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Abstract: “A Mathematical Theory of Communication” was published in 1948 by Claude Shannon
to address the problems in the field of data compression and communication over (noisy)
communication channels. Since then, the concepts and ideas developed in Shannon’s work have
formed the basis of information theory, a cornerstone of statistical learning and inference, and has
been playing a key role in disciplines such as physics and thermodynamics, probability and statistics,
computational sciences and biological sciences. In this article we review the basic information
theory based concepts and describe their key applications in multiple major areas of research in
computational biology—gene expression and transcriptomics, alignment-free sequence comparison,
sequencing and error correction, genome-wide disease-gene association mapping, metabolic networks
and metabolomics, and protein sequence, structure and interaction analysis.
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1. Introduction

Information theory has its roots in communication systems that deal with data compression and
coding theorems for transmission of information from one source to another over noisy channels.
Claude Shannon’s seminal work in communication theory from 1948 [1] provided the mathematical
foundations for quantification and representation of information that made today’s digital era possible.
It introduced the concept of channel capacity, defining the amount of information that can be sent over
a noisy channel, bounded by the maximum possible transmission rate—“Shannon’s Limit” and stated
that it is possible to transmit information through a noisy channel at a rate less than the maximum
channel capacity keeping the probability of error at the receiver’s end arbitrarily small [2]. Since its
inception, the significance and potentials of Shannon’s results were rapidly recognized, leading
to further developments in probabilistic information measures and its wide application in diverse
theoretical and applied fields outside of its original scope and intent in communication theory. Indeed,
quantification and reduction of noise and uncertainty from data observations is key to improving
statistical inference and it is not just limited to communication theory but any area that deals with
noisy data. Biology is perhaps one of the experimental areas that is permeated by noise and variability
in all observational levels, ranging from the most basic molecular and subcellular processes such as
gene expressions and signaling pathways to complex interactions and dynamics of tissues, organs,
organisms and populations [3]. Therefore, it is not surprising that information theory has found
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many theoretical advancements and witnessed myriad applications dealing with biological data.
This is particularly true in the umbrella field of computational biology and bioinformatics that deals
with computational applications of mathematical and statistical methods in the study of biological
systems and processes. In this domain, information theory is widely used for model development
and data analysis for a variety of biologically derived data types ranging from molecular, sequence
and phenotypic data in genomics and genetics to gene expression, protein and spectral data in
transcriptomics, proteomics and metabolomics, respectively [4–11].

Despite the numerous applications of information theoretic methods in many areas within
computational biology, there have been only a few recent articles comprehensively reviewing theoretical
developments and methodological applications to address problems in biology. Applications of
information theory at the molecular level were reviewed in 2010 in [12] where the authors investigated
information theory in the context of quantifying information in DNA-binding sites and the study of
protein-DNA interactions and showed how coding theory can be used to explain molecular efficiency.
In 2014, Vinga et al. [6] reviewed the application of information theory focusing exclusively on
biological sequences. Their article discussed both global sequence analysis methods using metrics
such as block-entropy (or L-tuple entropy) [13–16] that uses chaos game representation of genomic
sequences [17,18], and local sequence analysis techniques such as classification of motifs, prediction
of transcription factor binding sites and sequence characterization inspired by information theoretic
frameworks with natural language underpinnings. More recently in 2016, information theory based
methods to understand and quantify signal transmission in cellular systems were reviewed in [5].
Entropy based analysis has been widely applied in characterizing cell signal transduction and associated
biochemical pathways that are inherently noisy owing to many factors such as the stochastic fluctuations
in genetic circuits and intrinsic promiscuity of protein–protein interactions [19]. A review of multiple
information theory based methods to quantify information processing at the level of individual cells in
the context of biochemical networks with non-linear dynamics can be found in [5,7]. The article [5] also
provided an excellent summary of entropy based methods investigating protein-interaction networks,
while an earlier review authored by the same group [4] discussed information theory usage in gene
regulatory and metabolic networks.

In this review article, we aim for the following—(1) we revisit some topics from previous
reviews covering key newer entropy and information theory based approaches in those areas (gene
regulatory networks, protein–protein interaction and metabolic networks); (2) we discuss information
theory based measures of multivariate gene–gene interactions and survey articles using them in
genome-wide disease-gene association mapping; (3) we offer a broad summary of information theory
based applications by including discussion on several key and recent uses of information theory
in topics within computational biology that were not collectively reviewed before (such as protein
structure and interaction analysis, protein coevolution, sequencing error correction, alignment-free
phylogeny, optimization and dimensionality reduction in biology).

The remainder of the article is organized into two major parts. In the first part, we introduce
the readers to basic concepts, quantities and notations in information theory that form the basis of
many advanced metrics and information theoretic algorithms discussed later. In the second part,
we introduce and elaborate upon key applications of information theory in specific areas within
computational biology mentioned in the preceding paragraph, focusing on more recent developments.
Any application specific metrics and extensions and generalizations of the basic concepts will be
discussed within the context of each application. Because of its mathematical nature, the first part will
help to provide a uniform vocabulary and mathematical symbols to explain the applications discussed
in the second part of the article.

2. Basic Metrics in Information Theory

2.1. Self-Information and Entropy

Shannon’s entropy [2] constitutes the basic building block for the information theoretic metrics
to be discussed in the article. It is easiest to comprehend entropy when described in the context of
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uncertainty in discrete random variables. The primary inspiration behind entropy is based on the
idea of information content of a probabilistic event. An event that occurs with high probability has
less information content than an event that occurs with lesser probability. So, learning the occurrence
of a less likely event such as “solar eclipse today” is more informative than knowing about a more
likely event “rainy today”. This idea can be formally described using the metric of self-information (SI)
that obeys the intuition of information content of an event. Given a discrete random variable X that
assumes values from the set VX = {x1, x2, . . . , xN} and follows a probability distribution PX , SI for a
single event X = xi is defined as

SIX(xi) = −log[PX(xi)] (1)

Clearly, if an event X = xi occurs with certainty (PX(xi) = 1)), SIX(xi) = 0. This definition can be
extended to an event pair involving two discrete random variables X and Y. For the joint occurrence
of the events X = xi and Y = yj as:

SIX,Y(xi, yj) = −log[PX,Y(xi, yj)] (2)

where Y assumes values from the set VY = {y1, y2, . . . , yN}, follows a probability distribution PY,
and PX,Y(xi, yj) is the joint probability of the two events X = xi and Y = yj. This also highlights that
when events described by X = xi and Y = yj are independent, the joint distribution should factor
as PX,Y(xi, yj) = PX(xi)PY(yj), so that the self-information SIX,Y(xi, yj) = SIX(xi) + SIY(yj) is additive.
Entropy (denoted mathematically by the symbol H) builds on the concept of self-information for a
single event. For random variable X, it formalizes the information content of all the events X = xi
(i = 1, . . . , N) by taking the expectation with respect to the probability distribution of X:

H(X) = − ∑
xi∈VX

PX(xi)log[PX(xi)] = EX(− log[PX ]) (3)

Entropy, thus, represents the uncertainty in X or information gained by observing a random
variable X following the distribution PX . Because it is an expectation, it depends on the distribution
of the random variable X rather than an observed value. In other words, it represents the expected
amount of information in an event occurrence following the distribution PX and provides a lower
bound to the number of bits required (when log is base 2) on average to encode each event drawn from
the distribution. If some events are much more likely than others, entropy will be low. For distributions
that are close to uniform, entropy is high as uncertainty is high. Analogous definition exists for a
continuous random variable X, where the entropy (also referred to as cross-entropy or differential
entropy) is defined as,

H(X) = −
∫

PX(xi)log[PX(xi)]dxi (4)

where P refers to the continuous probability distribution of X.
As an example, consider X to be a random variable representing the alleles of a single nucleotide

polymorphism (SNP) in the human genome. Assuming the SNP is bi-allelic, it can have 0, 1 or 2 copies
of the minor allele in a genome. So X can take values from set {0, 1, 2} representing the number of
copies of the minor allele in a genome at that position. If we identify the minor allele counts for the
SNP across N genomes, PX(x = i), i ∈ {0, 1, 2} will give the respective probabilities for each of the
three minor allele counts, and can be computed as PX(x = i) = ni/N, where ni is the frequency of
minor allele count i and N is the total number of genomes. Then the entropy can be computed as
H(X) = −∑i∈{0,1,2} PX(x = i) log[PX(x = i)]. It will be zero when the SNP has a single allele; it is
maximized when PX(x) has a uniform distribution, i.e., PX(x = i) = 1/3, i ∈ {0, 1, 2}.

The above definitions can be extended to multiple random variables. With a slight abuse of
notation, for multiple discrete random variables X1,...,XM, entropy is defined using their joint probability
distribution PX1,...,XM as,
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H(X1, . . . , XM) = − ∑
x1∈VX1

. . . ∑
xM∈VXM

PX1,...XM (x1, . . . , xM)log[PX1,...XM (x1, . . . , xM)] (5)

2.2. Conditional Entropy

Given two random variables X and Y, the entropy of X given the event Y = yi is defined
H(X|Y = yi) = −∑xk∈VX

PX|Y(xk|yi) log[PX|Y(xk|yi)] = EX|Y(−log[PX|Y]) from which the conditional
entropy of X given Y is defined as [2]

H(X|Y) = ∑
yi∈VY

PY(yi)H(X|Y = yi) = EY(EX|Y(−log[PX|Y])) (6)

Continuing with the example of the SNP from above, assume X is the SNP random variable and
Y is a random variable associated with a measured phenotype, say presence (Y = 1) or absence (Y = 0)
of a diseased condition. Assume nij be the frequency of minor allele count i ∈ {0, 1, 2} for all genomes
with a given disease status Y = j, j ∈ {0, 1}. Also assume cj be the frequency of disease status Y = j
and N be the total number of genomes. Then the empirical conditional probability distribution is given
by PX|Y(X = i|Y = j) = nij/cj; the conditional entropy can be calculated as,

H(X|Y) = ∑
j∈{0,1}

PY(Y = j)H(X|Y = j)

= − ∑
j∈{0,1}

PY(Y = j) ∑
i∈{0,1,2}

PX|Y(X = i|Y = j)log[PX|Y(X = i|Y = j)]

The marginal distribution of Y is given by PY(Y = j) = cj/N.

2.3. Relative Entropy

While Shannon’s definition of entropy provides the average information content in a given
probability distribution, it is often necessary to obtain information content of the occurrence of events
in a probability distribution PX with respect to a reference probability distribution QX, which is
given by relative entropy or Kullback–Leibler Divergence [2,20]. It can be thought of as a measure
of the distance between two distributions and measures the loss in information of using probability
distribution QX when the true distribution is PX and is given by

KLD(PX ||QX) = ∑
xi∈VX

PX(xi) log[
PX(xi)

QX(xi)
] = EX(log[

PX
QX

]) (7)

where the expectation is with respect to the true density PX . There are many powerful mathematical
relationships that relate the information theoretic KLD directly to concepts and ideas from statistics.
For example, the KLD is the expected log-likelihood ratio and the χ2 statistic is twice the first term in
the Taylor expansion of the KLD [21].

For random variables with continuous distributions, KLD is given by,

KLD(PX ||QX) =
∫

PX(x) log[
PX(x)
QX(x)

]dx (8)

where the integration is over the domain of X. The KLD is asymmetric (i.e., KLD(PX ||QX) 6=
KLD(QX ||PX) when PX 6= QX), always takes non-negative values, additive, and is zero only if
PX = QX . To obtain a more symmetric measure, the Jensen–Shannon divergence (JSD) [22] is defined as

JSD(PX , QX) =
1
2

KLD(PX ||MX) +
1
2

KLD(QX ||MX) (9)

where MX = 1
2 (PX + QX). JSD is symmetric and bounded between 0 and 1.
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2.4. Mutual Information

The mutual information of two random variables X and Y, denoted by MI(X; Y) describes the
information in probability distribution of one random variable X about the distribution of another
random variable Y [2,20]. It is defined as the reduction in uncertainty in the random variable, say X
after observing the other, Y, which can be shown to be equivalent to the relative entropy of the joint
distribution of X and Y, P(X, Y) relative to the product of their marginals, P(X)P(Y):

MI(X; Y) = ∑
xi∈VX

∑
yi∈VY

PX,Y(xi, yi)log[
PX,Y(xi, yi)

PX(xi)PY(yi)
] = KLD(PX,Y||PXPY) (10)

MI provides a measure of association or correlation between X and Y and is often denoted as
“interaction information” between the two random variables. MI reflects the reduction in uncertainty
(i.e., the information gained ) for Y when X is known. Using the definition of entropy and conditional
entropy, MI(X, Y) can be expressed as

MI(X; Y) = H(X) + H(Y)− H(X, Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) (11)

Using the example of the SNP X and disease phenotype Y from above, MI between the X and Y can
be easily calculated from the individual entropies H(X), H(Y) and the joint entropy H(X, Y). H(X) can
be given by H(X) = −∑i∈{0,1,2} PX(x = i) log[PX(x = i)] with PX(x = i) = ni/N; H(Y) is computed
as H(Y) = −∑j∈{0,1} PY(y = j) log[PY(y = j)] with PY(y = j) = cj/N. Here, ni is the frequency of
minor allele count i, cj is the count of genomes with disease phenotype j and N is the total number
of genomes. The joint entropy H(X, Y) can be obtained as H(X, Y) = −∑i∈{0,1,2} ∑j∈{0,1} PX,Y(x =

i, y = j) log[PX,Y(x = i, y = j)]. The joint distribution can be estimated as PX,Y(x = i, y = j) = nij/N,
where nij is the count of genomes with observed minor allele count i and disease phenotype j.

2.5. Interaction Information

The above definition of MI as a measure of interaction between two random variables can be
extended to k variables using a multivariate generalized definition of interaction information also
known as k-way interaction information (or KWII). It is defined as the amount of information (synergy
or redundancy) that is present in the set of random variables, which is not present in any subset of
these variables [23,24]. For a set of k random variables S = {X1, X2, · · ·Xk}, the KWII can be written
succinctly as an alternating sum of the entropies of all possible subsets τ ⊆ S using the difference
operator notation of Han [25]:

KWII(X1, · · ·Xk) = − ∑
τ∈S

(−1)|S−τ|H(τ) (12)

As an aid to understanding the above equation, for the simple case of k = 3 discrete random
variables, the KWII is given by

KWII(X1; X2; X3) = −H(X1)− H(X2)− H(X3) + H(X1, X2) + H(X2, X3) + H(X1, X3)− H(X1, X2, X3) (13)

The value of KWII(S) can be both positive and negative where larger positive values indicate
stronger interaction information (i.e., higher association) among the variables in S, while negative
values indicate redundancy of information between the variables. As an example, for two SNP random
variables X1 and X2 and disease phenotype random variable Y, the interaction information given by
KWII(X1; X2; Y) can be computed using entropies of all possible subsets as above. It can be interpreted
as a measure of the synergistic association of the predictor variables X1, X2 with Y, i.e., how well X1,X2

explains Y—positive values will indicate that interaction between X1 and X2 enhances prediction of Y,
while negative values will indicate that the prediction is reduced or inhibited.
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3. Applications of Information Theory in Computational Biology

3.1. Gene Expression and Transcriptomics

Identifying, modeling and characterizing gene–gene relationships and their co-expression
patterns is an important challenge in molecular and systems biology, as these dynamic interactions
determine cellular phenotypes and represent causality inherent in developmental processes and
regulatory pathways. Such associations are typically modeled computationally and statistically
’reconstructed’ or ’reverse engineered’ using Gene-regulatory Networks (GRNs, also referred to as
Transcriptional Regulatory Networks) utilizing gene expression and mRNA abundance data obtained
using technologies such as microarrays and RNAseq. More recently, large expression data availability
from single cell experiments has spurred developments of new computational methods to infer GRNs,
model regulatory interactions and gain insights into cell fate decisions and associated transcriptional
state changes [26–30]. A GRN is modeled as an undirected graph or a network where the genes (and
transcription factors) are represented as vertices (or nodes) and are connected by edges representing
regulatory interactions between transcription factors and their targets. The gene expression data matrix
(experimental or synthetic) typically provides the genes in the rows and samples and experimental
conditions in the columns. The goal of the network inference method is to use the expression matrix
to infer the set of regulatory interactions (direct or indirect regulation) between any two genes in
the GRN, thereby predicting the edges in the network (Figure 1). Because mutual information (MI)
provides the ability to capture non-linear dependencies between two variables, several methods
for reconstructing GRNs use MI or associated information theoretic scores to infer the regulatory
relationships. As a first step, these methods require the computation of the MI Matrix (MIM), a
square matrix in which the element at the ith row and jth column is given by the MI between genes
Gi and Gj. Often, this computational step has affordable complexity given that only pairs of MI
computations based on bivariate probability distributions are needed to be estimated to complete the
MIM. Several information theoretic methods have been developed to reconstruct GRNs over the past
two decades [31–33]. For the remainder of this section, we will briefly review some of the popular
information theory based methods that were discussed in-depth in some prior reviews [4,8] and then
focus our discussion on more recent advancements in this area in the context of analysis of single-cell
gene expression data.

One of the earliest approaches using MIM can be found in Relevance Networks [34] that simply
links a pair of genes by an edge if the MI is larger than a given threshold. The approach has
been introduced to infer relationships between RNA expressions and finding clusters of genes that
affect cancer susceptibility to anticancer agents [35]. The Context Likelihood of Relatedness (CLR)
algorithm [36] is an extension of the relevance network approach that calculates the statistical likelihood
of a particular transcription factor/gene pair’s MI value within its network context and filters many
of the false (noisy) edges in the constructed GRN where one gene can weakly co-vary with many
transcription factors simply by chance due to inherent noise in biological systems. It compares the MI
between the transcription factor/gene pair to the background distribution of MI values for all possible
pairs that include either the transcription factor or its target gene, and retains only interactions that have
MI scores significantly above the background distribution. Both Relevance Networks and CLR suffer
from a fundamental limitation—genes in indirect relationships separated by one or more intermediate
genes may be highly co-regulated, resulting in numerous false positives. To address this, ARACNE
(Algorithm for the Reconstruction of Accurate Cellular Networks) [37], a popular algorithm for
reconstructing gene networks, was developed. ARACNE also starts with estimating the MIM between
the genes, but it then filters spurious gene–gene associations using a two step process. First, each MI
value between a gene pair is filtered using an appropriate threshold computed from the null-hypothesis
of independence between the two genes, the null distribution being obtained by randomly shuffling
the gene expression values for the given pair of genes. In the second step, ARACNE removes the
vast majority of indirect associations using the data processing inequality (DPI) information theoretic
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assertion that states that if there is an indirect association between two genes Gi and Gj through
gene Gk, then MI(Gi, Gj) ≤ min{MI(Gi, Gk), MI(Gk, Gj)}. It means that gene Gi cannot have more
information about gene Gj than gene Gk has about gene Gi and the post-processing cannot increase
information. More recent extensions of ARACNE can be found in [38–40]. Time-Delay-ARACNE is
proposed by Zoppoli et al. for GRN inference from time-course expression data [38], while higher
order DPI is used to improve inference performance in hARACNE [39]. Improved computational
performance is reported by Lachmann et al. in ARACNE-AP [40] by using an adaptive binning strategy
to estimate MI.

Figure 1. Schematic showing the Gene-regulatory Networks (GRN) reconstruction problem where
undirected edges are inferred using information theoretic methods.

In the past few years, with the advancements in single-cell technologies for biological analysis,
it has now become possible to quantify single cell transcriptomes in very large numbers. While that
has made it possible to provide a finer-grained picture of the complex cellular processes and decipher
heterogeneity inherent in gene expression across multiple tissue types, analysis of gene expression
data from single cells comes with different data distribution patterns and characteristics (e.g., has a
higher rate of zero values) often distinct from their bulk sample counterparts [8]. These present more
complexities for statistical analysis (such as more technical noise and biological variability) [27]. As a
result, GRN reconstruction methods developed for bulk sample expression data may not be suitable
for data generated from single cells and may not take full advantage of the cell-to-cell variability to
infer statistical relationships that can be used by information theory. Taking into consideration some of
the different characteristics of single cell expression data, Chan et al. [27] developed a multivariate
information theory based approach using partial information decomposition (PID) [41] computed from
every triplet of genes in single-cell gene expression datasets. For three genes Gi, Gj, Gk, PID provides a
decomposition of the information provided by two of the genes as source variables (say S = {Gi, Gj})
about the third gene Gk into three components—redundant, unique and synergystic information.

PID(S; Gk) = Synergy(Gk; Gi; Gj) + UniqueGj (Gk; Gi) + UniqueGi (Gk; Gj) + Redundancy(Gk; Gi; Gj) (14)

The inference algorithm developed in [27] (named PIDC or “PID and Context”) uses the
Proportional Unique Contribution (PUC) metric defined as the average ratio of unique information
between two genes Gi and Gj given the presence of a third gene Gk from the remaining genes S:

UGi ,Gj = ∑
Gk∈S\{Gi ,Gj}

UniqueGk (Gi; Gj) + UniqueGk (Gj; Gi)

MI(Gi; Gj)
(15)

Next, the confidence of an edge is calculated as the sum of the cumulative distribution functions
of all PUC scores for each gene in the pair:

con f (Gi, Gj) = FGi (UGi ,Gj) + FGj(UGj ,Gi ) (16)
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where FGi (U) is the cumulative distribution function of all PUC scores involving gene Gi. Like CLR,
estimating confidence of an edge by incorporating distributional properties of the PUC values for a
pair of genes improves robustness to noise. It effectively identifies the most important interactions per
gene, instead of relying on a simple ranking of the pairwise scores and choosing the best scoring edges
across the whole network. Comparing PIDC with ARACNE and CLR, the authors reported marginal
improvement in inferring the GRNs using simulated and publicly available data sets, attributing their
success to larger sample sizes provided by single-cell data. However, it remains unclear as to how
PIDC takes advantage of specific characteristics of single-cell data, such as its zero-rich nature.

Intrinsic noise in transcriptomic and gene expression data, owing to the stochastic nature of
biochemical reactions driving the production of mRNAs and proteins within cells, makes GRN inference
and reconstruction an extremely challenging problem. In addition to information theoretic methods,
statistical methods such as Bayesian networks, tree based [42] and ordinary differential equation
based [43] methods have been proposed to analyze gene expression data and reconstruct GRNs.
An advantage of Bayesian networks and tree based methods is that they can learn directionality of the
edges conjecturing if there is a directional influence from a regulatory gene to a target gene; information
theoretic methods typically infer undirected edges. A head-to-head comparison of various methods
to infer GRNs using single cell expression data has been presented recently in [8]. The methods were
evaluated in their abilities to recover the correct set of GRN edges using ROC curves and Precision-Recall
curves against reference networks from experimental assays, as well as in-silico reference networks from
simulated data sets with single-cell characteristics. They reported that most of the assessed methods,
including information theoretic methods, are not able to predict network structures from single cell
expression data accurately and have differences with each other in the sets of identified edges. Also,
their performances are inconsistent across data from different cell types and experimental conditions,
as previously reported in another comparative study [44]. Both studies found no single best performing
method across multiple types of data and simulation scenarios; rather, ensemble methods that average
prediction using multiple approaches seem to work best [8,44]. The results from these studies emphasize
the necessity to develop more accurate and optimized network modeling methods that are compatible
with single cell expression data.

3.2. Alignment-Free Sequence Comparison

In this section, we discuss prominent applications of information theory for finding similarity
between two genomic sequences without doing an actual alignment of the two genomes. Comparing
two or more genomic sequences to find regions of similarities and dissimilarities and infer a measure
of relatedness is vital for the success of basic phylogenetic and metagenomics research. Sequence
comparison of genetic material across organisms allows discovery of gene structures and inferring their
functional relationships based on the idea that higher similarity between sequences is a driver for higher
structural and functional similarity and possible evolutionary relationships. While traditional methods
for comparative sequence analysis and phylogeny reconstruction rely on computational algorithms for
pairwise and multiple sequence alignments such as dynamic programming, they are often relatively
slow in aligning two sequences, taking time proportional to the product of their lengths and are
difficult to scale to whole genome comparisons. Furthermore, an underlying assumption supporting
sequence alignment algorithms is the principle of co-linearity (homologous sequences have multiple
linearly arranged and more or less conserved sequence stretches), which is often violated in biological
genomes due to rearrangement events (e.g., in viral genomes) [45]. These and other challenges, such
as a rapid drop in accuracy of sequence alignments when sequence identity falls below a certain
critical point, have prompted development of alternative alignment-free methods for comparing large
genomic sequences [46]. Among many different approaches to alignment-free sequence comparison
(such as word frequency based methods inspired by linguistic analysis [47], graphical representation
of DNA sequences [48,49], chaos game representation [50], iterated maps [51], spaced words [52,53]),
applications of information theory have been key to developing methods utilizing the informational
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content between sequences to be compared. In the remainder of this section, we briefly review some of
the key articles using information theory for alignment-free sequence comparison.

In the feature frequency profiles (FFP) method [54] developed by Sims et al., the authors proposed
to estimate the distances between nucleotide or amino acid sequences using a two step process. In the
first step, fixed length words (or k-mers) and their frequencies are extracted from each genomic
sequence by sliding a window along the genome. Normalizing each frequency with the sum of all
k-mer frequencies generates a probability distribution for the genome. This process leads to the
conversion of each genomic sequence into its FFP, Fk, represented by the distribution of each word in
the genome. In the second step, pairwise distance between two sequences i and j can be calculated
using the Jensen–Shannon divergence (JSD) between their respective FFPs, Fi and Fj. The JSD metric
symmetricizes the asymmetric KLD distance metric between two probability distributions. The JSD
serves as a measure of distance between the two genomes and can be used to generate phylogenetic
trees from multiple genomes. The authors also used information theory to address a key question in
their approach—how can one choose an optimal value of k (the word length). Choosing a large value of
k will run into higher computational complexity and possibly unreliable estimates of k-mer probability
distributions. Choosing a smaller value will result in words that are too small, commonly occurring in
all genomes and does not have the information to distinguish between the genomes. To address this,
the authors computed lower and upper bounds of word size k. The lower limit is given by the word
length that is most frequent in a genome of interest. The upper limit is derived using the k−2 Markov
model, which says that one can predict the frequency of a word of length k using the frequencies of its
k−1 and k−2 subwords. So for a given word length k, the expected FFP, F̂k, can be computed and KLD
or relative entropy is then calculated between Fk and F̂k for all values of k from one to infinity and
summed to get CRE (cumulative relative frequency). The CRE represents the accuracy of predicting
FFPs for all lengths ≥ k, given the prior distributions Fk−1 and Fk−2. The value of k at which the CRE
approaches 0 becomes the upper limit of word size for use in genome comparison.

More recently, probabilistic data structures for k-mer counting have been used to enable
alignment-free genome comparison [55,56]. A critical advantage of these data structures is higher
memory efficiency allowing them to be used for comparing many sample sequences at the same time
using next generation sequence data. One of these methods, kWIP, hashes all k-mers from a genomic
sequence i into a probabilistic data structure called a Sketch [56,57], Si, that are numeric vectors of fixed
size for every sequence. Given a set of many sequences (e.g., from a metagenomics experiment), genetic
relatedness between any two sequences i and j is then calculated by computing an inner product
between the two sketches Si and Sj, weighted by their informational entropy across the population
set. This procedure down-weights uninformative k-mers (highly abundant or present in very few
samples) and produces a kernel matrix, K, of pairwise inner products that is then normalized using
the Euclidean norm K′ ij = Kij/(KiiKjj) and converted to distance matrix Dij =

√
K′ ii + K′ jj − 2K′ ij

containing the genetic distances between every pair of sequences in the population. A schematic
illustrating the FFP and kWIP approaches is presented in Figure 2.

Figure 2. Schematic showing an overview of alignment-free sequence comparison.

Over the past few years, many alignment-free algorithms have been proposed [58–60] to solve
previously intractable challenges in phylogenomics, many of which have been compared in [9,45]
using data from three categories—gene tree inference, genome-based phylogeny and horizontal gene
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transfer. Assessing the degree of topological disagreement between the inferred and reference trees, the
report found that no single method performed best across all the data sets. When compared using eight
data sets from the whole-genome phylogeny and horizontal gene transfer categories, FFP was found
to be among the top five best performing methods out of 55 variants of 11 alignment-free phylogeny
tools tested. These suggest that improved information theoretic distance metrics to assess similarities
between genomes need to be developed as they were often more challenged in deciphering finer
complex organization levels in the sequences [45]. With genomics continuing to lead in terms of data
growth and availability through production of high-throughput sequencing data, although information
theory based methods are observed to be relatively more memory efficient and computationally
inexpensive than other methods for smaller data sets, bigger data sets pose more serious challenges,
for example, substantial memory overhead when using longer k-mers. Analyses of very large data sets
containing beyond tens of thousands of samples will benefit from more optimized implementations
of methods such as kWIP that performs pairwise computations, including parallelization across
distributed processing systems. Therefore, it remains a challenge in alignment-free phylogeny to
develop both novel metrics and efficient implementations that can scale to handle larger data sets.

3.3. Sequencing and Error Correction

Information theory based approaches have notable applications in genome sequencing.
DNA sequencing technologies have continuously evolved over the past two decades, leading to
a substantial increase in throughput and decrease in cost. Current technologies are mainly based on a
two-step approach. First, fragments of the target sequence/genome are read via shotgun sequencing.
Then, these fragments, so-called reads, are assembled to reconstruct the original sequence. This
reconstruction task can be seen as a problem of assembling a string from its substrings, where three
aspects play an important role in the completion of the task: length of the fragments; number of reads
per base (coverage depth); and fragment error rates. In the case of DNA sequencing, these aspects
are highly dependent on the sequencing platform. Average read length typically ranges from 100 to
10,000 base pairs (bp), although platforms such as PacBio and Oxford Nanopore Technologies MinION
can reach maximum read lengths in the order of 60–100 kbp [61,62]. The number of reads typically
ranges from 100 s to 1000 s of millions. And the error rate can range from 0.1% to 20% [63,64].

Given a set of reads, the most crucial challenge for the genome reconstruction task is to determine
whether complete reconstruction of the target sequence is possible from the given set of reads.
Additionally, other important challenges include finding the minimum fragment length and coverage
depth needed for the complete reconstruction with a given reliability, evaluating the impact of the
read error rates on the assembly performance and on the requirements in terms of read length and
coverage depth, and designing ways to compare different sequencing technologies and assembly
methods. These challenges have been recently tackled from an information-theoretic perspective by
investigating the fundamental limits of genome reconstruction. From an information theory point of
view, a sequencing task can be seen as a decoding task where the genetic information is first encoded
in terms of nucleotide bases and then transmitted during sequencing through a noisy channel in form
of reads (Figure 3).

Figure 3. Illustration of an information theoretic communication model inspired representation for
error correction in genomic sequencing based on the work of Chen et al. [65].
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Motahari et al. [66] investigated the fundamental limits for the read length and the number of
reads needed to allow complete sequence reconstruction, assuming error-free reads and DNA sequence
modeled as an i.i.d (independent and identically distributed) random process. They calculated the
minimum read length required for complete sequence reconstruction based on the Rényi entropy [67]
of order two, which is defined as H2(p) = − log2 ∑i p2

i , where p is the probability distribution on the
alphabet {A,C,G,T} and i iterates over each of these values. More specifically, given read length L and
original sequence length G, they calculated the normalized read length L = L/ log2(G) and showed
that if L < 2/H2(p), complete sequence reconstruction is impossible, regardless of the number of
reads. If read length is above that threshold, then complete reconstruction requires that enough reads
exist to cover every base least once. These findings were later extended to consider scenarios that do
not require the i.i.d DNA sequence assumption or reads to be error-free [68–70].

Gabrys et al. [71] studied these questions in the more general context of string reconstruction,
motivated by applications in DNA-based data storage systems [72], discussed later in this section.
They investigated the fundamental limits of read overlap and their impact on the read length
requirements, and established the minimum Hamming distance between reads to allow proper
sequence reconstruction. Marcovich and Yaakobi [73] followed the work in [71], by exploring two
models for string reconstruction: one in which not all substrings are received, and another in which
all substrings are received, but with errors. They also proposed substring constraints based on the
Hamming distance between reads.

In another proposed method [74], Si et al. investigated the closely related haplotype assembly
problem, where the goal is to reconstruct haplotype sequences (i.e., string of single nucleotide
polymorphisms (SNPs) on a single chromosome in a homologous pair). Using an information-theoretic
perspective, they formulated this goal to be the successful recovery of two sources of information
being communicated through a channel: the haplotype information and the chromosome membership.
They studied the required conditions to allow a reliable reconstruction with and without error-free
reads and showed that the requirements in terms of number of reads for the erroneous case is of the
same order as in the error-free case. These limits were defined using the Fano’s inequality [2].

More recently, in a novel approach, Chen et al. [65] combined sequencing-by-synthesis with
an information theory-based error-correction algorithm, as outlined in Figure 3. They proposed a
communication channel with three rounds of fluorogenic DNA sequencing [75] and use information
theory principles to analyze information redundancy. In each round, the sequencer generates a
dual-base array, which is combined in a later stage to infer the four-base DNA sequence. For example,
one of the rounds generates the so-called MK dual-base array to determine whether the DNA base is A
or C (encoded as M) or G or T (encoded as K) for every position of the sequence; in this case, K and M are
called degenerate bases. Considering a random DNA sequence, the entropy of a sequence of length L is
2L bits, while the entropy of a dual-base array is L bits, assuming no sequencing error. Therefore, if two
different dual-base arrays are used, the original sequence can be fully reconstructed. However, as the
actual entropy of each dual-base array is lower than L, because of sequencing errors, a communication
channel based on only two rounds, one for each dual-base coding, would be prone to propagate
sequencing errors. Based on the experimental error rate of fluorogenic DNA sequencing, the authors
showed that using three dual-base array provides enough information for sequence reconstruction with
error correction. Besides the MK dual-base array, they used the RY array, where R means A or G and Y is
C or T, and the WS array, where W means A or T and S is C or G. By combining the information encoded
by the three degenerate arrays, the decoder can correct an error of one of the rounds. Experimental
results in [65] showed that this strategy reduces the error rate in a 250 bp sequence from 0.96% to 0.33%.
In a recent study, Mitchell et al. [76] benchmarked several computational error-correction methods for
sequencing data and reported that Chen et al.’s method [65] suffered from increased computational
cost compared with other methods that limits its scalability to larger data sets.

The same concept of degenerate bases is used in [77,78], but with the focus of increasing
information capacity for DNA based data storage when storing results for multiples reads from
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a target sequence. By using different encoding bases (original and degenerate ones) to encode the
observed base frequencies for each position of the sequenced reads, the need to store all reads is
eliminated. As a finite alphabet of encoding bases, including pure and degenerate bases, the observed
base frequency will most likely not match any of the bases in the alphabet. Anavy et al. [77] solved
this problem by using KLD to make the best approximation, while Choi et al. [78] used a clustering
approach. They both used Reed–Solomon coding [79] as a correction mechanism.

Improvements in error correction for long-read sequencing (LRS) technologies, such as PacBio
and MinION, is one of the current challenges in DNA sequencing [80,81]. LRS-based approaches
have shown advantages in sequencing complex regions, such as those with extreme GC-rich, long
tandem repeats, and interspersed repeats, when compared to prevailing short-read approaches [82,83].
However, their high error rates in DNA sequencing are still considered a main drawback [84],
and information theoretic methods have the capability to reduce it, as shown in [65]. Information
theory offers the potential to further contribute in this area by defining fundamental limits for the
coverage depth of DNA reads, to guarantee full reconstruction, error correction, and minimum
redundant information. Using information theory for biology inspired and error-free information
storage is another emerging area of research [72,85–87]. It has drawn more attention lately because of
the novel use of DNA as an archival medium and holds a lot of promise for future research to satisfy
the exponentially increasing demand for information storage.

3.4. Genome-Wide Disease-Gene Association Mapping

Over the last two decades, fueled by studies and reference projects of human genetic diversity and
developments in high-throughput sequencing technologies, genome-wide association studies (GWAS)
have been the primary tool to investigate and establish the connection between the genetic data and the
observed characteristics or phenotypes, such as occurrence of human diseases or disease biomarkers.
For the human genome, the most common form of observed genetic variations are bi-allelic single
nucleotide polymorphisms (SNPs) spread across the human genome. The data is usually represented
as a numeric matrix where the rows are the genomes from multiple individuals and the columns
represent the SNPs. Each bi-allelic SNP (say the ith SNP in the data) can be modeled as a discrete
random variable (say, Xi) taking values from the set {0, 1, 2}, representing the number of copies of the
minor allele in the genome at that position. Also for every individual sample, there is an observed
disease phenotype (say, modeled as random variable Y), which can be discrete in the simplest case
(e.g., presence or absence of a disease), or it can be a continuous valued phenotype (e.g., blood pressure
measurements or blood cholesterol values).

Many information theory based approaches have been proposed for disease-gene association
studies in the last twenty years. Following a similar characterization as the one proposed by
Wu et al. [88], these approaches can be based on: (1) single SNPs; (2) haplotypes; (3) genes; and (4)
gene–gene (GXG) interactions. Single SNP based association methods (also known as single-locus tests)
are the most common and simplest approaches to identify the disease associated SNPs. Two examples
of association tests based on entropy for single SNP-based analysis can be found in [89,90]. These
methods devise test statistics treating every SNP as an independent random variable and have
low computational complexity proportional linearly to the number of SNPs across the genome
considered for the study. However, single SNP based methods suffer from low power to identify causal
associations, especially when the SNPs involved are spread across multiples genes [88]. Furthermore,
for many such multi-factorial diseases, pathogenic genetic variants usually have a low population of
minor allele frequencies (MAFs), making it difficult to identify their effects for relatively small sample
sizes [91]. Haplotype-based approaches look at combinations of marker alleles that are closely linked
on the same chromosome and tend to be inherited together as a unit, instead of alleles from individual
SNPs. This characteristic makes these approaches more suitable to analyze complex multi-factorial
disease phenotypes than the single SNP-based methods [88]. Entropy-based tests using haplotypes can
be found in [92–94]. Their results showed that these tests tend to outperform non-information theoretic
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tests. However, as pointed out in [88], their main drawback is the computational cost associated with
inferring the haplotype phase and frequencies needed for the tests. Closely related to haplotype-based
methods are gene-centric approaches that consider genic variants within one gene as testing units and
are specially powerful when there is more than one disease variant in a gene. These approaches are
specially advantageous when samples come from non-homogenous populations. An entropy-based
association test for gene-centric analysis can be found in [95]. In addition to the association test, they
also proposed a penalized entropy measure that is used to cluster genotypes and decrease the degrees of
freedom of the association test. Gene–gene interaction studies comprise another prominent direction of
investigative strategies, those that involve devising test statistics specifically geared towards studying
complex, multi-factorial diseases. Many of these proposed methods, discussed below, use information
theoretic metrics designed based on Shannon’s entropy. The goal of these information theory based
methods is to develop test statistics or scores that measure gene–gene (GxG) statistical interactions
(also known as epistasis, [96]) between a set of SNPs and the disease phenotype, and also identify
statistical interactions between the genotype and environment (GxE) when environmental variables
(factors external to the genome) are included in the study design (Figure 4).

Figure 4. Overview of the genome-disease association problem and some example information theoretic
metrics calculated for identifying GxG and GxE, a binary phenotype and environmental variable is
shown for simplicity.

Some of the early information theory based approaches focused on detecting interactions
by proposing test statistics based on MI involving two SNPs and the disease phenotype from
case-control studies in which a group exhibiting the phenotype/disease is compared to a control
group. For example, Fan et al. [97] computed MI between two genetic variants Xi and Xj separately
in cases and controls and used their difference MIcases(Xi; Xj)−MIcontrols(Xi; Xj) as the test statistic
to estimate information gain. The idea is to use the MI between the SNPs in the control group as an
approximation of the MI in the general population and identify pairs of SNPs with effects substantially
bigger than that among the cases. In another proposed method by Yee et al. [98], the difference between
the entropy of the phenotype,H(Y), and the conditional entropy of the phenotype given a pair of
genetic variants, H(Y|Xi, Xj), is normalized with regard to the overall entropy of the phenotype to get
the test statistic [H(Y)− H(Y|Xi, Xj)]/H(Y) that normalizes the information gain with regard to the
overall observed entropy of the phenotype. This is also referred to as normalized MI that quantifies
the proportion of information contained in the interacting SNPS, Xi and Xj, influencing the phenotype
Y. In another method, Dong et al. [99] have proposed the ESNP2 (entropy-based SNP–SNP interaction)
method integrating two-locus genetic models. Their test statistic is defined as

4Ri,j =
min(H(Y|Xi), H(Y|Xj))− H(Y|Xi, Xj)

min(H(Y|Xi), H(Y|Xj))
(17)
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and uses conditional entropy of the phenotype random variable H(Y|.) to measure interaction
effects of SNPs Xi and Xj whenever marginal effects exist. All these methods rely on variations
of mutual information (MI) and conditional-MI based two-SNP test metrics and heuristic algorithms of
mining the genome looking for two-SNP combinations showing significantly high association scores.
A detailed systematic review of these methods, distributional properties of these metrics and their
mathematical derivations, and associated algorithms using these information-gain-type quantities for
feature selection in the context of genetic analyses can be found in [100].

While the methods summarized above investigate GXG interactions considering relatively simpler
two-way SNP–SNP interactions, evidence suggests that higher-order multivariate GxG interactions can
contribute to a number of complex traits [101]. Addressing this, several methods have been proposed
using more intricate information theory based models that consider the contribution of more than two
SNPs to the onset of a phenotype [102–113]. For such models, information gain through higher order
(with more than two random variables) GxG interactions in explaining the phenotype states as more
SNPs are added to a model can be defined from a synergy/redundancy point of view [24,103–106,108]
that quantifies the effects of two or more SNPs compared to their individual effects. The synergy can
be positive, when the joint effect of multiple SNPs is larger than the sum of the individual single SNP
effects, or negative, when the joint effect is smaller than the sum, indicating information redundancy
among SNPs. Some of the prominent methods addressing higher order interactions through synergy
and redundancy use multivariate generalizations of MI such as K-way Interaction Information (KWII)
to parsimoniously model both GXG and GxE interactions and help gain deeper insights into the
underlying disease causation pathways by combining them in a single analytical framework [114–120].
All these methods depend on detection of higher order interactions in terms of synergy/redundancy
that relies on robust empirical estimations of metrics such as entropy, MI and KWII. A study by
Sucheston et al. [121] systematically evaluated information theoretic metrics such as KWII along
with established non-parametric methods, such as Multifactor Dimensionality Reduction [122] and
Restricted Partitioning Method [123], comparing power and Type I error. They found that information
theoretic models have more flexibility and have excellent power to detect GxG interactions under a
variety of conditions including genetic heterogeneity that characterize complex diseases.

Building on similar ideas, epistasis networks proposed by Moore et al. [124] provided a way of
using GxG combined with computational network theory. Using the SNPs and their relationships,
a network can be created where each node is an SNP and each edge is a KWII between a pair of SNPs
in the presence of an observable trait or phenotype, such as bladder cancer susceptibility. An edge is
included in the network if the KWII strength is above a threshold that is determined using permutations
of the SNP genotypes and phenotype. Once the epistasis network is created, the authors performed
network analysis to reveal interesting information. For example, the degree distribution of the vertices
in the network was found to closely follow the power law distribution, and hence the network was
approximately scale free [125].

In terms of target phenotypes, most of the work described above considers dichotomous
phenotypes for case-control studies. Alternative strategies to identify GxE interactions are the case-only
and the family-based designs. Case-only studies [126] are used to identify interactions using data
from only affected individuals as used in [127,128]. For example, Kang et al. [127] used case-only
design to devise a multi-SNP test statistic 2N(1− H(Y)) log(W) that is shown to be asymptotically χ2

distributed under the null hypothesis of no association with W – 1 degrees of freedom. For a k-SNP
loci, H(Y) refers to the entropy of the phenotype Y obtained using the counts of each unique genotype
observed across all the k SNPs; W is the total number of genotype combinations observed on these loci.
These tests are shown to have higher power when compared to the standard χ2 statistical association
test. Family-based studies take into account the family relationship of the genomic sequences when
comparing them. It considers, for example, that an allele associated with a disease will be transmitted
to the affected offspring more often than that expected by chance—the Transmission Disequilibrium
Test (TDT) [129]. Examples of such disease association test metrics for family-based study designs can
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be found in [88,102,130]. Notably, Zhao et al. [130] designed a novel TDT statistic using entropy to
generalize the original TDT statistic and incorporated non-linearity in its definition. They demonstrated
that the entropy-based TDT test is more powerful than the original TDT test. Besides analyzing
binary traits, often GWAS needs to detect gene-disease associations for quantitative traits involving
non-discrete real values. Information theoretic methods dealing with such quantitative phenotypes
and environmental variables can be found in [116,117,131] that use differential or cross-entropy based
generalizations of multivariate test statistics. In a recent review, Galas et al. [132] presented a detailed
discussion on the information theoretic formalism for gene association with quantitative phenotypes.

Recently, Tahmasebi et al. used an information theoretic approach to investigate the fundamental
limits of GWAS parameters [133]. Their study proposed an abstract probabilistic model to detect the
causal subsequence of length L for a specific phenotype using a dataset of N individuals with genomes
of length G and their observed characteristics, where the presence of external environmental factors
make the relationship between the causal subsequence and the observable characteristics a stochastic
function. With increasing value of the model parameters N, G and L, the authors reported observing
a threshold effect at (G/N)H(L/G) (H denoting binary entropy) that was then used to formulate
the capacity of recovering the causal subsequence using information theory. This idea was further
extended in a subsequent article [134] by comparing mixed and unmixed populations.

With increasing availability of high-density SNP data from next-generation sequencing techniques
like genotyping-by-sequencing, methods for identifying GxG and GxE interactions have rapidly evolved
to be an essential technology for association studies. While regression based methods and Bayesian
statistics [135,136] have been the primary workhorses for GWAS, information theory has played
a crucial role in advancing the field and has been often combined with statistical approaches in
reducing dimensionality and devising novel solutions. Nevertheless, there are some open questions
that need to be addressed in future research. Although many definitions of statistical interactions and
associated test statistics are proposed using information theory, the field would benefit from a unified
definition and interpretation of statistical interactions. Additionally, often the underlying distributions
of the test statistics under the null and the alternative hypothesis are unknown and more studies are
needed as in [137], focusing on investigating the asymptotic behaviors of the estimators involved.
Computing higher order test statistics like KWII is computationally expensive as it necessitates entropy
computations of all possible subsets of SNP combinations—for example, computing KWII for a
set of two SNPs and a disease phenotype entails 23 − 1 entropy computations with three random
variables. As a result, computing all possible k-SNP combinations in a GWAS study can quickly become
computationally infeasible for larger values of k. This also increases the number of tests and can
reduce power if multiple-testing corrections, such as Bonferroni correction [138], are applied. As a
possible remedy, often single SNP analysis is used as pruning step to reduce the number of SNPs to be
analyzed prior to interaction analysis, and test significances are estimated through efficient permutation
strategies [139]. Another challenge is that the information theoretic test statistics and estimators
are, in many instances, still to be adapted to address practical challenges in genetic studies such as
accounting for missing genotypes, genotyping errors, phenocopies and genetic heterogeneity. Finally,
although some studies exist comparing computational methods for epistatic interaction detection
(e.g., [140]), research is still lacking with respect to well-defined studies comparing the powers and
performances of several key information theory based as well as other statistical approaches under a
variety of experimental conditions. The field will immensely benefit from such systematic studies in the
near future.

3.5. Protein Sequence, Structure and Interaction Analysis

Proteins are key macromolecules, which mediate their function by interacting with other molecules,
including other proteins, nucleic acids, metabolites, and lipids. Major biological processes, such as
immunity, metabolism, signaling, gene expression, and molecular machines are controlled through
protein interactions [141–143]. Due to the critical nature of protein interactions, a key way of investigating
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an unknown protein is to determine what interactions occur between proteins. The experimental
determination of protein–protein interactions (PPIs), using methods such as yeast-two-hybrid, tandem
affinity purification, mass spectrometry, DNA and protein microarrays [144–146], is time consuming
and relatively expensive, and hence, there is a need for accurate computational methods for
determining interactions among proteins. With the availability of genomics and proteomics data,
several computational methods have been proposed for determination of protein–protein interaction
partners. These examples cover different approaches, including Bayesian methods [147], graph-based
methods [148], phylogenetics-based methods[149,150], and information theoretic approaches. Applying
information theory to protein sequence analysis allows researchers to identify these interactions more
easily and without the cost associated with experimental methods. For protein structural analysis,
information theoretic methods also offer the advantage of being able to capture relationships at the
level of protein families, in contrast to other computational techniques such as PPI structural modeling
or docking, which typically operate at the level of individual protein complexes. This is because,
information theoretic techniques for protein interaction modeling can capture dependency information
across multiple sequences to calculate useful metrics, and are thus able to discern interactions at the
protein family level.

An information theoretic approach to infer PPIs is based on the concept of coevolution. The key
biological concept that underpins this approach is that interacting proteins adapt together due to
evolutionary pressures, which gives rise to relationships that can be observed while observing a large
set of data that spans this evolutionary history [151] (such as observing similar gene sequences or
gene expression profiles from different cell types or organisms [152]). These relationships can be
identified by applying information theoretic concepts such as mutual information (MI). As previously
described, MI measures the degree to which random variables are co-dependent. From a multiple
sequence alignment of several related proteins, the amino acid distribution at every site can be thought
of as a random variable. Following this, MI can quantify the degree of reduction of uncertainty at one
site, based on the knowledge of the distribution at a different site. In a notable initial application of
these approaches, Giraud et al. [153] applied the concept of coevolution to proteins in their study in
1998. Since that time, several attempts have been made to refine this measure for their applicability
to proteins. Several studies [154–156] have described approaches to model the effect of phylogenetic
relationships between the proteins and separated this from the coevolution between pairs of sites
within a multiple sequence alignment, and have demonstrated that these techniques are able to
improve the applicability of such metrics to identifying PPIs. Figure 5 shows the role of information
theory in a typical coevolution approach.

Figure 5. Simplified illustration of how mutual information (MI) can be used to capture links between
two proteins from their Multiple sequence Alignments. High MI between 2 columns of the alignments
are associated with interactions in their structures.
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These methods also have a significant impact in the field of structural biology. A key element to
understanding and predicting the function of a protein is its structure. While a structure is largely
determined by its sequence, over the years, structures for several proteins have been determined by
X-ray crystallography, Nuclear Magnetic Resonance (NMR) methods, and more recently Cryo-Electron
Microscopy (CryoEM). As the number of structures solved and deposited in the Protein Data Bank
(PDB) keeps increasing, the vast explosion in data has allowed the application of information theoretic
approaches to play impactful roles in structural biology [157].

Since complementarity is a key feature of three-dimensional protein interactions, coevolution
would suggest that when a substitution occurs, a compensatory substitution would occur in an
interacting partner, that would be captured by the metric regardless of where in the sequence
the mutation occurred. Validation of coevolution-based approaches discussed previously has been
performed by studying the structures. Specific examples encompass a variety of applications, some of
which have been described in a study by Little et al. [10]. This cross-functional work includes a study
of coevolution in the PDZ domain of human protein Erbin, also among related, previously known and
annotated functional domains from the PFAM database, as well as across known catalytic sites. Other
studies have also demonstrated the immense potential that coevolution offers to structural and systems
biology. Specialized approaches for modeling protein coevolution are required since amino acids have
several interacting partners, and MI based metrics capture interactions that may be due to indirect
coupling [157]. This additional complexity is resolved in methods such as DCA[158] or GREMLIN[159],
which are able to highlight direct interactions and remove the noise from indirect interactions.

In a recent study, Cong et al. [160] have applied these techniques to large-scale data from proteomics
studies. This study investigated coevolution between 5.4 million pairs of proteins in Escherichia coli and
between 3.9 million pairs in Mycobacterium tuberculosis, and reported that in conjunction with structural
modeling, they were able to predict PPIs with an accuracy much higher than that found by traditional
proteome-wide two-hybrid screens. This study only highlights the potential for information theory
methods to go beyond traditional methods and help identify PPIs for unexplored organisms.

Not addressed here, but other equally challenging and interesting uses of information theory to
analyze PPIs are addressed in a review article by Mousavian et al. [5]. In that review, the authors
discuss in detail applications of information theory in dealing with PPI networks, describing a variety of
applications such as protein complex identification, network complexity analysis, finding subnetwork
markers, and other questions addressed by previous studies applying information theory for PPIs.
In contrast, for this review, we have highlighted some studies that build on the concept of sequence
coevolution and discuss the future scope of these methods in solving unsolved problems. As these
methods are further refined and integrated with structural biology, as in Cong et al. [160], they can be
further improved with the goal to map all cellular PPIs, enabling discovery of the “interactome”—the
cellular protein interaction network. This represents a challenging task of evolving from the current
paradigm of discovering interactions between specific proteins or protein families to mapping at the
scale of millions of proteins. Other exciting and emerging applications in the structural domain include
recent studies of specificity in these interactions and how they can help guide in-silico assemblies of
protein complexes [157].

3.6. Metabolic Networks and Metabolomics

Metabolic networks are networks that describe the physiological and biochemical properties of a
cell. The components are metabolites, chemical reactions that transform the metabolites to each other
catalyzed by metabolic enzymes, metabolic pathways, as well as the regulatory interactions that guide
these reactions. Unlike other types of systems biology networks, studies of metabolic networks have
been limited due to difficulties in generating large amounts of metabolite concentration data and lack
of knowledge about the kinetic properties of the involved reactions. The recent rapid evolution of
metabolomics based on mass spectrometry and nuclear magnetic resonance has made possible faster
and more in-depth studies of metabolic networks. In this section, we will introduce some studies that
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have applied the concepts of information theory in understanding metabolic networks. An overview
illustrating some of the approaches discussed is presented in Figure 6.

Reconstruction of metabolic networks remains a central topic similar to other types of biological
networks. A top-down approach to metabolic network reconstruction is by reverse engineering
of metabolome data. Popular methods for inference of regulatory networks, ARACNE [37] and
CLR [36] have been applied to reconstruct cellular metabolic networks [161]. Both these methods
leverage mutual information (MI). A method based on conditional MI has also been used [162].
These methods can detect non-linear correlations compared to simpler correlation-based relatedness
scores. Saccenti et al. [163] proposed a “wisdom of crowds” approach that considers the consensus
obtained from four different approaches, ARACNE, CLR, PCLRC (Probabilistic Context Likelihood of
Relatedness on Correlations) [164] and Pearson correlation.

Figure 6. An example of metabolic networks. Nodes represent metabolites and are transformed into
each other through chemical reactions catalyzed by metabolic enzymes (red). Metabolic pathways
are formed by a linked series of chemical reactions that collectively perform a biological function.
Reconstruction of metabolic networks is typically done by reverse engineering of metabolome
data, where information theoretic methods ARACNE and CLR have been applied. Reaction fluxes
depicted by the width of the reaction arrows can be predicted using FBA. Also shown are examples
of downstream analysis of a metabolic network using information theory for metabolic diversity
characterization, structure-dynamic relationship analysis, single-cell level simulation of metabolic
networks with FBA and nutrient information sensing.

Molecular networks built from metabolite profiling can exhibit a large degree of diversity across
individuals and this variability reflects the intrinsic diversity observed among the individual metabolic
phenotypes. To characterize this diversity, the concept of entropy can be used [163]. Importantly,
both entropy profiles of single metabolites and entropies of one metabolite relative to others that
characterize dependencies and correlations between metabolites in a network context need to be
considered. In the recent review published by Everett et al. [165], metabolic entropy is considered
as one of the four fundamental approaches to the generation and utilization of metabotype data for
metabolic phenotyping in diagnosis and prognosis, another being the metabolic network itself.

An important goal of metabolic network studies is understanding the dynamical behaviors
of metabolic networks and the functions generated by them. Despite their topological complexity,
metabolic networks avoid complex dynamics and maintain a steady-state behavior. A combination
of the Shannon entropy and the word entropy [166] capable of separating different dynamic regimes
in metabolic networks have been used to reveal that this pronounced regularization of dynamics is
encoded in the network topology [167]. Nykter et al. [168] also studied network structure-dynamics
relationships, using Kolmogorov complexity as a measurement of information distance between pairs
of network structures and between their associated dynamic state trajectories. The possible dynamics
of metabolic networks was studied in Grimbs et al. [169] by using a kinetic model. The enzyme kinetic
parameter space was sampled and the metabolic dynamic states were evaluated statistically. MI was
then used as one of the three distinct measures to assess the relative impact of kinetic parameters on the
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stability and robustness of metabolic networks. Cellular metabolic systems form self-assembled
aggregates and the activities of cellular enzymes can also exhibit spontaneous spatial-temporal
functional structures. Entropy is a useful concept in the study of these dynamical systems [11].
In particular, Kolmogorov–Sinai entropy, which can be estimated from a finite number of observations
using a family of statistics named Approximate Entropy (ApEn), provides a good measure of the
complexity and information for the study of attractors in biochemical systems.

Metabolic networks are often modeled and simulated using Flux Balance Analysis (FBA) in order
to study the physiology of the relevant microorganism or cell. FBA can predict metabolic reaction
rates, also known as fluxes, without using kinetic parameters, by representing a metabolic network
in the form of a set of mass balance equations based on the stoichiometry of each reaction, and
computing reaction fluxes to match biomass production rate to a measured growth rate. However,
substantial cell-to-cell growth rate fluctuations exist even in well-controlled steady-state conditions.
De Martino et al. [170] introduced a generalization of FBA to the single-cell level based on the
maximum entropy principle [171]. The idea is to look for an as-random-as-possible distribution
over fluxes that is matching the experimentally measured average growth rate. This maximum entropy
metabolic modeling has been shown to provide a better match to experimentally measured fluxes and
it makes a wide range of predictions such as on flux variability, regulation, and correlations.

Finally, metabolic networks transform nutrients into biomass and it is of interest to understand
how a cell acquires information on nutrient availability through nutrient sensing and how a metabolic
network uses this information. Wagner at al. [172] proposed a way to relate the nutrient information
to the error in cell’s measurement of nutrient concentration in the environment. FBA was then used
to show that nutrient sensing inaccuracy is translated logarithmically into reduced cell growth, and
for microbes like yeast, cells would need to estimate nutrient concentrations to very high accuracy to
ensure optimal growth.

3.7. Connections to Optimization and Dimensionality Reduction in Biology

In this section, we briefly review some key applications connecting information theory with
optimization, notably through Maximum Entropy Production (MEP) and then discuss information
theory in the context of dimensionality reduction for omics analysis.

3.7.1. Optimization in Biology

Natural selection can be considered an optimization process itself, given environmental
constraints, leading to “survival of the fittest” . While mathematical models have been used to model
biological processes ranging from microbial metabolism [173,174] to plant growth [175,176] to human
disease [177,178], Maximum Entropy Production (MEP) has served as an ultimate measure of fitness
by “survival of the likeliest” [179,180]. MEP is defined by [180] as a memoryfull (or path-dependent)
change in a system’s state probability distribution. While a memoryless entropy change between
distributions P and Q is often measured by Kullback–Leibler Divergence (KLD) in physics, MEP,
as applied to a biological system, reflects the thermodynamic likelihood of all chemical reactions
during a process [180]. In plants, for example, mechanistic models have successfully predicted
specific, observable traits such as plant height or processes like evapotransporation [175]. These
models are then used as proxies for optimization targets like disease resistance and growth rates.
In the early 2000s to 2010s, models were developed by [179] and others, which assumed fitness
in any environment is best described by Entropy Production. While the MEP principle cannot be
proved [181], it has been demonstrated as practical and applicable for both individual organisms
and entire ecosystems [179,181,182]. More recently, Cannon et al. [180] used the MEP principle to
model central metabolism in the fungus Neurospora crassa and used it to estimate kinetic rate constants
normally obtained using painstaking experimentation [183]. This optimization objective used the MEP
principle by choosing the parameters (inferred rate constants) that “can happen in the greatest number
of ways” [180]. A hypothetical search space for such an optimization is depicted in Figure 7.
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Figure 7. Biology presents many optimization problems. Shown here is a hypothetical search space that
could represent anything from an organism’s traits to experiment designs to visualization parameters.
In these cases, the vertical axis could be fitness/MEP, experiment value, and network edge crossovers,
respectively.

3.7.2. Dimensionality Reduction for Omics Analysis

Omics experiments suffer from the small-n-large-p problem, where a relatively small number of
samples, n, each comprise a large number of colinear variables, p. Dimensionality reduction, reviewed
by Sorzano et al. [184], amounts to the pursuit of a projection to lower-dimensional space that is Efficient,
Relevant, and Meaningful. Efficient means the projection space has few dimensions and possibly weighs
few of the n input variables (sparse or regularized), Relevant means that it maintains information
related to the experiment, and Meaningful means that the projection is oriented in a useful or interesting
position. While Principle Components Analysis (PCA) [185] finds the Meaning by projecting data to
orthogonal axes ordered by their variance, Independent Component Analysis (ICA) [186] explicitly
uses information theory to find Meaning differently. In ICA, the latent factors are assumed to be
statistically independent and requires non-normality in the distributions of the independent latent
factors. Reviewed in [187], this non-normality requirement is crucial to ICA and is optimized in different
ways using different calculations of non-normality. One of those measures is Negentropy, J,

J(Y) = H(Z)− H(Y) (18)

which is a measure of how different the differential (continuous) entropy H (Equation (4)) of a random
variable Y is from that of a truly normal random variable Z with the same variance-covariance structure.
The reason H(Y) is subtracted from H(Z) is given a fixed second moment (variance), the normal
density has the greatest entropy. Further, minimum MI between projection axes is a good measure of
maximum Negetropy [187]. An advantage of ICA is that latent factors need not be orthogonal, as shown
in Figure 8. ICA is applied not only for dimensionality reduction, but also in signal processing [187].
A difference between the two is that ICA does not rank latent factors in order of importance, as PCA
does. Lastly, ICA calculation is not deterministic, and can sometimes lead to unstable results.

Figure 8. Independent Components Analysis (ICA) can compute latent factors in data like Principle
Components Analysis (PCA). ICA is not limited to orthogonal mixtures like PCA, as shown in this
simulated dataset. The ICA mixing vectors align to the data better than the PCA rotation vectors.
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4. Discussion

In this article, we have performed a broad overview of applications of information theory in
many key areas within the gamut of computational biology with focus on more recent developments
(summarized in Tables 1 and 2). Information is intrinsically central to biology, most obviously because
genetic information is stored in the DNA. Since the seminal work done by Shannon over seventy
years ago, information theory with its foundations in statistical mechanics and communication theory,
has made a tremendous impact to computational biology. Not only has it provided many ways of
parsimoniously modeling and capturing non-linear associations between key components in biology
(such as gene expression, DNA nucleotides, protein residues), it also helped represent dynamic
biological systems as stochastic random processes. Its popularity also stems from the fact that
information theory provides a strong alternative to many conventional statistical approaches often
challenged with complex parameterization and computational intractability due to high dimensionality
of input data. At the same time, although information theoretic applications have grown at a very fast
pace and information theory based theoretical frameworks can be adapted to a wide range of problems,
many challenges exist that should be considered prior to any analysis, as discussed in the context of
biological applications in Andrews et al. [188] and for general data mining by Holzinger et al. [189].
The central concept in information theory is Shannon’s entropy that is based on expected value of a
probability distribution akin to statistical averaging. Because heterogeneity of traits and phenotypes
is a rule in biology, rather than an exception, averages may not always work well in explaining or
predicting behaviors. Many proposed information theory based test statistics should be used with
caution as stationarity assumptions generally do not hold, sample sizes may be too small to support the
law of large numbers and asymptotic properties are not well understood. Estimation of metrics such
as interaction information relies on robust empirical estimations of multivariate distributions and joint
probability mass functions with groups of random variables that are not straightforward at all, and
more so, when data points are limited. Difficulties related to obtaining sufficient sample sizes and the
computational burden associated with such estimations using high-dimensional and heterogeneous
data often encountered in biology can result in bottlenecks in the application of information theory
to systems biology [190]. Another set of issues to be tackled exist in the modeling front that include
behavior of noise and robustness of models to imperfections and irregularities, a frequent occurrence in
the experimental biological domain [188,191]. Assumptions of ideal conditions (infinite block lengths,
additive white Gaussian noise, i.i.d distributions, etc.) underlying many classical information theoretic
results may not always hold when the conditions are relaxed. Finally, some other open questions are
how to select an appropriate entropy measure, its parameters and higher order metric(s) using the
entropy measure to address a particular problem in biology and how to generally benchmark multiple
such entropy measures [189]. More research is required addressing the above-mentioned challenges
within specific applications in biological domains.
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Table 1. Summary of key information theoretic methods for areas discussed in Sections 3.1–3.4.

Area Information Theoretic Methods How Information Theory Is Used

Reconstructing Gene
Regulatory Networks

Relevance Networks [34] Used MI larger than a given threshold to construct GRNs

CLR [36] Used MI to construct GRN, filters spurious edges by estimating its background distribution

ARACNE and its extensions [37–40] Used MI to construct GRN, filters edges using null distribution and DPI, higher order DPI to improve inference performance, adaptive
binning strategy to estimate MI efficiently

PIDC [27] GRN constructed using PID to explore dependencies between triplets of genes in single-cell gene expression datasets

Alignment-free
phylogeny

FFP [54] Calculated JSD as pairwise distances between two genomes using normalized k-mer frequencies

kWIP [55] Constructed a sketch data structure using all k-mers from a genomic sequence, computed inner product between the two sketches
weighted by their Shannon’s entropy across the given dataset

Sequencing and
Error Correction

Motahari et al. [66] Used Renyi entropy of order 2 to find the minimum fragment length and coverage depth needed for the assembling reads to reconstruct
the original DNA sequence with a given reliability

Chen et al. [65] Analyzed the information redundancy in dual-base degenerate sequencing by comparing entropy information content of multiple DPL
(degenerate polymer length) arrays

Anavy et al. [77] Proposed encoding and decoding for composite DNA based storage and error correction through developing composite DNA alphabets
and using KLD to select the best alphabet model

Choi et al. [77] Used eleven degenerate bases as encoding characters in addition to ACGT to increase information capacity limit and reduce the cost of
DNA per unit data

Genome-wide
disease-gene
association mapping

Fan et al. [97], Yee et al. [98], Dong et al. [99] Proposed test statistics based on MI and conditional entropy involving two SNPs and the disease phenotype from case-control studies

Varadan et al. [103], Anastassiou [104], Curk at al. [105], Hu et al. [106,108] Used synergy to analyze GXG statistical interactions

Chanda et al. [24,114,115,118], Tritchler et al. [120] Used multivariate information theoretic metrics and higher order models (e.g., KWII) to analyze statistical GXG and GxE interactions

Moore et al. [124] Used KWII to represent edges in epistasis networks

Tahmasebi et al. [133] Used entropy to formulate the capacity of recovering the causal subsequence

Chanda et al. [116], Knights et al. [117], Yee et al. [131], Galas et al. [132] Discussion and analysis of Information theoretic methods dealing with quantitative phenotypes and environmental variables

Andrade et al. [128], Kang et al. [127] Developed information theoretic test statistics for single-group or case-only studies.

Tzeng et al. [92], Zhao et al. [93,94] Developed entropy-based tests using haplotypes

Cui et al. [95] Developed entropy-based association test for gene-centric analysis considering variants within one gene as testing units

Zhao et al. [130], Brunel et al. [102], Wu et al. [88] Designed and discussed entropy based disease association test metrics for family-based studies
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In the past few years, cutting-edge and high throughput technologies and experimental capabilities
in biology have enabled rapid collection of unprecedented amounts of data ranging from millions
of genomic sequences, images of physiological structures, high resolution microscopy images of cell
morphologies to petabytes of health records. Therefore, it is worthwhile to briefly mention the role of
information theory in the context of the recent mega-trends in data generation and analytics, particularly
with respect to the newer paradigms of “Big Data” and “Deep Learning” that have emerged over the
past two decades. The 3V’s (“Volume”, “Velocity” and “Variety”) constitute three key properties of any
“Big Data” in general that informally refers to the data deluge that generates large “Volumes” of data
at high “Velocities” with a lot of “Variety” [192,193]. Within biology, genomics, through production of
high-throughput sequencing data, continues to lead in terms of data growth and availability [192,194].
Information theoretic approaches, being at the heart of some of the popular pattern mining and statistical
machine learning methods, stand to benefit from the increasing “Volume” and “Velocity” primarily
through more reliable estimations of underlying empirical data distributions leading to improved
estimation of metrics such as MI and KWII. However, ever increasing production of high-throughput
biological data poses serious challenges to the conventional solutions for storing, processing and
transmitting these data. Consequently, in addition to dimensionality reduction strategies for omics
analysis, DNA based data storage [72] and data compression methods [195] for various biological data
types have become active areas of research over the last decade. Because of the long-term stability and
information density, using DNA as an archival medium is on track to become an appealing medium
for handling next generation data “Volume”. Multiple methods have been proposed in the last few
years [72,77,78,85–87] that aim to harness the properties of DNA to mathematically model it as a
storage channel and improve it’s information capacity. In the data compression area, some of the early
compression methods, such as GenCompress [196] used reference genomes to map short sequences
and then used entropy coding algorithms to encode the addresses of the short sequences, their lengths
and their probable substitutions. More recent methods like CoGI [197] and iDoComp [198] can be
used for both reference-free as well as for reference-based genome compression and rely on applying
advanced data structures and algorithms such as suffix arrays and rectangular partition coding [199] to
reduce mapping size before using entropy encoding in the final compression step. Another promising
direction to manage this data deluge can be found in the work of Yu et al. [200] and later advanced
by Ishaq et al. [201]. Their research proposed information theory and hierarchical clustering based
framework for similarity search in massive biological datasets based on characterizing a dataset’s
entropy and fractal dimensions, and enabled reduction in data volume by pruning redundant data
while preserving the essential structures and patterns within the data. This not only attempts to address
data “Volume”, it also holds the potential to improve data “Veracity” (from 5V categorization of “Big
data” [193]) that reduces data redundancy and noise and can lead to improved estimations of information
theoretic as well as statistical metrics in downstream applications. Fueled by the ever-increasing growth
in biological data and emerging techniques such as CRISPR based genome-editing, we are only beginning
to explore the capacity of information science to advance research in biological data compression and
DNA based storage, and we expect to see many more exciting developments in these areas.
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Table 2. Summary of key information theoretic methods for areas discussed in Sections 3.5–3.7.

Area Information Theoretic Methods How Information Theory Is Used

Reconstruction and analysis
of Metabolic Networks

CLR [36], ARACNE [37], PCLRC [164] Uses MI to construct metabolic networks from metabolite concentration data, filters spurious edges by estimating its background
distribution [36,164] or DPI [37]

Marr. et al. [166,167] Network analysis of metabolic networks using Shannon and word entropy to reveal regularization dynamics encoded in
network topology

Nykter et al. [168] Studied network structure-dynamics relationships, using Kolmogorov complexity as a measure of distance between pairs of
network structures and between their associated dynamic state trajectories

Grimbs et al. [169] Stoichiometric analysis to parameterize the metabolic states, assessed the effect of enzyme-kinetic parameters on the stability
properties of a metabolic state using MI and Kolmogorov–Smirnov test

Fuente et al. [11]. Studied properties of dissipative metabolic structures at different organizational levels using entropy

De Martino et al. [170] Introduced a generalization of FBA to single-cell level based on maximum entropy principle

Saccenti et al. [163] Investigated the associations and the interconnections among different metabolites by means of network modeling using maximum
entropy ensemble null model

Wagner et al. [172] Proposed an information theoretic way to relate the nutrient information to the error in a cell’s measurement of nutrient
concentration in its environment

Protein interaction analysis Wollenberg et al. [154], Tillier et al. [155], Dunn et al. [156],
Kamisetty et al. [159], Morcos et al. [158]

Mutual Information combined with evolutionary information and refined with structural information to identify protein interactions

Optimization,
Dimensionality Reduction

Cannon et al. [202,203], Thomas et al. [204] Used MEP to simulate central metabolism in the fungus Neurospora crassa [180], tricarboxylic acid cycle model optimization in
microbes [204].

Hyv’́arinen et al. [187], Comon et al. [186] Used negentropy and minimization of MI to obtain the components in ICA
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More recently, inspired by knowledge of neural information processing and functioning of
the brain, and powered by availability of modern powerful GPUs, artificial intelligence and deep
learning have made impressive advances in numerous applications ranging from computer vision,
natural-language and speech processing to bioinformatics and computational biology. Keeping up with
this trend, information theory, in many forms, has now become ubiquitous within many state-of-the-art
algorithms in machine learning and deep learning algorithms. It has helped advance theoretical
developments of optimization and training in deep learning, that drives many emerging applications
in biological data science such as genomic predictions and imaging genomics exploring relationships
between genotypes, phenotypes and clinical outcomes [205,206]. For example, cross entropy has
become a standard for comparing two probability distributions and is a popular loss function for deep
neural networks, in both binomial and multinomial classification scenarios. Information theory is
also continuing to play a central role in on-going research investigating information bottleneck and
related principles in the analysis and design of representation learning and optimization algorithms
for training deep neural networks, for example, as in [207].

Lastly, with recent advancements in quantum computations, Shannon’s classical information
theory is paving the way for using quantum information theory with physics to further the
understanding of biological systems. Active research is being pursued in many uses of quantum
information theory, such as developing quantum biological channel models suitable for the study
of quantum information transfer from DNA to proteins [208], quantum-mechanical modeling of
spontaneous, induced, and adaptive mutations and their role in cancerous tumor developments [209]
and using both classical and quantum error-correction coding in genetics and evolution [210].
We conjecture that information theory has a key role to play in many theoretical and application
developments in these areas in the near future.
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