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ABSTRACT 
Two-dimensional (2D) transition metal carbides, corbonitrides, and nitrides (named as 

MXenes) have become of the fastest growing family of 2D materials in terms of compositions 

and their applications in different areas. One of the least explored properties of MXenes is their 

mechanical properties. While the basic elastic properties of MXenes have been studied by first-

principles, the effects of temperature on the elastic properties have never been explored. In this 

study, we investigate temperature-dependent structural and mechanical properties of the 

titanium-containing MXenes (Tin+1CnO2 (n = 1, 2)) based on the first-principles calculations 

combined with quasi-harmonic approximation. The effective Young’s modulus of a single 

layer of Ti2CO2 and Ti3C2O2 is calculated to be 565 and 482 GPa, respectively, at 0 K. By 

increasing temperature to 1000 K,  Young’s moduli of Ti2CO2 and Ti3C2O2 decrease to 469 

GPa and 442 GPa, respectively, which indicates a larger reduction in stiffness in thinner 

MXenes at higher temperatures. Our calculations of the temperature-dependent bond strengths 

within MXenes showed that titanium and carbon atoms in Ti3C2O2 form stronger bonds than 

Ti2CO2 and atomic bonds in Ti2CO2 lose their stiffness more than Ti3C2O2 with increasing 

temperatures. The Debye temperature of these monolayers is also calculated to provide a 

comparison of the thermal conductivity between these monolayers, in which the results show 

that the Ti3C2O2 has a higher thermal conductivity than Ti2CO2. Our calculated electronic 

properties results of the monolayers are also shown that the electrical conductivity of the 

monolayers would not change with temperature. Our study extends MXenes applications to 

high-temperature applications, such as structural composite components and aerospace 

coatings.  

INTRODUCTION
Two-dimensional (2D) materials have attracted much attention and are widely studied due to 

their diverse applications in the fifteen years. Although graphene is the most recognized 2D 

material1, other examples of 2D materials are transition metal dichalcogenides (e.g., NbSe2 and 
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MoS2)2, hexagonal boron nitrides (h-BN)3, and black phosphorous4. A large family of 2D 

transition metal carbides, carbonitrides, and nitrides (MXene) have been introduced in 2011 

with the general formula of Mn+1XnTx (n = 1, 2, and 3)5,6, where M is an early transition metal, 

X stands for carbon and/or nitrogen, and Tx represents the surface termination (–O, –OH, and 

–F).  

Ti3C2Tx was the first MXene synthesized in 20115. To date, about thirty different MXene 

compositions have been synthesized, while a large number have been predicted theoretically7,8. 

Among all the experimentally synthesized and theoretically predicted MXenes, titanium 

carbide MXenes are still the most extensively applied and studied8. The effects of different 

surface terminations on the stabilization, mechanical properties, and electronic properties of 

Ti3C2Tx are studied using DFT5,7,9,10. It was predicted that the oxygen functional groups provide 

the most thermodynamic stabilization as compared to other surface terminations. 

MXenes have unique combinations of properties and have been explored in different areas such 

as electromagnetic interference (EMI) shielding11, wireless communication12, membranes13, 

Li-ion batteries14,15, purifiers16, catalysts17, electronics18–20, optical21, thermoelectric22,23, 

sensing devices24,25, and photocatalytic reactions26,27. One of the least explored areas in the 

MXenes field is MXenes mechanical properties and their structural applications.  

MXenes are predicted to have high Young’s modulus in the range of 400-1000 GPa, depending 

on the composition, surface terminations, and the number of layers7,9,28–34, and all are predicted 

to be stronger than their MAX phases33. It is found that surface terminations could make 

MXenes more mechanically flexible than their pristine MXenes. Additionally, the strength of 

MXenes functionalized by O is higher than those of terminated by F or OH31,35. It is shown that 

oxygen functional groups make a stronger bonding with the outer transition metal layers, 

because oxygen atoms gain more charges from transition metal atoms, compare to other types 

of surface terminations9,30,31,35. It is also reported that the strength of MXenes decreases by 
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increasing the thickness of MXene monolayer (increasing n) 28,31. Graphene is known as the 

strongest 2D material with Young’s modulus of almost 1 TPa for a graphene sheet made by 

mechanical exfoliation36. However, mechanical exfoliation can only produce small amounts of 

pure graphene and large-scale production is very difficult if not impossible37. One method that 

can be easily scaled up is solution-processing. By solution-processing of graphene, graphene 

oxide is produced, which has a significantly lower Young’s modulus of 200 GPa38. MXenes 

are a family of 2D materials than can be solution-processed.  The measured Young’s modulus 

for a solution-processed Ti3C2Tx was determined at room temperature to be 330 ± 30 GPa29. 

This high value of Young’s modulus makes Ti3C2Tx MXene the stronger solution-processed 

2D material29.  

Although much attention has been devoted to the mechanical properties of bare and 

functionalized MXenes using DFT calculations at 0 K, temperature-dependent mechanical 

properties of MXenes have not been studied. Therefore, it is not possible to compare the DFT 

calculations and the experimental results unless the experimental results are measured at 0 K 

and are corrected for zero-point vibration effects, which are not present in standard DFT 

calculations39,40. Understanding the behavior of MXenes at different temperatures is required 

to pave way for their applications including surrounding high-temperatures such as structural 

composite applications41. 

In this paper, we study the temperature-dependent structural and mechanical properties (elastic 

constants, Young’s modulus, Poisson’s ratio, and in-plane stiffness) of Ti2CO2 and Ti3C2O2 

MXenes using density functional theory combined with quasi-harmonic approximation (DFT-

QHA)39,42 method by considering zero-point energy. We also provide details of comparisons 

with previous theoretical results and some experimental results for graphene, and for both bare 

and functionalized Tin+1CnO2 (n = 1, 2). Our findings provide information on how the structural 
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and mechanical properties of the corresponding MXenes change with temperature, which is 

useful for MXenes high-temperature applications. 

I. THEORETICAL METHODS 
DFT calculations in conjunction with projector augmented wave (PAW) potentials are 

performed using the Vienna Ab-initio Simulation Package (VASP)43–46. The generalized 

gradient approximation (GGA) using the functional of Perdew, Bruke and Ernzerhof (PBE)47,48 

are chosen as the exchange-correlation functional. A Conjugate gradient scheme is applied with 

an iterative relaxation of the atomic positions with the residual forces acting on each atom of 

0.01 eV/Å and a total energy convergence of 10−6 eV/cell. The cut-off energy of 550 eV is set 

for all the calculations. For the crystal optimization of a 1 × 1 × 1 unit cell of 2D Tin+1CnO2 (n 

= 1, 2) MXenes, a 16 × 16 × 1 Monkhorst−Pack49 k-point mesh for the Brillouin zone sampling 

is used. Different cut-off energies and k-point meshes are tested until the energy convergence 

criterion of 1 meV is achieved with these computational parameters. The Methfessel–Paxton 

smearing scheme with a smearing width of 0.1 eV is used for the determination of partial 

occupancies.  

The monolayer of Tin+1CnO2 (n = 1, 2) MXenes consists of single (n = 1) or double (n = 2) 

hexagonal layers of C atoms which are sandwiched between n + 1 monoatomic hexagonal Ti 

planes (Fig. 1). We build the MXene monolayers with the functional groups associated with 

the most energetically stable configuration predicted9,10,20, as shown in Fig. 1. For performing 

DFT calculations, monolayers are placed at the base of the simulation cell and a large vacuum 

region of 20 Å is added above the upper layer along the z-direction to avoid interactions 

between a single MXene sheet and the periodically repeated images.  
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Figure 1. Top-view (top) and side-view (bottom) of 4×4×1 supercell of (a) Ti2CO2 and (b) Ti3C2O2 structures.  
 
After structural optimization, thermal properties and temperature-dependent mechanical 

properties of MXenes are studied by first-principles through phonon calculations performed by 

density functional perturbation theory (DFPT)50,51. The phonon dispersions are calculated by 

using the PHONOPY code40,42 within a 4 × 4 × 1 supercell of the MXene monolayers to 

guarantee the convergence of phonon dispersion. The k-points of 4 × 4 × 1 generated with the 

Monkhorst−Pack49 scheme are applied and the cut-off energy of 550 eV is set. To ensure 

adequate precision of the generated force constants, the criterion for energy convergence is set 

to 10-8 eV/cell. Since considering the long-range dispersion forces are necessary for the precise 

description of the atomic interactions of MXenes during tensile deformation,  we employed the 

correction according to the Grimme method52 for the van der Waals interaction (DFT-D2). 

However, the Coulomb effect (U) for the localized 3d electrons of Ti atoms is ignored since it 

has been tested and a negligible effect on the results has been noticed.   

We employed the quasi-anharmonic approximation (QHA)40, in which the anharmonicity 

volume dependence of phonon properties are applied. The temperature-dependent properties 

of MXenes are calculated by combining DFT with QHA (DFT-QHA)39,42. By knowing the 

phonon frequencies, the energy level of the system and Gibbs energy can be determined, and 
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further thermodynamic properties can be calculated. The pressure value is zero and the 

Gibbs energy is equal to the Helmholtz free energy. The Helmholtz free energy F at given 

temperature and volume are computed using F(T, V) = EDFT(V) + Fvib(T, V), where EDFT(V) is 

the DFT total energy and Fvib(T, V) is the vibrational free energy39,40,42.  

In the following, we briefly describe the method employed for calculating temperature-

dependent lattice parameters and mechanical properties of 2D Tin+1CnO2 (n = 1, 2) MXenes 

from phonon density of states by using the QHA. More details of the calculation for 3D and 

2D crystals are found in Refs.53,54 and Ref.55, respectively.  

A. Temperature-dependent structural optimization 
The Helmholtz energy is a function of all lattice parameters in a crystal. Then, the non-

equilibrium Helmholtz energy should be minimized based on the multiple variable functions 

(i.e., lattice parameters) to find the Helmholtz energy at equilibrium state, which is currently 

not possible by using the first-principles method. Hence, in order to avoid the full minimization 

of non-equilibrium Helmholtz energy, we derived the Helmholtz energy functions with one 

deformation strain ε, which is defined as 𝜀𝜀 = 𝑎𝑎 𝑎𝑎0�  (𝑎𝑎 and 𝑎𝑎0 are the equilibrium and strained 

lattice parameters). Therefore, the non-equilibrium Helmholtz energy can be calculated as: 

F[X(ε);T] = E[X(ε)] + Fvib[X(ε);T],         (1) 

where E[X(ε)] is the total energy of the specific deforming configuration. Fvib[X(ε); T] is the 

vibrational Helmholtz free energy calculated from phonon density states using the DFT-QHA. 

For a fixed deformation mode, the equilibrium Helmholtz energy, which is only a function of 

temperature T, can be obtained by determining the minimum point of the non-equilibrium 

Helmholtz energy curve with respect to the deformation strain ε at each temperature.  

F*[ε𝑇𝑇0 ;T] = min{E[X(ε)] +Fvib[X(ε);T]},        (2) 

By solving Eq. (2), the equilibrium deformation strain ε𝑇𝑇0  at given temperature T can be found, 

and, then the lattice parameters can be calculated. Since Tin+1CnO2 (n = 1, 2) MXenes has 
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hexagonal symmetry, we chose the biaxial deformation tensor with ε up to ± 3% and increments 

of 0.5% to obtain the equilibrium lattice parameter at each temperature from 0 to 1000 K and 

increments of 50 K. The ε𝑇𝑇0  is obtained by polynomial fitting the non-equilibrium Helmholtz 

free energies at each temperature, as shown in Sec. II A. Then, the lattice parameter for 

hexagonal MXenes can be determined as: 

𝑎𝑎𝑇𝑇 = (1 + ε𝑇𝑇0 )𝑎𝑎0,     (3) 

where 𝑎𝑎0 is the optimized lattice parameter at 0 K calculated from the DFT calculation and 𝑎𝑎𝑇𝑇 

is the equilibrium lattice parameter at temperature T. 

B. Temperature-dependent elastic constants 
After calculating the equilibrium lattice parameter at each temperature, we calculated the 

isothermal elastic constants, which can be deliberated as strain derivatives of the Helmholtz 

free energy using Eq. 1. Due to the basic symmetry of a hexagonal MXene sheet, the elastic 

constant matrix is contained only two independent elastic constants of c11 and c12. To calculate 

these two constants, two sets of deformed crystals are required to be built that lead to two sets 

of the Helmholtz energy F[X(ε); T] curves with respect to strain ε at a given temperature. We 

chose one uniaxial deformation tensor (i.e., (ε, 0, 0, 0) and one biaxial deformation tensor (i.e., 

(ε, 0, ε, 0) as two deformation modes to execute the QHA calculations for the temperature-

dependent elastic constants of 𝑐𝑐11𝑇𝑇  and 𝑐𝑐12𝑇𝑇 . Then, the two sets of the Helmholtz energy per unit 

cell area with respect to the strain ε are calculated with ε up to ± 3% and increments of 0.5% 

at different temperatures from 0 to 1000 K and increments of 50 K. For the two deformation 

modes, the curves of the Helmholtz energy per unit cell area with respect to the deformation 

strain ε are obtained by the polynomial fitting. Further, the second-order derivatives of these 

curves with respect to the deformation strain ε corresponds to the independent elastic constants 

or their linear combination. The isothermal elastic constants are calculated by solving the 



 8 

following system of linear equations giving the correlation between these second-order strain 

derivatives and the linear combination of isothermal elastic constants. 

� 𝑐𝑐11𝑇𝑇 = 𝐷𝐷1𝑇𝑇

2𝑐𝑐11𝑇𝑇 + 2𝑐𝑐12𝑇𝑇 = 𝐷𝐷2𝑇𝑇
�                                                     (4)             

where 𝐷𝐷1𝑇𝑇 and 𝐷𝐷2𝑇𝑇 are the second-order strain derivatives of the Helmholtz free energy under 

the two deformation modes, and, 𝑐𝑐11𝑇𝑇  and 𝑐𝑐12𝑇𝑇  are the elastic constants at a given temperature 

and zero pressure. After calculating the clastic constants, Young’s modulus (E) and Poisson’s 

ratio (ν) are calculated for small deformation applied on a hexagonal MXene using: 

𝐸𝐸𝑇𝑇 = (𝑐𝑐11𝑇𝑇 )2−(𝑐𝑐12𝑇𝑇 )2

𝑐𝑐11𝑇𝑇
   (5) 

𝜈𝜈𝑇𝑇 = 𝑐𝑐12𝑇𝑇
𝑐𝑐11𝑇𝑇
�                            (6) 

Since applying the uniaxial stress can lead to non-uniform biaxial stress conditions, we 

performed the geometry relaxation for both the lattice basis vectors and the atomic coordinates 

to make sure that the MXenes are under uniaxial stress. In order to achieve this goal, the applied 

in-plane strain component is kept fixed and the other in-plane strain component is relaxed until 

their conjugate stress components reach less than 0.1 GP and the dimensional length normal to 

the monolayers (Z-direction) is fixed to provide enough thickness of vacuum space. It is worth 

noting that the Poisson’s ratio could be also calculated based on the dimensional length changes 

in X and Y direction during uniaxial deformation applied in addition to the formula based on 

the c11 and c22 constants in Eq. (6).  

C. Temperature-dependent in-plane stiffness constant 
The in-plane stiffness (C) is a more representative parameter for the strength than Young’s 

modulus for 2D materials since the thickness of a monolayer structure is uncertain. The in-

plane stiffness (C) has extensively been used for 2D materials at 0 K31,32,56. We calculated this 

parameter for the MXene monolayers by fitting the initial slope of the stress-strain curve under 
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biaxial tension at different temperatures. In order to achieve the stress-strain curves, first, it is 

required to obtain the equilibrium lattice configuration at each temperature and, then, stretch 

the crystal with the constant growth of Δε = 0.005. Second, the crystal is relaxed while the 

lattice parameters are fixed to confirm that the other dominant stress perpendicular to the 

direction of tension is zero. After obtaining the configuration lattice X(ε)T at given temperature 

T, the Helmholtz energy for that configuration is calculated using Eq. 1. Finally, the stress-

strain curves are obtained by: 

𝜎𝜎(ε, T) = 1+ε
𝑉𝑉(ε)𝑇𝑇

𝑑𝑑𝑑𝑑(ε,T)
𝑑𝑑ε

,   (7) 

where σ(ε, T) and V(ε)T are the stress and volume of the structure under the strain of ε, and F(ε, 

T) is the Helmholtz energy of the deformed crystal. Since forces are averaged over the entire 

system including the vacuum space in DFT calculations, the stress is scaled by 𝐻𝐻 𝑑𝑑0⁄ , where 

H is the cell length along the z-direction and 𝑑𝑑0 is the effective thickness of the MXene 

monolayers, in order to avoid the effect of the vacuum region. 

II.    RESULTS AND DISCUSSION 
In order to study temperature-dependent mechanical properties of 2D Tin+1CnO2 (n = 1, 2) 

MXenes, first, we focus on the geometry optimization at different temperatures in order to have 

an understanding of the structural and atomic spacing behavior of MXenes with temperature. 

Then, we present results for temperature-dependent mechanical properties of MXenes such as 

elastic constants, Poisson’s ratio, Young’s modulus, and in-plane stiffness. The results are 

compared with the previously published studies on Tin+1CnO2 (n = 1, 2) MXenes, Bulk TiC, 

pristine Ti2C, and pristine Ti3C2 at 0 K. 

A. Temperature-dependent structural optimization 
Fig. 2a shows the calculated a lattice parameter (a-LPs) of Ti2CO2 and Ti3C2O2 MXenes with 

respect to temperature. For calculating the a-LPs of MXenes, we first calculated their 

Helmholtz energy with respect to thirteen different volumes under biaxial deformation tensor 
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at different temperatures, as shown in Figs. 2b-2c. The calculated Helmholtz energies are 

represented by the filled blue circles in Figs. 2b-2c. The twenty curves are obtained by fitting 

to the equation of states (EOS) at temperatures from 0 to 950 K with 50 K steps. The minimum 

values of each curve are illustrated by the cross red symbols in Figs. 2b-2c which are the 

equilibrium Helmholtz energies at the temperatures and the respective equilibrium volumes are 

simultaneously found.  

 
Figure 2. (a) Temperature-dependent a lattice parameters of Ti2CO2 and Ti3C2O2 MXenes. Helmholtz energy of 
(b) Ti2CO2 and (c) Ti3C2O2 MXenes as a function of volume at a temperature from 0 K to 950 K with 50 K steps 
are illustrated by filled blue circles, which are fit by the solid blue curves. The minimum energy of the curves is 
shown by the red symbols which determine the equilibrium volumes at each temperature. The red solid lines 
passing through the equilibrium volumes are guides to the eye. 

The MXenes’ a-LPs are plotted by using obtained equilibrium volumes at each temperature, as 

shown in Fig. 2a. In the present study, the a-LPs of 3.037 Å and 3.089 Å are calculated for 

Ti2CO2 and Ti3C2O2 MXenes at 0 K, respectively. The presently calculated lattice constants 

are close to previously calculated values of 3.03231 Å and 3.03520 Å for Ti2CO2 and 3.1057 Å 

for Ti3C2O2. The results show that the lattice parameter of MXenes does not considerably 

change at temperatures T < 100 K unlike single-layer graphene with a negative thermal 

expansion at temperatures T < 400 K58. By further increasing temperature, the a-LPs start 

expanding and at 1000 K their values become 3.070 Å (1.09 %) and 3.113 Å (0.78 %) for 

Ti2CO2 and Ti3C2O2 MXenes, respectively. Based on these values, Ti2CO2 has slightly larger 

growth in interatomic distances than Ti3C2O2 with increasing temperature. This could indicate 
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that surface functionalization has a greater effect on the bond strength in the thinner MXenes. 

It was found by valence X-ray photoelectron spectroscopy (XPS) spectra that the Ti-C bond 

strength of Tin+1CnTx MXenes depends on the carbon content and atomic layer thickness, and 

it is weaker in Ti2CTx than that in Ti3C2Tx.59 In our calculations, we assumed that oxygen 

terminations stay on MXenes’ surfaces and no surface terminations dissociations occur because 

of increase in the temperature above ~ 550 ºC. It was observed recently that heating Ti-

containing MXenes in an inert environment leads to dissociation of MXene flakes 

terminations60.  

In order to better understanding of temperature dependence of bond strengths, we employed 

the crystal orbital Hamilton population (COHP) analysis61 to calculate the bond strengths of 

the MXenes. The COHP analysis indicates bonding, nonbonding, and antibonding 

contributions to the band-structure energy using localized atomic basis sets and the energy 

integration of the COHP calculations (ICOHP) for a pair of atoms up to the Fermi energy 

provides the bond strength.62 It is worth noting that the strength of the covalency and not the 

iconicity of a bond is considered by the ICOHP, which is characterized by the number of 

electrons of a specific atom shared with other atoms when forming chemical bonds. More 

details of ICOHP calculations can be found in the works of Khazaei et al.63,64. 

Fig. 3 shows the results of temperature-dependent ICOHP and atom-atom distance calculations 

for Ti–O, Ti–C, Ti–Ti, and C–C bonds in Ti2CO2 and Ti3C2O2 MXenes. The results of ICOHP 

indicate that the bond strengths between titanium and carbon atoms in Ti3C2O2 are stiffer than 

those in Ti2CO2 while oxygen atoms form stronger bonds with outer titanium atoms in Ti2CO2 

than Ti3C2O2. This indicates that more charge is transferred from the Ti atoms to oxygen 

surface atoms in thinner Ti2CO2 than thicker Ti3C2O2. Generally, the bond strengths become 

weaker at higher temperatures as the atom-atom distances increase; however, our results show 

that the C–C bond in Ti3C2O2 decreases slightly by increasing the temperature, which leads to 
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higher ICOHP energy (possibly stiffer C-C bonds) (Figs. 3g and 3h). The weakening of the 

bond strengths is more significant in Ti2CO2 than Ti3C2O2, especially for Ti–Ti bond. Since 

the bonds between various atoms within Ti2CO2 lose their stiffness more than Ti3C2O2 at higher 

temperatures, we would expect a larger effect on the mechanical properties for Ti2CO2 rather 

than Ti3C2O2 at those temperatures. 

 
Figure 3. Temperature-dependent integrated crystal orbital Hamilton population (ICOHP) and atom-atom 
distance between various atoms in the MXenes. (a)-(b) Ti-O, (c)-(d) Ti-C, (e)-(f) Ti-Ti, and (g)-(h) C-C bonds. 
The solid lines indicate the polynomial fit to the results. 

B. Temperature-dependent elastic constants 
We calculated temperature-dependent elastic constants and Poisson’s ratio using the 

methodology explained in Sec. II. Then, Young’s modulus is calculated from the elastic 

constants using Eq. 5. In previous DFT studies31,32,  Young’s modulus was calculated directly 

by a linear fit to the stress-strain curve and, hence, no elastic constants were reported. 

Fig. 4a shows the results of temperature-dependent elastic constants (c11 and c12) of Ti2CO2 

and Ti3C2O2. Generally, the elastic constants for MXenes decrease with increasing temperature. 

This decrease is more significant for Ti2CO2 so that its c12 becomes less than that of Ti3C2O2 at 

temperatures higher than 600 K. The larger change of elastic constants in Ti2CTx might be due 

to temperature effect on the bond strengths within thinner MXenes that the bonds between 



 13 

different atoms lose their stiffness more significantly at higher temperatures in Ti2CO2 than 

Ti3C2O2 (see Fig. 3).  

 

Figure 4. Temperature-dependent (a) elastic constants (c11 and c12), (b) Poisson’s ratio, and (c) Young’s modulus 
of Ti2CO2 and Ti3C2O2 MXenes. 

In order to have a more precise comparison, the calculated elastic constants, Poisson’s ratio, 

and Young’s modulus of MXenes at three different temperatures of 0 K, 300 K, 1000 K are 

listed in Table 1; furthermore, the previously calculated elastic constants of graphene by DFT-

QHA with considering zero-point energy at the corresponding temperatures taken from Ref.55 

are also presented. The results show that c11 of Ti2CO2 decreases by almost 4.5% and 21% at 

300 K and 1000 K, respectively, while the changes in its c12 are almost doubled to 8.5% and 

42.3% at the similar temperatures. The elastic constants of Ti3C2O2 are less varied than Ti2CO2, 

and Ti3C2O2 c11 decreases by almost 2.1% and 8.0% at 300 K and 1000 K, respectively, while 

c12 decreases by almost 2.4% and 6.5% at the corresponding temperatures. In comparison to 

graphene with E of 1173 GPa38, it is found that Tin+1CnO2 MXenes are less stiff, particularly 

Ti3C2O2. Additionally, MXenes’ stiffness values decrease more than that of graphene at higher 

temperatures, especially for Ti2CO2. However, as it was described before and in previous 

studies28,29 comparing Tin+1CnTx to graphene oxide as a solution-processed material is more 

accurate because of graphene oxide and MXenes have surface functionalization. It was found 

that the stiffness of graphene (at ~1100 GPa) reduces drastically to ~ 210 GPa, which is less 

than that of Tin+1CnTx by oxygen functionalization29. Therefore, the mechanical properties of 
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one-atom-thick monolayer graphene could be affected stronger by surface functionalization 

than the few-atom-thick Tin+1CnO2 flakes.  

Table 1. Elastic constants, Poisson’s ratio (ν), and Young’s modulus (E) for Tin+1CnO2 (n = 1, 2) 
MXenes at 0 K, 300 K, and 1000 K. For comparison, the DFT-QHA calculated elastic constants and 
Young’s modulus for graphene as given in Ref.55 are also stated. The values are in GPa. The percentage 
of variation are listed in parentheses 

 Temperature (K) c11 (GPa) c12 (GPa) ν E (GPa) 

Ti2CO2 
0 627.03 196.49 0.312 565 

300 598.79 (4.5%) 179.72 (8.5%) 0.300 (3.8%) 545 (3.5%) 
1000 495.16 (21.0%) 113.34 (42.3%) 0.229 (26.6) 469 (17.0%) 

Ti3C2O2 
0 531.96 162.04 0.304 482 

300 520.54 (2.1%) 158.17 (2.4%) 0.304 (0.0%) 472 (2.1%) 
1000 489.23 (8.0%) 151.44 (6.5%) 0.309 (1.6%) 442 (8.3%) 

graphene 
0 1208.78 208.81 0.173 1173 

300 1205.76 (0.25%) 205.56 (1.6%) 0.171 (1.16%) 1171 (0.2%) 
1000 1178.46 (2.5%) 192.76 (7.7%) 0.164 (5.2%) 1147 (2.2%) 

 

The calculated Poisson’s ratio and Young’s modulus of MXenes at different temperatures are 

shown in Figs. 4b and 4c. The calculated results at 0 K in addition to the available DFT results 

for the MXenes are given in Table 2 as well as Young’s modulus of graphene calculated by 

DFT-QHA by considering zero-point energy at the corresponding temperatures taken from 

Ref.55.  

We calculated E = 565 GPa at 0 K for Ti2CO2 MXene, which is very close to E = 567 GPa of 

Ref.31 and E = 570 GPa of Ref.32 calculated by a linear fit to the stress-strain curve under 

uniaxial tensile strains using ab initio method. The calculated Young’s modulus of 482 GPa 

for Ti3C2O2 MXene at 0 K in our study is also very close the value of 484 GPa calculated by 

DFT of Ref.31, while our calculated Young’s modulus varies from the value of 369 GPa derived 

by DFT of Ref.30 due to difference in the layer thickness applied. For Ti3C2Tx, our calculated 

Young’s modulus value is 482 GPa, which is higher than the 333 ± 30 GPa29 effective Young’s 

modulus determined experimentally for Ti3C2Tx MXene at room temperature. At 472 GPa, our 

calculated Young’s modulus value at room temperature is still significantly higher than the 

experimentally measured one. The main reason for the lower value for the measured Young’s 

modulus (333 ± 30 GPa) is the presence of defects and also the mixture of surface functionality 
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(–O, –OH, and –F) in the solution-processed Ti3C2Tx MXene30,35. It was found that oxygen 

functionalized MXenes causes a larger elastic constant c11 comparing to those functionalized 

with –F or –OH because of more significant charge transfer from the inner Ti–C bonds to the 

outer surface ones by oxygen atoms30,35. In the present study, the value of 482 GPa is calculated 

for a Ti3C2 monolayer functionalized only by oxygen and without any defects.  

Comparing the calculated values of Young’s modulus for Ti2C and Ti3C2 and the values 

calculated for Ti2CO2 (565 GPa) and Ti3C2O2 (482 GPa) (see Table 2)  in this study indicates 

that surface functionalization leads to decrease in Young’s modulus of the MXenes. 

Additionally, these values show that thinner MXenes are mechanically stiffer than the thicker 

MXenes with similar compositions.  

Our results of temperature-dependent Poisson’s ratios of MXenes in Fig. 4b shows that the 

Poisson’s ratios decrease slightly with temperature for Ti2CO2, while Poisson’s ratio remains 

almost constant with increasing temperature for Ti3C2O2 (Fig. 4b). This means that shear 

modulus decreases marginally with a smaller percentage than that of the moduli in tension and 

compression for Ti2CO2 at higher temperatures, while shear modulus and moduli in tension 

and compression decrease with almost the same rate for Ti3C2O2 at higher temperatures. Our 

calculated results show that Young’s modulus of Ti2CO2 decreases by 3.5% and 17.0% at 300 

K and 1000 K, respectively, while it decreases less for Ti3C2O2 by 2.1% and 8.3% at those 

temperatures (Fig. 4c). It is mainly because of the larger expansion in the interatomic distances 

and consequently more decrement in the bond strengths (Fig. 3) of Ti2CO2 than that of Ti3C2O2 

at higher temperatures, which might be resulted from the greater effect of the surface 

functionalization on the thinner MXenes.  

Table 2. In-plane stiffness constant (C), Poisson’s ratio (ν), and Young’s modulus (E) of Tin+1CnO2 (n 
= 1, 2) MXene monolayers at 0 K. The in-plane stiffness constant, and Young’s moduli are in GPa. The 
available first-principle results for the corresponding MXenes are included in parentes. For comparison, 
the previously calculated results for bulk TiC and 2D pristine Tin+1Cn (n=1, 2) monolayers are also listed 
inside the parentheses. 
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 C E (GPa) ν 
Ti2CO2 735, (745)32 565, (567)31, (570)32 0.312, (0.303)32 
Ti3C2O2 616 482, (369)30, (484)31 0.304 
Bulk TiC - (524)57, (450)65,66 (0.237)57 

Pristine Ti2C (704)32 (588)31, (577)32, (513)57 (0.366)32, (0.266)57, (0.23)34 
Pristine Ti3C2 - (550)31, (447)57 (0.241)57 

C. Temperature-dependent in-plane stiffness constant 
As stated in Sec II, because of the reduced dimensionality of 2D materials, it is more compatible 

to define the in-plane stiffness, C, rather than the classical 3D Young’s modulus. We calculated 

this property for MXenes by fitting the initial slope of the stress-strain curves under biaxial 

tension at 0 K, 300 K, 600 K, and 900 K (Fig. 5). 

We first compare our DFT-QHA results of the biaxial tensile stress-strain curve for Ti2CO2 

and Ti3C2O2 at 0 K with the available DFT results of Refs.30–32, which gives a good match, as 

shown in Fig. 5. The strain-stress curve for Ti3C2T2 (T = F and H) are also illustrated in Fig. 

5b of Ref.30, which shows that MXene with the oxygen functional group possesses the highest 

in-plane stiffness. Then, the stress-strain curves for MXenes at other temperatures are 

calculated and the values of in-plane stiffness, C, are extracted from at the corresponding 

curves, as shown in Fig. 6.  

 

Figure 5. Strain-stress curve of (a) Ti2CO2 and (b) Ti3C2T2 (T=O, OH, and F) under biaxial tensile strain at 0 K 
compared with theoretical studies taken from Refs.30–32.   

Temperature-dependent strain-stress curves (Figs. 6a and 6b) show an insignificant difference 

between the elastic properties at different temperatures. The relatively larger difference 
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between the stress-strain curves of Ti2C2O2 at different temperatures compared with that of 

Ti3C2O2 (Fig. 6c) can be attributed to larger lattice expansion Ti2CO2 than Ti3C2O2 at higher 

temperatures (Fig. 2a). Larger thermal expansion of Ti2CO2 compare to Ti3C2O2 leads to the 

weakening of bond strength between atoms to a higher degree (Fig. 3).  

 

Figure 6. Strain-stress curve of (a) Ti2CO2 and (b) Ti3C2O2 under biaxial tensile strain at 0 K, 300 K, 600 K, and 
900 K. (c) Temperature-dependent in-plane stiffness constant of Ti2CO2 and Ti3C2O2. 

The in-plane stiffness for Ti2CO2 is calculated 735 GPa at 0 K, which agrees well with the 

previous DFT calculation results with the value of 745 GPa32. We also calculated in-plane 

stiffness of 467 GPa for Ti3C2O2 at 0 K. By increasing the temperature, the calculated in-plane 

stiffnesses of MXenes are decreased  (Fig. 6c), and for Ti2CO2 (Ti3C2O2), the values decrease 

to 720 (457) GPa, 705 (445) GPa, and 680 (430) GPa at 300 K, 600 K, and 900 K, respectively. 

This softening trend is affected by weaker interactions between the atoms due to stronger 

vibrations at higher temperatures. 

Both phonon and elastic stabilities play an important role in the lattice stability conditions of 

the material. By investigating both stability conditions, we can understand whether the failure 

of the material is because of the loss of the elastic stability or phonon instability before applying 

the maximum stress. Many 2D materials are reported to experience phonon softening such as 

graphene67–69, BN69, MoS2
69,70. Therefore, we calculated the phonon dispersions for Ti2CO2 

and Ti3C2O2 at state-free state, the biaxial tensile, and compressive strain of 1%, 3%, and 5% 

in the basal plane. The soft phonon modes are often observed in the calculated phonon 

dispersions of 2D materials and can affect the calculation of many properties such as thermal 
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and electrical conductivities of the materials71. We found there are no imaginary modes for 

Ti2CO2 and Ti3C2O2 at state-free state (see Figs. S1 and S2 in Supplementary information). As 

shown in Figs. S1 and S2, the soft phonon modes occur around the Г point for the tensile as 

well as compressive strain states (larger than 3%), indicating the softening of the long-wave 

phonon modes (i.e., elastic instability) and might limit the intrinsic strength for the monolayers. 

These small branches of the imaginary modes might be associated with the finite size of the 

supercell applied in this study and the loss of the rotational symmetry because of applying 

periodic boundary conditions. The phonon spectra of considered MXene systems fulfill the 

strictest condition for dynamical stability without imaginary modes at a state-free state. Even 

for the tensile as well as compressive strain states (less than 3%), there is no imaginary modes. 

The results show that applying a strain larger than 3% leads to making imaginary modes (Figs. 

S1 and S2). Since a strain of 3% is the upper limit strain without imaginary pockets, we 

considered the strains within 3% for the elastic constant calculations, compatible with recent 

works on analogous systems30,31. In addition, a finite temperature of the experimental condition 

might further modify the dynamical stability of the monolayer since our phonon calculations 

are at 0 K39,40. Therefore, these structures could be even more stable under experimental 

conditions. Overall, our results indicate that the imaginary mode enhancement is stronger for 

Ti3C2O2 than Ti2CO2. The phonon DOS for these monolayers at the state-free state is shown in 

Fig. S3.  

In this study, the stress-strain curves for small biaxial tensile loadings are only used for the 

elastic constant calculations. Since the results of DFT-QHA is not reliable in the presence of 

imaginary modes40, we did not deform the crystal largely to calculate the critical strain at 

different temperatures.  

Since the hexagonal structure of these MXenes is dynamically unstable due to the existence of 

imaginary modes under the applied strains larger than 3%, we did not study the deformation 
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mechanism. However, the deformation mechanism of the rectangular structure of Ti2CO2 and 

Ti3C2O2 MXenes was previously evaluated using DFT at 0 K30,31. For example, it was shown 

that 2D Ti2CO2 can sustain large strains of 20%, 28% and 26.5% under biaxial and uniaxial 

tensions along with the X and Y directions, respectively. 

The Debye temperature of a material is an important thermal quantity that can be used to predict 

thermodynamic properties such as thermal conductivity. The Debye temperature can be 

obtained by studying the phonon spectrum of a material. There are three acoustic phonon 

branches (see Figs. S1 and S2) in the phonon spectra of these monolayers, which are the in-

plane longitudinal acoustic modes (LA), transverse acoustic modes (TA), and the out-of-plane 

transverse acoustic mode (ZA). The ZA mode has a quadratic relation to the wave vector and 

the TA and LA modes have linear dispersions close to the Γ point and the group velocities of 

sound can be determined by the slopes of these linear dispersions. The sound speed of the 

monolayers decreases if the phonon frequency becomes lower. The sound speed of the TA and 

LA phonons are calculated (𝜈𝜈𝐿𝐿𝐿𝐿 and 𝜈𝜈𝑇𝑇𝐿𝐿), and the data are shown in Table 3. The average 

acoustic Debye temperature for the monolayers can be approximately obtained using the 

following expression72:  

1
𝜃𝜃𝐷𝐷
3 = 1

2
( 1
𝜃𝜃𝐿𝐿𝐿𝐿
3 + 1

𝜃𝜃𝑇𝑇𝐿𝐿
3 )   (8) 

Where 𝜃𝜃𝑖𝑖 (i  =  LA, TA) is determined as 𝜃𝜃𝑖𝑖 = ℎ𝜔𝜔𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝐵𝐵

, which is substituted into equation (8) to 

obtain 𝜃𝜃𝐷𝐷 as: 

𝜃𝜃𝐷𝐷 = ℎ𝜔𝜔𝐿𝐿𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚𝜔𝜔𝑇𝑇𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝐵𝐵

( 2
𝜔𝜔𝐿𝐿𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚
3 +𝜔𝜔𝑇𝑇𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚

3 )1 3�    (9) 

where h and kB are Planck and Boltzmann constant, respectively, 𝜔𝜔𝐿𝐿𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜔𝜔𝑇𝑇𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚 

represent the phonon frequency at the zone boundary of the LA and TA acoustic modes. The 

Debye temperature of the monolayers is listed in Table 3. 

Table 3: Phonon frequency (THz) at the zone boundary and the sound speed (Km s-1) of the LA 
and TA acoustic modes, and Debye temperature θD (K) of Tin+1CnO2 (n = 1, 2) MXenes. 

https://iopscience.iop.org/article/10.1088/1361-648X/ab2847#cmab2847t03
https://iopscience.iop.org/article/10.1088/1361-648X/ab2847#cmab2847eqn002
https://iopscience.iop.org/article/10.1088/1361-648X/ab2847#cmab2847t03
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 𝜔𝜔𝐿𝐿𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚 𝜔𝜔𝑇𝑇𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚 𝜈𝜈𝐿𝐿𝐿𝐿 𝜈𝜈𝑇𝑇𝐿𝐿 𝜃𝜃𝐷𝐷 (K) 

Ti2CO2 9.45 5.15 9.37 6.14 296.22 
Ti3C2O2 7.91 5.89 9.51 7.64 317.39 

 

The calculated Debye temperature of the Ti2CO2 and Ti3C2O2 monolayers are 296.22 K and 

317.39 K, respectively, which are higher than the calculated Debye temperature of 

MoS2 (262.3 K)72. The results show that the sound speed of the monolayers decreases with the 

decrease of Debye temperature, which may lead to lower thermal conductivity. Unfortunately, 

the Debye temperature of the Ti2CO2 and Ti3C2O2 were not calculated before and there is no 

available data for this parameter to compare. However, the Debye temperature of Ti2AlC 

MAX-phase was calculated as 719.7 K73, which is higher than that of the attendant MXene. 

Since the higher 𝜃𝜃𝐷𝐷 implies a higher associated thermal conductivity, the results indicate that 

the thermal conductivity of MAX phases are higher than the attendant MXenes and the thermal 

conductivity of Ti2CO2 (296.22 K) is lower than that of Ti3C2O2 (317.39 K). 

We also evaluated the temperature-dependent electronic properties of MXenes. Our calculation 

results at 0 K showed consistency with the previous theoretical investigations9,20 so that Ti2CO2 

exhibits semiconducting behavior with the energy gap of 0.24 eV while Ti3C2O2 is metallic. 

However, the results showed that the electronic properties of the MXenes could not 

significantly change due to the thermal expansion of the monolayers so that 2D Ti2CO2 and 

Ti3C2O2 remain semiconductor and metal, respectively, within the temperature range of 1000 

K. 

III.    CONCLUSIONS 
In conclusion, we report temperature-dependent mechanical properties of Tin+1CnO2 (n = 1, 2) 

MXenes. Our theoretical calculations predict that Ti2CO2 is stiffer than Ti3C2O2; however, 

Ti2CO2 softens more than Ti3C2O2 with increasing temperature up to 1000 K. It is mainly 

originated from the larger expansion of the interatomic distances within Ti2CO2 compare to 
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those of Ti3C2O2. The bond strength calculations indicate that the chemical bonding between 

titanium and carbon atoms is stronger in thicker Ti3C2O2 than thinner Ti2CO2, while oxygen 

atoms bonds are stronger to outer titanium atoms in Ti2CO2 than in Ti3C2O2. Our analyses show 

that the bonds between various atoms in Ti2CO2 lose their stiffness more than Ti3C2O2 at higher 

temperatures. This paves the way for an accurate design of MXenes for their high-temperature 

applications such as structural composite applications and EMI shielding coatings in aerospace. 
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Dynamical stability 

The phonon spectra of 2D Tin+1CnO2 (n = 1, 2) at state-free state and biaxial tensile and 

compressive strain of 1%, 3%, and 5% in the basal plane are shown in Figs. S1 and S2, which 

passes several high symmetry directions (Γ(0,0,0)  →  M(1/2,0,0)  →  K(1/3,1/3,0)  →  Γ(0,0,0)). 

   

         



         
Figure S1. Phonon dispersion curves for Ti2CO2 at state-free state and biaxial tensile and compressive strain of 

1%, 3%, and 5% in the basal plane. 

 

         

          
Figure S2. Phonon dispersion curves for Ti3C2O2 at the state-free state and biaxial tensile and compressive 

strain of 1%, 3%, and 5% in the basal plane. 

 



    

Figure S3. Calculated phonon DOS of (a) Ti2CO2 and (b) Ti3C2O2 monolayers at the state-free state. 
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