̂c, and nc are the number of reported events and predicted events, re-
spectively. We also compare the ranking quality of the competing models using
Normalized Discounted Cumulative Gain (NDCG) [42], which can be used to
evaluate the power of recommendations for counties with potential COVID-19
spikes in the near future.305

3.3. Experimental results

Table 1: MAE on predicted confirmed cases Dconf

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 809.40 415.88 55.30 1664.90 857.93 117.86 3432.57 1779.56 252.43
CLEP 238.30 134.83 33.86 585.81 324.32 88.87 1963.52 1090.36 207.81
BUCKY 404.49 212.80 37.45 883.69 459.77 89.85 2085.88 1116.91 229.33
Hawkes 224.35 120.61 24.02 569.49 300.06 55.45 1803.63 935.83 165.92
HkPRm 211.59 114.34 22.44 519.00 271.86 49.83 1573.58 835.59 136.60
HkPR+

m 210.72 114.69 22.38 522.92 276.28 49.86 1611.48 893.65 132.79

The best performance is marked in bold.

Table 2: MAE on predicted confirmed cases Ddeath

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 15.56 7.89 1.12 30.66 15.55 2.20 56.85 29.37 4.41
CLEP 10.96 5.83 1.16 19.10 10.58 2.31 78.17 42.99 8.56
BUCKY 8.23 4.55 1.00 16.07 8.70 1.83 29.55 16.56 3.98
Hawkes 8.49 4.59 1.04 17.38 9.18 1.98 47.13 24.29 4.32
HkPRm 7.19 4.07 1.01 13.40 7.55 1.78 33.30 18.23 3.74
HkPR+

m 7.24 4.07 1.01 13.68 7.53 1.77 35.99 19.18 3.60

The best performance is marked in bold.

In Table 1 and Table 2, we present the experimental results for 7, 14, and
28 days window forecasts of MAE for all models applied to both confirmed cases
(Dconf) and deaths (Ddeath), and in Table 3 and Table 4, we report the results
for PE. In terms of MAE and PE, both of our proposed models, HkPRm and310

HkPR+
m, outperform the models, PROJ and CLEP, by a large margin in all

three forecasting periods and across quantile subsets of the data.The improve-
ments of MAE and PE can also be seen in the simplistic baseline Hawkes process,
Hawkes. This suggests that the Hawkes process approach has a good potential
on modeling infectious disease due to the self-exciting properties that lie in the315

COVID-19 cases.
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Table 3: PE on predicted confirmed cases Dconf

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 91.00 90.40 84.07 94.41 94.63 92.83 95.76 96.17 96.94
CLEP 10.23 12.08 41.09 24.60 29.42 90.24 41.19 47.74 515.17
BUCKY 19.61 20.12 35.58 28.05 27.90 69.61 47.91 49.24 97.86
Hawkes 11.52 11.31 14.36 17.33 17.02 19.60 41.25 40.06 39.11
HkPRm 11.72 10.75 15.44 13.92 15.10 15.08 38.77 38.20 46.38
HkPR+

m 10.16 10.35 12.95 15.30 13.45 16.91 41.96 33.33 41.31

The best performance is marked in bold.

Table 4: PE on predicted confirmed cases Ddeath

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 72.56 72.25 45.10 81.93 81.96 73.62 90.21 90.53 87.16
CLEP 23.39 26.35 18.05 19.23 19.27 24.74 73.77 78.90 173.88
BUCKY 17.64 16.08 14.71 15.63 13.93 20.22 15.36 13.20 36.19
Hawkes 17.97 16.99 15.81 20.03 20.71 16.17 48.79 44.15 28.17
HkPRm 16.77 15.59 13.80 20.40 17.38 13.72 33.03 52.51 22.04
HkPR+

m 17.53 16.92 14.05 18.18 15.23 16.93 38.31 44.78 17.66

The best performance is marked in bold.

We found that adding mobility indices improves Hawkes, where forecast-
ing accuracy of HkPRm also increases across the subsets and all forecasting
window. For example, the improvements on MAE over Hawkes can go up to
13%, 11%, and 18% for 28 days forecast when HkPRm is applied to Qtop

10%,320

Qtop
25%, and Q25%

50% in Dconf, respectively. Similar decrease on MAE can be observed
when HkPRm is applied to three quantile subsets in Ddeath, where HkPRm

outperforms Hawkes by 29%, 25%, and 13% in MAE, respectively. In terms
of PE, HkPRm stays ahead of Hawkes with only one exception at Q25%

50% of
Ddeath in 28 days forecasting. This shows that by modeling the reproduction325

number through daily mobility indices we can enhance the forecasting accuracy
and obtain more precise estimation on the spikes in the future.

By adding demographic features, we can marginally boost the MAE and PE

of HkPR+
m over HkPRm in some cases. In general, the variation, HkPR+

m,
also shows similar improvements over the competing models. In particular,330

HkPR+
m has the best PE enhancement over HkPRm at Q25%

50% in Ddeath for 28
days forecast, which is 20%. This demonstrates that the major forecasting power
comes from the joint modeling of mobility indices in the reproduction number
while the choices of the background rate and inter-infection distribution may
only play a minor part.335

Moreover, we notice that model BUCKY is a competitive baseline in Ddeath

where it has better accuracy in a few cases, such as MAE and PE Qtop
10% and Qtop

25%
for 28 days forecast. Possible explanation for its advantage could be the CDC-
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recommended parameters that has been introduced to aid the model training
especially for recovery and deaths compartments in its SEIR model. Those340

parameters include case fatality ratio, case hospitalization ratio, time between
death and reporting, etc. However, introducing such pre-trained parameters
from CDC may not be practical in real-time forecasting and may potentially
bring in the data leakage issue.

Table 5: NDCG on predicted confirmed cases Dconf

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 0.7225 0.7039 0.8232 0.6946 0.6793 0.8412 0.6696 0.6614 0.8589
CLEP 0.9626 0.9526 0.8620 0.9418 0.9402 0.8704 0.9015 0.8843 0.8739
BUCKY 0.9283 0.9279 0.8600 0.9269 0.9216 0.8768 0.9013 0.8957 0.8813
Hawkes 0.9738 0.9757 0.8680 0.9697 0.9704 0.8926 0.9414 0.9419 0.8879
HkPRm 0.9706 0.9728 0.8673 0.9715 0.9755 0.8956 0.9502 0.9521 0.8958
HkPR+

m 0.9734 0.9759 0.8672 0.9752 0.9758 0.8932 0.9493 0.9503 0.8918

The best performance is marked in bold.

Table 6: NDCG on predicted confirmed cases Ddeath

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 0.6746 0.6607 0.7057 0.6823 0.6529 0.7666 0.7003 0.6837 0.8050
CLEP 0.9126 0.9010 0.7451 0.9095 0.8945 0.7849 0.8696 0.8240 0.8043
BUCKY 0.9161 0.9160 0.7301 0.9217 0.9222 0.7797 0.9074 0.9095 0.8278
Hawkes 0.9506 0.9493 0.7548 0.9475 0.9469 0.8011 0.9293 0.9297 0.8212
HkPRm 0.9491 0.9476 0.7598 0.9446 0.9457 0.8007 0.9299 0.9315 0.8195
HkPR+

m 0.9504 0.9474 0.7597 0.9502 0.9514 0.7963 0.9368 0.9372 0.8176

The best performance is marked in bold.

In Table 5 and Table 6, we present the NDCG results for the ranking eval-345

uation. Generally, the proposed models HawkPR have a better NDCG perfor-
mance when applied to confirmed cases for most of the quantile subsets. In
terms of NDCG on the Ddeath dataset, the baseline Hawkes process, Hawkes,
performs better in some cases but proposed method consistently comes in sec-
ond for most of the forecasting window. By generating rankings with good350

qualities, HawkPR can serve as a recommender system for the hotspot coun-
ties and the public health policymakers can tailor strategies specifically for each
region to contain the virus. We also note that in our model, we are estimating
inter-event distributions of observed cases (ignoring asymptomatic cases) and
therefore these are observed or “effective” inter-event distributions, rather than355

true inter-infection distributions based on longitudinal data. We believe this
approach is justified by the performance of the model in forecasting observed
cases (and this approach is taken in other applications, like seismology where
some earthquakes are not observed).
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Table 7: Model coefficients (Dconf)

Covariate coef pValue

Retail/recreation 0.1303 0

Grocery/pharmacy 0.0029 8.46× 100−09

Transit stations −0.0102 1.56× 100−98

Parks −0.0355 0
Residential −0.1063 0

Population density 0.0220 0

# ICU beds 0.0110 1.20× 10−247

# hospitals 0.0106 8.69× 10−128

Median age −0.0049 3.85× 100−38

Population est. −0.0214 0
Smokers % −0.0361 0
Heart disease mort. −0.0453 0
Diabetes % −0.0589 0

The first 5 covariates are mobility indices,
followed by static demographic covariates
and two types of coefficients are sorted, re-
spectively.

Table 8: Model coefficients (Ddeath)

Covariate coef pValue

Retail/recreation 0.1047 4.15× 10−118

Grocery/pharmacy 0.0746 8.88× 10−111

Transit stations 0.0276 2.48× 100−11

Residential −0.0929 5.04× 10−212

Parks −0.1294 0

# ICU beds 0.0423 2.17× 100−64

Population density 0.0409 0

Population est. 0.0062 5.18× 100−2

Median age −0.0157 1.65× 1000−7

Heart disease mort. −0.0250 1.29× 10−008

# hospitals −0.0423 6.54× 100−28

Diabetes % −0.1041 1.33× 100−86

Smokers % −0.1448 1.65× 10−279

The first 5 covariates are mobility indices,
followed by static demographic covariates
and two types of coefficients are sorted, re-
spectively.

3.3.1. Importance of covariates360

In Table 7 and Table 8, we show the dynamic reproduction number coeffi-
cients of HkPR+

m estimated from the Poisson regression component (Equation
2) when applied to Dconf and Ddeath, respectively. The p-value is calculated from
the Poisson regression analysis in the M-step after the EM algorithm reaches
convergence. The absolute value of the coefficients indicates the magnitude of365

the correlation between the reproduction number and the features. With the
exception of population estimation in Ddeath, the coefficients of all variables are
statistically significant at the 10−7 level or below. The dynamic reproduction
number is positively correlated with “Retail and recreation” while negatively
correlated with “Residential”, meaning that as mobility shifted away from com-370

mercial areas towards residences, the reproduction number decreased. In terms
of spatial covariates, the reproduction number is positively correlated with “Pop-
ulation density” and “# of ICU beds.” This suggests that the regions hit the
hardest by COVID-19 are mostly urban areas, where most of intensive treat-
ment units are situated. The reproduction number is also negatively correlated375

with percent of the population with“ Diabetes” and “Heart disease mortality
rate.” Several possible explanations for this observation include high-risk in-
dividuals are being more cautious or that they tend to live in areas with less
cases, potentially with less population.

3.3.2. COVID-19 forecasting and reproduction number analysis380

In Figure 7, we present an example of 28 days projection made through
HkPR+

m from 10/28/2020 - 11/25/2020 for both Dconf and Ddeath. We can ob-
serve that HkPR+

m has very promising results in making projections, especially
for the short term future, When the number of forecasting windows increases,
the forecasting error increase as the task also being more difficult. Moreover, the385

narrow confidence interval calculated through 100 Hawkes processes simulations
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Figure 7: Forecasting for 28 days from 10/28/2020 - 11/25/2020

suggests that the the proposed model can make relatively stable forecasting.
Lastly, based on the projections, as the number of confirmed cases soon would
hit over 500,000 in the top counties including Los Angeles, CA, Cook, IL, and
etc. It is imperative to have a robust framework to help governments to design390

strategies to combat COVID-19 or even more, prioritize vaccine distribution.
In Figure 8 and Figure 9, we find that the estimated dynamic reproduction

number closely tracks lagged mobility, where the optimal lag parameter is deter-
mined as ∆ = 14 days for Dconf and ∆ = 21 days for Ddeath. The top-2 counties
in Qtop

10% have estimated reproduction number initially above 2.5. After stay-at-395

home orders (around 04/11/2020), mobility in residential areas increased. On
the other hand, mobility in retail and recreation decreased and the reproduc-
tion number fell to around 1, which explains why curves were relatively “flat”
in many areas in the U.S. after the lockdown. However, as most of states re-
opened and lifted up the restrictions, the reproduction number increased after400

a large population resumed their daily routine, which can be also be observed
by the increased mobility in retail and recreation after July. Lastly, to validate
the reproduction numbers, we also compare our results to the ones estimated
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Figure 8: Estimated R of confirmed cases Dconf and lagged mobility changes (∆ = 14 days)

02/
15
04/

11
06/

06
08/

01
09/

26
11/

21

0

1

2

es
ti
m

a
te

d
R

Estimated R
Retail/recreation

Residential

02/
15
04/

11
06/

06
08/

01
09/

26
11/

21

date of R

0

1

2

02/
15
04/

11
06/

06
08/

01
09/

26
11/

21

0

1

2

-3
-2
-1
0
1
2
3

01/
25

03/
21

05/
16

07/
11

09/
05

10/
31

date

-3
-2
-1
0
1
2
3

01/
25

03/
21

05/
16

07/
11

09/
05

10/
31

date of mobility (21 days shifted)

-3
-2
-1
0
1
2
3

m
o
b
il
it
y

ch
a
n
g
es

01/
25

03/
21

05/
16

07/
11

09/
05

10/
31

date

(a) Los Angeles, CA (1st in Q
top
10%

) (b) Cook, IL (2nd in Q
top
10%

) (c) Gordon, GA (1st in Q25%
50%

)

Figure 9: Estimated R of deaths Ddeath and lagged mobility changes (∆ = 21 days)

by Stanford University 9 and our estimation match to their findings, which are
around 1.5-2.5 initially and 0.5-1.5 up to the beginning of December in 2020.405

3.3.3. Example of estimated event intensities and weekly forecasts

In Fig. 10, we present examples of the estimated intensities for the following
four models: Hawkes, HkPRd, HkPRm and HkPR+

m, and we compare them
with the number of cases/death in Cook, IL/Los Angles, CA, respectively. Note
that we add HkPRd, a Hawkes model in which only demographics is used. In410

these models, HkPRm and HkPR+
m include mobility indices to estimate the

reproduction number dynamically, and Hawkes and HkPRd have a constant
reproduction number for each county. Comparing Hawkes and HkPRd, the

9https://web.stanford.edu/∼chadj/Covid/Dashboard.html
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marginal variance between the intensities suggests that demographic features
may not significantly affect modeling the reproduction number in the present415

data. On the other hand, HkPRm and HkPR+
m show yield different fitted in-

tensities compared to Hawkes and HkPRd, indicating that mobility is playing
an important role.
In Fig. 11, we present an example of weekly forecasts for all models except
PROJ, which has relatively poor performance. In addition, we compare the420

forecasts against the true number of cases/deaths of Los Los Angeles, CA/Cook,
IL respectively to provide a graphical presentation of the model fits. In general,
all models can successfully capture the trend of the number of events, especially
the valley around June and July and the spike in November, though the Hawkes
process forecasts are more accurate than CLEP and BUCKY.425
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Figure 10: Example of the fitted effect from mobility and demographics
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3.3.4. Dynamic background rate µc modeling

In this section, we investigate a potential improvement to the model with the
incorporation of a dynamic background rate µc(t). For this purpose we again use
mobility as a covariate and estimate the background rate through Poisson re-
gression, where µc(t) = exp(θᵀµ xt−∆

c ). The reasoning behind this choice is that430

imported case volume is correlated with mobility, especially in transit stations.
Estimation for the corresponding parameter, θµ, is achieved through maximum
likelihood estimation (MLE) corresponding to Poisson regression in the M-step
of the EM algorithm. This new approach can be seen as a variation of our model
that we denote as HkPRµ. We apply this variation of our HawkPR on the435

dataset from The New York Times (NYT ) and we explore the improvements
in the forecasting task for 7 and 14 days.

Table 9: Performance and improvements of HkPRµ on Dconf and Ddeath

data evl
7-days 14-days

Qtop
10%

Qtop
25%

Qtop
10%

Qtop
25%

Dconf

MAE 206.66 (1.93%) 113.95 (0.34%) 509.88 (1.76%) 271.20 (0.24%)
PE 11.57 - 10.44 - 14.44 - 15.44 -
NDCG 0.9761 (0.24%) 0.9768 (0.09%) 0.9735 - 0.9739 -

Ddeath

MAE 7.12 (0.98%) 4.03 (0.98%) 13.67 - 7.69 -
PE 18.07 - 16.87 - 16.39 - 16.61 -
NDCG 0.9492 - 0.9475 - 0.9515 (0.14%) 0.9520 (0.06%)

The performances which have an improvement over the best model from the previous exper-

iments are marked in bold and the improvement (%) over the best models from previous

performance is included.In this table, “evl” is the evaluation metrics and “dataset” is the set

of COVID reports on which we apply the model.

In Table 9, we summarize the performance of the Hawkes model with dy-
namic background rate, where indicate improvements over the best model from
the previous experiments in bold.440

In Table 9, we can see some marginal improvements over the previous best mod-
els, especially for confirmed cases. Further improvements may be possible by
monitoring cross-county and cross-state travel patterns, which would be a good
direction for future investigation.

3.4. State-level Comparison to COVID-19 Forecast Hub445

The COVID-19 Forecast Hub 10 is a repository that aggregates COVID-19
forecasts from a number of university and research groups following standard-
ized data and forecasting formats. In specific, such ensemble was created by
taking the arithmetic average of each prediction quantile for all eligible models
for a given location. Recently, the COVID-19 Forecast Hub [43] has also intro-450

duced an ensemble model that combines the various models submitted to the

10https://covid19forecasthub.org/
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hub into a single ensemble forecast. Comparing to other standalone models, it
has demonstrated superior performance in forecasting deaths due to COVID-19
after May 2020 in the 50 states. To better validate the our Hawkes process
framework, in this section we compare our model with several individual sub-455

missions and the ensemble model from the COVID-19 Forecast Hub.
Several differences between our county level experiments in the previous sec-
tions and the format of COVID-19 Forecast Hub submissions are worth noting.
In particular, COVID-19 Forecast Hub forecasts are at the state level and some
team contributions vary significantly in terms of the number of submissions,460

which locations are included, and whether cases and/or deaths are forecasted.
In addition to the differences between the source of COVID-19 reports 11, we
also note that only a few teams have complete submissions at each county.
Therefore, to fairly compare and contribute to the ensemble model, we adapt
our framework by training our models at the state-level using reports from the465

Johns Hopkins University dataset, from 02/15/2020 to 03/21/2021. Also, we
incorporate Google mobility index for each state 12 and with state-wise de-
mographics 13 to model the event intensities, reproduction number, and the
background rate in Equation 1.

470

3.4.1. Weighted Interval Score WIS

The COVID-19 Forecast Hub uses a quantile based metric to evaluate fore-
casts, the weighted interval score (WIS), which considers the uncertainty in the
predictive distribution [44]. Given a predictive distribution F in the format of
quantiles, WIS can be seen as a measure of closeness between the entire distri-
bution and the ground truth. To evaluate with WIS, we first calculate a single
interval score ISα.

ISα(F, n̂c) = (u− l) + 2

α
(l − n̂c) · 1(n̂c < l) +

2

α
(n̂c − u) · 1(n̂c > u), (23)

where 1(·) is the indicator function, l and u are the values at 2
α and 1 − 2

α
quantiles. We then calculate the weighted sum of interval scores by summarizing
accuracy across the entire predictive distribution. The overall WIS is defined as
a linear combination of K interval scores:

WISα,K(F, n̂c) =
1

K + 0.5

{
w0 · |nc − n̂c|+

K∑

k=1

wk · ISαk (F, n̂c)

}
, (24)

where wk = αk

2 , k = 1, · · · ,K and w0 = 1
2 . In this manuscript, we use K = 11

and α = 0.02, 0.05, 0.1, 0.2, · · · , 0.9 as in [44].

11COVID-19 Forecast Hub has used reports from Johns Hopkins University and we use
reports from the New York Times in our previous application

12https://www.google.com/covid19/mobility/
13https://www.census.gov/
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3.4.2. Selection Criteria and Comparison results475

We first select the models which have passed the screening process in the
COVID-19 Forecast Hub [45] based on the following criteria: (1) inclusion of
forecasts for at least 25 states for deaths; (2) a complete set of quantiles; and
(3) at least 19 eligible weeks. We further retain 9 models that have a better
WIS score than the baseline proposed by the COVID-19 Forecast Hub [45]. The480

forecasting evaluation starts with the week of 05/04/2020 - 05/10/2020 and then
moves forward weekly until 03/15/2021 - 03/21/2021. In each weekly submis-
sion, each team makes forecasts for 1 to 4 weeks ahead. One challenge is that
each model has a different number of states and forecasting weeks in the sub-
mission. Therefore, following a similar fashion in [45], we calculate the relative485

evaluation metric for a fair comparison.
For each state-week combination, we first divide HkPR+

m’s WIS and MAE by each
models’ evaluation results, respectively. We then report the geometric mean of
relative scores from all state-week combinations in Table 10. Note that all
hyper-parameters are selected based on the best performance from the previous490

week for each state-week combination. Therefore, if the value is less than 1, we
can suggest that there is an improvement in terms of the error measurement on
average.
In terms of confirmed cases (denoted as DJHU

conf ), HkPR+
m has consistently out-

performed the selected models in MAE and WIS except for the COVIDhub-495

ensemble in the 4th weeks window ahead. Overall, besides HkPR+
m, COVIDhub-

ensemble has the most competitive results. COVIDhub-baseline and COVIDhub-
ensemble model are designed by the COVID-19 Forecasts Hub [45]. Here,
COVIDhub-baseline serves as a reference point and is generated by the me-
dian number of cases from the most recent week, and COVIDhub-ensemble500

aggregates all the submissions to generate an ensemble forecast.
For the COVID-19 Forecast Hub to generate an accurate ensemble, diverse

modeling perspectives can be beneficial. The promising results in DJHU
conf indicate

that forecasts for confirmed cases can benefit from modeling with a Hawkes pro-
cess that incorporates dynamic covariates. Given that many forecasting groups505

are using compartmental models, we believe that HkPR+
m can potentially en-

hance the forecasting accuracy of ensemble forecasts through both its accuracy
and diversity. Note that all the weekly forecasts were updated in the anonymous
repository14.

We note that, in the retrospective evaluation, our model may be slight-510

lyfavored. Data available when prospective forecasting models were created
mayhave been subject to reporting lags or have been updated at a later date.
Tocompletely reconstruct such data is a non-trivial task, therefore we acknowl-
edgethis as a limitation of the present work.

14https://anonymous.4open.science/r/d425dcf9-3cfb-4f82-a08c-ee583ab36291/

24



Table 10: Relative WIS and MAE on the JHU dataset

Model
DJHU

conf

Relative WIS Relative MAE

1 wk 2 wk 3 wk 4 wk 1 wk 2 wk 3 wk 4 wk

HkPR+
m 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Covid19Sim-Simulator 0.51 0.53 0.60 0.69 0.72 0.70 0.79 0.88
COVIDhub-baseline 0.80 0.74 0.78 0.87 0.91 0.80 0.84 0.91
Karlen-pypm 0.68 0.70 0.73 0.77 0.77 0.73 0.74 0.78
COVIDhub-ensemble 0.94 0.90 0.94 1.01 0.99 0.89 0.94 1.01

Model
DJHU

death

Relative WIS Relative MAE

1 wk 2 wk 3 wk 4 wk 1 wk 2 wk 3 wk 4 wk

HkPR+
m 1 1 1 1 1 1 1 1

Covid19Sim-Simulator 0.77 0.89 1.05 1.39 0.88 1.07 1.22 1.61
MOBS-GLEAM COVID 0.81 0.87 0.97 1.25 0.88 0.99 1.08 1.32
UA-EpiCovDA 0.85 0.83 0.92 1.15 1.19 1.17 1.15 1.49
COVIDhub-baseline 0.86 0.8 0.87 1.11 1.36 1.36 1.35 1.67
GT-DeepCOVID 0.9 0.95 1.01 1.21 0.92 1 1.05 1.18
IHME-CurveFit 0.94 0.92 1.12 1.64 0.95 0.99 1.12 1.64
CMU-TimeSeries 0.96 0.97 1.01 1.08 1.21 1.23 1.39 1.44
YYG-ParamSearch 0.96 1.03 1.19 1.72 1.07 1.24 1.29 1.89
COVIDhub-ensemble 1.05 1.08 1.2 1.52 1.5 1.42 1.56 1.94

The best performance is marked in bold and the performances that HkPR+
m has outper-

formed are marked in red. In this table, “N wk” represents the forecasting for N weeks

ahead, and “DJHU
conf ” and “DJHU

death” are the confirmed cases and deaths collected by Johns

Hopkins University, respectively. All the metadata information for the competing models

can be found in the following url: https://github.com/reichlab/covid19-forecast-hub/tree/

master/data-processed.

4. Conclusion515

We showed how Hawkes processes can be combined with spatio-temporal
covariates to accurately model COVID-19 transmission and forecast future cases
and deaths. The model is competitive with several models used to forecast the
pandemic, achieving improved MAE and NDCG scores on a majority of the
experiments we conducted. Our hope is that this work will encourage more520

research into Hawkes process models of disease spreading that incorporate more
advanced features and statistical learning principles. As vaccinations are rolled
out across the U.S. (given recent FDA approval), local impacts on dynamic
reproduction can be flexibly accommodated by our model and used to obtain
more accurate and timely forecasts.525

One potential direction for future research is investigating the combination of
Hawkes process forecasts with compartmental models for improved ensembles.
Our results using data from the COVID-19 Forecast Hub indicate this could be a
promising direction. Another potential direction for future research is extending
the work here to neural network based point process models [9, 10]. These530

models may be able to capture more complicated relationships between mobility

25



patterns, demographics, and transmission. The challenges of such an approach
include the potential for over-fitting with added parameters and determining
how best to realistically model transmission in a neural point process (analagous
to the SIR-Hawkes process), which will be important if neural point processes535

are to be used in long-term forecasting.
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Abstract

Hawkes processes are used in machine learning for event clustering and causal
inference, while they also can be viewed as stochastic versions of popular com-
partmental models used in epidemiology. Here we show how to develop accurate
models of COVID-19 transmission using Hawkes processes with spatial-temporal
covariates. We model the conditional intensity of new COVID-19 cases and
deaths in the U.S. at the county level, estimating the dynamic reproduction
number of the virus within an EM algorithm through a regression on Google
mobility indices and demographic covariates in the maximization step. We vali-
date the approach on both short-term and long-term forecasting tasks, showing
that the Hawkes process outperforms several benchmark models currently used
to track the pandemic, including an ensemble approach and an SEIR-variant.
We also investigate which covariates and mobility indices are most important
for building forecasts of COVID-19 in the U.S.

Keywords: COVID-19 forecasting, Hawkes processes, Mobility indices, Spatial
covariate
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