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Abstract—The purinergic P2X7 receptor (P2X7R) is an adenosine triphosphate (ATP) ligand-gated cationic channel receptor. P2X7R is 
closely associated with various inflammatory, immune, cancer, neurological, musculoskeletal and cardiovascular disorders. P2X7R is an 
interesting therapeutic target as well as molecular imaging target. This brief digest highlights the radioligands targeting P2X7R recently 
developed in drug discovery and molecular imaging agent development.   
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Introduction 

The purinergic receptor P2X ligand-gated ion channel 
type 7 (P2X7R) is an adenosine triphosphate (ATP)-
gated ion-channel.1-3 P2X7R is ubiquitously found in 
almost all tissues and organs of the body and highly 
expressed in the immune, peripheral, and central 
nervous systems, thus this receptor plays important 
roles in health and diseases.4-6 The overexpression of 
P2X7R is implicated in a number of downstream events 
in a cell-specific manner including inflammation, ATP-
mediated cell proliferation and death, metabolic events, 
and phagocytosis, and associated with a wide variety of 
inflammatory, immune, cancer, neurological, 
musculoskeletal and cardiovascular disorders.7-12 
P2X7R is an attractive therapeutic target, and many 
P2X7R antagonists have been developed for the 
treatment of P2X7R-related diseases such as 
inflammatory, infectious, neurological, cancer and heart 
diseases.13-17 Consequently P2X7R has become an 
interesting molecular imaging target, as the 
development of imaging agents parallels the drug 
development process.18 Advanced biomedical imaging 
techniques positron emission tomography (PET) and 
single photon emission computed tomography (SPECT) 
are two promising molecular imaging modalities with 

unrivaled sensitivity for diagnosis, staging, image-guided 
therapy and treatment monitoring of P2X7R-associated 
diseases, and there is a growing interest in design and 
evaluation of new radioligands for noninvasive in vivo 
imaging of P2X7R.19-21  

Since P2X7R is a key player in inflammation, and 
overexpression of P2X7R is closely related to 
neuroinflammation, which is an essential step in the 
progression of brain disorders such as Alzheimer’s 
disease (AD) and Parkinson’s disease (PD).1 PET is an 
ideal imaging technique with greater sensitivity than 
SPECT, which is particularly useful for studying the 
living brain, and the traditional imaging target in 
neuroinflammation is the translocator protein 18 kDa 
(TSPO).19 However, PET coupled with TSPO 
radioligands has come with some limitations such as 
low receptor binding, high inter-subject variability in 
binding affinity, and nonspecific binding in the human 
brain due to TSPO polymorphism, thus the imaging 
scientists have turned their efforts to search for 
alternative biological targets like P2X7R.19 The key is 
to develop an useful P2X7R radioligand. The rationale 
of radioligand development is well complied and 
discussed in an expert review, this excellent review 
documented all considerations including target density, _______________________________________________
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radioligand affinity, binding potential, selectivity for 
target, ligand efficacy, ability to penetrate the blood-
brain barrier (BBB), specific binding versus nonspecific 
binding, plasma protein binding and efflux potential, 
etc. in the development of PET radioligands for brain 
imaging,22 and the general concepts can apply to the 
development of P2X7R targeting radioligands. The 
radioligand development includes two parts: first in 
vitro radioligand, generally labeled in high molar 
activity with a β-emitting radionuclide, often tritium 
(3H), but sometimes radioiodine like iodine-123 (123I), 
this is the first step of radioligand development; and 
then in vivo radioligand, often labeled with a positron 
emitting radionuclide carbon-11 (11C) or fluorine-18 
(18F), this is the second step of radioligand 
development. This brief digest highlights the 
radioligands targeting P2X7R in drug discovery and 
molecular imaging agent development. P2X7R 
radioligands that have been developed include 3H-, 11C-, 
18F- and 123I-radioligands, in which 3H-radioligands are 
used for in vitro and ex vivo evaluation like competition 
binding assay and autoradiography (AUR); 11C- and 
18F-radioligands are used for ex vivo and in vivo 
evaluation such as AUR, biodistribution and PET 
imaging; and 123I-radioligand can be used for in vitro, ex 
vivo and in vivo evaluation including competition 
binding assay, AUR, biodistribution and SPECT 
imaging.      
 
3H-Radioligands targeting P2X7R 
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Figure 1. 3H-Radioligands targeting P2X7R.  
 
Tritium is a long half-life (t1/2, 12.5 y) radioisotope. 3H-
labelled drugs are widely used for studies of drug 
absorption, distribution, metabolism and excretion 
(ADME), since the use of radiolabeled drugs is the 
‘gold standard’ for drug discovery and development.23 
Two representative P2X7R 3H-radioligands [3H]A-
804598 ((S,E)-2-cyano-1-(1-(phenyl-4-[3H])ethyl)-3-
(quinolin-5-yl)guanidine, [3H]1)24 and [3H]JNJ-
54232334 ((S)-7-(2-chloro-3-(trifluoromethyl)benzyl)-
6-methyl-3-(pyrimidin-2-yl-5-[3H])-6,7-dihydro-
[1,2,4]triazolo[4,3-a]pyrazin-8(5H)-one, [3H]2)25 are 
shown in Figure 1. Radiosynthesis employed the 
tritiation of the bromo-precursor with [3H]2 under 
palladium catalysis to give corresponding radiolabeled 
products [3H]1 and [3H]2. [3H]1 is a potent and selective 
P2X7R antagonist with IC50 (nM) values 10, 9 and 11 
for rat P2X7R (rP2X7R), mouse P2X7R (mP2X7R) and 

human P2X7R (hP2X7R), respectively. [3H]2 (Kd 4.9 
nM for rP2X7R) is a radiolabeled P2X7R antagonist 
with improved properties over [3H]1, because [3H]2 has 
less non-specific binding, and specific binding of [3H]2 
in rat brain section was markedly improved compared to 
[3H]1, in which [3H]1 cannot be completely displaced 
by P2X7R selective ligands.            
 
11C-Radioligands targeting P2X7R 
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Figure 2. 11C-Radioligands targeting P2X7R.  
 

 
Figure 3. A [11C]SMW139-PET SUV image of one healthy control and 
one MS patient (Adapted from the literature34). 
 
Carbon-11 is a short half-life (t1/2, 20.4 min) PET 
radioisotope. Carbon-11 radiotracers have an unique 
advantage of back-to-back same-day studies, which can 
be of value when pharmacological or behavioral 
challenges are being studied. Carbon-11 radiotracers 
also have some disadvantages, for instance, their 
production requires an on-site cyclotron to produce 
radiolabeled precursor [11C]CO2; and the imaging 
statistics of these radiotracers is good only for about 60 
to 90 min. P2X7R 11C-radioligands that have been 
reported over the last decade are listed in Figure 2. 
Radiosynthesis of P2X7R 11C-radioligands included two 



 
general approaches: O-[11C]methylation and N-
[11C]methylation of the desmethyl precursor with 
[11C]methyl triflate ([11C]CH3OTf) or [11C]methyl 
iodide ([11C]CH3I).26,27  
 

 
Figure 4. Sequential whole-body PET images obtained with 
[11C]GSK1482160 in the ten normal volunteers studied, from iterative 
reconstructions employing the scanner’s default scatter correction 
(Adapted from the literature41). 
   

 
Figure 5. Average parametric LGA (Logan graphical analysis) VT (tissue 
volumes of distribution) 

11C-JNJ54173717-PET images in HV and PD 
(Adapted from the literature45). 
 
The first in vivo P2X7R radioligand appeared in the 
literature is [11C]A-740003 ((E)-N-(1-(2-cyano-3-
(quinolin-5-yl)guanidino)-2,2-dimethylpropyl)-2-(4-
methoxy-3-([11C]methoxy)phenyl)acetamide, [11C]3) 
with IC50 (nM) values 18 and 40 for rP2X7R and 
hP2X7R, respectively, published in 2014 by Janssen et 

al.28,29 Their subsequent efforts have generated two 
other P2X7R 11C-radioligands [11C]SMW64-D16 (N-
(((3r,5r,7r)-adamantan-1-yl)methyl)-2-chloro-5-
([11C]methoxy)benzamide, [11C]4) and [11C]SMW139 
(2-chloro-5-([11C]methoxy)-N-(((3s,5s,7s)-3,5,7-
trifluoroadamantan-1-yl)methyl)benzamide, [11C]5) 
with Ki (nM) values 9 and 32, respectively, for 
hP2X7R.30-32 Preclinical evaluation of [11C]3 and [11C]4 
in inflammation rodent models showed low brain 
uptake.29,31 In vivo radiometabolite analysis of [11C]5 
showed the highest metabolic stability in rat plasma, 
and [11C]5 also showed high binding to hP2X7R in vivo 
in a hP2X7R overexpressing rat model, but in vitro 
ARG study in post mortem human brain tissue with 
[11C]5 were unable to demonstrate a difference in tracer 
binding between AD patients and healthy controls.32,33 
The first-in-human results concluded that uptake of 
[11C]5 can be quantified with PET using binding 
potential (BPND) as a measure for specific binding in 
healthy controls (n = 5) and patients (n = 5) with active 
relapsing remitting multiple sclerosis (RRMS), but the 
sample size is very limited, so additional studies are 
needed for further clinical evaluation of [11C]5 as a 
novel neuroinflammation tracer.34 A [11C]5-PET SUV 
(standardized uptake values) image of one healthy 
control and one MS patient is shown in Figure 3.34 We 
and other group have synthesized and evaluated 
[11C]GSK1482160 ((S)-N-(2-chloro-3-
(trifluoromethyl)benzyl)-1-([11C]methyl)-5-
oxopyrrolidine-2-carboxamide, [11C]6, IC50 3 nM for 
hP2X7R)35-39 as a P2X7R 11C-radioligand. Preclinical 
evaluation in a lipopolysaccharide (LPS)-induced 
neuroinflammation mouse model38 and an experimental 
autoimmune encephalomyelitis (EAE) rat model as well 
as micro-PET study in cynomolgus macaque39 indicated 
[11C]6 is a promising radioligand targeting P2X7R in 
neuroinflammation. Production of [11C]6 as a 
radiopharmaceutical has been validated,40 and the 
estimation of radiation dosimetry for [11C]6 in normal 
human subjects has been reported.41 The results 
indicated brain uptake was low, but in most other 
organs the uptake and clearance of [11C]6 appears 
suitable for use in PET assessment of P2X7R 
expression as a potential marker of regional 
inflammation.41 [11C]6-PET images in the ten normal 
volunteers are summarized in Figure 4.41 Due to this 
significant drawback, we continue to develop new 
P2X7R 11C-radioligands with improved properties, 
consequently, [11C]IUR-1801 ([11C]F-GSK1482160, 
(S)-N-(2-fluoro-3-(trifluoromethyl)benzyl)-1-
([11C]methyl)-5-oxopyrrolidine-2-carboxamide, [11C]8), 
[11C]IUR-1802 ([11C]Br-GSK1482160, (S)-N-(2-bromo-
3-(trifluoromethyl)benzyl)-1-([11C]methyl)-5-
oxopyrrolidine-2-carboxamide, [11C]9) and [11C]IUR-
1803 ([11C]I-GSK1482160, (S)-N-(2-iodo-3-
(trifluoromethyl)benzyl)-1-([11C]methyl)-5-



 
oxopyrrolidine-2-carboxamide, [11C]10) with Ki (nM for 
hP2X7R) 54.2, 2.5 and 1.9, respectively, were 
synthesized.42 The initial in vitro characterization results 
indicate that [11C]9 and [11C]10 display very similar 
even superior P2X7R affinity to the parent radioligand 
[11C]6. Further biological evaluation of GSK1482160 
[11C]halo-analogs [11C]IUR-1802 and [11C]IUR-1803 is 
currently underway. Recently, another P2X7R 11C-
radioligand 11C-JNJ54173717 ((S)-(2,3-
dichlorophenyl)(3-(4-([11C]methoxy)pyridin-2-yl)-6-
methyl-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-
7(8H)-yl)methanone, [11C]7, IC50 7.7 and 10 nM for 
hP2X7R and rP2X7R, respectively) has been 
described.43,44 Preclinical evaluation and clinical 
evaluation of [11C]7 have been published, and the 
results suggested [11C]7 is suitable for quantifying 
P2X7R expression in human brain, but the difference in 
P2X7R binding between heathy volunteers (HV) and 
PD patients could not be demonstrated.44,45 [11C]7-PET 
images in HV and PD are depicted in Figure 5.45 The 
comparison study of [11C]7 with a TSPO radioligand 
18F-DPA714 concluded 18F-DPA714 showed increased 
signal while [11C]7 was not elevated in symptomatic 
amyotrophic lateral sclerosis (ALS) patients.46                     
 

18F-Radioligands targeting P2X7R 
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Figure 6. 18F-Radioligands targeting P2X7R.  
 
Fluorine-18 is another PET radioisotope with a longer 
half-life (t1/2, 109.7 min). Fluorine-18 radiotracers have 
some significant advantages. For example, a fluorine-18 
radioligand would be ideal for widespread use, which 
permits imaging of up to 5 h post-injection, and will 
result in a better match between the pharmacokinetics of 
binding and the physical decay of the label. The 
disadvantage of a fluorine-18 radiotracer is unable to 

use in back-to-back same-day studies because of its 
longer half-life. P2X7R 18F-radioligands that have been 
developed are depicted in Figure 6. The 18F-
radiolabeling approach for P2X7R 18F-radioligands is a 
nucleophilic substitution with K[18F]F/Kryptofix 2.2.2. 
  

 
Figure 7. Representative parametric LGA VT dataset for 18F-JNJ-
64413739-PET scans: baseline (top row) and postdose obtained 4 h after 
dosing with 20-mg (middle row) and 50-mg (bottom row) single doses of 
JNJ-54175446 (Adapted from the literature52).  
 
The first reported P2X7R 18F-radioligand was [18F]EFB 
((E)-2-cyano-1-(4-([18F]fluoro)benzyl)-3-(quinolin-5-
yl)guanidine, [18F]11) with Ki (nM) values 2.88, 36.1 
and 547 for hP2X7R, rP2X7R and mP2X7R, 
respectively, described by Fantoni et al.47 Like [11C]3, 
[18F]11 is another cyanoguanidine derivative. 
Preclinical evaluation of [18F]11 showed low brain 
uptake in both healthy rats and LPS-rats.47 We have 
developed two [18F]fluoroalkyl derivatives of 
GSK1482160: [18F]IUR-1601 ((S)-N-(2-chloro-3-
(trifluoromethyl)benzyl)-1-(2-([18F]fluoro)ethyl)-5-
oxopyrrolidine-2-carboxamide, [18F]12, Ki 3.73 nM for 
hP2X7R) and [18F]IUR-1602 ((S)-N-(2-chloro-3-
(trifluoromethyl)benzyl)-1-(3-([18F]fluoro)propyl)-5-
oxopyrrolidine-2-carboxamide, [18F]13, Ki 23.6 nM for 
hP2X7R).48,49 In vivo evaluation of [18F]12 and [18F]13 
is in progress. Janssen R&D group has developed a 
promising P2X7R 18F-radioligand 18F-JNJ-64413739 
((S)-(3-([18F]fluoro)-2-(trifluoromethyl)pyridin-4-yl)(6-
methyl-1-(pyrimidin-2-yl)-1,4,6,7-tetrahydro-5H-
[1,2,3]triazolo[4,5-c]pyridin-5-yl)methanone, [18F]14) 
with Ki (nM) values 15.9 and 2.7 for hP2X7R and 
rP2X7R, respectively.50 Preclinical and clinical 
evaluations of [18F]14 in LPS-rats, nonhuman primate 
rhesus macaques, and healthy human subjects were all 
performed.50-52 Although in both nonhuman primate and 
human studies, no appropriate reference region in brain 
could be identified; in addition, a high inter-individual 
signal variability across human subjects was noticed, 
and the influence of genetic polymorphism on P2X7R 
expression level or radioligand binding property is still 



 
unknown, in this proof-of-concept study, they have 
demonstrated that [18F]14 is a suitable PET radioligand 
for the quantification of P2X7R expression in the 
human brain.50-52 [18F]14-PET images in healthy male 
subjects are indicated in Figure 7.52 Fu et al. has 
reported another P2X7R 18F-radioligand 18F-PTTP ((2-
chloro-3-(difluoro([18F]fluoro)methyl)phenyl)(1-
(pyrimidin-2-yl)-1,4,6,7-tetrahydro-5H-
[1,2,3]triazolo[4,5-c]pyridin-5-yl)methanone, [18F]15) 
with Ki (nM) values 4.2 and 6.8 for hP2X7R and 
rP2X7R, respectively.53,54 Preclinical evaluation of 
[18F]15 in both inflammation mice and tumor-bearing 
mice was performed, and the results concluded that 
[18F]15 has potential to screen new P2X7R drugs, 
quantify P2X7R-associated peripheral inflammation, 
and distinguish inflammation from certain solid 
tumors.54  
 
123I-Radioligand targeting P2X7R   
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Figure 8. 123I-Radioligand targeting P2X7R.   
 
Iodine-123 is a SPECT radioisotope with the half-life 
(t1/2, 13.22 h). So far only one P2X7R 123I-radioligand 
appeared in the literature,55 as indicated in Figure 8. 
Radiosynthesis used the iodination of the tin precursor 
with [123I]NaI.55,56 [123I]TZ6019 ((S,E)-N-(2-chloro-3-
(trifluoromethyl)benzyl)-1-(3-([123I]iodo)allyl)-5-
oxopyrrolidine-2-carboxamide, [123I]16), a derivative of 
GSK1482160, is a potent P2X7R antagonist with 9.49-
12.9 nM IC50 values in three different assays. In vitro 
characterization of [123I]16 and its response to 
neuroinflammation in an AD mouse model were 
performed, and the results indicated that [123I]16 has 
specific binding for P2X7R with low nanomolar 
affinity. [123I]16 could be useful for detecting the 
increase of P2X7R expression in brain, for in vitro 
assays to screen new P2X7R antagonists, and for ex 
vivo ARG to assess P2X7R expression in 
neuroinflammatory related diseases.55 This P2X7R 123I-
radioligand can be used for in vivo SPECT imaging, and 
it also opens an avenue for P2X7R antagonists to be 
labeled with PET radioisotope iodine-124 (t1/2, 4.2 d) 
and other SPECT radioisotopes iodine-125 (t1/2, 59.49 
d) and iodine-131 (t1/2, 8.02 d).    
 
Lipophilicity of P2X7R radioligands 
 
The major application of P2X7R radioligands discussed 
here is in brain neuroinflammation imaging, and the 
lipophilicity is an important consideration in the 

development of P2X7R radioligands. The octanol-water 
partition coefficient (commonly expressed as LogP) is 
an important physical parameter directly correlated with 
the biological activities of a wide variety of organic 
compounds.57,58 LogP provides an assessment of 
lipophilicity that often correlates with a compound’s 
ability to penetrate the BBB. Compound lipophilicity is 
expressed in several different ways including terms 
LogP, CLogP, ∆LogP, and LogD.57 Table 1 gives LogP 
and calculated CLogP values of P2X7R radioligands in 
comparison with 18F-DPA714 and [11C]PBR28.59,60 
Both 18F-DPA714 and [11C]PBR28 are extensively 
investigated TSPO radioligands in human studies. The 
data are easily obtained from ChemDraw Professional 
18.0 (ChemOffice). It is noted that LogP range for 
compounds expected to enter the brain readily was 
about 1-3,61 or <5,22 and the optimal range of LogD7.4 
reported for an optimum central nervous system (CNS) 
penetration of drug molecules was 2.0-3.5.57 As seen in 
Table 1, LogP data (1.88-3.29) of PET P2X7R 
radioligands [11C]GSK1482160, [11C]SMW139, 11C-
JNJ-54173717 and 18F-JNJ-64413739, which are in 
clinical evaluation, are in the range of LogP and 
LogD7.4 (1-5). Likewise, LogP data of [11C]PBR28 and 
18F-DPA714 (2.98 and 3.71)  are also in this range. 
These data suggest that [11C]GSK1482160, 
[11C]SMW139, 11C-JNJ-54173717 and 18F-JNJ-
64413739 meet LogP criteria and have appropriate 
lipophilicity for brain uptake.  
 
Table 1.  LogP and CLogP of P2X7R radioligands in 
comparison with TSPO radioligands 18F-DPA714 and 
[11C]PBR28.  
Compound LogP CLogP 
[3H]A-804598 ([3H]1) 4.37 3.21 
[3H]JNJ-54232334 ([3H]2) 3.65 2.00 
[11C]A-740003 ([11C]3) 5.15 2.47 
[11C]SMW139-D16 ([11C]4) 4.12 4.72 
[11C]SMW139 ([11C]5) 2.31 2.90 
[11C]GSK1482160 ([11C]6) 1.88 1.58 
11C-JNJ-54173717 ([11C]7) 3.29 2.28 
[11C]IUR-1801 ([11C]8) 1.48 1.21 
[11C]IUR-1802 ([11C]9) 2.15 1.93 
[11C]IUR-1803 ([11C]10) 2.68 1.71 
[18F]EFB ([18F]11) 4.21 3.03 
[18F]IUR-1601 ([18F]12) 2.07 2.51 
[18F]IUR-1602 ([18F]13) 2.17 2.74 
18F-JNJ-64413739 ([18F]14) 2.09 1.27 
18F-PTTP ([18F]15) 2.18 1.12 
[123I]TZ6019 ([123I]16) 3.77 3.58 
18F-DPA714 3.71 3.33 
[11C]PBR28 2.98 2.71 
 
Conclusion 
 



 
In summary, P2X7R targeting radioligands recently 
developed have been reviewed. As therapeutic drugs, 
P2X7R ligands (antagonists) have been extensively 
studied. As diagnostic imaging agents, although over a 
dozen P2X7R radioligands have been published over 
the last several years, only a few PET P2X7R 
radioligands are being evaluated in clinical trials, 
furthermore, only 18F-JNJ-64413739 can be used to 
access P2X7R expression in health and disease, to 
evaluate target engagement by P2X7R antagonists, and 
to guide dose selection.52 Most of these P2X7R PET 
agents have significant drawbacks like not potent 
enough binding affinity Ki values, not widespread use 
due to short half-life of radionuclide carbon-11, limited 
BBB penetration and/or little brain uptake, low specific 
binding, complex radiosynthesis and short-term 
stability, and inability to confirm promising preclinical 
findings in a human situation. Moreover, the actual 
expression levels of P2X7R in humans and the 
difference of P2X7R expression between health and 
disease are not fully understood yet. Therefore, there is 
a huge room to develop an ideal P2X7R radioligand that 
can be used in the clinical setting to study P2X7R 
expression levels in diseases especially in 
neurodegenerative disorders such as AD and PD.       
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